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aFood Science Graduate Group, University of California—Davis, Davis, California, USA
bDepartment of Viticulture and Enology, University of California—Davis, Davis, California, USA
cDepartment of Population Health and Reproduction, University of California—Davis, Davis, California, USA
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ABSTRACT During fermentation, Saccharomyces cerevisiae metabolizes sugars and
other nutrients to obtain energy for growth and survival, while also modulating
these activities in response to cell-environment interactions. Here, differences in S.
cerevisiae gene expression were explored over a time course of fermentation and
used to differentiate fermentations, using Pinot noir grapes from 15 unique sites.
Data analysis was complicated by the fact that the fermentations proceeded at dif-
ferent rates, making a direct comparison of time series gene expression data difficult
with conventional differential expression tools. This led to the development of a
novel approach combining diffusion mapping with continuous differential expression
analysis (termed DMap-DE). Using this method, site-specific deviations in gene
expression were identified, including changes in gene expression correlated with the
non-Saccharomyces yeast Hanseniaspora uvarum, as well as initial nitrogen concen-
trations in grape musts. These results highlight novel relationships between site-spe-
cific variables and Saccharomyces cerevisiae gene expression that are linked to
repeated fermentation outcomes. It was also demonstrated that DMap-DE can
extract biologically relevant gene expression patterns from other contexts (e.g.,
hypoxic response of Saccharomyces cerevisiae) and offers advantages over other data
dimensionality reduction approaches, indicating that DMap-DE offers a robust
method for investigating asynchronous time series gene expression data.

IMPORTANCE In this work, Saccharomyces cerevisiae gene expression was used as a
biosensor to capture differences across and between fermentations of Pinot noir
grapes from 15 unique sites representing eight American Viticultural Areas. This
required development of a novel analysis method, DMap-DE, for investigation of
asynchronous gene expression data. It was demonstrated that DMap-DE reveals bio-
logically relevant shifts in gene expression related to cell-environment interactions in
the context of hypoxia and fermentation. Using these data, it was discovered that
gene expression by non-Saccharomyces yeasts and initial nitrogen content in grape
musts are correlated with differences in gene expression among fermentations.
These findings highlight important relationships between site-specific variables and
gene expression that may be used to understand why foods and beverages, includ-
ing wine, possess sensory characteristics associated with or derived from their place
of origin.

KEYWORDS Hanseniaspora uvarum, Saccharomyces cerevisiae, diffusion mapping,
environmental microbiology, fermentation, gene expression, transcriptional regulation

During a wine fermentation, Saccharomyces cerevisiae metabolizes sugars and other
nutrients to obtain energy for growth and survival, while also dealing with a com-

mon set of stresses caused by the must/wine environment. Given these general
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features of the system, the cellular activities of S. cerevisiae across wine fermentations
are consistent, as reflected in a core gene expression program (CGEP) operating across
fermentations (1–4). However, metabolism is not fixed, as S. cerevisiae dynamically
responds to differences in the fermentation environment (e.g., nutrient levels, temper-
ature, and varied microbial communities) to maintain cellular metabolism and overall
fitness (1, 2, 5, 6). For example, differences in grape must nitrogen concentrations lead
to changes in metabolism that result in altered aroma compounds in wine (7). This
highlights the fact that metabolic adaptation to varied fermentation environments
leads to differences in wine fermentation outcomes, including sensory variations. This
relationship is mirrored by findings that show that genetic changes causing altered
expression of select genes or pathways in S. cerevisiae lead to quantifiable differences
in wine fermentation outcomes (8). These facts support the generally accepted idea
that interactions between S. cerevisiae and the unique chemical and biological matrix
of each grape must are central to defining primary fermentation characteristics. It is
reasoned that these differences are the result of (i) the expression of unique genes out-
side those in the CGEP required for fermentation and/or (ii) the variation in expression
of CGEP genes that changes the activity of various core pathways during fermentation.

The chemical and biological diversity of grape musts is due in part to biotic and abi-
otic pressures encountered by a grapevine during a growing season and the environ-
mental interactions these pressures impart on different grape cultivars. For example,
wines produced using genetically identical grapes under similar vinification conditions,
but at different growing locations, have diverse sensory outcomes (9), many of which
are reproducible across multiple vintages (10). After observing diverse sensory out-
comes in wines where a consistent variable was vineyard location (9), quantifiable con-
tributions of vineyard site were sought using S. cerevisiae gene expression as a biosen-
sor to detect differences between fermentations. This was motivated by the fact that
high-throughput gene expression surveys (microarray and RNA sequencing) have
revealed the causes of stuck and sluggish fermentations (11), the triggers for entry into
stationary phase (1, 2), and the impact of interspecies interactions on S. cerevisiae me-
tabolism in wine (6, 12, 13). In addition, as an organism commonly used in life science
and biotechnology research, the S. cerevisiae genome and transcriptome are well
understood, with published data sets focused on gene expression in diverse environ-
ments, including wine (1–3, 14–16). This makes S. cerevisiae a powerful tool for under-
standing the wine fermentation environment and identifying key biotic and abiotic
factors underlying fermentation outcomes.

