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Abstract

We present progress towards a novel theoretical approach for
understanding Tversky’s famous ‘diagnosticity’ effect in sim-
ilarity judgments, and an initial empirical validation. Our ap-
proach uses a model for similarity judgments based on quan-
tum probability theory. The model predicts a diagnosticity ef-
fect under certain conditions only. Our model also predicts that
changes to the set of stimuli to be compared can cause the di-
agnosticity effect to break down or reverse. In one experiment,
we test and confirm one of our key predictions.
Keywords: similarity; diagnosticity; quantum probability

Introduction
Our ability to perceive senses of similarity between objects is
fundamental for cognitive processes such as categorisation,
perception, language and decision making. Yet developing a
successful model of our similarity intuitions has proven a ma-
jor challenge. A natural approach has been to employ multi-
dimensional psychological spaces, in which stimuli are rep-
resented as points and similarity between stimuli depends on
distance. Such distance-based similarity models have proven
popular, both because of their practical utility in cognitive
modelling (e.g., categorization models; Nosofsky, 1984) and
the theory they have enabled (e.g., Shepard, 1987). However
distance-based similarity models are constrained in a number
of ways. Some constraints arise from the fact that distance
functions obey metric axioms; the most obviously intuitive of
these is symmetry, implying Sim(A,B) = Sim(B,A), where
Sim denotes similarity. However there is also a more subtle
constraint, which is that similarity should be a function only
of the features of the stimuli being compared, and should be
independent of the set from which the stimuli are taken. We
call this constraint non-contextuality.

In a seminal study, Tversky (1977) provided an extensive
empirical examination of distance-based similarity models.
He obtained empirical evidence against all three metric ax-
ioms and so concluded that distance-based similarity models
ought to be abandoned. Moreover, he reported a particular
type of context effect in similarity judgments, such that the
similarity between two stimuli can be affected by the pres-
ence or not of other available objects (broadly relevant to the
similarity task). This context effect, called the diagnosticity
effect, is also clearly beyond simple distance-based models
of similarity. The diagnosticity effect is a fascinating demon-
stration of why similarity cannot be understood as a pair-
wise relation. Indeed, ever since Murphy and Medin’s (1985)

highly influential work, cognitive psychologists have realised
that there is more to similarity than just an objective (i.e., un-
malleable by context or other factors) pairwise comparison.

The diagnosticity effect is central to the question of the
adequacy of distance-based similarity models. This is be-
cause it is in fact possible to accommodate violations of
the metric axioms within such models. Consider, for ex-
ample, asymmetries; one needs to modify an expression like
Sim(A,B) = f (dAB), with f an arbitrary function, and dAB the
distance between objects A and B in psychological space, to
something like Sim(A,B)= f (pAB.dAB), where pAB is a direc-
tionality parameter (Nosofsky, 1991). As long as pAB 6= pBA,
asymmetries can emerge. By contrast, when considering the
diagnosticity effect, there are no simple ways to modify stan-
dard distance-based similarity models to include context ef-
fects (cf. Goldstone & Son, 2005). What then is the most ap-
propriate way to incorporate context in similarity judgments?

Tversky’s (1977) diagnosticity demonstration involved a
simple task, where participants had to select the country
most similar to Austria, the target, from a set of three al-
ternatives. When the alternatives were Sweden, Poland, and
Hungary, most participants selected Sweden (49%), imply-
ing that Sim(Sweden,Austria) was highest. When the alter-
natives where Sweden, Norway, and Hungary, Hungary was
selected most frequently (60%), not Sweden (14%). Thus,
changing the range of available alternatives can apparently
radically change the similarity between the same two alterna-
tives. Tversky’s (1977) explanation for this result was that the
choice of alternatives led to the emergence of different diag-
nostic features (either ‘Eastern European’ or ‘Scandinavian’
countries), which in turn impacted on the similarity judgment.
Note, in Tversky’s account, the relevant cognitive processes
are sequenced as above, i.e., first there is a process of group-
ing, then an emergence of diagnostic features. As Tversky
(1977, p. 342) notes “A change of clusters, in turn, is ex-
pected to increase the diagnostic value of features on which
the new clusters are based, and therefore, the similarity of ob-
jects that share these features.” Tversky (1977) employed 20
pairs of four countries and one further demonstration of the
diagnosticity principle, based on schematic faces.

