
UC Irvine
UC Irvine Electronic Theses and Dissertations

Title
Toward A Novel Tool for Incorporating Video Into Effective Bug Reporting

Permalink
https://escholarship.org/uc/item/0h25c29d

Author
Etemadi, Nadia

Publication Date
2023

Copyright Information
This work is made available under the terms of a Creative Commons Attribution License,
availalbe at https://creativecommons.org/licenses/by/4.0/

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/0h25c29d
https://creativecommons.org/licenses/by/4.0/
https://escholarship.org
http://www.cdlib.org/

UNIVERSITY OF CALIFORNIA,
IRVINE

Toward A Novel Tool for Incorporating Video Into Effective Bug Reporting

THESIS

submitted in partial satisfaction of the requirements
for the degree of

MASTER OF SCIENCE

in Software Engineering

by

Nadia Etemadi

Thesis Committee:
Professor André van der Hoek, Chair

Professor David Redmiles
Associate Professor James A. Jones

2023

© 2023 Nadia Etemadi

DEDICATION

To my parents, who celebrate me in my highest highs and uplift me in my lowest lows.

I am only one, but I am one. I cannot do everything, but I can do something. And because
I cannot do everything, I will not refuse to do the something that I can do.

– Edward Everett Hale

ii

TABLE OF CONTENTS

Page

LIST OF FIGURES v

ACKNOWLEDGMENTS vi

ABSTRACT OF THE THESIS vii

1 Introduction 1

2 Background 5
2.1 The Bug Reporting Process . 5
2.2 Existing Bug Reporting Tools . 7
2.3 Ease of Access to Bug Reporting . 8
2.4 Resolution Time Reduction . 9
2.5 Bug Reports with Video . 10

3 VideoLab 12
3.1 Objective . 12
3.2 High-Level Design . 13

3.2.1 Video Uploading . 13
3.2.2 Domain-Specific Annotations . 14
3.2.3 Simplified Video Editing . 15

3.3 User Interface . 16
3.3.1 The Video Editor . 16
3.3.2 Text and Shape Annotations . 16
3.3.3 A Visually Non-Complex Interface 18

4 VideoLab in Practice 20
4.1 BugZilla Report 1560660 . 20
4.2 BugZilla Report 1546326 . 21
4.3 BugZilla Report 1028819 . 26

5 Evaluation Plan 28
5.1 Questions for Assessment . 28
5.2 Evaluation Stages . 30

5.2.1 Phase I: Design Critique and Usability Evaluation 30

iii

5.2.2 Phase II, Video Creation . 32
5.2.3 Phase II, Video Consumption . 33

6 Useful Future Extensions 36
6.1 In-App Screen Recording . 36
6.2 Voiceovers . 37
6.3 Video Blurring . 38
6.4 Steps Recorder Integration . 38
6.5 Selecting Annotation Duration . 39
6.6 Video Editing Timeline . 40
6.7 Bug Report Exporting and Submission . 40

7 Conclusion 42

Bibliography 43

iv

LIST OF FIGURES

Page

2.1 BugZilla report 1798314: Firefox freezes when used with NVDA screen reader 6

3.1 VideoLab Video Upload . 14
3.2 VideoLab Editing Interface . 17
3.3 Shape Annotations . 17
3.4 Text Annotations . 17
3.5 Trimming . 18
3.6 Dialogue Box with Annotation Duration . 19

4.1 BugZilla report 1560660 reproduction steps 21
4.2 BugZilla report 1560660 video attachment 22
4.3 BugZilla report 1560660 video before editing 22
4.4 BugZilla report 1560660 video after editing 23
4.5 BugZilla report 1546326 reproduction steps 24
4.6 BugZilla report 1546326 video before editing: 16s mark 24
4.7 BugZilla report 1546326 video before editing: 48s mark 25
4.8 BugZilla report 1546326 video after editing: 16s mark 25
4.9 BugZilla report 1546326 video after editing: 48s mark 26
4.10 BugZilla report 1028819 reproduction steps 27
4.11 BugZilla report 1028819 video after editing 27

5.1 Experiment Design . 31
5.2 Video Creation Experimental Measures . 33

v

ACKNOWLEDGMENTS

I would like to extend my deepest gratitude to my advisor, Professor André van der Hoek.
His support and guidance through these past two years have been invaluable in not only
the completion of my degree, but also my personal growth as an academic and a software
developer.

I would also like to thank the members of the Software Design and Collaboration Laboratory
for supporting me through this process and providing support, feedback, and a general sense
of community during my time here at UC Irvine. In particular, I’m most grateful to my
fellow graduate Elahe Paikari, for working so closely with me and allowing me to expand
upon her research for this thesis.

I would finally like to thank Professor David Redmiles and Professor James Jones for provid-
ing invaluable feedback and asking challenging, thought-provoking questions. I am incredibly
grateful to have worked with and gotten to know them and the other Software Engineering
professors during my time here at UC Irvine.

vi

ABSTRACT OF THE THESIS

Toward A Novel Tool for Incorporating Video Into Effective Bug Reporting

By

Nadia Etemadi

Master of Science in Software Engineering

University of California, Irvine, 2023

Professor André van der Hoek, Chair

Management of bug reports is a necessary evil in the software development process. Re-

port management involves handling user-submitted bug reports, which is known to be a

time-consuming task because the developers need to sift through many reports, with many

containing insufficient information. This lack of information is partially attributed to a gap

in knowledge: users without relevant technical knowledge often do not know how to appro-

priately report a bug. Attaching a video recording to such reports has shown promise in

reducing bug resolution time in bug reporting for mobile applications, and might have the

potential for similar results for other types of systems. However, editing or even creating

videos specifically for bug reporting is not a simple task. In this thesis, I introduce VideoLab,

a novel prototype tool to simplify the creation of videos for bug reports. VideoLab is based

primarily around a pared-down video editing interface with a set of dedicated annotations

that aim to make communicating defective behavior to developers easier for end-users.

vii

Chapter 1

Introduction

Debugging code is an inevitable activity in the process of software development. So in-

evitable, in fact, that the average industry developer spends nearly half of their programming

time debugging their code [7]. Clearly, a decrease in time spent debugging would open up

time that developers can spend on other activities to further their products and projects.

Developer productivity and efficiency is not only in the best interest of the developers them-

selves, but also of the company they work for, since optimizing developer productivity can

significantly reduce cost at a high level [7]. Nearly half of every dollar spent on software

as an industry goes to debugging, making debugging an extremely expensive and inefficient

process with regard to creating and shipping software [2]. This reinforces the notion that

debugging is integral to the software development workflow, for better or for worse.

A number of factors have the potential to affect developer productivity surrounding the

debugging process. Poor quality of the existing code and lack of innovative infrastructure

tools are negatively linked to developer productivity [8]. With developers making extensive

use of debugging tools to assess the behavior of their code [4], this could suggest that any

further advancements to debugging tools could greatly benefit developer productivity by

1

allowing them locate issues more quickly. By these metrics, a productive developer is one

who writes high-quality code without needing to spend time combing it for bugs, as well as

one who has access to quality debugging tools to achieve the goal of well-crafted code.

