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Abnormal White Matter Integrity Related to Head Impact
Exposure in a Season of High School Varsity Football

Elizabeth M. Davenport,1,3,8 Christopher T. Whitlow,1–3,7 Jillian E. Urban,3,8 Mark A. Espeland,4

Youngkyoo Jung,1–3,8 Daryl A. Rosenbaum,5 Gerard A. Gioia,10 Alexander K. Powers,6,9

Joel D. Stitzel,3,6,8,9 and Joseph A. Maldjian1–3

Abstract

The aim of this study was to determine whether the cumulative effects of head impacts from a season of high school

football produce magnetic resonance imaging (MRI) measureable changes in the brain in the absence of clinically

diagnosed concussion. Players from a local high school football team were instrumented with the Head Impact Telemetry

System (HITS�) during all practices and games. All players received pre- and postseason MRI, including diffusion tensor

imaging (DTI). Immediate Post-Concussion Assessment and Cognitive Testing (ImPACT) was also conducted. Total

impacts and risk-weighted cumulative exposure (RWE), including linear (RWELinear), rotational (RWERotational), and

combined components (RWECP), were computed from the sensor data. Fractional, linear, planar, and spherical aniso-

tropies (FA, CL, CP, and CS, respectively), as well as mean diffusivity (MD), were used to determine total number of

abnormal white matter voxels defined as 2 standard deviations above or below the group mean. Delta (post-preseason)

ImPACT scores for each individual were computed and compared to the DTI measures using Spearman’s rank correlation

coefficient. None of the players analyzed experienced clinical concussion (N = 24). Regression analysis revealed a sta-

tistically significant linear relationship between RWECP and FA. Secondary analyses demonstrated additional statistically

significant linear associations between RWE (RWECP and RWELinear) and all DTI measures. There was also a strong

correlation between DTI measures and change in Verbal Memory subscore of the ImPACT. We demonstrate that a single

season of football can produce brain MRI changes in the absence of clinical concussion. Similar brain MRI changes have

been previously associated with mild traumatic brain injury.

Key words: diffusion tensor imaging; football; Head Impact Telemetry System; mild traumatic brain injury; risk-weighted

cumulative exposure

Introduction

There are over 5 million athletes playing organized

football in the United States, with the vast majority in the youth

and high school leagues.1–3 The effects of head impacts on these

vulnerable younger players have not been well studied. Studies of

head impacts are typically related to concussion. Football has the

highest concussion rate, compared to other contact sports.4 Con-

cussion in football players occurs at a wide range of impact mag-

nitudes,5 and clinical measures of symptom severity are independent

of impact magnitude and location.5,6 Concussions at the low end of

magnitude present with as many clinical deficits as the higher end of

magnitude. Whereas concussion can represent a serious and imme-

diate outward manifestation of any head impact, the more indolent

effects of repeated subconcussive impacts are largely unknown.

Conventional neuroimaging methods are typically unremarkable

in the setting of mild traumatic brain injury (mTBI)7, whereas

diffusion tensor imaging (DTI) has been successful in revealing

subtle underlying changes in white matter (WM) integrity.8 The

reproducibility of DTI metrics (e.g., fractional anisotropy [FA] and

mean diffusivity [MD]) is sufficient to track relatively small lon-

gitudinal changes in single subjects9 within limits of motion and

noise. Most studies of TBI and mTBI have reported decreases in FA

and increases in MD as a result of demyelination or disruption of
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tissue structure.10–17 There is, however, a growing body of evidence,

especially in the realm of sports-related mTBI, that FA values in-

crease in both acute and chronic phases,18–22 with abnormalities

typically identified in the corpus callosum (CC). Voxel-wise and

region of interest–based analyses of DTI data have typically been

used to compare FA values across time and subjects. A central as-

sumption to these methods is that the location of injury is similar

across subjects.23,24 The sensitivity to subtle DTI changes, especially

for subconcussive impacts, can be improved by using methods that

are not dependent on spatial co-localization of the injury.25,26

In order to relate changes in imaging data or cognitive function

to head impacts, an effective method of measuring the underlying

biomechanical response is required. This information can be pro-

vided by the Head Impact Telemetry System (HITS�). The HITS

was developed by SIMBEX with the assistance of Virginia Tech

from 2000 to 2003 and has been implemented in several high

schools and colleges to collect real-time data in practices and

games.5,27–30 It consists of a base unit, charging station, and MX

Encoders for each helmet, which measure translational and rota-

tional accelerations of the skull, not of the helmet. The HITS is

placed beside the game field and collects real-time data on number

of impacts, duration of impact, time between impacts, as well as

linear and rotational acceleration, which can be analyzed in terms

of the peak gs, impact location, and other biomechanical indicators.