While Tversky’s (1977) account is compelling, it relies on
a notion of similarity and grouping between options which
is underspecified or even circular (grouping depends on simi-
larity, but, according to Tversky’s account, similarity depends
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on grouping; cf. Pothos et al., 2011). Further, the notion of the
emergence of diagnostic features seems attractive for stimuli
with many features, but this explanation must break down for
stimuli with a small number of features, where the choice of
which features to compare when making a similarity judg-
ment is essentially fixed. In particular we report below the
results of an experiment involving stimuli with only a single
varying feature (their size), where any context effects cannot
be accounted for by the emergence of diagnostic features.

The diagnosticity effect has eluded compelling replications
(but see Evers, 2014). However we may find some evidence
for the effect by looking not in the similarity literature, but in
the decision making one. We note first that the fundamental
cognitive principles guiding decision making may not be that
different from those relevant in similarity judgments. Indeed,
according to some authors there are deep commonalities be-
tween the two kinds of processes (e.g., Pothos, Busemeyer, &
Trueblood, 2013; Shafir, Smith, & Osherson, 1990; Sloman,
1993). Significantly for our discussion of the diagnosticity
effect, the decision making literature contains extensive repli-
cations of the so-called ‘similarity’ effect, which is analogous
to the diagnosticity one. Consider a task whereby participants
are asked to choose the option they prefer, amongst two alter-
natives A and B. A robust finding is that, when introducing a
third option C, similar to B, then preference for A increases
(see Trueblood et al., 2014, for a review).

There is a further lesson to be learned from the deci-
sion making literature; together with the similarity effect,
researchers frequently also observe an attraction effect (and
also a compromise one, of less relevance when using simple
single feature stimuli.) The attraction effect is that, in the
A,B choice as above, when introducing an option C clearly
dominated by A, preference for A is enhanced. The attraction
effect in decision making competes with the similarity effect.
Is there an attraction effect in similarity judgments too? As
far as we are aware, this has not so far been explored. But,
if attraction effects can emerge in similarity judgments, then
perhaps the interplay between the similarity/diagnosticity ef-
fect and the attraction effect is what explains the (apparent)
brittleness of the diagnosticity effect. The main theoretical
contribution of the present work is to propose a mathematical
framework which produces predictions for both the diagnos-
ticity and the attraction effect in similarity judgments. Our
model reveals that the conditions for obtaining a diagnostic-
ity effect are indeed highly constrained. We will present some
preliminary empirical evidence to suggest that there is both a
diagnosticity and an attraction effect in similarity judgments,
in a way that is well captured by our model.

Previous modelling work
Although this is not the place for a review of the existing sim-
ilarity literature, we wish to mention a few important mod-
els of similarity that can account for the diagnosticity effect.
For reasons of space, our focus will be restricted to Tversky’s
(1977) findings. Of course, the empirical similarity litera-

ture has greatly progressed since then, nevertheless Tversky’s
(1977) findings still provide a gold standard of attainment for
novel similarity proposals.

Krumhansl’s (1978) distance-density model is a powerful
way to extend standard distance-based similarity models. The
main idea is that similarity depends on a modified distance
function, which increases if the local density around the com-
pared items increases. The distance-density model is consis-
tent with the diagnosticity effect since, given options A,B,
and target T, adding an option C similar to A increases the
density around A (and C), and thus the modified distance be-
tween A and T increases, so the similarity between A and T
decreases. However, the distance-density model has difficulty
with other key Tversky (1977) results.

Ashby and Perrin’s (1988) General Recognition Theory
(GRT) is a powerful similarity model, based on the idea that
stimuli give rise to distributions of ‘perceptual effects’ in psy-
chological space. With many stimuli present, psychological
space is divided into response regions, such that each one is
optimal for responding to a given stimulus. Similarity be-
tween two stimuli then depends on the overlap of the dis-
tribution of perceptual effects for the first stimulus, with the
optimal response region for the second. The GRT deals well
with the diagnosticity effect, since changing the range of al-
ternatives in a similarity task changes the way psychological
space is divided into optimal response regions. However, the
GRT runs into problems accounting for symmetry violations,
requiring additional assumptions to reproduce the observed
asymmetries.

