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STIMULUS REPORT

Myelodysplastic syndrome unrelated to lentiviral vector in a patient
treated with gene therapy for sickle cell disease

Matthew M. Hsieh,1 Melissa Bonner,2 Francis John Pierciey Jr,2 Naoya Uchida,1 James Rottman,2 Laura Demopoulos,2 Manfred Schmidt,3

Julie Kanter,4 Mark C. Walters,5 Alexis A. Thompson,6,7 Mohammed Asmal,2 and John F. Tisdale1

1Cellular and Molecular Therapeutics Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD; 2bluebird bio, Inc, Cambridge, MA;
3GeneWerk GmbH, Heidelberg, Germany; 4Division of Hematology and Oncology, University of Alabama at Birmingham, Birmingham, AL; 5University of California San Francisco
Benioff Children’s Hospital, Oakland, CA; 6Division of Hematology, Oncology and Stem Cell Transplant, Ann & Robert H. Lurie Children’s Hospital of Chicago, Chicago, IL;
and 7Department of Pediatrics, Feinberg School of Medicine, Northwestern University, Chicago, IL

Key Points

• Ability to accurately at-
tribute adverse events
post–gene therapy is
required to describe
the benefit-risk of these
novel treatments.

• A SCD patient devel-
oped myelodysplastic
syndrome post-
LentiGlobin treatment;
we show how inser-
tional oncogenesis was
excluded as the cause.

Introduction

HGB-206 (registered at www.clinicaltrials.gov as #NCT02140554) is a multicenter, phase 1/2 study
evaluating the safety and efficacy of LentiGlobin for sickle cell disease (SCD). The LentiGlobin drug
product (DP) contains autologous CD341 hematopoietic stem cells (HSCs) transduced ex vivo with the
BB305 lentiviral vector (LVV) encoding antisickling b-globin, bA-T87Q.1,2 Following myeloablative
busulfan conditioning, patients who receive LentiGlobin DP are monitored for 2 years in HGB-206 and
for an additional 13 years in a long-term follow-up study.

Although gene therapy has the potential for curative outcome, it may have associated risks. Most existing
gene therapy and allogeneic HSC transplantation (HSCT) protocols require myeloablation with an
alkylating agent, which carries a risk of secondary malignancy, including acute myeloid leukemia (AML)
or myelodysplastic syndrome (MDS).3,4 Hematologic malignancies due to insertional oncogenesis were
previously reported following gene therapy with g-retroviral vectors in several hematologic diseases.5

We have thus used a modified LVV developed to mitigate the potential risk of insertional oncogenesis,
with no such cases reported for .110 patients treated with LVV-based HSC gene therapy in bluebird
bio–sponsored clinical trials (#5 years follow-up) or in .200 patients described in the literature who
received any LVV-based HSC gene therapy (#12 years follow-up)6; however, a theoretical risk remains.

This case describes the approaches used to assess whether MDS, diagnosed 36 months post-
LentiGlobin infusion in a patient enrolled in HGB-206, was due to vector-mediated insertional
oncogenesis.

Methods

The patient, aged 42 years at consent, presented with SCD (bS/bS genotype) and a history of vaso-
occlusive pain, asthma, hypertension, iron overload, leg ulcers, depression, transaminitis, and gallbladder
disease. For 8 years before study entry, the patient received hydroxyurea (HU), which was discontinued
6 months pre-LentiGlobin treatment. This patient was a part of the initial cohort of 7 HGB-206 patients
(group A) for whom the HSCs were collected by bone marrow (BM) harvest and DPs were made using
the original manufacturing process, which was later modified for subsequent patients enrolled.7 The
LentiGlobin DP for this patient had a vector copy number (VCN) of 1.3 copies per diploid genome
(c/dg), a cell dose of 2.8 3 106 CD341 cells per kilogram, and 29% LVV-containing HSCs. Before
LentiGlobin infusion, the patient received myeloablative conditioning with IV busulfan 3.3 mg/kg
(200 mg) daily over 4 days. Per protocol, the goal for busulfan exposure is an area under curve (AUC) of
4000 (minimum, 3600; maximum, 5000) mm 3 minutes. The busulfan pharmacokinetic monitoring was
performed locally and a manually calculated AUC was 3460 mm 3 minutes, based on the partial actual
busulfan level (5 of 6 planned busulfan pharmacokinetic measurements are available; the first value is
missing). Neutrophil engraftment (absolute neutrophil counts$0.53 109/L for 3 consecutive days) and
platelet engraftment (the first day of 3 consecutive platelet measurements$503 109/L without platelet
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Figure 1. Evaluation of ISs in whole blood and integrated transgene abundance in bone marrow precursors. (A-B) IS analysis was done, using whole blood