Research on the biomechanics of impact has focused primarily

on collegiate football players.5,27,28,30,31 Studies of head impact

exposure for high school and youth football populations are only

now beginning to emerge.3,32–34 These demonstrate accelerations,

even for the youngest players, approaching those of collegiate

athletes. A recent study of asymptomatic (clinically nonconcussed)

high school football players (*50 players over two seasons) re-

lated HITS findings to cognition and functional magnetic resonance

imaging (fMRI) n-back memory testing. Significant associations

were found between pre- and postseason fMRI changes, number of

head blows, and functional impairment (change in ImPACT testing

in at least one domain).35,36 Remarkably, 50% of nonconcussed

players were found to have functional impairments. In a study re-

lating HITS findings to DTI, 10 football and ice hockey players

were imaged at baseline and within 10 days postconcussion.19

Using subject-specific finite element modeling (FEM) employing

HITS data, change in FA and MD values in the CC were signifi-

cantly related to strain and strain rate estimated by the FEM.

The primary aim of this study is to determine if the cumulative

effects of head impacts from a season of high school varsity football

produce changes in the brain in the absence of clinically diagnosed

concussion.

Methods

Protocol overview

All participants were instrumented with the HITS system for
acquisition of real-time biomechanical exposure data during all
practices and games. All participants also received baseline pre-
and postseason MRI and Immediate Post-Concussion Assessment
and Cognitive Testing (ImPACT). The data for this study are part of
an ongoing study of high school and youth football players in-
volving biomechanics, MRI, magnetoencephalography, and cog-
nitive testing.31,32

Subjects

Players from a local Winston-Salem varsity high school football
team were enrolled to participate in the study for the 2012 season.

This study was approved by the Wake Forest School of Medicine
(Winston-Salem, NC) Institutional Review Board Committee.
Exclusion criteria included any history of previous neurological
illness, psychiatric illness, brain tumor, concussion within the past
6 months, and/or contraindication to MRI. A certified athletic
trainer (ATC) was present during all games and practices and
evaluated all players for clinical signs of concussion using the
Sports Concussion Assessment Tool version 2. Players identified
by the ATC with suspected concussion were then evaluated by a
sports-medicine physician experienced in the clinical diagnosis and
treatment of concussion. During the season, 2 players had clinically
diagnosed concussions and were excluded from further analysis.
Before the season, 1 player had a clinically diagnosed concussion
and was excluded from further analysis. This provided 24 complete
pre- and postseason imaging data sets from players without clinical
evidence of concussion. These subjects were all male, with a mean
age (in years) of 16.9 (standard deviation [SD], 0.6), a mean body
mass index (BMI) of 26.3 (SD, 3.7), and mean time between pre-
and postseason scans of 4.9 months (SD, 0.6).

Magnetic resonance imaging acquisition
and processing

MRI data were acquired in accordance with the National In-
stitute of Neurological Disorders and Stroke Common Data Ele-
ments advanced protocol recommendations on a 3T Siemens Skyra
MRI scanner using a high-resolution 20-channel head/neck coil
(Siemens Healthcare, Erlangen, Germany). T1-weighted anatomi-
cal images were obtained using a three-dimensional volumetric
magnetization prepared rapid gradient echo sequence with isotro-
pic resolution of 0.9 mm (repetition time [TR] = 1900 msec; echo
time [TE] = 2.93 msec; inversion time = 900 msec; flip angle = 9
degrees; and 176 slices). DTI images were acquired using a two-
dimensional single-shot echo planar imaging sequence (TR =
10,500 msec; TE = 99 msec; flip angle = 90 degrees; spatial reso-
lution = 2.2 · 2.2 mm; slice thickness = 3 mm; 54 slices; 10 b = 0
volumes; and 15 diffusion directions with b = 1000/2000 each).
Structural T1 images were normalized to Montreal Neurologic
Imaging (MNI) space using the Dartel high-dimensional warping
and the SPM837 new segment procedure, as implemented in the
VBM8 toolbox (http://dbm.neuro.uni-jena.de/vbm.html). Diffu-
sion tensor preprocessing was performed using the Functional MRI
of the Brain Software Library (FSL).38 Eddy current correction of
the diffusion tensor images was performed using FSL dti_eddy by
normalizing each image to the baseline (B0) image using the mu-
tual information registration algorithm. DTI scalar metrics, in-
cluding FA and MD, as well as shape anisotropy coefficients,
including linear anisotropy (CL), planar anisotropy (CP), and
spherical anisotropy (CS), were computed using DTI-TK.39 Dis-
tortion correction was performed by normalizing the B0 image to
the T1 image and applying this transformation to the computed
maps. The resulting scalar maps were then normalized to MNI
space based on the parameters computed from the structural nor-
malization. All normalizations and scalar maps were visually in-
spected to ensure the quality of normalization procedures.