However, some developers have to deal with more than just bugs they encounter themselves.

A portion of bugs handled by developers includes bugs submitted by end-users of the product

developers create—especially if the software functions in a largely user-facing capacity. In

the case of open-source projects, a non-trivial portion of user-submitted bug reports end with

a developer explaining how to achieve the desired behavior with existing features, effectively

acting as technical support rather than debugging [13]. Filtering through bug reports raises

the question of how users can create informative, useful bug reports to ease the burden on

developers. The disparity in quality of bug reports that lack important information is due

to mismatched expectations in what developers require and what users typically provide.

When reporting a bug, users may provide what they believe to be important information,

but often that information is not what developers need to diagnose and fix the bug [5]. This

is especially true when users lack software development experience or knowledge of the bug

reporting process—someone who has never been in an environment like that may not know

about steps to reproduce, for example.

Video recording as a tool to communicate information about technology is well-documented

[3, 9, 10, 22]. Researchers in the field of mobile applications have observed mobile devices and

applications with extensive use of video recording, for instance, to conduct usability testing,

either by screen recording an application or recording the physical device [22]. Because

mobile applications have numerous digital and physical components that could be difficult

to describe in a principally written format, a visual account of the application’s behavior

allows users to demonstrate the behavior as it occurs without the limitation of written

descriptions. Despite the clear value in this and other domains [14, 15], the use of video

remains largely unexplored with regard to communicating information in bug reporting.

2

The ability to communicate effectively with video can serve to potentially lessen the need

for end-users to have specialized knowledge or experience concerning bug reporting.

The inclusion of video in a bug report can positively impact a bug report’s resolution time

[5]. However, not all videos are created equally. In an effort to enhance the bug reporting

process, I have designed VideoLab, a novel prototype for capturing and editing recordings

of applications experiencing defective behavior. VideoLab is a web application designed

to provide a lightweight, easily understood method of editing videos that are specifically

intended to be attached to bug reports, making it more accessible to end-users. The app

particularly allows a user to edit video recordings by adding text and shape annotations that

are particularly helpful to highlight defective behavior and export them.

VideoLab simplifies the video creation process while still ensuring key elements are present

in the video. VideoLab’s pared down video editing interface provides a dedicated set of

annotations allowing a user reporting a bug to describe exactly what is happening, and

where in the video it is happening. In this manner, an end-user creating a video can describe

reproduction steps in a visual format alongside a written report. A simplified but specialized

set of annotations can convey information about the behavior in the video efficiently [3], more

so than with text. These features aim to move the bug resolution process along in a more

efficient manner by simplifying the information a reporter needs to provide, together with

allowing the reporter to provide it in a way that is easy to understand regardless of reporting

experience.

This thesis contributes a high-level description of VideoLab as a novel prototype, as well

as a detailed plan of evaluation for VideoLab’s capabilities. It also describes how VideoLab

aims to improve upon the bug resolution process by allowing for an easier, more streamlined

video attachment creation process.

The remainder of this thesis is organized as follows. Chapter 2 provides relevant information

3

about reducing bug resolution time, context about bug reports with video included, acces-

sibility of bug reporting to end-users of varying experience, and a summary of current bug

reporting tools that attempt to remedy the issues described above. Chapter 3 details the

primary objective of VideoLab and the design choices made in developing the tool, explain-

ing the choices at a high level and summarizing the user interfaces. Chapter 4 presents an

informal illustration of VideoLab in use with three different sample bug reports. Chapter 5

lays out a plan for evaluating the tool, including assessment questions and stages of evalu-

ation. Chapter 6 details future directions for development of the tool. Chapter 7 wraps up

with a conclusion.

4

Chapter 2

Background

This chapter presents relevant background material on the bug reporting process, existing

bug reporting tools, ease of access to bug reporting for end-users, research in reduction of

bug resolution time, and video attachments on bug reports.

2.1 The Bug Reporting Process

When a user encounters a defect in an application they are using, they can choose to send

a bug report to the developers of the project. A typical bug report provides a variety of

fields for the reporter to fill out with relevant information to communicate to the developer

what happened. These fields include a title, summary of behavior, expected versus actual

behavior, and information about the user’s device. An example bug report from Mozilla’s

BugZilla bug tracking system1 is shown in Figure 2.1. In it, a user reports a bug where

Firefox freezes after using a screen reader in a Firefox window, using the same screen reader

in a Microsoft Edge window, and returning to Firefox.

1https://bugzilla.mozilla.org/home

5

Figure 2.1: BugZilla report 1798314: Firefox freezes when used with NVDA screen reader

Upon receipt of a bug report, developers will triage the bug, which typically first involves

investigating if it is a duplicate and, if so, marking it as such. If it is not a duplicate, the

developer will interpret the report more closely and still may reject it for a variety of reasons,

such as incorrect product. An inability to reproduce the behavior described in the bug report

and incomplete information are two common reasons why reports may be rejected [25]. If

a bug report passes the triage process, it is assigned to a developer to look into it further,

normally by investigating aspects such as the severity of the bug, categorizing the bug,

and setting up their environment to begin resolving the defective behavior [25]. Sometimes a

somewhat different process is followed, with the triager assessing the severity and categorizing

the bug before a developer is assigned. Regardless, the nature of the bug reported has to be

understood.

6

2.2 Existing Bug Reporting Tools

Currently there are a number of general bug reporting tools that allow developers and end-

users to communicate, with bug trackers such as GitHub Issues2 and JIRA3 being quite

popular. Sometimes bug reporting interfaces are built directly into web apps, such as within

the browsers Google Chrome4 and Mozilla Firefox5. Still other applications have bug re-

porting capabilities built into them, such as note-taking app Notability6, which allows users

to report an issue by filling out a form from within the software. Most of these directly are

functional, but lack useful guidance on bug reporting and feedback for users on the reports

they create [24].

There have been several attempts to mitigate this issue, with varying degrees of success. One

such attempt is CueZilla, a tool that measures the quality of bug reports and recommends

improvements based on its contents, with an example suggestion being to provide additional

information when the report is thin in its content [5]. Another tool is Fusion, a web-based

interface for bug reporting that allows users a more interactive reporting experience. Rather

than typing, they can select, drag, and drop elements that represent the components of their

bug report [16]. A more recent example is EBug, which is a mobile bug reporting system

similar to Fusion. It goes one step further and suggests appropriate reproduction steps by

predicting what steps follow as the user is providing them [10].