samples, by nonrestrictive linear amplification-mediated polymerase chain reaction [(nr)LAM PCR] and sequencing as described previously.2 (A) IS analysis for months 6

through 36 showing distribution of gene-marked cell clones. Each of the top 10 most represented unique ISs is indicated by a different color, with gray showing the cumulative

proportion of all other unique ISs. The total number of ISs is indicated at the top of each column. None of the clones showed a clonal contribution of .30% of the total

retrieved ISs. Month 36 (M36) visit 1 was the regular study follow-up. M36 visit 2 was at the time of MDS diagnosis. (B) IS clonal abundance for months 6 to 36. For individual

samples, sequence data form all (nr)LAM-PCR amplicons were combined. RefSeq gene names for the top 10 genes located next to or at the IS are shown. None of the top

10 most prominent clones appeared in .2 samples collected at different time points. (C) A core BM biopsy was collected from the patient 20 days post-MDS diagnosis, fixed

in formalin, decalcified, and routinely processed. (a) In situ hybridization (ISH) was performed on a tissue section using a specific probe to detect integrated transgene DNA,

and immunohistochemistry (IHC) for CD235a (glycophorin A) protein was used to identify erythroid precursors. Red and black arrows indicate examples of the integrated
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transfusions for 7 days) occurred on days 17 and 29, respectively.
One grade 3 serious adverse event of iron overload, assessed
unrelated to LentiGlobin, occurred ;9 months post-LentiGlobin
infusion.

Due to persistent anemia, HU was restarted and darbepoetin
introduced at 1 and 2 years post-LentiGlobin infusion, respectively.
Peripheral blood (PB) VCN over 3 years post-LentiGlobin infusion
ranged from 0.08 to 0.15 c/dg and the resulting gene therapy–
derived hemoglobin was 0.1 to 1.23 g/dL.

During a routine clinical visit 36 months post-LentiGlobin infusion,
the patient had a 3.433 109/L white blood cell count, 0.793 109/L
absolute neutrophil counts, a 131 3 109/L platelet count, and
7.3 g/dL hemoglobin. Routine blood tests revealed 3% blast-like
cells in the PB, which increased to 6% in 9 days. Per BM biopsy,
;10% of BM cells were malignant myeloblasts. The patient was
diagnosed with MDS with excess blasts (MDS-EB-2), designated
a grade 4 serious adverse event. Post-MDS diagnosis, the patient
received standard treatment including 5-azacytadine and decita-
bine, and, while on treatment, was diagnosed with AML. AML was
treated by 713 induction chemotherapy of idarubicin/cytarabine,
followed by reinduction with cladribine, high-dose cytarabine, and
granulocyte–colony-stimulating factor. The patient subsequently re-
ceived myeloablative doses of melphalan, fludarabine, and 200 rad of
total-body irradiation, followed by an HLA-haploidentical HSCT and
2 doses of cyclophosphamide posttransplant. At 3 months post-
transplant, the patient was in remission with BM findings consistent
with posttransplant recovery, normal cytogenetics, no blasts in the
PB, and no graft-versus-host disease. At 6 months posttransplant,
blasts (confirmed by flow cytometry) were detected in the PB and
BM, and treatment with a hypomethylating agent and venetoclax
was initiated.

The study protocol was reviewed and approved by the Institutional
Review Boards/Ethics Committees at all HGB-206 clinical sites,
including the General Medicine 1 Institutional Review Board
(Bethesda, MD).

Results and discussion

Multiple cytogenetic and molecular assays were performed to
investigate the MDS etiology. Malignant blasts had monosomy 7
and structurally abnormal chromosome 19p in 8 of 20 metaphases.
Archived BM samples, collected preconditioning, were negative for
monosomy 7 per fluorescence in situ hybridization (NeoGenomics,
Fort Myers, FL) and negative for the 54 mutations associated with
myeloid disorders per next-generation sequencing–based analysis
(NeoTYPE; NeoGenomics, Fort Myers, FL).