Head Impact Telemetry System data collection

All players were fitted with Riddell Revolution or Riddell Re-
volution Speed football helmets containing MxEncoders that fit
into the spaces between padding in the helmet. The MX Encoder
weighs 4 ounces and includes six nonorthogonally mounted single-
axis accelerometers, a digital encoder, and instrumentation to
transmit signal to the base unit. Riddell helmets incorporating the
HITS have been certified by the National Operating Committee on
Standards for Athletic Equipment. Trained research assistants
monitored the HITS at all hitting practices and games. Accelera-
tion threshold was set at 10g. Once this threshold was achieved,
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information from all six accelerometers was collected at 1 kHz for a
period of 40 ms (8 ms before the trigger and 32 ms after the trigger).
All games and practices were also videotaped to remove any false
impacts, such as a dropped helmet. A complete description of
the processing algorithm and validation of the HITS has been
previously described.40

Head Impact Telemetry System data analysis

Quantitative HITS data include number of impacts, peak linear
acceleration in gs, peak impact rotational acceleration in radians
per second,2 as well as azimuth and elevation for measures of im-
pact location (e.g., angle > 60 = top; 45 from sagittal anterior/
posterior = front/back; and 45 from frontal plane = side). The time
history of acceleration is also obtained for the resultant translational
acceleration. The biomechanical metric computed from the HITS
data for this study was the risk-weighted cumulative exposure
(RWE).31 This metric is defined as the collected risk of concussion
over the course of the season. The risk of concussion for each
impact for each player was calculated using three different risk
functions previously described in the literature. The three risk
functions include the logistic regression equations and regression
coefficients for 1) linear acceleration,41 2) rotational acceleration,42

and 3) the combined probability from linear and rotational accel-
eration43 (Table 1). The risk for each respective head acceleration
specific to the given risk function for a single player was summed to
generate the RWE for the season. RWE is favorable to previously-
described exposure metrics in football head impacts because it is
based on the player specific distribution of impacts and the asso-
ciated risk of concussion for each impact during the season for each
player. The RWE calculated from each respective risk function is
simply referred to as RWELinear, RWERotational, and RWECP. Be-
cause RWECP is comprised of both linear and rotational forces that
are experienced with every head impact, our primary hypothesis
relates to changes in the brain associated with RWECP. The equa-
tions for RWE are provided in Table 2.

Diffusion tensor imaging scalar z-scores

Delta post-preseason maps were computed for each DTI scalar
metric (FA, MD, CL, CP, and CS). The group mean and standard
deviation (SD) of the delta maps were used to create a normative
reference for each scalar metric. Voxel-wise z-scores were com-
puted using the normative reference. The z-maps were thresholded
at 2 SDs above the mean and 2 SDs below the mean to identify any
abnormally high or low scalar values. A cluster threshold requiring
a minimum 1-mL contiguous volume was applied to reduce false

positives. The total number of abnormal voxels for each subject and
scalar metric was computed for regression analyses. A sensitivity
analysis was conducted to examine for threshold effects, with an-
alyses repeated at a range of SD cutoffs (0.5–3.0).