Though these tools provide meaningful steps toward a bug reporting experience that reduces

the knowledge needed by a reporter to create an informative report, many of them have

various shortcomings that prevent them from addressing the issues with bug reporting in

their entirety. For instance, Fusion’s design was not conducive to end-user use, which

2https://docs.github.com/en/issues
3https://www.atlassian.com/software/jira
4https://www.google.com/chrome/index.html
5https://www.mozilla.org/en-US/firefox/new/
6https://notability.com/

7

made it more difficult for them to report bugs. Inexperienced users using Fusion found

difficulty with a complex interface and lack of guidance on creating detailed bug reports,

tending mostly to create superficial reports instead [16]. Previous systems also had a lack

of interactivity with regard to the feedback given. Burt, an interactive bug reporting

chatbot developed by Song et. al, represents a more substantial approach toward mitigating

issues with current bug reporting tools [24]. Burt does take a significant step toward an

easier, more novel bug reporting experience by providing a chatbot-style interface for users to

interact with. It also predicts potential next reproduction steps as the user enters their own,

effectively acting as a guide walking the end-user through the reporting process. However,

despite its strengths, Burt’s current handling of different bug scenarios is limited primarily

to GUI-based issues, and it was not evaluated in terms of how developers handled the bug

reports it produced [24].

2.3 Ease of Access to Bug Reporting

Management of bug reports is integral to maintaining a smooth workflow in a development

team and is relatively costly to the software development industry. Most bugs are manually

reported, as only certain types can be reported automatically, such as an application crashing

[24]. As previously mentioned, a significant discrepancy in knowledge exists between users

and developers, more specifically with regard to what users know and what developers need

[5]. While many systems exist to facilitate manual bug reporting and ease the process for

users in an attempt to bridge this gap in knowledge, these systems primarily offer limited

guidance on the necessary information for the report and how to properly include it [24].

Manual bug reporting remains relatively inaccessible to end-users despite many attempts to

mitigate it, such as Mozilla’s bug report writing guidelines7. This not only puts a sizeable

burden on developers to find and fix these bugs themselves, but it also may result in user

7https://bugzilla.mozilla.org/page.cgi?id=bug-writing.html

8

dissatisfaction with the product in question—if an application is buggy or crashes constantly,

a user expends less effort by simply not using it instead of submitting a bug report that may

not be addressed anyway. These observations suggest that bug reporting presents various

usability barriers to users, and adjustments to the current bug reporting methodologies are

necessary in order to bridge these barriers.

2.4 Resolution Time Reduction

When developers are tasked with resolving a bug, the developers often experience delays in

beginning the resolution process after a bug assignment. This delay stems from a number of

factors, primarily related to the need to more fully understand the bug. This includes activ-

ities such as performing an initial investigation, verifying whether the bug is an actual bug,

interpreting the description of the bug, and exchanging comments with the team. Severity

of the bug can significantly cut down on the delay before a developer begins fixing the bug

[27]. For instance, a critical bug requires an imminent fix so as to reduce major damage or

impact on the codebase.

Pertaining to the bug report itself, various elements of the report carry significance and can

impact resolution time based on whether or not they are included, as well as the quality of

each element. Generally, developers will first try to reproduce the behavior described in the

report. More complex bugs can also benefit from inclusion of a stack trace or crash dump to

aid in reproduction. Reproduction steps have been found to be the most important to include

when it comes to thinking about what to include in a bug report [23]. Another desirable

feature of bug reports that can impact resolution time is a description of expected versus

actual behavior of a defective application. A description of what the end-user expected to

see versus what they actually saw can aid the developer in identifying the source of the bug,

as well as assessing whether something is a bug or an intentional feature in the first place.

9

Additional components of a bug report outside of the developer’s control can also impact

resolution time, such as commenting activity from the reporter or other developers, the prod-

uct itself, the component experiencing issues, and the product’s version [19]. The language

of the codebase itself can also impact resolution time–for instance, Java projects generally

exhibit faster resolution time than Ruby projects [28]. Ostensibly, there is only so much of

the debugging process that is within the developer’s control, which in turn necessitates some

knowledge and guidance on the part of the user reporting the bug to do so in a manner that

helps the developer as much as possible.

2.5 Bug Reports with Video

Modern user-facing applications experience a majority of their bugs in the graphical user

interface (GUI), so much so that many Android and iOS mobile apps have built-in screen

recording capability to facilitate capturing the behavior causing an issue [9]. Despite the

steadily growing use of images and video to provide context to bug reports, such as on the

discussion platform StackOverflow [18], adding video to bug reports does pose a number

of challenges for the developers tasked with handling the reports. The main issue with

video attachments is the added difficulty of determining if two videos represent duplicate

bugs. At present, written bug reports can easily be marked as duplicates [6, 20], but video

reports collected at scale can present a sizeable challenge for developers. Tools such as

Tango [9] have been developed to mitigate the issue of identifying duplicate video reports,

allowing video attachments to reports to slowly but surely make their way into the software

development process.

Videos attached to bug reports also provide benefits to non-technical users who may struggle

to document the bug along with reproduction steps. Even the most seasoned developers may

potentially struggle with describing a bug, so describing defective behavior in an applica-

10

tion could present a much larger challenge to someone with no technical knowledge. Video

recording provides more detail and context than a written description may be able to, and

can potentially engage users in wanting to provide more feedback [11]. Attaching video to

bug reports provides reporters with greater investment in the process while also providing

developers with the bug’s information in a more concise, digestible format.

11

Chapter 3

VideoLab

This chapter introduces VideoLab, a novel prototype of a video editing tool that serves to

enable end-users to create video attachments to supplement their bug reports. This chapter

presents the tool’s objective, the high-level design decisions and how they align with the

objective, and a description of the main interfaces present in the application.

3.1 Objective

VideoLab is a novel prototype that aims to simplify the process of creating video attachments

for bug reports, regardless of amount of experience. The principal objective of VideoLab

is to ease communication of defective behavior to developers through the use of

dedicated video annotations.

VideoLab’s primary goal is to give end-users the ability to communicate more easily without

needing the precise technical knowledge to describe the behavior they see in a defective

application. Studies in the field of mobile application usability testing suggest that using

video to communicate information is more efficient than doing so verbally or through text [3].

12

VideoLab aims to facilitate end-users creating videos that clearly display the issues they are

experiencing by providing domain-specific annotations. In addition to reducing the amount

of decision-making necessary on how to annotate the video, the dedicated set of annotations

provided in the editing interface allow users to create focus around different areas in the

video and add clarifying text if desired when the visuals presented in the video are unclear.

3.2 High-Level Design

The primary design decisions made in the creation of VideoLab center around a simple,

visually non-complex interface and a set of specifically curated video editing tools.

3.2.1 Video Uploading

In order to begin the editing process, users need to upload a previously recorded video clip

of the defective behavior they saw in an application. When the page first loads, a modal

appears prompting the user to upload a video, as shown in Figure 3.1. The upload process is

fairly straightforward—the user clicks the “Browse” button in the modal, selects their video

clip from the file explorer, and clicks “Upload”. Upon uploading, the video appears in a

preview pane in the center of the page, above a set of three buttons designating different

editing capabilities. Some particular design choices I made in this area were ensuring the

prominence of the video preview pane in the center of the page and the editing toolbar

buttons at the bottom.