Towards this end, time series RNA sequencing of Pinot noir fermentations was
previously used to identify gene expression differences across 15 unique sites repre-
senting eight American Viticultural Areas (AVAs). However, using standard analysis
methods (17–22), only the CGEP was identified across fermentations, not gene
expression patterns indicating altered S. cerevisiae metabolism that would differenti-
ate site (4). A major issue was that sampled fermentations proceeded at different
rates, leading to asynchronous biological progression among sequenced samples
with respect to fermentation progress (e.g., sugar consumption). This was problem-
atic because samples need to be at the same stage of fermentation to interpret the
biological significance of differentially expressed genes (3, 23). This is a common
problem in time series experiments with multiple groups, and in some experimental
systems, there are strategies to combat this issue (23). For example, in experiments
that study the cell cycle, inhibitors arrest the cell cycle at the same stage across
groups, thereby enabling comparisons (24).

To address a similar issue, methods have recently been developed for the analysis
of single-cell RNA sequencing data from differentiating cells. In these experiments, as
cells differentiate, absolute time may not reflect the extent of differentiation in each
cell. Consequently, pseudotime analysis has been used to reorder cells from absolute
time to the stage in differentiation relative to other cells undergoing the same process (25). In
particular, diffusion maps have been used to reorder asynchronous cell populations because
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this analysis approach preserves relationships between samples (25). In general, diffusion map-
ping is a manifold learning technique that uses information from the k most similar samples
to construct nonlinear composites of the major sources of variation among samples (26, 27).
As a dimensionality reduction algorithm, diffusion maps extract latent variables that are
inferred from relationships in the data, which can be used to represent composite sources of
variation between samples.

Here, diffusion mapping with continuous differential gene expression analysis,
termed DMap-DE, is used to analyze time series RNA-sequencing data from S. cerevisiae
during hypoxia and fermentation. Diffusion maps were used to synchronize gene
expression across treatment groups and to extract latent variables, termed diffusion
components (DCs), which represent the dominant sources of structure in the data.
Diffusion maps per se provide no suggestion of the underlying genes that lead to sepa-
ration of samples along diffusion components; therefore, continuous differential
expression analysis was performed using each diffusion component to determine what
genes vary among samples across a diffusion component. This approach captured
gene expression changes that occurred when yeast transitioned from aerobic to anaer-
obic metabolism during hypoxia or progressed through a fermentation. These findings
suggest that DMap-DE enables analysis of diverse asynchronous time series gene
expression data, revealing biologically relevant differences in gene expression among
groups. In the context of wine, DMap-DE extracted the CGEP across Pinot noir fermen-
tations, in addition to distinguishing differences between fermentations that reflected
differences in the grape musts (e.g., site). These findings offer important insights into
variable wine fermentation and sensory outcomes driven by site-specific factors.

RESULTS AND DISCUSSION

As a dimensionality reduction approach, diffusion maps reorder asynchronous cell
populations while preserving relationships between samples to provide latent varia-
bles that reflect relationships between samples (25). We refer to these latent variables
as diffusion components (DCs), the number of which is constrained by the number of
samples in the data. Within each DC, a sample is represented by a single value, and
samples that have similar underlying data (e.g., a similar gene expression profile) will
have similar values (Fig. 1A and B). Moreover, samples at the origin of a DC (i.e., near 0)
have gene expression profiles that do not vary along that component, while samples
with positive or negative DC values diverge. Each DC captures diminishing structure
among samples with the first diffusion component (DC1) accounting for the largest
variation among all samples.

With the structure provided by diffusion mapping (i.e., values for each sample along
a DC), continuous differential expression analysis can be used to identify genes with
varied expression across a diffusion component (Fig. 1C). The calculated log2 fold
change value for each gene corresponds to the change in gene expression for each
unit change in the diffusion component value. Using this method, a positive log2 fold
change value indicates the gene is expressed more highly in samples that segregate to
the right extreme of a DC and is less expressed in samples that segregate to the left
extreme of the DC. Conversely, a negative log2 fold change value indicates the gene is
expressed more highly in samples that segregate to the left extreme of a DC and is less
expressed in samples that segregate to the right extreme of the DC. It is important to
reiterate that in this instance, a negative log2 fold change value does not indicate
downregulation of expression of the gene. The combined use of diffusion mapping
with continuous differential gene expression analysis (DMap-DE) is expected to identify
changes in gene expression among samples that are linked to alterations in cellular
metabolism over time or in response to the extracellular environment.