Comparison of Head Impact Telemetry System
and imaging data

Linear regression analyses were performed to examine the re-
lationships between RWE metrics and brain imaging using JMP
software (SAS Institute Inc., Cary, NC). Our primary hypothesis
was that there would be an association between RWECP and
FA. Secondary analyses were performed to better characterize
any associations between the biomechanical metrics (RWELinear,
RWERotational, and RWECP) and other DTI measures, including MD
and subcomponents of the FA (CL, CP, and CS). For the primary
linear regression analysis, a model was constructed for RWECP and
FA. Number of abnormal FA voxels was used as the dependent
variable. Log transformation was applied to satisfy assumptions of
normality. Age at preseason, BMI, and time between scans were
used as covariates. The proportion of variance (r2) in FA associated
with RWECP, without and with covariate adjustment, was used to
portray the strength of relationships. Secondary analyses were
performed in a similar fashion using FA, MD, CL, CP, CS, and all
biomechanical metrics (RWELinear, RWERotational, and RWECP).
For each linear regression performed, the Cook’s distance of each
point was calculated and analyzed for potential outliers.

Immediate Post-Concussion Assessment
and Cognitive Testing

Neuropsychological testing using version 2.1 of the ImPACT
computer-administered test battery was successfully completed
pre- and postseason for 14 of the 24 subjects. The test consists of
multiple modules that assess different measures of cognitive
function reported as composite scores, including verbal memory,
visual memory, visual motor (processing speed), and reaction time.
The test takes approximately 25 min to complete and was admin-
istered in the school’s computer laboratory under the supervision of
the team’s athletic trainer. These 14 subjects had a mean age (in
years) of 17.03 (SD, 0.6), mean BMI of 23.2 (SD, 4.1), and mean
time between pre- and postseason scans of 4.8 months (SD, 0.6).

Immediate Post-Concussion Assessment
and Cognitive Testing delta scores

Delta post-preseason scores for each individual were computed
using the four ImPACT composite measures (verbal memory, visual
memory, visual motor, and reaction time). These four delta scores
were then compared to the number of abnormal DTI voxels using
Spearman’s rank-correlation coefficient.

Table 1. Logistic Regression Equations and Regression

Coefficients of the Three Injury Risk Functions

Utilized in the Risk Calculation for Each Impact
a

Equation
Logistic regression

equation
Risk

function
Regression
coefficients

(1) R(a)¼ 1
1þ e� aþ bx

Linear a = - 9.805,
b = 0.0510

Rotational a = - 12.531,
b = 0.0020

(2) CP¼ 1
1þ e� (b0 þ b1aþ b2aþ b3aa)

Combined
probability
(CP)

b0 = - 10.2,
b1 = 0.0433,
b2 = 0.000873,
b3 = - 9.2E-07

aa and b are the regression coefficients and x is the measured acceleration
for the linear and rotational risk functions. b0, b1, b2, and b3 are the
regression coefficients, a is the measured linear acceleration, and a is the
measured rotational acceleration for the combined probability risk function.

Table 2. Risk-Weighted Cumulative Exposure

(RWE) Equations
a

Risk function(s) Equation

Linear RWELinear ¼ +
nhits

i¼ 1

R(aL)i

Rotational RWERotational¼ +
nhits

i¼ 1

R(aR)i

Combined probability RWECP¼ +
nhits

i¼ 1

CP(aL, aR)i

aaL is the measured peak linear acceleration, aR is the measured peak
rotational acceleration, and nhits is the number of head impacts in a season
for a given player.
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Results

As seen in Table 3, the combined metric, RWECP, demonstrated

a significant association with changes in all of the DTI scalars. No

data points were found to be outliers in our analysis. Our primary

hypothesis focused on RWECP-associated changes in FA. RWECP

and number of abnormal delta FA voxels explained 49.5% of the

total variance ( p = 0.0001). Covariate adjustment for age, BMI, and

time between scans increased the strength of the relationship (R2

adjusted = 0.4985; p < 0.0001). The most significant relationship,

however, was between RWECP and CL (Fig. 1), explaining 50.4%

of the variance ( p = 0.0001). RWEcp explained 33.7% of the vari-

ance in abnormal delta MD voxels ( p = 0.0030), 42.9% of the

variance with CP ( p = 0.0005), and 46.9% of the variance with Cs

( p = 0.0002). In each case, covariate adjustment for age, BMI, and

time between scans increased the strength of the relationship.