Routine integration site (IS) analyses performed at 6-month
intervals post-LentiGlobin infusion showed no protocol-defined
clonal dominance through 36 months (Figure 1A).2 No single IS
represented .30% of the total sites, and the top 10 prevalent
clones were transitory (Figure 1B).

The frequency of CD341 cells was stable: 1.83% at baseline in BM
and 1.5% in PB at month 21 post-LentiGlobin infusion. RUNX1,

KRAS, and PTPN11 mutations were detected by the NeoType
analysis in the BM sample at MDS diagnosis (NeoGenomics).
Malignant blasts were determined to be CD341. Therefore, the
enrichment of CD341 cells from BM and PB would be expected to
predominantly yield malignant blasts, which would have a VCN
$1 c/dg if LVV-mediated insertional mutagenesis was causing cell
transformation. BM cells were sorted into CD342 (purity 98%) and
CD341 (purity 93%) fractions and compared with unsorted cells in
BM aspirate collected post-MDS diagnosis (Table 1). In unsorted
and CD342 cells, the VCNs were 0.14 c/dg and 0.21 c/dg,
respectively. In CD341 cells, mostly containing malignant blasts,
the VCN was 0.02 c/dg, which was less than the lower limit of
quantitation of 0.07 c/dg. This is consistent with the absence of
vector integration in the CD341 blast cells. Similarly, enriched
CD341 cells from PB did not have increased VCN compared with
the unsorted sample (Table 1). In the CD341 and CD342 samples
from BM post-AML recurrence after HLA-haploidentical HSCT, no
LVV was detected.

DNA in situ hybridization of a BM sample collected post-MDS
diagnosis with an integrated transgene-specific probe showed
nuclear signals in isolated clusters of CD2351 erythroid precursors
and rarely within CD2352 nonerythroid cells (Figure 1C).

LVV gene therapy has been safe in animal models,8-11 and there
have been no published cases of insertional oncogenesis in
patients thus far.6,12-15 The patient received HU for several years,

Table 1. VCN analysis of CD34
1

and CD34
2

cells post-MDS

diagnosis and post-AML recurrence

Sample

Post-MDS diagnosis

Post-AML

recurrence*

Purity, % VCN, c/dg VCN, c/dg

BM

Unsorted BM sample n/a 0.14 6 0.0 nd

CD342 selected 98 0.21 6 0.03 ,LOQ

CD341 selected for myeloblasts 93 0.02 6 0.01 (,LOQ) ,LOQ

PB

Unsorted PB sample n/a 0.10 6 0.0 nd

CD342 selected 99 0.07 6 0.01 ,LOQ

CD341 selected for myeloblasts 53 0.08 6 0.01 ,LOQ

Cells were collected from the patient at diagnosis (PB), 20 days postdiagnosis of MDS
(BM), and 8 days post-AML recurrence (PB and BM). Ficoll-Paque density gradient or
hypotonic ammonium chloride solution (ACK Lysing Buffer; Gibco) were used to deplete
BM and PB of red blood cells (RBCs). Post-RBC depletion, ;2 3 105 mononuclear cells
(MNCs) were set aside for VCN analysis (unsorted BM sample). For PB, the remaining
cells were stained with anti-CD34 BV421 antibody (BD Biosciences) and separated into
CD341 and CD342 fractions using fluorescence-activated cell sorting (SH800 cell sorter;
Sony Biotechnology). For BM, remaining MNCs were stained with an anti–CD34-
allophycocyanin, washed, and sorted via a Beckman Coulter MoFlo Astrios EQ cell sorter
to isolate CD342 (CD342 selected) and CD341 (with malignant blasts as main
contributors) cells. Purity of sorted cell populations was subsequently determined.
Additionally, sorted cells were counted by trypan blue exclusion on a hemacytometer and
cells from each population were used for VCN analysis, conducted as previously
described.32 For post-MDS diagnosis VCN, mean 6 standard deviation is shown.
LOQ, limit of quantitation; n/a, not applicable; nd, not determined.
*After haploidentical transplant.

