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Abstract
Key message Genetic dissection of a QTL from wild emmer wheat, QGpc.huj.uh-5B.2, introgressed into bread wheat, 
identified candidate genes associated with tolerance to nitrogen deficiency, and potentially useful for improving 
nitrogen-use efficiency.
Abstract Nitrogen (N) is an important macronutrient critical to wheat growth and development; its deficiency is one of the 
main factors causing reductions in grain yield and quality. N availability is significantly affected by drought or flooding, that 
are dependent on additional factors including soil type or duration and severity of stress. In a previous study, we identified 
a high grain protein content QTL (QGpc.huj.uh-5B.2) derived from the 5B chromosome of wild emmer wheat, that showed 
a higher proportion of explained variation under water-stress conditions. We hypothesized that this QTL is associated with 
tolerance to N deficiency as a possible mechanism underlying the higher effect under stress. To validate this hypothesis, we 
introgressed the QTL into the elite bread wheat var. Ruta, and showed that under N-deficient field conditions the introgres-
sion IL99 had a 33% increase in GPC (p < 0.05) compared to the recipient parent. Furthermore, evaluation of IL99 response 
to severe N deficiency (10% N) for 14 days, applied using a semi-hydroponic system under controlled conditions, confirmed 
its tolerance to N deficiency. Fine-mapping of the QTL resulted in 26 homozygous near-isogenic lines  (BC4F5) segregating 
to N-deficiency tolerance. The QTL was delimited from − 28.28 to − 1.29 Mb and included 13 candidate genes, most asso-
ciated with N-stress response, N transport, and abiotic stress responses. These genes may improve N-use efficiency under 
severely N-deficient environments. Our study demonstrates the importance of WEW as a source of novel candidate genes 
for sustainable improvement in tolerance to N deficiency in wheat.

Introduction

Wheat (Triticum aestivum L.) is a major cereal crop, provid-
ing 23% of calories and protein in the human diet (Shewry 
and Hey 2015). Nitrogen (N) is a critical macronutrient that 
supports wheat growth and development. Factors that limit N 
in the soil lead to reduced grain yield (GY) and grain protein 
content (GPC), thereby negatively affecting food security 
(Tedone et al. 2018; Zuluaga et al. 2018; Fu et al. 2022; Kaur 
et al. 2022; de Castro et al. 2022). The relationship between 
carbon (C) and N metabolism in wheat determines yield and 
GPC, and depends on many factors, including those that 
play crucial roles in N assimilation and partitioning, e.g., 
anthesis date, grain-filling duration, and canopy senescence; 
the cultivar’s genetic background; and the amount and tim-
ing of N-fertilizer application (Fatholahi et al. 2020; Wang 
et al. 2020; Gezahegn et al. 2022). N availability is crucial 
for it's uptake and utilization by plants, soil structure and 
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environmental conditions, including water availability, are 
important determinants of this trait. In Mediterranean envi-
ronments, wheat is mainly grown under rain-fed conditions, 
and crops often experience water stress. Under such condi-
tions, even if N is available, it will not be taken up. As a 
result, water scarcity, N deficiency, or a combination thereof, 
are major causes of yield loss in bread wheat production (De 
Laporte et al. 2021; Fu et al. 2022; Kaur et al. 2022; Duma 
et al. 2022). To counteract N deficiency, N can be applied 
at an early stage of wheat growth; however, this N can be 
leached from the soil after heavy rains and be lost as a gas, 
or be immobilized before its uptake by the plant, thus affect-
ing its efficient absorption (Subedi et al. 2007; Zörb et al. 
2018; Ghimire et al. 2021). Breeding cultivars for improved 
water-use efficiency and N-use efficiency (NUE) is therefore, 
a cost-effective and sustainable approach to increasing GY 
and GPC in wheat (Ullah et al. 2019).

To meet the growing global demand for food, the use 
of N fertilizers has increased by 20% over the last 50 years 
(Zhang et  al. 2017; Gu et  al. 2023). Wheat cultivation 
accounts for 18.2% of all N fertilizer used for agronomy 
(Heffer et al. 2013; Teng et al. 2022), but only 30–40% of 
the applied N fertilizer is taken up by the plant (Swarbreck 
et al. 2019; Milner et al. 2022). Inefficient N use leads to 
water and air pollution, economic losses, and degradation 
of natural resources; therefore, optimizing the efficiency of 
N-fertilizer uptake by the plants enable lower N input that 
would improve agricultural and environmental sustainabil-
ity (Araus et al. 2020; Fatholahi et al. 2020; Wang et al. 
2020; Ghimire et al. 2021; Bharati et al. 2022; Duma et al. 
2022; Gezahegn et al. 2022; Effah et al. 2023). Therefore, 
an understanding of the complexity of regulatory mecha-
nisms controlling NUE, especially when N is limited in the 
environment, is of great value (Kant et al. 2011; Fan et al. 
2019; Hawkesford and Riche 2020; Vishnukiran et al. 2020).

NUE is determined by the ratio of GY to applied N, and 
the effective utilization of N also influences GPC. It is deter-
mined by two processes: N-uptake efficiency (NUpE), which 
is related to the amount of absorbed N relative to N avail-
able in the soil, and N-utilization efficiency (NUtE), meas-
ured as yield relative to plant N (Teng et al. 2022; Ayadi 
et al. 2022). Furthermore, these processes are dependent 
on the interplay between the genetics of the cultivar, agro-
nomic practices, and environmental conditions, therefore, 
optimizing these factors will contribute to improved NUE. 
An approach for introducing genetic diversity of NUE in 
wheat, especially from landraces or crop wild relatives that 
are relatively low yielding, is to compare plant performance 
in different genotypes at low and high N inputs. The idea 
behind this approach is that traits associated with NUE may 
only be expressed under low-N conditions (Hawkesford 
2017; Fan et al. 2019; Ivić et al. 2021). NUE is influenced 
by numerous genes which vary among wheat cultivars, some 

exhibiting better NUtE leading to higher GPC, these include 
genes associated with N uptake, assimilation, N transport 
and partitioning (Tegeder 2014; Hawkesford 2017; Wang 
et al. 2018; Hawkesford and Riche 2020; Alfatih et al. 2020; 
Rawal et al. 2022; Peng et al. 2022; Zayed et al. 2023). Some 
of these genes have been found to improve the response to N 
deficiency in wheat by accumulation of abscisic acid (ABA), 
especially in guard cells, which leads to stomatal closure 
(Wilkinson et al. 2007; Seo and Koshiba 2011). This phe-
nomenon is common to plants' adaptive responses to both 
N starvation and drought stress occurring at an early devel-
opmental stage (Kumar et al. 2019).