13

Figure 3.1: VideoLab Video Upload

3.2.2 Domain-Specific Annotations

The annotations present in the VideoLab editing toolbar are curated with the intention

of allowing end-users to clearly display in their video clip the defective behavior they are

witnessing. The shapes present in the annotation palette are brightly colored with thick

lines, ensuring visibility in a manner similar to the large type and spacing of the text on

the interface and the bright colors of the buttons. In particular, each type of annotation

provided serves a specific purpose. Circles of two different sizes are provided to allow users

to place them on the video clip and indicate focus on either a somewhat large or smaller

area. Arrows pointing upward to the left and upward to the right are provided to signal a

more specific focus on a particular element of the video if the small circle is not sufficient.

A translucent yellow box is also provided to allow the user to highlight and draw visual

attention to a specific area of the video. If the user wishes to communicate information in

a written format on the video, they also have the option to generate and include short lines

of text directly on the video clip.

14

3.2.3 Simplified Video Editing

Rather than provide the user with a whole suite of editing capabilities, I have identified and

provided the most crucial ones: trimming and annotation overlaying. Due to the overall

complexity of video as a medium [12], video editing can be an incredibly complex process.

In keeping with the objective of allowing the user to clearly communicate information about

defective behavior with annotations, I chose only two video editing functions because I felt

that other functions normally included in video editing programs, such as visual effects,

would be unnecessary.

Allowing the user to trim the video is important because this function allows the user to

remove parts of the video that are irrelevant to the defective behavior being showcased, which

contributes to the goal of facilitating clear communication between end-user and developer.

The trimming functionality requires very little effort on the part of the user—the interface

asks for a start and end point, performs the action with a button click, and renders the

resulting clip for the user.

Overlaying text and image annotations on top of the video clip is another function I wanted

to include, as I felt it would allow the end-user to provide additional visual information to the

developer through the video clip. As previously stated, visual information has the potential

to convey information in a more easily understood manner than written information, and

providing dedicated annotations allows users to take further advantage of communicating

visually rather than textually. The editing palette has a collection of shapes that users can

drag and drop on top of the clip, and a dialogue box appears prompting the user to choose

the duration that the shape will appear on the clip, as well as the ability to specify where in

the clip the shape should begin to appear. Users also have the ability to generate customized

text to overlay on the video. The simplified, dedicated collection of shapes and the ability

to add text to the video clip contributes to VideoLab’s goal of facilitating communication

15

between end-users and developers through the use of annotations.

3.3 User Interface

VideoLab’s main interface is the video editing screen. VideoLab is a web application intended

for desktop use. Figure 3.2 shows the video editing interface after a video has been uploaded.

3.3.1 The Video Editor

Once the user uploads a video recording they have created, they are taken to the main video

editing page, as shown in Figure 3.1. The user sees the clip preview in the center of the page,

along with three large buttons for selecting specific editing features. Figures 3.3, 3.4, and 3.5

show each of the editing toolbar buttons in more detail respectively. This toolbar provides

the end-user with the ability to trim the video, generate customized text to be rendered on

the video, and drag and drop shapes to be rendered on top of the video.

3.3.2 Text and Shape Annotations

When the user places the chosen annotation on the video editing area, a dialogue box—

shown in Figure 3.6—appears prompting the user to enter a starting time stamp for where

the annotation should appear, as well as a set of buttons to choose how long the annotation

should appear on the video. In accordance with VideoLab’s goal of focusing on the user’s

ability to communicate information through the video clip, the buttons show users preset

durations—one second, five seconds, ten seconds, and the entire video. The dialogue box

is structured in this way to minimize effort on the part of the user and maintain focus on

conveying information through the video clip.

16

Figure 3.2: VideoLab Editing Interface

Figure 3.3: Shape Annotations
Figure 3.4: Text Annotations

17

Figure 3.5: Trimming

Choosing a duration in the dialogue box prompts VideoLab to render the video with the

chosen annotation on top. After rendering the clip with the desired annotation, the video

saves to the user’s local directory, and it appears on the video preview pane. Once all

annotations have been made and the video is rendered, the user can attach it to the bug

report they are submitting within their application.

3.3.3 A Visually Non-Complex Interface

The visual complexity of an interface has a great impact on the user’s desire to interact with

it. Interfaces that have moderate visual complexity are seen by users as more pleasant to

use [26]. As a result, maintaining a balance in visual complexity was the main driving factor

in designing the user interface of VideoLab.

VideoLab’s main interfaces have white backgrounds with a gray bar at the top of the page to

indicate the interface the user is seeing. Using neutral, muted colors for background elements

eliminates visual distraction, as opposed to bright colors that, in addition to increasing

18

Figure 3.6: Dialogue Box with Annotation Duration

distraction and complexity, may make the interface difficult to see and read. The interfaces

also use Helvetica Neue, which is the default font of Bootstrap1, the frontend framework

used to build VideoLab. Large type and adequate spacing is used where possible to ensure

readability of the text, contributing to decreased visual complexity of the interface [21].

The buttons used throughout the interface display large, spaced out text for readability,

and provide contrast to the background with bright colors. The toolbar buttons themselves

are large with bold text, and the buttons within each editing menu are brightly colored to

provide contrast against the neutrally-colored background elements.

1http://getbootstrap.com

19

Chapter 4

VideoLab in Practice

In this chapter, I present three different bug reports from Mozilla’s BugZilla bug tracker,

all originally submitted with video. With each bug report, I provide an example of how the

videos attached can be edited to enhance the information provided in the bug report.

4.1 BugZilla Report 1560660

Bug report 1560660, titled “prefers-color-scheme media query doesn’t reflect user’s prefer-

ence, after the theme has changed away from dark”, describes an issue with the Mozilla

Firefox browser running on the Ubuntu operating system. When the user swaps between

light and dark OS themes, the CSS attribute prefers-color-scheme is light even when

dark is selected. The reporter provided steps to reproduce, which are shown in Figure 4.1

as STR. A screenshot of their video attachment along with a short description is shown in

Figure 4.2. I chose this bug as an example for two reasons: the defective behavior is present

in Firefox’s UI, which allows for easy visual comprehension of what is occurring, and the

report was submitted by a Mozilla engineer. Though the report is well-written and infor-

20

Figure 4.1: BugZilla report 1560660 reproduction steps

mative, even small annotations made to the video can enhance the potential for informative

communication.

Specifically, the video attachment could benefit from some additional visual cues to illustrate

the behavior. I had to watch it a few times to discern the defective behavior. Figures

4.3 and 4.4 show side-by-side comparisons of the original video and the video after being

edited with VideoLab, both at the ten-second mark. In Figure 4.4, I placed a highlight

over the light attribute in the browser, and a small circle around the Yaru-dark theme

selection. Though the reporter draws attention to these sections by circling the mouse pointer

around each area, using these shapes to draw specific attention to the difference between

the prefers-color-scheme attribute and the theme selection is preferred, especially since

multiple areas of the video can be highlighted at the same time.