Figure 1. (continued) transgene signal within erythroid (CD235a1) and nonerythroid (CD235a2) precursors, respectively. (b) A serial section stained with a probe specific to

an absent gene (the bacterial gene Dapb) to control for nonspecific ISH signals and with the isotype control antibody to assess the background IHC signal. Counterstaining

with hematoxylin was also performed. Scale bars, 20 mm.
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but evidence supporting a relationship between HU use and
myeloproliferative disease in SCD is lacking. Although MDS has
been reported in 2 individuals with SCD after 14 and 15 years of HU
treatment, respectively,16,17 a systematic literature review (with up
to 9 years of patient follow-up) concluded that HU use is not
leukemogenic in patients with SCD.18 Whether underlying SCD
increases the risk of myeloid neoplasms is still under investigation,
with recent epidemiology reports in California and the United
Kingdom suggesting a higher risk of hematologic malignancies for
patients with SCD. In the Seminog et al study, patients in the United
Kingdom SCD cohort had significantly higher rate ratios for all
cancers combined (2.1; P , .001) and for hematologic malignan-
cies (2.6-10.0; P range from ,.001 to .006, depending on type)
compared with the non-SCD patient cohort.19 Similarly, the
Brunson et al study reported a 72% higher risk of hematologic
malignancies for patients with SCD in California compared with the
general population of California; the risk of solid tumors was 38%
lower.20 High cellular turnover in the BM and chronic inflammation
associated with SCD have been discussed as factors that may
contribute to leukemic transformation, but confirmatory mechanistic
evidence is lacking.20 In the patient described in this case study, the
persistence of unmodified progenitor cells postablation and post-
infusion may have occurred due to a low proportion of LVV-
containing HSCs in the drug product (,30%), preserving a highly
proliferative BM characteristic of hemoglobinopathies, which may
have contributed to the development of MDS.21,22 Additionally,
given that the patient’s actual busulfan AUC was lower than the
goal per protocol, it is possible that residual unablated HSCs may
have persisted postconditioning. The genomic stability of the
patient’s HSCs might have been compromised by hematopoietic
stress associated with SCD and further disrupted by chemother-
apy, potentially resulting in MDS, given that MDS and secondary
AML are identified risks following HSCT using alkylating agents.4

The finding of monosomy 7 in this patient is expected in secondary
myeloid neoplasia, including following exposure to alkylating agents
such as the busulfan.23 Reports describe MDS in patients with
SCD who experienced graft failure and autologous reconstitution
post–HLA-haploidentical HSCT using nonmyeloablative condition-
ing regimens, typically with alkylating agents. One report showed
that 2 of 23 patients with hemoglobinopathies (21 with SCD and 2
with thalassemia) who received 400 cGy total-body irradiation
and/or posttransplant addition of alkylating agent cyclophospha-
mide developed high-grade MDS.24 Another report highlighted
a patient with SCD who underwent prolonged HU treatment
(.5 years) and developed a rapidly progressing MDS that
transformed into AML after graft failure following an HLA-
haploidentical transplant that included both radiotherapy and
alkylating agents.25 Currently, ex vivo HSC gene therapy requires
myeloablative chemotherapy to ensure engraftment of gene-modified
cells, but alternative nonchemotherapy and nonirradiation approaches
aimed at reducing short- and long-term toxicities associated with
conditioning warrant further investigation. Early protocols and clinical
studies that explored naked antibody-based conditioning for HSCT still
required the use of chemotherapy and/or radiation,26 or application to
particular disease states.27 More recently, preclinical models were
used to investigate approaches coupling cytotoxic conjugates, such as
saporin, to antibodies targeting either CD45, expressed exclusively on
most hematopoietic cells including HSCs, or CD117 (c-Kit), a marker
of HSCs and hematopoietic progenitors.28,29 Additionally, anti–c-Kit
antibodies have been tested in mice in combination with antagonists

targeting a “don’t eat me” signal CD47, with the goal of activat-
ing macrophage-assisted depletion of anti–c-Kit-antibody-marked
HSCs.30 Although these methods have enabled varying levels of
HSC clearance in animal models, their efficacy and safety in human
studies, in particular with respect to off-target effects, the impact on
the body’s ability to fight opportunistic infections, and potential to
result in long-term multilineage engraftment of transplanted cells,
remain to be determined.31

In summary, a patient in HGB-206, who did not have MDS prior to
myeloablation, developed MDS post-LentiGlobin treatment. Multi-
ple independent assays demonstrated the absence of vector
integration in the CD341 blasts and excluded LVV-mediated
oncogenesis as the MDS cause. The data presented here show
that the MDS in this patient was unrelated to LentiGlobin.
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