Identifying QTL regions and subsequent fine-mapping 
of those regions, is a frequently used approach to iden-
tify candidate genes for complex traits, including NUE or 
GPC. A QTL database for wheat showes that genes found 
in QTL regions can be involved in metabolic processes, cel-
lular activities, transporters, catalytic functions, and key 
regulators such as transcription factors, can be regarded 
as candidate genes for many agronomic traits (Singh et al. 
2021). For example, key genes in the GS/glutamate syn-
thase (GOGAT) cycle, critical for N uptake and GPC con-
trol, were found in a GPC QTL regions of durum wheat 
(Nigro et al. 2020; Fortunato et al. 2023). The GPC gene 
Gpc-B1 is a NAC transcription factor that was identified 
and subsequently cloned from a genomic region containing 
the most significant QTL for GPC. This region was derived 
from wild emmer wheat (WEW) (Triticum turgidum ssp. 
dicoccoides, 2n = 4x = 28, AABB), which is the tetraploid 
progenitor of cultivated wheat (Distelfeld et al. 2004; Uauy 
et al. 2006). Cultivars introgressed with the Gpc-B1 allele 
have been successfully adopted worldwide (Tabbita et al. 
2017), with consistent positive effects on GPC , Fe, and Zn 
contents, and only minor negative impacts on yield. How-
ever, Gpc-B1 is a NAC transcription factor known to accel-
erate leaf senescence, and its use can be disadvantageous in 
high-yielding environments; additional genes are therefore 
needed to improve GPC. WEW is regarded as a potential 
source of advantageous alleles for improving resistance to 
biotic and abiotic stresses and for enhancing key agronomic 
traits, including NUE and GPC (Chatzav et al. 2010; Millet 
et al. 2014; Gioia et al. 2015; Huang et al. 2016; Krugman 
et al. 2021; El Haddad et al. 2021; Nehe et al. 2022; Sandhu 
et al. 2023).

We previously identified a QTL (QGpc.huj.uh-5B.2) 
that showed a higher proportion of explained variation 
(PEV = 13%) under water-limited conditions compared to 
well-watered conditions (PEV = 7%) (Peleg et al. 2009; 
Fatiukha et al. 2020). Because water scarcity in the soil 
can negatively affect N availability, we hypothesized that 
this QTL includes genes associated with N-deficiency 
tolerance as a possible mechanism underlying the higher 
PEV under water-limited conditions. N-deficiency tolerance 
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is associated with high NUE, especially in wild plants, and 
can improve the efficiency of N uptake. Hence, the main 
objective of our study was to identify candidate genes for 
N-deficiency tolerance by fine-mapping the QTL. First, we 
introgressed the QTL into bread wheat using marker-assisted 
selection (MAS). Next, we validated the higher GPC in IL99 
in a N-deficient field, suggesting that N-deficiency tolerance 
may be involved. We further confirmed that IL99 was toler-
ant to N deficiency using a reliable and reproducible system 
that evaluates plant response to severe N deficiency under 
controlled conditions. Fine mapping of the GPC QTL region 
delimited its size from − 28.28 to − 1.29 Mb, which included 
13 candidate genes for N-deficiency tolerance. Our study 
confirms that WEW is an important source of novel varia-
tion for genes and QTLs that can be used for the improve-
ment of NUE in wheat under unfavorable conditions.

Materials and methods

Marker‑assisted selection (MAS) of QTL QGpc.
huj.uh‑5B.2 and development of a fine mapping 
population

The QTL QGpc.huj.uh-5B.2 was identified by QTL mapping 
based on 150 recombinant inbred lines (RILs) derived from 
a cross between Triticum durum var. Langdon and WEW 
(genotype G18-16) (Peleg et al. 2009; Fatiukha et al. 2021). 
One of these RILs (RIL12), carrying the WEW allele of 
QGpc.huj.uh-5B.2, was selected as a donor parent for MAS 
of GPC. RIL12 was crossed and backcrossed to the Israeli 
elite bread wheat cv. Ruta as a female parent for three gener-
ations as described previously (Merchuk-Ovnat et al. 2016). 
Molecular validation of the introgression and the MAS pro-
cedure was based on SNPs obtained by genotyping Ruta, 
RIL12, and the parents of the RIL population (WEW G18-
16 and T. durum var. Langdon) with the Illumina Infinium 
15 K Wheat array (TraitGenetics, Gatersleben, Germany). 
For MAS we selected two SNPs flanking the QTL, and one 
in the middle of the QTL, which were converted to a set of 
three Kompetitive allele-specific polymerase chain reaction 
(KASP) markers, designed using PolyMarker (Ramirez-
Gonzalez et al. 2015) (Table S1). Seeds of  BC3F2 plants 
that were found to be homozygous for the WEW allele in the 
three SNPs were selected for seed multiplication to  BC3F3 
and evaluation of performance and GPC (data not shown). 
Three  BC3F3 ILs (72, 73, and 99) that displayed better per-
formance were genotyped (in four biological replicates) 
using the 25 K Wheat array (TraitGenetics). This enabled 
us to select IL99-2 (further designated as IL99) as a par-
ent for the development of a large fine mapping population. 
IL99 was backcrossed again as the female parent with Ruta 
to produce the  BC4F1 population which was increased to 

 BC4F4 following genotyping in each  generation, as previ-
ously described (Deblieck et al. 2022). For the fine mapping 
procedure, we first used the KASP markers that had been 
used for MAS and then saturated the QTL region with addi-
tional KASP markers obtained by genotyping the parental 
lines. The additional KASP markers were developed with 
Illumina short-read exome capture sequence data generated 
by the Whealbi project (http:// wheat- urgi. versa illes. inra. fr/ 
Proje cts/ Wheal bi) using a custom R script and PolyMarker 
(http:// www. polym arker. info) (Table S2).

Evaluation of introgression line under three 
environments

The introgression line IL99 and the recurrent parent Ruta 
were grown in Israel in 2019  (BC3F4) and in 2020  (BC3F5) 
in relatively small plots due to the low number of seeds that 
are obtained at the early stages of MAS, with sowing density 
of (250 seeds/m2). Plants were grown under three environ-
ments, at the experimental fields of the Israeli Ministry of 
Agriculture, that provided the agronomic management. N 
was applied as needed for each experimental site, dependent 
on soil types, expected residual of N in the soil, and envi-
ronmental conditions: (i) N deficient field in 2019, in the 
Upper Galilee at Northern Israel (33.170296, 35.581314); 
the experiment was conducted in small plots (1.5  m2) in 
four repeats; low N fertilizer was applied  (40 kg   ha−1) 
60 days after emergence (DAE); the annual precipitation was 
680 mm, and was particularly high at young stage growth. 
(ii) in 2020, in the Western Galilee near Acre (32.930549, 
35.106374), in plots of 1.5 × 4 m in five replicates; N man-
agement included a split N dose by 100 kg   ha−1 at pre-
sowing and 35 kg  ha−1 at 60 DAE; the annual precipita-
tion was 607 mm; (iii) in Reim 2020, in the south of Israel 
(31.377419, 34.477823), in large plots of 1.5 × 6 m in four 
replicates; N was applied at pre-sowing (80 kg  ha−1), and 
40 DAE (40 kg  ha−1); this region is characterized as a semi-
desert climate and annual precipitation was 220 mm. Low 
rains at the beginning of the growth season were supple-
mented with 60 mm irrigation to ensure germination. All 
three experiments were conducted in a randomized com-
plete block design. In each of the three experiments, grains 
were harvested by a small dedicated experimental combine 
to measure total GY (kg/m2). In addition, 15 random spikes 
were selected from individual plants in each plot to measure 
thousand kernel weight (TKW, g) and GPC (%). GPC was 
measured in 1.5 g of grain ground in a Laboratory Mill 3310 
(Perten Instruments, PerkinElmer, Waltham, MA, USA). 
The flour was tested for GPC using a Perten Inframatic 
9520 NIR Flour Analyzer. Grain protein deviation (GPD) 
is defined as the standardized residuals of the regression of 
GPC on GY (Monaghan et al. 2001; Oury and Godin 2007). 
GPD was proposed as a selection criterion in wheat breeding 