RWELinear also had strong associations with changes in DTI

scalars, explaining 24.8% of the variance in abnormal delta FA

voxels ( p = 0.0133), 17.0% of the variance in abnormal delta MD

voxels ( p = 0.0449), 27.9% of the variance in CL ( p = 0.008),

22.7% of the variance in CP ( p = 0.0186), and 24.8% of the variance

in Cs ( p = 0.0133). Covariate adjustment for age, BMI, and time

between scans also increased the strength of these relationships.

RWERotational and the number of head impacts did not demon-

strate a statistically significant association with changes in any of

the DTI scalars, without or with covariate adjustment.

Pre- and postseason ImPACT composite scores are presented in

Table 4. Spearman’s rank correlation revealed a statistically significant

association between the magnitude of verbal memory score decrease

(post-pre) and the number of abnormal voxels for each DTI scalar.

Specifically, there was a strong statistically significant inverse rela-

tionship between delta verbal memory composite score and number of

abnormal MD voxels (rs(12) = - 0.65; p = 0.0116) and CP voxels

(rs(12) = - 0.75; p = 0.0022). There was also a trend toward statistical

significance for an inverse relationship between delta verbal memory

composite score and number of abnormal FA voxels (rs(12) = - 0.49;

p = 0.0749) and Cs voxels (rs(12) = - 0.48; p = 0.0843).

No other associations between delta ImPACT composite scores

(visual memory, visual motor, and reaction time) and number of

abnormal DTI voxels achieved statistical significance. Sensitivity

analyses demonstrated findings to be similar across a wide range of

SD cutoffs (0.5–3.0).

Table 3. Associations between HITS Metrics and Changes in DTI Measures, without and with Adjustment

for Age, BMI, and Time between MRI Scans

Without covariate adjustment Covariate adjustment for age, BMI, and time between scans

R2 p value Adjusted R2 p value

FA vs. RWEcp 0.4949 0.0001* 0.4985 <0.0001*
MD vs. RWEcp 0.3366 0.0030* 0.3816 0.0006*
CL vs. RWEcp 0.5043 0.0001* 0.5626 <0.0001*
CP vs. RWEcp 0.4286 0.0005* 0.5956 <0.0001*
CS vs. RWEcp 0.4694 0.0002* 0.5275 <0.0001*
FA vs. RWELinear 0.2479 0.0133* 0.1656 0.0127*
MD vs. RWELinear 0.1705 0.0449* 0.1081 0.0252*
CL vs. RWELinear 0.2789 0.0080* 0.2250 0.0071*
CP vs. RWELinear 0.2269 0.0186* 0.3294 0.0108*
CS vs. RWELinear 0.2477 0.0133* 0.2331 0.0065*
FA vs. RWERotational 0.0139 0.5834 - 0.1282 0.4294
MD vs. RWERotational 0.0770 0.1892 - 0.1064 0.3134
CL vs. RWERotational 0.0287 0.4287 - 0.0966 0.3661
CP vs. RWERotational 0.0176 0.5363 0.0480 0.9736
CS vs. RWERotational 0.0057 0.7261 - 0.1062 0.4351
FA vs. total impacts 0.0082 0.6732 - 0.1624 0.7893
MD vs. total impacts 0.0087 0.6652 - 0.1680 0.9042
CL vs. total impacts 0.0337 0.3905 - 0.1262 0.5688
CP vs. total impacts 0.0189 0.5222 0.0676 0.5341
CS vs. total impacts 0.0072 0.6935 - 0.1343 0.7043

*p < 0.05.
HITS, Head Impact Telemetry System; DTI, diffusion tensor imaging; BMI, body mass index; MRI, magnetic resonance imaging; FA, fractional

anisotropy; MD, mean diffusivity; CL, linear anisotropy; CP, planar anisotropy; CS, spherical anisotropy.

Table 4. ImPACT Composite Scores Pre- and Postseason

Preseason Postseason

Range Mean SD Range Mean SD

Verbal memory composite score 65–99 89.64 10.71 61–99 85.29 10.96
Visual memory composite score 61–97 81.93 11.65 42–97 73.79 15.92
Visual motor composite score 27.64–50.25 40.00 6.78 20.85–47.08 37.20 9.67
Reaction time composite score 0.44–0.62 0.53 0.06 0.49–0.99 0.63 0.17

Range is for lowest to highest score.
ImPACT, Immediate Post-Concussion Assessment and Cognitive Testing; SD, standard deviation.