4.2 BugZilla Report 1546326

Bug report 1546326, titled “[Dedicated Profiles] The about:profiles page does not display

correct information if a profile folder is deleted”, details a bug with the Firefox profile

feature—if a profile is deleted, the about:profiles page in the browser displays incorrect

21

Figure 4.2: BugZilla report 1560660 video attachment

Figure 4.3: BugZilla report 1560660 video before editing

22

Figure 4.4: BugZilla report 1560660 video after editing

information. The reporter provides steps to reproduce the behavior along with expected

and actual results—these are already shown prior in Figure 4.1. The reporter also goes so

far as to include additional information about affected versions, the platform in use, and

additional notes about the bug. I chose this bug report because it provides adequate written

information, and is not UI-related—I want to show how VideoLab’s editing capability can

be useful for a bug that is not necessarily as visual as the previous example.

Figures 4.6 and 4.7 show the video attached to this report at 16 seconds, when a profile

folder is deleted, and at 48 seconds, when the browser is opened to show the incorrect

information. Using VideoLab, I have added captions to each frame, shown in Figures 4.8

and 4.9. Though context is provided in the written bug report, adding text captions to

the video directly enables the developers addressing this bug to pinpoint the key defective

behaviors in the video. In this case, the first annotation summarizes an action in context,

and the second pinpoints the problematic result.

23

Figure 4.5: BugZilla report 1546326 reproduction steps

Figure 4.6: BugZilla report 1546326 video before editing: 16s mark

24

Figure 4.7: BugZilla report 1546326 video before editing: 48s mark

Figure 4.8: BugZilla report 1546326 video after editing: 16s mark

25

Figure 4.9: BugZilla report 1546326 video after editing: 48s mark

4.3 BugZilla Report 1028819

I selected BugZilla report 1028819, titled “[Candy Crush] Index page’s audio issue”, as a

third example. This bug is an issue with Candy Crush, a mobile game that came pre-

installed on devices running Firefox OS—the game plays audio for a second or two after

closing the app when it instead should stop playing on app shutdown. The reporter included

steps to reproduce, as well as expected and actual behavior, all of which are shown in Figure

4.10. I chose this bug to illustrate the extent of VideoLab’s ability—adding annotations on

a video with a primarily auditory focus provides a visual component that can further cue

the developer on where exactly the behavior is occurring.

Because the nature of this bug is primarily auditory rather than visual, in this example I

will show only a frame of the video attachment after it has been edited with VideoLab and

explain the context of the edit. As shown in Figure 4.11, I have added a textual annotation

on top of the video when the Candy Crush game has closed, but the audio from the game

26

Figure 4.10: BugZilla report 1028819 reproduction steps

Figure 4.11: BugZilla report 1028819 video after editing

continues to play for another second. This annotation provides an additional visual marker

for a responding developer on where the defective behavior is occurring.

27

Chapter 5

Evaluation Plan

In this chapter, I propose a plan of evaluation to assess the ability of VideoLab to allow users

to easily edit videos, as well as the ability of developers to ascertain information from video

clips edited with VideoLab. The remainder of the chapter is organized as follows: Section 4.1

proposes questions to guide assessment, and Section 4.2 details the stages of the evaluation

plan by explaining how data should be collected and analyzed.

5.1 Questions for Assessment

I propose several assessment questions for the evaluation of VideoLab. These questions serve

to guide the evaluation of the tool and investigate whether the prototype could provide users

with a smoother video editing experience in pursuit of supplementing the bug reporting and

resolution process.

1. How effective is VideoLab in allowing users to edit videos?

This question is intended to guide a design critique of VideoLab by presenting users

28

with a task and observing how they achieve the goal—in this case, to edit and export

a pre-recorded video. I will evaluate the effectiveness of the tool on the results of the

design critique, as well as the presence of any issues that may arise with the tool.

Another metric on which to evaluate the effectiveness of VideoLab is to determine if

videos produced by the tool can convey information more easily alongside a bug report

than a report with no video attachment.

2. Who finds VideoLab most effective for creating annotated videos?

As an extension of the previous question, I want to determine what demographic

would find VideoLab most useful. Though one main objective is to maintain usability

of the tool regardless of reporting experience level, the possibility of one group of

reporters preferring the tool over another group may arise. Perhaps more experienced

bug reporters would prefer not to use the tool while less experienced reporters find it

useful, or vice versa.

3. Is there a difference in the way inexperienced end-users versus experienced

end-users use VideoLab?

This question serves to evaluate if VideoLab meets the previously stated objective of

facilitating communication of defective behavior among end-users and developers, as

users should not find difficulty in using the tool regardless of reporting experience.

4. Is VideoLab effective in helping developers understand bug reports better,

for all types of bug reports?

The design choices in developing VideoLab were primarily made with user-facing issues

in mind—these tend to manifest in graphical user interfaces or other similar interface-

type environments that can easily be shown and annotated in a video. However, I am

interested in evaluating VideoLab for other, less visual types of bugs to see if VideoLab

provides comparable ease of communication.

29

Together, these questions can act as a baseline for a thorough evaluation of VideoLab and

work toward determining if the tool meets the goals I have set.

5.2 Evaluation Stages

To answer the assessment questions proposed above, I propose a two-stage evaluation process

to examine the effectiveness of VideoLab. The stages of the evaluation consist of an initial

design critique phase to evaluate the usability of VideoLab as an application, followed by a

two-step second phase involving video creation by participants and consumption and eval-

uation by industry professionals of the resulting videos. Figure 5.1 shows the experimental

design in its entirety, with the parameters, tasks performed, and outcome of each phase.

Once this experiment is set in motion, it is likely to be updated and changed iteratively

based on the experiences of the participants and how early results do and do not help in

answering the questions proposed.

5.2.1 Phase I: Design Critique and Usability Evaluation

The first stage of VideoLab’s evaluation is gathering initial feedback and observation data

from a collection of participants of various levels of technical background and bug-reporting

experience. The goal is to evaluate the usability of the tool and examine whether the tool

meets the objective as stated in Chapter 3, particularly regarding ease of use of the video

annotations. Using the design critique method [1], I will evaluate different groups of end-

users to ensure a comprehensive feedback process, ensuring the tool’s ease of use. Examples

of different groups of end users include industry developers with several years of experience,

users who contribute regularly to open-source projects, and users who have no bug reporting

experience. This first step will allow an initial impression of the features of the tool, and what

30

Figure 5.1: Experiment Design

31

needs to be changed to better assist end-users in the process of creating video attachments.

In order to evaluate VideoLab’s capability in its entirety, the participants will be asked to

complete different types of tasks, such as placing one annotation on top of a video clip,

placing several annotations on a video clip, deleting and re-uploading a video clip to be

edited again, trimming a clip, and trimming a clip after placing an annotation on top.