http://wheat-urgi.versailles.inra.fr/Projects/Whealbi
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programs to screen for increased GPC without a concur-
rent GY reduction. Least squares regressions of GPC on 
GY were calculated for the three environments (Acre, Reim, 
and Upper Galilee) using STATISTICA.V10 and (dplyr and 
ggplot2) library in R. We applied mixed models and random 
effects models best linear unbiased prediction (BLUP) that 
account for the variability introduced by the edge effect by 
treating it as a random effect using the (nlme) library in R. 
This approach allows for estimating and adjusting the edge 
effect while simultaneously analyzing the treatment effects. 
The plant height (PH, cm) was not measured in Reim, there-
fore, these data are not included in our analysis.

N stress phenotyping using a semi‑hydroponic 
system

N treatments included full N (FN) vs. low N (LN; 10% of the 
FN) was applied using a semi-hydroponic system that was 
composed of two pots, one inserted into the other, with a 
connecting cotton wick transferring the nutrients by a capil-
lary movement (Semananda et al. 2018; Heidari et al. 2022) 
(Fig. 1).

The top pot (0.5 L) was filled with vermiculite (V2P, 
granule size: 0.75–2.5  mm) to physically support the 
plant, and the bottom pot (1.0 L) contained a modified 
Hoagland’s solution (Hoagland 1920) that was transferred 

to the top pot by capillary movement. The FN treatment 
contained: 0.2 mM  KH2PO4, 1 mM  MgSO4·7H2O, 1.5 mM 
 CaCl2, 1.5  mM KCl, 0.001  mM  H3BO3, 0.00005  mM 
 (NH4)6Mo7O24·4H2O, 0.0005 mM  CuSO4·5H2O, 0.001 mM 
 ZnSO4·7H2O, 0.001 mM  MnSO4·H2O, 0.1 mM FeEDTA, 
1.0 mM  (NH4)2SO4, and 1 mM  KNO3; for the LN treat-
ment, the total amount of N was reduced to 10% (0.1 mM 
 (NH4)2SO4 and 0.1 mM  KNO3). The solutions were main-
tained at pH 6.0 using 0.1 N  H2SO4.

Seeds were surface sterilized with 70% (v/v) ethanol 
for 1 min, treated with 0.5% (w/v) sodium hypochlorite for 
10 min, and rinsed six times (1 min each time) in sterile dis-
tilled water. The seeds were then placed on a wet 11-cm filter 
paper (VWR®) with clean distilled water and kept sealed in 
Petri dishes (ø = 90 mm) to g in a growth chamber (Conviron 
Adaptis CMP6010, Winnipeg, Manitoba, Canada) at 23 °C 
in the dark. When a coleoptile appeared (Zadoks growth 
stage 0.7–0.9), healthy and equally developed seedlings were 
transferred to the semi-hydroponic growing system.

Evaluation of IL99 and Ruta in LN and FN conditions 
was conducted in four independent experiments. Each exper-
iment included 10 biological replicates of each genotype, 
tested under LN and FN (each replicate consisted of pot 
with a single plant). Leaf morphological indices were meas-
ured at 14 DAS (Zadoks growth stage 13), including second 
leaf length (SLL, mm) and number of leaves (NL) as was 

Fig. 1  Semi-hydroponics system used for evaluation of wheat growth in LN or FN nutrient solutions at 14 days age. a Schematic representation 
of the system, b Image of the system with growing seedlings
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described for the evaluation of wheat response to abiotic 
stress at the seedling stage (Sharma et al. 2022). Plants were 
hand-harvested to measure fresh shoot weight (FSW, mg), 
and dry shoot weight (DSW, mg) after drying the shoots 
at 80 °C to constant weight in a heating chamber (Binder 
ED23 Classic Gravity Convection Oven). FSW indicates the 
plant's overall growth and water status, which is useful for 
assessing the effects of water stress, nutrient deficiencies, or 
other environmental factors. DSW reflects the plant's ability 
to accumulate dry matter, which is important for evaluating 
the efficiency of resource utilization. To determine in situ 
N status in leaves, chlorophyll concentration was measured 
using a SPAD-502 chlorophyll meter (Konica Minolta, 
Tokyo, Japan) in the morning from  0900 to  1000 h. Each 
value was an average of four measurements recorded from 
the middle of the leaves. Following the identification of 26 
double-homozygous recombinant NILs by KASP markers, 
we used the semi-hydroponics as a fast-phenotyping sys-
tem to characterize the response to LN in five biological 
replicates.

DNA extraction and KASP genotyping

DNA was extracted in a 96-well plate from fresh leaf tissue 
of the studied lines following a standard cetyltrimethylam-
monium bromide (CTAB) protocol slightly modified from 
(Doyle 1991). DNA quality and purity were assessed by 
 A260/A280 and  A260/A230 ratios, using a NanoDrop Micro-
volume Spectrophotometer (Thermo Fisher Scientific, 
Waltham, MA, USA).  Samples were genotyped using the 
25 K SNP array developed by TraitGenetics, and KASP 
assays were performed in a 96-well plate format (MicroAmp; 
Applied Biosystems, Waltham, MA, USA) using qPCR 
(SepOne model, Applied Biosystems). The reaction mix-
ture included 2.5 μL KASP-2 × Master Mix (LGC), 2.2 μL 
genomic DNA (80–100 ng/µL), and a mix of three KASP 
primers: 0.08 μL each of primers A and B, and 0.2 μL of 
primer C per sample (100 ng/µL). qPCR program: hot start 
at 94 °C for 15 min, followed by 10 landing cycles (94 °C 
for 20 s; initial landing at 61 °C and decreasing by 1 °C per 
cycle for 60 s), followed by 30 annealing cycles (94 °C for 
60 s; 55 °C for 60 s). Additional cycles were performed to 
increase the intensity of the fluorescent signals as needed. 
For each assay, we included a template control (water) and 
positive heterozygotes of the two parental alleles.