1620 DAVENPORT ET AL.



Discussion

In this study, we directly compared head impact exposure in the

form of risk-weighted cumulative acceleration experienced in one

season of high school football with pre- and postseason imaging and

cognitive data. The number of abnormal DTI voxels for each subject

was measured using a method independent of spatial relationships.

The number of abnormal voxels in each DTI scalar was shown to

have a statistically significant relationship to RWECP and RWELinear.

This is the first report of a quantitative relationship between head

impact metrics and DTI scalars in nonconcussed subjects.

RWE reflects both frequency and severity of impacts; therefore, it

captures wide variances in exposure within subjects. RWELinear

represents the risk associated with the peak linear acceleration,

whereas RWERotational represents the risk associated with the peak

rotational acceleration. RWECP combines both linear and rotational

acceleration. The relationship between the RWE metrics and DTI

scalars can be thought of as a correlation between increased head

impact exposure and changes in WM integrity. It has been shown that

as frequency and severity of impacts increase, the amount of brain

injury increases.43–45 It is also well documented that mTBI events in

children, as well as adults, have led to changes in DTI scalars, FA

in particular.22,25,26,46–48 Our study shows changes in DTI scalars that

are significantly associated with RWE metrics in the absence of a

clinical diagnosis of concussion or clinically apparent mTBI.

RWECP explained more variance in the DTI scalars than

RWELinear or RWERotational, suggesting that both linear and rota-

tional acceleration contribute to the prediction of brain injury.

The DTI scalars did not demonstrate a significant relationship

with the total number of impacts, indicating that weighting im-

pacts according to associated risk may be important. Simply

counting impacts does not account for impact severity and di-

rectional components that may be critical in producing brain in-

jury. RWECP includes the magnitude of both linear and rotational

acceleration as well as the total number of impacts in order to

create an accurate assessment of each player’s risk of concussion

for the season. TBI is caused by neither a purely linear nor a purely

rotational force.29,43,49,50 Linear and rotational accelerations are

associated with different injury mechanisms. Linear accelerations

are associated with transient intracranial pressure gradients,

whereas rotational accelerations are associated more strongly

with a strain response or brain deformation.51,52 The primary

contributor to brain injuries and concussion is still a matter of

debate, with some studies suggesting linear acceleration49 and

some suggesting rotational acceleration.29 RWELinear in our

study was the second most significant RWE metric, whereas

RWERotational did not show a significant relationship with any of

the DTI scalars. This suggests that pure linear acceleration ex-

plained variance in the subconcussive changes in brain DTI

metrics better than pure rotational acceleration, but it is well

known that most real-world impacts involve both linear and ro-

tational components. Conclusions on the involvement of rota-

tional versus linear acceleration in concussion, however, cannot

be determined from our study.

FIG. 1. RWECP versus linear anisotropy. A strong linear relationship is demonstrated between combined risk-weighted exposure and
number of abnormal voxels based on linear anisotropy. RWE-CP, risk-weighted cumulative exposure and combined components.
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In our study, the delta DTI metrics of each subject were com-

pared against the entire group to compute z-scores. This generates a

measure of the change in DTI metric over the season while ac-

counting for any baseline differences in DTI values and effects of

maturation. Both increases and decreases in DTI metrics were

studied and no significant relationship was found when compared

to RWE or ImPACT scores. There is variability in the TBI literature

regarding the time course and direction of change in DTI metrics

after injury. Studies of TBI and mTBI have typically demonstrated

decreases in FA and increases in MD. Recent evidence on sports-

related concussions and nonconcussive impacts; however, supports

increased FA and decreased MD in the acute (days to weeks) and

chronic (up to 6 months) phases.18–20 These changes in DTI metrics

are likely sensitive to the time interval between injury and post-

injury imaging.11,47,48 Our study used both ends of the distribution

in order to account for the uncertainty in the precise temporal

evolution and direction of change in DTI measures.