As for the videos that would be included in this evaluation, I will compile a set of videos

from bug reports from Mozilla’s bug tracker, BugZilla. This set of videos will include videos

of different lengths. Though finding video attachments for non-GUI issues might be more

difficult due to the less visual nature of the bug, I will attempt to include as many different

types of bugs as possible in this evaluation.

The results of the design critique and usability evaluation from this phase will allow me to

answer the question of how effective VideoLab is in allowing end-users to edit videos.

5.2.2 Phase II, Video Creation

In the first portion of Phase II, I will gather a new, comprehensive set of bug reports for

participants to annotate. As in Phase I, I plan to have different types of participants anno-

tating videos, to represent varying types of end users. However, with this phase, I will not

give participants any guidance on how to annotate the video—they will be asked to annotate

the video based on what is written in the accompanying report.

While the participants annotate the videos, I will be keeping track of various experimental

measures, shown in Figure 5.2. I will record how long participants take to annotate their

videos, how many mouseclicks or other actions they took to achieve their goal, and whether

or not they had to redo annotations. I will also ask participants to record their emotional

state at regular intervals in order to get a sense of whether VideoLab provides an easy video

32

Figure 5.2: Video Creation Experimental Measures

editing experience.

While the focus of Phase II is mainly on the comparative experiment described in the next

section, there is value in examining the creation process in detail. In particular, doing so can

help answer the questions of who benefits most from using VideoLab, how effective VideoLab

is in allowing users to edit videos, and whether there is a difference in use of VideoLab based

on bug reporting experience.

5.2.3 Phase II, Video Consumption

The next stage of Phase II is to collect feedback from industry developers on the ability of a

video edited by VideoLab to communicate information necessary to a bug report. I intend

to gather the edited videos from the first part described in the previous section, along with

the original bug reports that accompanied the videos, conduct a comparative experiment by

33

asking industry software developers to evaluate the effectiveness of the provided reports and

complete a survey gauging their understanding.

Each developer will evaluate three versions of the bug reports: the original as it is written

with the video attached, the written report only, and the original written report with the

annotated video from the video creation section. In order to reduce the threat to validity of

a learning effect, I will employ counterbalancing by showing the developers a different report

for each category, as well as showing each category in a different order. I plan to ask the

developers the following assessment questions for the evaluation of the video attachments:

1. Does the video attachment make the bug report easier to understand?

This question aims to evaluate the effectiveness of VideoLab in easing end-users’ ability

to communicate information, similar to the question proposed for the first stage. The

results of this question will be particularly useful in comparing the groups with the

original video attachments versus the VideoLab-edited attachments. For the group

with no video attachment access, this question would be rephrased to ask if the report

itself is easy to understand.

2. Is the report still missing useful information?

This question serves to further address the effectiveness of VideoLab in encouraging

easier communication for end-users, particularly to evaluate if the video attachment

communicates sufficient information that may be left out of the bug report. This

question would be asked as-is to the group without access to video attachments.

3. Does the video attachment prompt any questions about the report?

This question intends to address the issue of video attachments potentially increasing

resolution time, particularly through increased exchange between reporter and devel-

oper. This increased exchange may be prompted by additional questions that may

arise as a result of including the video in the bug report. For the group without video

34

attachments, they would be asked if the written report is missing any information.

In addition to gathering perceptions of the reports, I plan to conduct an experiment aimed

to measure metrics related to the developers’ understanding of the report, such as level of

understanding of the report and ability to describe the report in as much detail as possible,

all with the intent to set up resolution of the issue. Each developer will be given the same

set of questions, with the appropriate modifications made to questions for the reports with

no video access. The tasks I will give are as follows:

1. Rate your initial understanding of the defective behavior occurring in this report, 1

being “I don’t understand this at all” and 10 being “I can come up with a solution for

this report right now”:

2. Follow the reproduction steps as they are written, before watching the video. Were

you successful in reproducing the bug? Did you have trouble, or feel anything was

missing?

3. After watching the video, try reproducing the behavior again. Were you successful this

time? If so, what additional information did the video provide to you?

4. Rate your understanding of the defective behavior after watching the video and reading

the report in more detail, with 1 being “I don’t understand this at all” and 10 being

“I can come up with a solution for this report right now”:

These questions and associated tasks given to each developer specifically aim to gauge their

understanding of how to approach the bug both before and after watching the edited video

attachment. I will compare the responses from the experimental debrief, as well as feedback

from the first phase, and aim to draw a conclusion on if VideoLab is effective for all types of

bugs. The first evaluation stage observes this objective from the perspective of the end-users,

while the second stage does so from the perspective of the developers.

35

Chapter 6

Useful Future Extensions

In Chapter 3, I outlined my design decisions and implementation details for VideoLab, which

currently largely remains a prototype and proof of concept rather than a fully fleshed-out

application due to development time constraints. In this chapter, I describe useful extensions

for VideoLab that I had envisioned to add to its functionality so to bring the application

closer to achieving the objective outlined in Chapter 3.

6.1 In-App Screen Recording

To maintain my objective of making bug reporting and video editing as straightforward yet

informative of a process as possible, I wanted end-users to be able to conduct the entire video

editing process within the app, without having to install or open any other applications to

supplement the process. A useful extension of VideoLab’s capability would be to include

screen recording of defective behavior as a first step before the user annotates the video.

While it is useful to be able to upload any video recording, by incorporating in-app video

capture, the app can guide the user to what they should be recording.

36

The home screen of VideoLab prompts the user to select an application to record, and

displays a red button that says “Start Recording.” This functionality was not implemented

in full, but the idea behind these elements is that the application would be able to list the

applications currently running on the user’s machine, similar to Windows Task Manager,

and the user could select the application displaying defective behavior. VideoLab would

then take the user to a new page to begin screen recording right inside VideoLab. I would

augment the recording interface with instructions, such as:

• Don’t record the entire interaction.

• Show steps leading up to the application failure.

• Capture the stack trace in your video recording.

Providing guidance to the user in this way as they record can in and of itself greatly improve

the informational richness of the video being produced.

6.2 Voiceovers

Throughout this thesis, I have explained the importance of visual media as a method of

communication and its strengths over solely using textual or verbal descriptions. However, a

verbal description superimposed onto a visual medium may potentially heighten comprehen-

sion by the viewer [17], suggesting that the inclusion of a voiceover over a video attachment

for a bug report could provide additional context and relevant information to a receiving

developer over either a video or a verbal account on its own. Thus, a potentially beneficial

future extension of VideoLab’s capabilities would be to allow the end-user to record them-

selves describing what is happening in the video. By providing a verbal description of the

37

video’s events in accompaniment with the visual information, the end-user can provide addi-

tional relevant detail and context to the defective behavior occurring in the video, especially

if something in the video is not as readily discernible.

This functionality could be implemented by adding it into the editing palette. There are

several ways users could include voiceovers—the tool could prompt the user to play the video

and speak over it, or they could record their own voiceover snippets and drop them into the

video at certain points, similar to users dragging and dropping annotations on top of the

editing area.