Candidate gene identification and microcollinearity 
analysis

Annotation of the genes residing in the QGpc.huj.uh-5B.2 
interval from WEW was based on the T. dicoccoides 
(WEW) genome assembly WEW_v2.1 from https:// www. 

ncbi. nlm. nih. gov/ datas ets/ genome/ GCF_ 00216 2155.2 
(Zhu et al. 2019). We used GeneTribe (https:// cheny m1. 
github. io/ genet ribe/) for homology inference among genet-
ically similar genomes (T. aestivum var. Chinese Spring 
[CS], T. turgidum var. Svevo, and T. dicoccoides var. 
Zavitan) that incorporated gene collinearity in the QGpc.
huj.uh-5B.2 region and showed better performance than 
traditional sequence similarity-based methods in terms of 
accuracy and scalability (Chen et al. 2020).

Real‑time qPCR

Leaves of the parental lines (Ruta and IL99) and the two 
double-homozygous recombinant NILs were used for 
qPCR. Both NILs carry shorter and opposite introgres-
sions from WEW: NIL21 showed resistance to LN and 
NIL38 was susceptible to LN. Leaf tissues were sampled 
after 14 days of growth in FN or LN and kept in RNAlater 
(Thermo Fisher Scientific). RNA extraction was extracted 
using the RNeasy Plant Mini Kit (Qiagen, Hilden, Ger-
many). Plant of three  biological replicates were used for 
each N treatment, and each biological replicate consisted 
of three technical replicates. We selected seven genes 
located within the QGpc.huj.uh-5B.2 locus. One gene was 
included within the fine-mapped QTL (1.29 Mb) region 
(UREIDE PERMEASE 1 [UPS1]), and six genes were in 
adjacent regions along the full QTL. The primers used 
for each gene are listed in Table S3. We used Primer3plus 
for primer design (https:// www. bioin forma tics. nl/ cgi- bin/ 
prime r3plus/ prime r3plus. cgi). Standard curve method was 
used to determine qPCR efficiency (Yuan et al. 2008). 
Acceptance criteria for performance parameters included 
a dynamic range of four dilutions (1:1, 1:10, 1:100, and 
1:1000), a correlation coefficient  (R2) above 0.96, a PCR 
efficiency ranging from 90 to 110%, and a respective 
slope from − 3.6 to − 3.1 (Bustin et al. 2009; Nolan et al. 
2013). qPCR results were analyzed by comparative  2−ΔΔCt 
method as described previously (Livak and Schmittgen 
2001). Changes in expression were determined relative to 
the housekeeping gene UBIQUITIN.

Statistical analysis

All results were analyzed by STATISTICA.V10 (StatSoft 
Inc. 2011, Tulsa, OK, USA), and R (version 3.4.1). Tuk-
eys test (ANOVA) was used to determine the significance 
of the difference of each trait with different factors, i.e., 
genotype (G), environment (E), and the G x E interaction. 
Statistical significance was set at p ≤ 0.05. The correlation 

https://www.ncbi.nlm.nih.gov/datasets/genome/GCF_002162155.2
https://www.ncbi.nlm.nih.gov/datasets/genome/GCF_002162155.2
https://chenym1.github.io/genetribe/
https://chenym1.github.io/genetribe/
https://www.bioinformatics.nl/cgi-bin/primer3plus/primer3plus.cgi
https://www.bioinformatics.nl/cgi-bin/primer3plus/primer3plus.cgi
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analysis assessed the relationships between variables col-
lected during the experiment.

Results

Genotyping of introgression lines

We genotyped three  BC3F3 (IL72, IL73, and IL99) to 
identify the ILs with the shortest introgression and low 
heterozygosity, which would reduce linkage drag and opti-
mize the fine mapping procedure. Of the 25 K SNPs, we 
identified ~ 5100 for both the A and B wheat genomes, 
with an average density of 0.5 SNPs/Mb. After filtering the 
data and ordering the SNPs based on their physical posi-
tions (Table S4), we validated the presence of  QGpc.huj.
uh-5B.2 in all three ILs. IL99 had the shortest introgres-
sion, which spanned 58.37 Mb – almost tenfold shorter 
compared to those in IL72 and IL73 (514 Mb). Further-
more, IL99 showed a low level of retained alleles from 
the original tetraploid parent (LDN) on the short arm of 

chromosome (Chr) 2A. In contrast, IL72 and IL73 retained 
additional alleles of LDN or heterozygous regions on Chr 
3B, 4B, and 5A. Genotyping also confirmed that none of 
the three  BC3F3 ILs carried the Gpc-B1 functional allele 
from WEW, a major QTL identified in other mapping pop-
ulations (Uauy et al. 2006; Distelfeld et al. 2007). Taken 
together, these genotyping results showed that IL99 was 
the most suitable female parent for backcrossing with Ruta 
and for developing the fine mapping population.

Evaluation of the introgression line and Ruta 
in three environments

Our results showed that in the N deficient field, IL99 
exhibited higher GPC as33% compared to Ruta (10.84 vs. 
8.15, p = 0.007). However, no differences in GPC were 
found between genotypes in the two well-managed N 
fields. At Acre (14.14 vs. 14.24, p > 0.05), and the semi-
desert field in Reim, which received 220  mm of rain 
(13.91 vs. 13.57, p > 0.05). Notably, the field at Reim was 

Fig. 2  Estimates of the agronomic wheat traits measured in field 
experiments  in 2019–2020. a Grain protein content (GPC), b Thou-
sand kernel weight (TKW), c Grain yield (GY), d Plant height (PH). 
X-axes show the three environments in which the wheat lines were 
cultivated, i.e., Acre, Reim, and Upper Galilee. The two genotypes, 

i.e., Ruta and IL99, are indicated by green and red bars, respectively. 
Each graph shows a different combination of genotype (G), treatment 
(T), and their interaction (G × T). The p-values indicate a significant 
difference; n.s.—not significant
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supplemented with 60 mm of irrigation at the early growth 
stage to ensure plant germination and establishment. In 
this field, we found a significant (p = 0.045) difference in 
GPD between the average normalized residues for Ruta 
(− 0.178) and IL99 (0.0008), indicating that IL99 accumu-
lated higher GPC than predicted from GY alone. In Acre, 
we detected a significant negative correlation (r = − 0.74, 
p < 0.05) between GPC and TKW (Table S6), suggest-
ing a trade-off between GPC and kernel size. However, 
in the Upper Galilee and Reim, this relationship was not 
significant, suggesting that other factors were operating. 
Negative correlations between GPC and TKW are com-
monly observed when N is not limiting. When N is lim-
ited, as in our low N field in Galilee, the plant’s source 
strength may be reduced, leading to competition for avail-
able resources between protein and starch biosynthesis. In 
such cases, the correlation between GPC and TKW may 
not be as pronounced or significant (r = 0.08, p > 0.05). 
No significant differences were found in GY measured 

between IL99 and Ruta in two sites, i.e., at Acre of the 
Upper Galilee (Fig. 2).