Nosofsky’s (1984) Generalized Context Model (GCM) is
an extensively employed model of how categorization deci-
sions are guided by similarity relations. The GCM can, in
principle, capture the diagnosticity effect, because changing
the range of available stimuli changes the overall similarity
structure of the stimuli. This will change the dimensional at-
tentional weights, which in turn impacts on the similarity rat-
ings. No doubt these ideas are powerful and, verifiably, afford
considerable explanatory power in supervised categorization.
But their applicability in unsupervised situations, as in Tver-
sky’s (1977) diagnosticity paradigm, is less clear: attentional
weight change in the GCM is driven by the requirement to
learn particular categorizations. Such requirements would be
absent in e.g. the diagnosticity paradigm.

The quantum similarity model (QSM)
The original model of Pothos et al.
Pothos et al. (2013), building on earlier work by Busemeyer
et al. (2011), proposed a quantum similarity model (QSM),
with a view to provide a comprehensive account of Tver-
sky’s (1977) main findings. The QSM was developed using
what we call quantum theory (QT), that is, the mathematics
for how to assign probabilities to events from quantum me-
chanics, without any of the physics. QT can be employed
as a theory of probability, beyond physics, in any area where
there is a need to formalize uncertainty. In psychology, there
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have been some arguments that the key characteristics of QT,
e.g. interference, context and order effects resonate well with
cognitive processes, at least in some cases (e.g., Bruza et al.,
2009; Pothos & Busemeyer, 2009; Trueblood & Busemeyer,
2011; Wang & Busemeyer, 2013; for overviews see Buse-
meyer & Bruza, 2011; Pothos & Busemeyer, 2013).

Regarding the QSM, asymmetries can arise fairly naturally
from the model, as well as violations of the triangle inequal-
ity, as observed by Tversky (1977). Violations of minimality
can be accommodated in a generic way. Thus any explana-
tion of the diagnosticity effect from the QSM will go hand in
hand with satisfactory coverage of the other key findings from
Tversky (1977), regarding violations of the metric axioms.

Below we introduce the original model of Pothos et al. and
explain how it predicts a diagnosticity effect. In the next sub-
section we present an extension of the QSM which improves
the treatment of context, and gives more detailed predictions.

The basic ingredient in the QSM is a complex vector space
H (strictly a Hilbert space), representing the space of possi-
ble thoughts, which may be partitioned into subspaces, each
representing a particular concept/stimulus. The subspace cor-
responding to concept A is associated with a projection oper-
ator PA. The set of subspaces relevant to a particular set of
similarity judgments need not be disjoint or complete, thus a
particular thought may be associated with more than one con-
cept. Although realistic psychological spaces may have high
dimensionality, the important features can often be captured
by a model with a much smaller dimensionality.

The dimensionality of the subspace corresponding to a
concept is determined by the degree of knowledge we have
about that concept. For example, if participants can be as-
sumed to know more about China than Korea (cf. Tver-
sky, 1977), then the dimensionality of the China subspace
will be greater than that of the Korea one. These differ-
ences in dimensionality are a key feature of the QSM and
give rise to predictions about asymmetries in similarity judg-
ment. Equally, where we expect no systematic differences in
degree of knowledge a convenient simplification is to assume
that the subspaces are one dimensional, that is, just rays.

In the original QSM the knowledge state is given by a vec-
tor, |ψ〉 in H. It corresponds, broadly speaking, to whatever
a person is thinking at a particular time. For example, |ψ〉
could be determined by the experimental instructions.

In the absence of any context elements the similarity be-
tween two concepts A and T in the QSM is essentially the
sequential probability of thinking about A and then T 1

Sim(A,T ) = |PT PA |ψ〉 |2. (1)

This expression for similarity can be thought of as a con-
junctive probability that |ψ〉 is consistent with possibilities
A and T and, indeed, the QSM was developed as an exten-
sion of Busemeyer et al.’s (2011) model for the conjunc-
tion fallacy. In both these models, a projection step was

1To save space we ignore the normalisation of these expressions;
in the experiments we discuss it turns out to be a constant.