6.3 Video Blurring

Because many video attachments to bug reports consist of screen recordings, either of the

reporter’s phone screen or desktop, there is the potential for sensitive or personally identi-

fying information to appear in the recording. A useful feature to add to VideoLab’s video

editing tools would be the ability to blur out sensitive information. This could potentially

be achieved by adding a solid rectangle to the annotations palette to allow users to cover

information by rendering the rectangle on top, or by adding in a separate editing function

that enables users to blur sections of the video that they do not want visible to the developer

viewing their report.

6.4 Steps Recorder Integration

An interesting feature of the Windows operating system is the Steps Recorder tool 1, which

1https://support.microsoft.com/en-us/windows/record-steps-to-reproduce-a-problem-46582a9b-620f-
2e36-00c9-04e25d784e47

38

records the steps a user takes to reproduce a problem they are experiencing. These steps

include actions like mouseclicks, typing text, and various other actions that may be difficult

to capture in a video recording. VideoLab could integrate with a tool like Steps Recorder

to automatically create written annotations for mouse and keyboard actions, as well as

prompting the user to attach their Steps Recorder log and generating written reproduction

steps to be submitted alongside the video.

6.5 Selecting Annotation Duration

Presently, the functionality that allows users to place an annotation and determine how long

it appears on the video prioritizes a simple design with little effort on the part of the user

with regard to choosing and entering values. There are a number of ways this design could

be altered and extended to further prioritize this goal.

One way is to eliminate the need for the user to enter a starting position value in the dialogue

box that appears after placing the annotation. My initial plan was to allow the user to move

within the clip to whatever point they want the annotation to begin appearing, and then

select a duration. However, I found that attempting to implement that functionality was

technically more challenging than I had anticipated, so I opted to allow the user to type it

in instead.

Another way to alter this design in pursuit of maintaining a focus on simplicity is to remove

the modal-style box and include the items in the box in some sort of tooltip or popup menu

that appears alongside the annotation after it is placed. Similar to the starting timestamp

design, using a tooltip was my original idea for this area, but proved to be technically difficult

to implement. Additionally, using a tooltip did not supply me with enough space to fit the

buttons comfortably, so I opted for the dialogue box design instead in an effort to maintain

39

readability over attempting to crowd the buttons into a small space.

Both of these implementations offer a more streamlined approach over the current imple-

mentation. However, these present some limitations. If the user misses their target starting

point by a second or two, they have to delete the shape and try again, which necessitates

greater effort.

6.6 Video Editing Timeline

Another option for extending the functionality of VideoLab in a more robust way, as well

as improving upon selection of annotation duration, would be to implement a timeline-style

interface. The timeline interface is standard in most modern video editing programs. Imple-

menting it within VideoLab would condense the interface and make it easier to navigate—

annotations could be dragged and dropped onto the timeline, and the duration of the an-

notation’s appearance could be modified within the timeline rather than with the use of

buttons. Additionally, the video could be dragged onto the timeline after uploading, and

trimming the video would be directly implemented into the timeline similar to its function

in traditional video editing software—a user could drag the ends of the video clip on the

timeline to make it longer or shorter. This feature could provide a sizeable payoff in terms

of a more concise interface and better usability, as most users are either familiar with the

timeline interface already or could learn how to use it.

6.7 Bug Report Exporting and Submission

In order to provide a more complete bug reporting experience for users of VideoLab, another

beneficial extension of its capabilities is to add the ability for end-users to provide additional

40

textual information not provided by the video, such as a bug summary or title, reproduction

steps, a description of expected behavior of the application–since the video already displays

the actual behavior–and perhaps some information that the application can automatically

capture. Some examples of automatically captured information are the application’s version,

the operating system of the machine, or a crash dump generated by the defective application.

The user would then be able to export both the video and the text of the bug report

together and submit to their desired platform. This functionality could be implemented

with the addition of another screen after the editing stage, allowing the user to enter all of

the necessary information for a bug report into text fields and export it as a text, JSON, or

CSV file alongside the video clip.

A more ambitious direction for this extension would be to allow an end-user to submit

directly to the bug tracking system of choice from the tool, rather than collecting all of the

information from the user but then to require them to submit it themselves. Though this

functionality would be more intensive to implement, it would contribute to the goal of ease

of communicating defective behavior.

Regardless of how this feature would be implemented, this capability would promote the ease

of use of the tool and bug reporting in general, since the entire process can be completed

inside a single, flexible tool, eliminating the need for an end-user to use several different

applications or navigate to several different websites and do more work to submit a bug

report.

41

Chapter 7

Conclusion

Managing bug reports is a costly and unfortunately necessary component of the software

development process. In handling these reports, developers must manage user-submitted

bug reports, which can prove to be time-consuming. The goal of VideoLab is to enable

users to effectively communicate defective application behavior to developers through anno-

tated video, meant to be used as supplementary information to bug reports. In designing

and implementing a prototype of VideoLab, this thesis makes the following contributions:

a pared-down video editor specifically intended to supplement bug reports, a set of dedi-

cated annotations that focus on communicating information in videos for bug reports, and

a detailed future assessment plan. In addition, VideoLab aims to bridge the communication

gap between end-users and developers by promoting use of visual media to communicate

defective behavior as a complement to typical textual or verbal descriptions. I additionally

provided guidance for more features that VideoLab could greatly benefit from in order to

achieve the stated objective.

42

Bibliography

[1] L. Alabood, Z. Aminolroaya, D. Yim, O. Addam, and F. Maurer. A systematic literature
review of the design critique method. Information and Software Technology, 153:107081,
2023.

[2] P. Ardimento and C. Mele. Using Bert to predict bug-fixing time. In 2020 IEEE
Conference on Evolving and Adaptive Intelligent Systems (EAIS), pages 1–7, 2020.

[3] M. Bakopoulos, S. Tsekeridou, E. Giannaka, Z.-H. Tan, and R. Prasad. Mobile video
annotation for enhanced rich media communication during emergency handling. In
Proceedings of the 4th International Symposium on Applied Sciences in Biomedical and
Communication Technologies, ISABEL ’11, New York, NY, USA, 2011. Association for
Computing Machinery.

[4] C. Bellman, A. Seet, and O. Baysal. Studying developer build issues and debugger
usage via timeline analysis in visual studio ide. In Proceedings of the 15th International
Conference on Mining Software Repositories, pages 106–109, 2018.

[5] N. Bettenburg, S. Just, A. Schröter, C. Weiss, R. Premraj, and T. Zimmermann.
What makes a good bug report? In Proceedings of the 16th ACM SIGSOFT Inter-
national Symposium on Foundations of Software Engineering, SIGSOFT ’08/FSE-16,
page 308–318, New York, NY, USA, 2008. Association for Computing Machinery.

[6] N. Bettenburg, R. Premraj, T. Zimmermann, and S. Kim. Duplicate bug reports consid-
ered harmful . . . really? 2008 IEEE International Conference on Software Maintenance,
pages 337–345, 2008.