The assessment of IL99 and Ruta grown in the three envi-
ronments showed that GPC and TKW in both genotypes 
were significantly lower in the N deficient field in the Upper 
Galilee field, compared to the two other fields that were 
treated with split N doses. The extremely low GPC values 
found for both genotypes in Upper Galilee suggest that the 
field suffered from severe N deficiency that resulted from 
low fertilization, i.e., a single N treatment of 40 kg  ha−1, 
60) DAE, and possible leaching of N residuals due to heavy 
rains during the plant establishment period.

Phenotypic response to LN and FN evaluated using 
a semi‑hydroponic system

To assess LN tolerance in IL99 compared to Ruta and to 
establish a sensitive, reproducible, and accurate method 
for phenotyping under controlled conditions, we subjected 
plants to severe N stress using a semi-hydroponic system. 

Fig. 3  Morphological parameters measured in Ruta and IL99 under 
LN and FN conditions after 14 days of growth. a Second leaf length 
(SLL), b Fresh shoot weight (FSW), c Level of chlorophyll accumula-
tion measured by SPAD, d Dry shoot weight (DSW). LN – low nitro-

gen, FN – full nitrogen. The graph presents significant (p) and non-
significant (n.s.) levels and multivariate tests with different factors: 
G—genotype; T—treatment, and their interaction (G × T)
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N starvation at the seedling stage can be reliably assessed 
by monitoring reductions in leaf elongation rates compared 
with seedlings grown under optimal N (Gioia et al. 2015). 
Furthermore, measurements of SLL at 14 days were highly 
correlated with FSW and DSW (r = 0.76 and r = 0.81, 
p < 0.05) both in Ruta and IL99. SLL, NL, FSW, and DSW 
did not differ in IL99, or showed only a slight but non-sig-
nificant change, in response to LN. Therefore, SLL meas-
ured after 14 days of N deficiency was used as an indicator 
to evaluate the response to N stress of recombinants. Our 
results confirmed that significant changes were found in Ruta 
in all the measured traits under LN compared to FN, while 
IL99 showed only small differences, which were not statisti-
cally significant for most studied traits (Fig. 3; Table S7).

Fine mapping of QGpc.huj.uh‑5B.2

For the fine mapping procedure, we designed 13 KASP 
markers, two flanking the QTL and 11 saturating the QTL 
interval, based on SNPs found between the parental lines 
(LDN and G18-16, RIL12 and Ruta). Exome capture data 
that produced more than 620,000 SNP/indels at the whole-
genome level enabled us to identify 13 SNPs evenly dis-
tributed across the QTL region of 28.28 Mb (from 27.05 to 
55.33 Mb) (Fig. 4a). We further converted SNPs to KASP 
markers based on the Chinese Spring RefSeq v2.0 genome 
(Zhu et al., 2021) (Table S2). IL99  (BC3F4) was backcrossed 
with Ruta to produce the  BC4F1 population. To confirm het-
erozygosity, all  BC4F1 individuals were genotyped using the 
KASP markers flanking the QTL (P1 WTa_060365, and P13 
WTa_060962). To select single- and then double-homozy-
gous recombinants for fine mapping, we first genotyped 
1416  BC4F2 with an additional KASP marker positioned in 
the middle of the QTL (P6 WTa_060520). This resulted in 
two types of recombinants at  BC4F3: type I (homozygous at 
P1, and heterozygous at P6), which were genotyped in the 
next generation  (BC4F4) with KASP markers P2 to P6; and 
type II (heterozygous at P6, and homozygous at P13) which 
were genotyped with KASP markers P6 to P12. In total, we 
genotyped 2500  BC4F4 plants using 13 KASP markers along 
the QTL interval. This procedure enabled us to identify 26 
homozygous recombinant NILs, each representing recom-
bination events along the QTL interval (Fig. 4b). These 26 
NILs were classified into 16 haplotypes; for example, NILs 

15, 20, 21, and 31 each carried an introgression of similar 
size (Fig. 4b).

The segregation of phenotypic response to LN found in 
all 26  BC4F5 NILs was obtained  using the semi-hydroponic 
system. The response to LN was recorded by calculating the 
reduction of SLL between the two conditions. Our results 
showed that 12 NILs (of 7 haplotype groups) (15, 20, 21, 31, 
25, 29, 27, 3, 32, 33, 34, and 39) had no significant reduc-
tion in SLL, and were therefore regarded as having an IL99 
phenotype (G); and SLL of 14 NILs (1, 2, 4, 8, 9, 16, 18, 19, 
40, 35, 38, 36, 43, and 44) was significantly reduced (233.67 
vs. 167.78 mm, p < 0.05), and regarded as having the Ruta 
phenotype (R) (Fig. 4c). Comparison of the relative reduc-
tion of SLL between the two alleles R and G (Fig. 5) showed 
that NILs with the R allele exhibit a notable (p < 0.05) reduc-
tion in leaf growth, with its frequency decreased by approxi-
mately 65.8%, whereas NILs of the WEW allele G decreased 
by a smaller margin, around 11.5%. Altogether, the fine map-
ping which integrated the genotyping and phenotyping of 26 
NILs (Fig. 4b) showed that the 12 NILs that were tolerant to 
N stress shared an introgression of 1.29 Mb (between P6 to 
P7) with the haplotype of (G) of WEW.

Candidate genes identification 
and microcollinearity analysis

The region of 1.29 Mb  (from P6 to P7) was estimated based 
on the WEW ‘Zavitan’ reference genome. This size dif-
fered from the T. durum var. Svevo—1.7 Mb (from 37.03 to 
38.73), and the CS—1.92 Mb (from 36.6 to 38.52) assem-
blies. Based on gene annotation of the WEW genome, we 
identified 13 high-confidence genes (listed in Table 1): two 
genes (TRIDC5BG005570 and TRIDC5BG005760) of 
unknown function, and one gene (TRIDC5BG005640) anno-
tated as disease resistance and is probably not associated 
with N stress. The remaining 10 genes were classified into 
two categories based on gene ontology (GO) functions or 
based on available literature information: (1) Five genes were 
associated with abiotic stress including, TRIDC5BG005540 
encoding pentatricopeptide repeat 336; TRIDC5BG005560 
encoding a cold-regulated protein; TRIDC5BG005580 
encoding a histone-lysine N-methyltransferase (HKMT); 
TRIDC5BG005710 encoding syntaxin-132 (SYP132), 
and TRIDC5BG005770 metallohydrolase/oxidoreductase 
(MHO) superfamily protein. (2) Four genes involved in N 
transport, N metabolism, and N stress: TRIDC5BG005550 
encoding UPS1; TRIDC5BG005530 encoding 15-cis-zeta-
carotene isomerase (Z-ISO); TRIDC5BG005600 encod-
ing importin subunit β1 (KPNB1) and TRIDC5BG005630 
ATXR6 encoding serine protease HtrA.