FA can be separated into linear (CL), planar (Cp), and spherical

(Cs) anisotropy components to further explain the shape of the

diffusion ellipsoid.53,54 These diffusivity metrics allow a closer

look at the microstructural causes of abnormal FA. The linear

measure represents diffusion along two orthogonal directions, also

referred to as ‘‘cigar’’ shaped. Major WM tracts, such as the CC,

have high linear diffusivity. Planar diffusion is restricted to a plane

(or saucer shaped). Planar diffusivity is often associated with

crossing, or ‘‘kissing,’’ fibers. Spherical diffusion is purely iso-

tropic diffusion. The highest spherical measures are observed in

cerebrospinal fluid, where diffusion is unbounded.55 Axial (k1) and

radial ((k2 + k3)/2) diffusivity are other DTI scalars used in the

literature55 computed from the principle directions of the diffusion

tensor. Axial diffusivity is the most similar to linear diffusivity in

association with WM tracts.57 Radial diffusivity has been associ-

ated with demyelination and axonal swelling.14,57 Previous studies

have shown changes in geometrical tensors to be especially sen-

sitive to changes in TBI.14,46,58 Changes in linear, planar, or

spherical diffusivity likely represent different responses to mTBI

and WM integrity. However, the pathological implication of the

changes in these DTI parameters is still not well understood. In our

study, RWECP and RWELinear explained more variance and were

more significant in their association with the number of abnormal

CL voxels than any other DTI metric. It is known that mTBI causes

a focal disruption to multiple axons, which can then lead to swelling

and tearing of those axons. A change in linear diffusivity (CL)

suggests a focal change in the WM tracts related to disconnection.

When this process becomes widespread, it is referred to as diffuse

axonal injury. In our study, the stronger correlation with linear

diffusivity fits the characteristics of axotomy, or axonal tearing.

The secondary relationships with spherical and planar diffusivities

suggest axonal swelling and, possibly, demyelination in addition to

the primary damage of disconnection. It is important to note that the

time course and reversibility of these changes were not studied.

We found a statistically significant association between the

magnitude of delta (post-pre) ImPACT verbal memory composite

score and number of abnormal voxels for two of the five DTI scalars

(MD and CP), with a trend toward statistical significance for two

others (FA and Cs). In a study of concussed high school and college

athletes, verbal memory measured with the ImPACT has been

shown to decrease after a single season of football.59 In our study,

the correlation between diminished verbal memory score and

number of abnormal DTI voxels was found in athletes without

clinically diagnosed concussion. The cognitive data further support

our imaging findings that cumulative head impacts from a season of

high school varsity football can produce changes in the brain, even

in the absence of clinically diagnosed concussion.

Our study has several limitations that must be considered. Its

sample size was relatively small; however, it is the largest study to

date of high school football that includes biomechanical metrics,

MRI DTI measures, and cognitive testing. Our delta DTI metric

used the entire group mean and SD to compute z-scores. An al-

ternative method would be to use a control group of noncontact

sport athletes to provide an effective comparison group. Both

methods have validity, although our approach accounts for dif-

ferences in baseline DTI values. Longitudinal evaluations of the

subjects would be helpful to determine reversibility of the findings.

The selected 2-SD cutoff is somewhat arbitrary, but was chosen

because it has been previously used in the mTBI literature and

facilitates comparisons with other data sets. In order to evaluate for

threshold effects, we conducted a sensitivity analysis, repeating

the analyses at a range of SD Z-map cutoffs (0.5–3.0). This

demonstrated the findings to be robust across these threshold

ranges. In addition, the HITS used for the collection of biome-

chanical data is associated with some error in measurement for

linear and rotational acceleration. In Beckwith and colleagues, the

HITS overestimated linear acceleration by an average of 1% and

underestimated rotational acceleration by an average of 6%, when

compared to acceleration data measured from a biomechanical

headform instrumented with a nine accelerometer package (Hy-

brid III).60 However, the correlation between the HITS and the

Hybrid III headform was significant for linear and rotational ac-

celeration.

Conclusion

We demonstrate a significant relationship between changes in

DTI measures and cumulative impacts using biomechanical met-

rics in the absence of clinical concussion. In this study, we show

that a single season of football can produce MRI measureable brain

changes that have been previously associated with mTBI. Finally,

we demonstrate that these impact-related changes in the brain have

a strong association with a postseason change in cognitive func-

tion. Taken together, these data add to the growing body of liter-

ature providing evidence that a season of play in a contact sport can

show brain changes in the absence of concussion or clinical find-

ings. Studies relating the biomechanics of head impacts with brain

imaging and cognitive function may allow equipment designers,

researchers, and clinicians to prevent, mitigate, identify, and treat

injuries to help make football a safer activity for millions of

children.
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