assumed to be a step of thinking about the corresponding
possibility/concept. For example, PT PA |ψ〉 indicates think-
ing about possibility A first and then T. So, the way to in-
corporate context in the original QSM is as additional pro-
jections. For example, suppose the similarity between A
and T is assessed in the context of a third option C (this
could be an alternative in a forced choice task). Then, simi-
larity would be computed as Sim(A,T ;C) = |PBPAPC |ψ〉 |2.
In the case of Tversky’s (1977) demonstration, the sim-
ilarity expression was e.g. Sim(Sweden,Austria) =
|PAustriaPSwedenPHungaryPPoland |ψ〉 |2 (the order of the projec-
tions for Hungary, Poland would need to be counterbalanced).
Crucially, this similarity depends on the grouping of the con-
text elements (it is higher when there is greater grouping),
so it provided a natural way to accommodate Tversky’s key
finding and insight. But, the introduction of context in the
QSM was somewhat heuristic and, moreover, it is not clear
what new predictions are made. Our objective is to extend
the QSM, with a view to address both these problems.

An improved model of context
The first extension concerns employing a density matrix, ρ for
the cognitive state, instead of a pure state, |ψ〉, as in Pothos
et al. (2013). Essentially, a density matrix reflects classical
uncertainty of which is the true pure state (e.g., for each par-
ticipant), and it is a more general way of representing states
in QT. The analogue of Eq.(1) in this case is,

Sim(A,T ) = Tr(PT PAρPA), (2)

where Tr denotes the trace of a matrix. If the knowledge state
is pure ρ = |ψ〉〈ψ| and Eq.(2) reduces to Eq.(1).

As in Pothos et al. (2013), we include context effects by
prior projections (i.e. between the initial state and the stimu-
lus A) onto the context elements. If the task is to select which
of {A,B,C} is most similar to a target T , then when judging
the similarity between A and T the context elements are B
and C. The key technical extension we introduce concerns
the idea that there are many possible sets of prior projections
we could consider. We define the similarity between A and T
in the context of B and C, denoted Sim(A,T ;B,C), as,

Sim(A,T ;B,C) = ∑
i

a2
i Tr(PT PAΓiρΓ

†
i PA) (3)

where Γi is one of the strings of projectors given by,

Γi ∈ {1,PB,PC,PBPC,PCPB,PBPCPB,PCPBPC, ...} (4)

and ai is a pre-factor which we will discuss in a moment.
Thus in the extended QSM we do not include only a single
possible string of prior projectors, but rather a whole infinite
family2. This solves the problem of the arbitrariness of the
original proposal, regarding context elements.

2This is easily extended to larger sets of context elements. The
general form is

Γi ∈ {1,all context elements,all strings of two context elements,
all strings of three context elements, . . .}
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The a2
i are the relative probabilities participants will follow

the particular prior train of thought given by Γi. We suggest
setting ai = αN/2, with N the number of projectors in Γi, and
α < 1 is some non-negative number. This has the advantage
that there is only a single parameter, and that longer strings of
projectors (i.e. larger numbers of prior thoughts) have lower
relative probabilities of occurring in the model.

A final issue concerns how to set ρ. In the original QSM
the initial state was taken to be a pure state with equal prior
probability to be consistent with each of the stimuli. While
it is reasonable to set it in a neutral way when only two ob-
jects/concepts are involved (as in the original model), when
multiple objects are involved, this is not straightforward (e.g.,
it often precludes a representation of low dimensionality) and,
furthermore, may be psychologically unreasonable. So, with
multiple objects, we suggest that ρ∼ 1 (the identity matrix)3.

Compared to Pothos et al (2013) our improved model
comes at the price of extra complexity. It is worth pausing
to see if we can give a conceptual overview of the way our
model works. The model adds to the value of the similarity
in the absence of context elements a number of terms which
involve prior thoughts about the context stimuli (in this case
B,C), before the comparison between the two relevant stimuli
(in the case A,T ) is made. Trains of thought involving mul-
tiple stimuli have higher amplitudes when these stimuli are
close together in psychological space (a basic feature of QT),
thus the value of the perceived similarity depends on the way
that the context stimuli are grouped. Although the details de-
pend on the values of the {αi}, if B,C are grouped but far
from the A and T , this will lead to higher values of perceived
similarity than if B,C are ungrouped, or are close to A or T .
This is essentially the diagnosticity effect.