Homology indicates sequence similarity due to common 
ancestry, whereas collinearity refers to homology due to the 
linear arrangement of genes along a chromosome between 

Fig. 4  Fine mapping of the QGpc.huj.uh-5B.2 region by genotyping 
and phenotyping of 26 NILs. a Schematic map of Chr 5B of Ruta, the 
site of introgression of WEW QGpc.huj.uh-5B.2, and below, the posi-
tion of 13 KASP markers along the QTL (from 27.05 to 55.33 MB), 
b Graphical genotyping and phenotyping of the parental lines Ruta, 
IL99 and 26 recombinant NILs; R allele (Ruta) and G allele (IL99), 
c Comparison of the second leaf length (SLL) of 26 NILs and 
two parental lines grown under FN or LN conditions. (*p < 0.05; 
**p < 0.01; ***p < 0.0001; ****p < 0.00001); n.s.—not significant

◂
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genomic regions in the same species (Chen et al. 2020). 
Microcolinearity analysis of the 1.29 Mb sub-QTL found 
in QGpc.huj.uh-5B.2 between Zavitan (WEW), CS (T. aes-
tivum), and Svevo (T. turgidum) was conducted to better 
understand structural variations, such as rearrangements, 
duplications, and inversions (Fig. 6).

Notably, the microcollinearity tool developed by (Chen 
et al. 2020) uses version 1 (v1) of the Zavitan genome as 
a reference; nevertheless, since our previous analyses used 
Zavitan v.2, we first made sure that the order of our target 
genes in the analyzed sub-QTL was similar in these two 
versions. The homology and microcollinearity of the 13 
candidate genes showed some differences between the three 
species and included insertions, inversions, deletions, and 
translocations. Homologous genes observed in our analy-
sis may or may not exhibit collinearity, depending on the 
evolutionary events that occurred after their divergence. We 
found three genes with no microcollinearity or homology to 
WEW, Svevo, or CS (Fig. 6): one gene, TRIDC5BG005570, 
was not annotated and was included in the 1.29 Mb seg-
ment of WEW; the second gene (TRIDC5BG005710) 
encodes SYP132, and had a homolog in T. aestivum, but in 
a different location (38.35 Mb), and the third gene (TRID-
C5BG005760), which is not annotated, was homologous 
to both species but found in different locations, in the two 

genotypes (38.51 Mb in CS, and in Svevo 51.18 Mb in dif-
ferent region).

Gene expression under N deficiency tested by qPCR

The expression patterns of seven genes were compared 
between Ruta and IL99, and between NIL21 and NIL38 
under FN vs. LN using qPCR. The NILs were selected from 
the set of 26 NILs segregating for LN tolerance and KASP 
markers, which were used for fine mapping (Fig. 4). Geno-
typing showed that NIL21 (tolerant) and NIL38 (susceptible) 
have opposite QTL intervals derived from WEW. The genes 
for qPCR were selected based on their location along the 
QTL interval: UPS1 is an N transporter that resides within 
the fine-mapped 1.29 Mb QTL (Table 1), and six genes are 
mapped along the full QTL: auxin response factor 6 (ARF6), 
NRT1/PTR FAMILY 2.11 nitrogen transporter (NRT), ent-
kaurenoic acid oxidase 1 (EKAO1), SEC1 family transport 
protein SLY1 (SEC1), WD40 repeat-like protein (WD40), 
and 9-cis-epoxycarotenoid dioxygenase (NCED). The qPCR 
results showed that six of the seven genes were upregu-
lated in response to LN, three of them were differentially 
expressed between IL99 and Ruta: UPS1 showed higher 
up-regulation in IL99, with a 2.39-fold increase (p < 0.05) 
as compared to Ruta, and a 1.85-fold increase (p < 0.05) in 
NIL21 that shows tolerance to N stress (IL99 type), com-
pared to NIL38 (Ruta type) (Fig. 7a). ARF6 showed a 49.5% 
increase in IL99 compared to Ruta, and 45.7% in NIL21 
versus NIL38. The N transporter NRT showed a higher 
up-regulation of 2.36-fold in Ruta (p < 0.05) compared to 
IL99, and no significant differences were found between the 
NILs. Three genes that were upregulated in response to LN, 
i.e., EKAO1, SEC1, WD40, but exhibited no differences in 
expression between the IL99 and Ruta, or between the NILs 
(Table S8). NCED, which is located at the upper end of the 
QTL, was not differentially expressed between LN and FN 
in Ruta and IL99 and was downregulated in both NILs in 
response to LN.

Many studies show that NILs for specific traits or even 
transformants tested by RNAseq show different expressions 
of thousands of genes although they differ in only a small 
part of the genome (Xiao et al. 2016). Furthermore, genes 
showing higher regulation under stress can suggest that they 
may have a causative effect on the trait of interest but not 
necessarily (Peredo and Cardon 2020). Nevertheless, UPS1 
stands out as a primary candidate gene for further study for 
several reasons: its location within the 1.29 Mb QTL, its 
higher expression under LN in IL99 and NIL21 compared 
to Ruta and NIL38 (indicating a link between expression and 
LN tolerance), and recent literature highlighting roles in N 
transport and N stress tolerance.

Fig. 5  Relative reduction in SLL between LN and FN was identi-
fied among the 26 homozygous recombinant NILs. Five biological 
replicates were used for each NIL having alternative alleles of paren-
tal genotypes (R and G). The p-value shows a significant difference 
between the two alleles
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Discussion

In the current study, we describe the identification of candi-
date genes associated with N-deficiency tolerance conferred 
by QTL QGpc.huj.uh-5B.2 that was introgressed from WEW 
following the “durum as a bridge” approach (Klymiuk et al. 
2019; Merchuk-Ovnat et al. 2016; 2017). Advanced genomic 
tools were used to validate the efficient introgression of the 
QTL by optimizing introgression size, and reducing het-
erozygosity and linkage drag from other chromosomes of 
WEW and T. durum previous parents. Since the QTL was 
identified under contrasting water availability conditions, 
showing a higher proportion of PEV (13%) under water-
limited conditions, compared to 7% under well-watered con-
ditions (Peleg et al. 2009; Fatiukha et al. 2020), we hypoth-
esized that water stress may have reduced N availability  for 
uptake. A study on the influence of severe water stress on 
GPC shows variations among a large collection of landraces 
and wheat cultivars, with G × E interactions. The study 
showed that GPC increased by an average of 30% under 
severe water stress (Elbasyoni et al. 2018). However, this 
study did not consider the influence of water stress severity 
on N availability as a potential cause for this observation. 
On the other hand Ravier et al. (2017) studied the influ-
ence of N deficiencies across different wheat cultivars in 18 