[7] T. Britton, L. Jeng, G. Carver, P. Cheak, and T. Katzenellenbogen. Reversible debug-
ging software. Judge Bus. School, Univ. Cambridge, Cambridge, UK, Tech. Rep, 229,
2013.

[8] L. Cheng, E. Murphy-Hill, M. Canning, C. Jaspan, C. Green, A. Knight, N. Zhang,
and E. Kammer. What improves developer productivity at google? code quality. In
Proceedings of the 30th ACM Joint European Software Engineering Conference and
Symposium on the Foundations of Software Engineering, pages 1302–1313, 2022.

[9] N. Cooper, C. Bernal-Cárdenas, O. Chaparro, K. Moran, and D. Poshyvanyk. It takes
two to tango: Combining visual and textual information for detecting duplicate video-

43

based bug reports. In 2021 IEEE/ACM 43rd International Conference on Software
Engineering (ICSE), pages 957–969, 2021.

[10] M. Fazzini, K. Moran, C. Bernal-Cardenas, T. Wendland, A. Orso, and D. Poshyvanyk.
Enhancing mobile app bug reporting via real-time understanding of reproduction steps.
IEEE Transactions on Software Engineering, page 1, 2022. Publisher Copyright: IEEE.

[11] S. Feng and C. Chen. Gifdroid: Automated replay of visual bug reports for android apps.
In Proceedings of the 44th International Conference on Software Engineering, ICSE ’22,
page 1045–1057, New York, NY, USA, 2022. Association for Computing Machinery.

[12] D. R. Goldman. A Framework for Video Annotation, Visualization, and Interaction.
PhD thesis, USA, 2007. AAI3275872.

[13] A. J. Ko and P. K. Chilana. How power users help and hinder open bug reporting. In
Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, CHI
’10, page 1665–1674, New York, NY, USA, 2010. Association for Computing Machinery.

[14] P. Krieter and A. Breiter. Analyzing mobile application usage: Generating log files
from mobile screen recordings. In Proceedings of the 20th International Conference on
Human-Computer Interaction with Mobile Devices and Services, MobileHCI ’18, New
York, NY, USA, 2018. Association for Computing Machinery.

[15] D. Lin, C.-P. Bezemer, and A. E. Hassan. Identifying gameplay videos that exhibit bugs
in computer games. Empirical Software Engineering, 12 2019.

[16] K. Moran, M. Linares-Vásquez, C. Bernal-Cárdenas, and D. Poshyvanyk. Auto-
completing bug reports for android applications. In Proceedings of the 2015 10th Joint
Meeting on Foundations of Software Engineering, ESEC/FSE 2015, page 673–686, New
York, NY, USA, 2015. Association for Computing Machinery.

[17] N. M. Murray, L. A. Manrai, and A. K. Manrai. How super are video supers? a test of
communication efficacy. Journal of Public Policy & Marketing, 17(1):24–34, 1998.

[18] M. Nayebi. Eye of the mind: Image processing for social coding. In 2020 IEEE/ACM
42nd International Conference on Software Engineering: New Ideas and Emerging Re-
sults (ICSE-NIER), pages 49–52, Los Alamitos, CA, USA, oct 2020. IEEE Computer
Society.

[19] L. D. Panjer. Predicting eclipse bug lifetimes. In Fourth International Workshop on
Mining Software Repositories (MSR’07:ICSE Workshops 2007), pages 29–29, 2007.

[20] M. S. Rakha, C.-P. Bezemer, and A. Hassan. Revisiting the performance of automated
approaches for the retrieval of duplicate reports in issue tracking systems that perform
just-in-time duplicate retrieval. Empirical Software Engineering, 23:2597–2621, 2018.

[21] L. Rello, M. Pielot, and M.-C. Marcos. Make it big! the effect of font size and line
spacing on online readability. In Proceedings of the 2016 CHI Conference on Human
Factors in Computing Systems, CHI ’16, page 3637–3648, New York, NY, USA, 2016.
Association for Computing Machinery.

44

[22] R. Schusteritsch, C. Y. Wei, and M. LaRosa. Towards the perfect infrastructure for
usability testing on mobile devices. In CHI ’07 Extended Abstracts on Human Fac-
tors in Computing Systems, CHI EA ’07, page 1839–1844, New York, NY, USA, 2007.
Association for Computing Machinery.

[23] M. Soltani, F. Hermans, and T. Bäck. The significance of bug report elements. Empirical
Software Engineering, 25(6):5255–5294, Nov 2020.

[24] Y. Song, J. Mahmud, Y. Zhou, O. Chaparro, K. Moran, A. Marcus, and D. Poshyvanyk.
Toward interactive bug reporting for (android app) end-users. In Proceedings of the
30th ACM Joint European Software Engineering Conference and Symposium on the
Foundations of Software Engineering, ESEC/FSE 2022, page 344–356, New York, NY,
USA, 2022. Association for Computing Machinery.

[25] Y. Tian, C. Sun, and D. Lo. Improved duplicate bug report identification. In 2012
16th European Conference on Software Maintenance and Reengineering, pages 385–390,
2012.

[26] A. N. Tuch, J. A. Bargas-Avila, K. Opwis, and F. H. Wilhelm. Visual complexity of web-
sites: Effects on users’ experience, physiology, performance, and memory. International
Journal of Human-Computer Studies, 67(9):703–715, 2009.

[27] F. Zhang, F. Khomh, Y. Zou, and A. E. Hassan. An empirical study on factors impacting
bug fixing time. In 2012 19th Working Conference on Reverse Engineering, pages 225–
234, 2012.

[28] J. M. Zhang, F. Li, D. Hao, M. Wang, H. Tang, L. Zhang, and M. Harman. A study of
bug resolution characteristics in popular programming languages. IEEE Transactions
on Software Engineering, 47(12):2684–2697, 2021.

45

	LIST OF FIGURES
	ACKNOWLEDGMENTS
	ABSTRACT OF THE Thesis
	Introduction
	Background
	The Bug Reporting Process
	Existing Bug Reporting Tools
	Ease of Access to Bug Reporting
	Resolution Time Reduction
	Bug Reports with Video

	VideoLab
	Objective
	High-Level Design
	Video Uploading
	Domain-Specific Annotations
	Simplified Video Editing

	User Interface
	The Video Editor
	Text and Shape Annotations
	A Visually Non-Complex Interface

	VideoLab in Practice
	BugZilla Report 1560660
	BugZilla Report 1546326
	BugZilla Report 1028819

	Evaluation Plan
	Questions for Assessment
	Evaluation Stages
	Phase I: Design Critique and Usability Evaluation
	Phase II, Video Creation
	Phase II, Video Consumption

	Useful Future Extensions
	In-App Screen Recording
	Voiceovers
	Video Blurring
	Steps Recorder Integration
	Selecting Annotation Duration
	Video Editing Timeline
	Bug Report Exporting and Submission

	Conclusion
	Bibliography