The predictions of the extended QSM
In general it might be complicated to extract analytical pre-
dictions for set of stimuli that have large number of features,
since the corresponding Hilbert space will be very large di-
mensional. However our model simplifies when we have a
set of stimuli which vary in only a single feature, e.g. size.
In this case we can embed the stimuli in a simple 2D Hilbert
space. The projection operators are then onto rays, and the
states of the stimuli are encoded in the angles between the
rays. Assume we have a target T plus stimuli {A,B,C}. Tak-
ing the angle of the ray representing T to be 0 (this angle
is arbitrary), and the angles between T and the other stimuli
to be θA,θB,θC respectively, the model predicts that the ob-
served similarity between A and T , in the context of B and C,
will be (Yearsley et al, in preparation),

Sim(A,T ;B,C) = cos2(θA)

×
[

1+
α(cos2(θA−θB)+ cos2(θA−θC)

1−αcos2(θB−θC)

] (5)

3If concepts are represented by subspaces of equal dimension
ρ∼ 1 has equal prior probability of being consistent with each con-
cept, as in the original QSM. More generally, ρ∼ 1 is a state neutral
with respect to features, rather than concepts.

By looking at these expressions we can see three things,

• For α= 0 we recover the similarity expression when ignor-
ing context.

• For small values of α, the similarity between A and T is
enhanced by grouping A with B and/or C.

• For larger values of α, the similarity between A and T is
enhanced if B and C are grouped.

A more detailed analysis (Yearsley et al, in preparation)
shows that these features lead to the following predictions
for the effects of context in the case of stimuli with a sin-
gle relevant feature; first, all else being equal, smaller values
of α will lead to an attraction effect, larger values to a diag-
nosticity effect. Second the type of context effect observed
depends on the angle θC when α is non zero. In the special
case where θA = −θB > 0 (cf Sweden and Hungary equally
similar to Austria, as in Tversky’s 1977 demonstration), we
have that for θB . θC . θA, C is judged most similar to T .
For θC & θA, there is initially a diagnosticity effect, where B
appears most similar to T ; as θC gets larger this becomes an
attraction effect, with A appearing most similar to T . Like-
wise, for θC . θB, there is at first a diagnosticity effect, with
A most similar to T ; as θC gets smaller this becomes an at-
traction effect, and B appears most similar to T .

We think these predictions are significant and at the heart of
the debate about whether the diagnosticity effect is real or not.
The extended QSM shows the brittleness of the diagnosticity
effect. It depends on both α and θC and, therefore, unless
the stimuli are carefully controlled, it seems likely that no
diagnosticity effect will be observed! We believe this in part
explains the paucity of replications in the literature (see Evers
& Lakens, 2014, and Medin et al., 1995, for exceptions.)

Before exploring the novel predictions of the extended
QSM regarding the interplay between diagnosticity and at-
traction, we first check that the extended QSM can capture
Tversky’s (1977) result (as the original QSM can). Recall the
comparison concerned the similarity between a target Austria
and two countries Hungary and Sweden, in the presence of
one of two context items, Poland or Norway. When the con-
text item is Poland, Sweden is preferred, when the context
item is Norway, Hungary is preferred.

Our set up will be similar to that employed by Pothos et
al. We set the angles between Austria and Hungary and be-
tween Austria and Poland to be equal to some base angle, plus
some small random angles between ±5◦. We then set the an-
gle between Austria and Sweden to be minus the same base
angle, plus again a small random angle between±5◦. The re-
sult is that Hungary and Sweden are roughly equidistant from
Austria, while Hungary and Poland are closely grouped. We
then compute the similarities between Austria and each of the
other countries to determine which would be selected as most
similar to Austria, averaging the results over 104 choices of
the random angles. The results are displayed in Fig.1.

It is clear from this graph that the extended QSM repro-
duces the key result of Tversky (1977) for larger values of α.
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Figure 1: Simulated Probabilities of choosing each country
as most similar to Austria. The base angle here is ∼ 18◦.

For smaller values of α our model also displays an attraction
effect. That the crossover happens for values of α between
0.4 and 0.5 may not be immediately meaningful, but it can
be shown that this is equivalent to an average number of prior
context thoughts between one and two. This seems appropri-
ate considering the demands of Tversky’s (1977) experiment
(i.e. participants do consider the context elements, but long
strings of prior thoughts are unlikely.)