environments, including variations drought, growth stages, 
fertilizer amounts, and cultivars. They concluded that a non-
detrimental N deficiency at an early vegetative stage could 
be tolerated, and might even enhance high yield, GPC, and 
NUE, depending on the cultivar. In our experiment at the 
Upper Galilee, IL99 had a higher GPC than Ruta, that was 
not negatively correlated with GY. N deficiency occurred in 
this field due to low N-fertilizer application and an intense 
N depletion by heavy rains, suggesting that N stress con-
tributed to the higher GPC in IL99 compared to Ruta. In 
comparison, GPC was unchanged under both water-limited 
and well-watered conditions when grown with adequate 
N-application. In the Reim field experiment, although GPC 
was not different in IL99 compared to Ruta, there was a 
significant difference (p < 0.05) in GPD between the aver-
age normalized residues of Ruta and IL99. IL99 showed a 
positive GPD value, indicating a higher GPC than expected 
based on its GY. Altogether, our field results validated high 
GPC under severe N stress conditions in IL 99 that was con-
ferred by the WEW QTL, possibly by a pleiotropic effect 
(Fan et al. 2019). To apply a severe N stress per se, we devel-
oped a robust semi-hydroponic system that confirmed IL99’s 
tolerance to N deficiency, based on leaf growth parameters 
as indicators for tolerance.

Table 1  Homologs of WEW candidate genes identified in the 1.29 Mb sub-QTL, compared with T. durum var. Svevo and CS assemblies. The 
genes are listed based on their order on the chromosome

# T. dicoccoides Zavitan Start, bp End, bp T. turgidum Svevo T. aestivum CS Gene annotation GO function

1 TRIDC5BG005520 36,360,061 36,361,911 TRITD5Bv1G013710 TraesCS5B02G033700 p21-ACTIVATED 
PROTEIN KINASE-
INTERACTING 
PROTEIN 1

Signaling pathways/
stress

2 TRIDC5BG005530 36,365,122 36,372,548 TRITD5Bv1G013720 NA 15-cis-ZETA-CARO-
TENE ISOMERASE

N stress

3 TRIDC5BG005540 36,396,013 36,398,271 TRITD5Bv1G013670 TraesCS5B02G033500 PENTATRICOPEP-
TIDE REPEAT 336

Stress

4 TRIDC5BG005550 36,404,321 36,406,308 TRITD5Bv1G013770 TraesCS5B02G033400 UREIDE PERMEASE1 N utilization and N 
stress

5 TRIDC5BG005560 36,428,596 36,428,820 TRITD5Bv1G013610 TraesCS5B02G033300 Cold-regulated protein Cold stress
6 TRIDC5BG005570 36,428,604 36,428,765 NA NA Undescribed protein NA
7 TRIDC5BG005580 36,437,689 36,438,391 TRITD5Bv1G013570 NA HISTONE-LYSINE 

N-METHYLTRANS-
FERASE ATXR6

Development and 
Stress

8 TRIDC5BG005600 36,531,860 36,537,534 TRITD5Bv1G013910 TraesCS5B02G034200 IMPORTIN SUBUNIT 
BETA-1

N stress

9 TRIDC5BG005630 36,820,431 36,822,867 TRITD5Bv1G013990 TraesCS5B02G034400 SERINE PROTEASE 
HTRA 

Stress

10 TRIDC5BG005640 36,947,849 36,949,190 TRITD5Bv1G014030 TraesCS5B02G034600 Disease resistance 
protein

Biotic stress

11 TRIDC5BG005710 37,234,570 37,237,309 NA TraesCS5B02G035600 SYNTAXIN-132 Stress
12 TRIDC5BG005760 37,446,998 37,447,553 TRITD5Bv1G018160 TraesCS5B02G035500 Unknown function NA
13 TRIDC5BG005770 37,645,630 37,648,660 TRITD5Bv1G014330 TraesCS5B02G035300 METALLOHYDRO-

LASE/OXIDORE-
DUCTASE SUPER-
FAMILY PROTEIN

Stress
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Fig. 6  Microcollinearity visualization function showing homologous 
relationships on a local scale between 13 candidate genes in Zavitan 
(T. dicoccoides), CS (T. aestivum), and Svevo (T. turgidum). Based 
on the GeneTribe algorithm, homologous genes are divided into 

three types: black, green, and yellow lines represent reciprocal best 
hit (RBH), single-side best hit (SBH), and one-to-many relationships, 
respectively. The lines represent homologous relationships and are 
grouped into three groups by score: 0–50, 50–70, and 70–100

Fig. 7  Relative expression of three candidate genes under LN and 
FN in IL99 and Ruta, NIL21 and NIL38. Expression was assessed by 
qPCR and was monitored in 14-day seedlings grown in semi-hydro-
ponics system  in a nutrient solution under FN (1.0  mM  (NH4)2SO4 
and 1.0  mM  KNO3) and  LN (0.1  mM  (NH4)2SO4 and 0.1  mM 
 KNO3). The candidate genes used: a XM_044536089 (UREIDE 

PERMEASE TRANSPORTER; UPS1), b XM_044530792 (AUXIN 
RESPONSE FACTOR 6; ARF6), c XM_044530780 (NRT1/PTR 
FAMILY 2.11 NITROGEN TRANSPORTER; NRT2.11). Ubiquitin 
was used as the housekeeping control (n = 3; p < 0.05); **significant 
difference between Ruta and IL99 at p < 0.05; *significant difference 
between NIL38 and NIL21 at p < 0.05
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Fine  mapping integrated the segregation of paren-
tal haplotypes with phenotype of the response to N-defi-
ciency stress  among recombinants.  We delimited the QTL 
of 28.28 to–1.29 Mb, which was located at the center of 
QGpc.huj.uh-5B.2. This 1.29 Mb interval was shared among 
N-deficiency tolerance NILs, which all had the WEW haplo-
type. Of the 13 high-confidence genes found in this region, 
11 had GO and known functions of two main categories, 
N-stress-related genes (including N transporters and N 
stress), and abiotic stress response. These genes or their 
combinations can be regarded as candidate genes for improv-
ing N-stress tolerance in wheat and may improve NUE and 
GPC or yield under severe N-deficient environments. Micr-
ocollinearity analysis of this QTL region between WEW, 
durum and bread wheat cultivars, detected collinear genes as 
well as structural variations. Similar findings were reported 
by (Maccaferri et al. 2019) who compared whole-genome 
sequences between WEW and T. durum var. Svevo.

The following N-associated genes were also linked with 
abiotic stress  (Table 1): UPS1 (TRIDC5BG005550), is 
involved in the long-distance transport of allantoin and 
purine nucleotide degradation products in N-fixing and 
nitrate-feeding legumes (Tegeder and Perchlik 2018; Thu 
et al. 2020; Kaur et al. 2022; Wang et al. 2022). Further-
more, stress-regulated purine gene transcription was linked 
to allantoin changes that improved N utilization in plants 
(Tegeder and Perchlik 2018; Casartelli et al. 2019). Studies 
showed that allantoin is a vital N source in wheat (Casartelli 
et al. 2019), Arabidopsis (Nourimand and Todd 2019), rice 
(Lee et al. 2018), and barley (Shabala et al. 2016). UPS1 
and proALN are crucial N sensors for N remobilization in 
rice (Redillas et al. 2019) and (Melino et al. 2022) showed 
that OsUPS1 overexpression enhances growth under low N. 
Meng et al. (2023) recently confirmed the roles of TaUPS1 
and TaUPS2.1 in wheat, and Li et al. (2024) found that under 
sufficient N supply, there is a significant accumulation of 
ureide in the roots of a high-NUE wheat cultivar and sug-
gested that its accumulation is controlled by fine regula-
tion of key genes involved in its metabolism. These studies 
demonstrated an association between ureide and high NUE 
under different N availability, including N stress. These asso-
ciations support our qPCR results showing that the expres-
sion of UPS1 increases under LN in IL99, to a higher level 
than in Ruta. A second transporter IMPORTIN SUBUNIT 
BETA-1 KPNB1 (TRIDC5BG005600), a main member of 
transport proteins that mediates the translocation of cargo 
protein into the nucleus through the nuclear pore complex 
(Bednenko et al. 2003; Palma et al. 2019). (Bonnot et al. 
2017) showed that the response of the grain sub-proteome to 
N and sulfur supply in the diploid wheat Triticum monococ-
cum ssp. monococcum is regulated by the α- and β-subunits 
of importin (KPNB1). Z-ISO (TRIDC5BG005530) is known 
to be involved in antioxidant metabolism and abiotic stress 

in wheat (Cui et al. 2018) and is related to the NITRITE 
AND NITRIC OXIDE REDUCTASE U gene (Chen et al. 
2010). Z-ISO accumulation varies under high salinity and 
N stress, potentially due to the transcriptional regulation 
of β-carotene-biosynthesis genes at the initial exposure to 
stress (Park et al. 2002; Zhu et al. 2020). Limited N avail-
ability reduces carotenoid content, impacting plant meta-
bolic activity. (Shang et al. 2018) noted that N-deficiency 
increases phytoene desaturase gene expression, affecting 
carotenoid accumulation in green algae. The serine protease 
HtrA (TRIDC5BG005630) is known for proteolytic activity 
and involvement in protein quality control and degradation 
pathways (Clausen et al. 2011). HtrA is involved in signaling 
pathways and regulatory networks, influencing gene expres-
sion and stress-responsive signaling. Under N stress, it can 
regulate plant homeostasis and protein patterns and interact 
with proteins involved in N-metabolism pathways (Foucaud-
Scheunemann and Poquet 2003).

The following genes are associated with abiotic stress: 
TRIDC5BG005540 encodes a pentatricopeptide repeat pro-
tein; these proteins are involved in mitochondrial transla-
tion in Arabidopsis, and resistance to abiotic stress, includ-
ing salinity, drought, and cold, without negative affecting 
plant development (Uyttewaal et  al. 2008; Jiang et  al. 
2015). The HKMT protein (TRIDC5BG005580) influences 
chromatin and DNA methylation under stress. Its direct 
link to the N-stress response is unclear, but it is hypoth-
esized that HKMT-mediated chromatin changes help plants 
adapt through epigenetic regulation of N-sensitive genes 
(Perdiguero et al. 2009; Palma et al. 2010). The TRID-
C5BG005710 gene encodes SYP132. This gene is involved 
in signaling, responses to abiotic stress and pathogens, 
cytokinesis, and gravitropism, and regulates protein trans-
port during immune signaling (Surpin and Raikhel 2004; 
Pratelli et al. 2004; Carter et al. 2004; He et al. 2021). 
SYP132 mediates tip-focused membrane trafficking for root 
hair-tip growth, demonstrating its importance in the devel-
opment and function of root hairs in Arabidopsis (Ichikawa 
et al. 2014). Its involvement with gravitropism and root 
tip growth is interesting since a previous study in durum 
wheat identified a QTL for root spread angle in the vicin-
ity of our QTL (Sanguineti et al. 2007). Two other genes 
(TRIDC5BG005560 and TRIDC5BG005770) were associ-
ated with abiotic stress. The first activates cold-regulated 
protein (COR) for plant adaptation to cold and drought 
stress tolerance (Guo et  al. 2019). The second, TRID-
C5BG005770, is in the MHO superfamily, it responds to 
abiotic stress-triggered abscisic acid and ethylene signal-
ing. MHO enzymes may impact reactive oxygen species 
clearance or redox regulation in plants under stress (Wang 
et al. 2023). TRIDC5BG005520 belongs to the p21-acti-
vated kinases (PAKs), a family of protein kinases that play 
essential roles in various cellular processes, including signal 
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transduction, cytoskeletal organization, and plant stress 
responses (Bokoch 2003). PAKs can be involved in nutrient 
signaling and uptake processes (Sun et al. 2022; Tian et al. 
2023).

Conclusions and prospects

N deficiency may occur in the soil at the young growth stage 
because of a lack of pre-sowing N fertilization, leaching by 
heavy rains, drought, or other abiotic stresses (e.g., unfa-
vorable pH, ionic stress, soil salinity, or acidity), thereby, 
negatively affecting grain yield and quality. The adaptation 
to N-deficiency is involved in plant developmental pro-
cesses, including morphological modifications of shoot and 
root-system architecture controlled by large changes in gene 
expression (Khan et al. 2017; Ru et al. 2023; Munns and 
Millar 2023). Fine mapping of the QGpc.huj.uh-5B.2 ena-
bled us to identify candidate genes for LN tolerance, which 
may improve NUtE and GPC in N-deficient environments. 
Further studies using CRISPR–Cas9 should functionally 
characterize these genes, and may allow us to determine if 
and which one of the genes has a major role in the response 
to LN.

Cultivars that are tolerant to N deficiency can grow under 
lower levels of N fertilizer and improve NUE (Vishnukiran 
et al. 2020). Such cultivars are especially suitable for soil 
that tends to lose N at the plant establishment, vegetative 
growth, or for organic farming. Furthermore, considering 
the low variability of NUE in cultivars, currently, the best 
way for crop improvement is the introgression of traits from 
the available wild progenitor gene pool (Munns and Millar 
2023). Hence, the results of the current study demonstrate 
that WEW, which is known as an important source for biotic 
and abiotic stress improvement in wheat, can also serve as 
a rich source of novel genes for N-deficiency tolerance as a 
mechanism to increase GPC under low-N environments, and 
can contribute to sustainable agriculture.
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