That this set up does not quite reproduce the findings in
Tversky (1977), since there the context country, Poland, was
always rated as less similar to Austria than either of Hungary
or Sweden. This can be achieved in our model by choos-
ing a slightly larger base angle between Austria and Poland.
However the intention of this demonstration was rather to
show that a diagnosticity prediction can emerge in the ex-
tended QSM, in the way observed by Tversky, depending on
the grouping between the context elements.

An Empirical Demonstration
We now report an initial set of experimental results exam-
ining the key prediction of the extended QSM regarding the
interplay between the diagnosticity and attraction effects.

Participants 200 experimentally naı̈ve US residents were
recruited via Amazon Turk, and were paid $0.50 for their
time.

Stimuli We employed as stimuli 17 spirals. The size of
each spiral was given by the formula,

Sn = S0(1.1)n, (6)

where S0 was the size of the initial target spiral, chosen to be
7cm4, and n runs from−8 to 8. According to Weber’s law, Ps
should rate the similarity between spirals as a function only
of the difference in n, so,

Sim(Sn,Sm) = Sim(Sn+k,Sm+k). (7)

4The sizes of the spirals depend on the screen on which the ex-
periment is taken. However the relative sizes do not.

Thus the similarity between neighbouring spirals is constant,
which simplifies the analysis. A pilot study of 100 partici-
pants confirmed the perceived similarity between S0 and the
other spirals varied broadly in accordance with Weber’s law.

Procedure Participants were given a series of trials where
they were shown a target spiral T with size S0 and below this
three other spirals A,B,C, of sizes SA,S−A,SC, and were asked
to indicate which of A,B,C they judged most similar to T .

The experimental trials were designed so that A took values
from 1 to 8, and C took values from -8 to 8, but excluding 0.
Participants were split into two groups. One group saw values
of C from 1 to 8, and the other from -1 to -8.

The presentation of the spirals {A,B,C} on the screen in
each trial was partly randomized, the spirals were presented
horizontally across the screen, with C in the centre and either
A on the right and B on the left or vice versa. The order of
presentation of trials within each group was randomized.

Discussion As space restrictions prevent us from reporting
the full set of data, we focus on the similarity judgments cor-
responding to A = 4. This means we have a target spiral T of
size 7cm, spirals A and B of sizes 10.2cm and 4.8cm respec-
tively, and then a spiral C whose size varied from 3.3cm to
15.0cm.

It is helpful to organize the data in terms of which other
spiral is closer, and which one is further away from C. Diag-
nosticity means participants should prefer the spiral furthest
from C, while attraction means participants should prefer the
spiral closer to C, provided it is more similar to the target than
C. The data is presented in Fig.2.
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Figure 2: Probabilities for choosing spiral closest to C (cl),
spiral furthest from C (fu) or C itself (C), as most similar to T
as function of |C|. A = 4 in all cases. Error bars show SE.

The data show both a diagnosticity (|C| = 4,5) and an at-
traction effect (|C| ≥ 6). In addition there is a preference
for the ungrouped over the grouped stimuli even for |C| ≤ 3
which, though not strictly a diagnosticity effect (since the
context item is preferred over A and B), still represents a con-
text effect. The transition between the two effects is in qual-
itative agreement with the predictions of our model. For a
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suitable choice of model parameters (an additional parameter
is needed to convert similarity ratings (1-9 scale) into values
between 0-1) we can reproduce rank order of preferences for
all values of |C|.

Overall, our data clearly demonstrate both the existence of
a diagnosticity effect for these single feature stimuli and that
this effect can break down in a way predicted by the extended
QSM. We reiterate the key point, the blue and red curves in
Figure 2 correspond to spirals equidistant (verifiably so, from
our pilot) to the target spiral T . We can see how the probabil-
ity for selecting one spiral vs. the other can vary dramatically
as the context stimulus, C (the green curve), changes. Clearly,
further work is needed to validate more comprehensively the
extended QSM, but we are encouraged by these results.

Conclusions
We presented a new model of similarity under the influence of
context, based on QT, building on earlier work by Pothos et al
(2013). The model provides a formal, rigorous way to predict
similarity judgments, based not only on the stimuli compared,
but also on other broadly relevant stimuli, which constitute a
contextual influence. We showed this model can account for
Tversky’s (1977) diagnosticity findings. Importantly, we also
showed the model predicts a diagnosticity vs. attraction ef-
fect, based on the grouping of available stimuli, and provided
an initial experimental validation of this prediction.
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