Known gene expression changes during hypoxia are identified by DMap-DE. To
test the ability of DMap-DE to analyze and extract known changes in gene expression
from RNA-sequencing data, a publicly available gene expression data set of S. cerevisiae during
adaptation to hypoxia was identified (GEO accession no. GSE85595 and GSE115171). Hypoxia
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occurs when a cell becomes oxygen limited, which is accompanied by large-scale reprogram-
ming of gene expression for continued growth (28). When DMap-DE was applied to this data
set, an ordered time-dependent transition to a hypoxic phenotype along DC1 was observed
(Fig. 2A; see Table S1 in the supplemental material). Sample positions along DC1 showed a
rapid transition within 5 min of nitrogen exposure, indicating a fast metabolic transition to hy-
poxia that matured over the remainder of the time course. As part of this genetic reprogram-
ming, a transient shift in gene expression was previously identified at;30 min of the hypoxic
response and was shown to partially overlap the environmental stress response (28). Within
the diffusion mapping data, this transient state at 30 min of hypoxia was observed in DC6
(Fig. 2B; and Table S1).

It was next investigated whether genes identified as being differentially expressed
along DC1 (456 in total) matched oxygen-regulated genes identified by previous stud-
ies of hypoxia. Across seven microarray studies, 11 genes (3 aerobic, 8 hypoxic) were
consistently identified as being involved in aerobiosis or anaerobiosis (compiled by
Bendjilali et al. in reference 28). Along DC1, all 11 of these genes were identified as dif-
ferentially expressed (P , 0.05). Similarly, applying DMap-DE to time series RNA-
sequencing profiles of S. cerevisiae undergoing a hypoxic response (28), 239 of 291
(82.1%) aerobic genes were identified to be significantly expressed prior to exposure
to nitrogen along DC1. In addition, 422 of 519 (81.3%) hypoxic genes were significantly
induced after prolonged exposure to nitrogen along DC1 (Table S1). Genes identified
by DMap-DE prior to hypoxia were significantly enriched for ribosome biogenesis, oxi-
dative phosphorylation, and the sterol metabolic process, while genes identified as

FIG 1 Extracting data from diffusion maps. Diffusion maps provide the underlying manifold in gene expression
data through nonlinear dimensionality reduction. (A) When applied to many genes across many samples,
diffusion maps extract features that represent combinations of genes that drive similarities and differences
among samples. (B) The extracted features are termed diffusion components. Samples at either extreme of the
diffusion component are the most different from each other, while samples that fall at the origin are invariant
along that component. In the above graphic, the orange and purple dots are the most different, while the
purple and green dots are the most similar. The gray dot lands at the origin and represents a sample that is
not differentiated along the diffusion component (DC). Diffusion maps do not provide information on which
genes lead to separation of samples along each diffusion component. (C) Performing differential expression
using the diffusion component as a continuous variable reveals the genes that significantly contribute to
separation of samples. In the graphic, gene 1 has significantly higher expression in samples that fall on the
right extrema of the diffusion component (DC), compared to samples that fall on the left extrema resulting in a
calculated positive log2 fold change (dashed line) along the diffusion component. Similarly, gene 2 has
significantly lower expression in samples that fall on the right extrema of the diffusion component, compared
to samples that fall on that left extrema, resulting in a calculated negative log2 fold change (dashed line) along
the diffusion component. While all genes are used to perform differential expression, not all genes are
differentially expressed along an individual diffusion component. In this example, gene 3 is not differentially
expressed.
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induced after prolonged exposure to nitrogen were enriched for the oxidation reduc-
tion process, cell wall, glycogen metabolic process, and glycolysis/gluconeogenesis
(see Fig. S1 in the supplemental material). These findings align well with knowledge of
the hypoxic transition in yeast (28, 29). Moreover, these results indicate that diffusion
mapping with differential gene expression analysis captured global changes in gene
expression during the hypoxic shift, including transient gene expression states, provid-
ing proof of concept for this method.

DMap-DE detects the global shift in gene expression during primary fermentation.
Previously, inoculated primary fermentations of genetically similar Pinot noir grapes
grown in California and Oregon were performed over multiple vintages at the UC
Davis Teaching and Research Winery (4, 9, 30, 31). In 2019, time course RNA sequenc-
ing data were collected with the aim of using S. cerevisiae gene expression as an indica-
tor of similarities and differences across fermentations from 15 sites representing eight
AVAs (see Fig. S2A and B in the supplemental material). Samples were taken at times
approximately corresponding to cellular adaptation after inoculation (2 and 6 h), early
growth phase (16 h), stationary phase (64 h), and end of fermentation (112 h). The ini-
tial grape musts varied in parameters like initial nitrogen, pH, malic acid, tartaric acid,
non-Saccharomyces microbial profile, and elemental profile, while the final wines dif-
fered in volatile profiles and sensory characteristics (9, 30, 31). Given the variable inputs
and sensory differences described for wines from these sites (9), it was expected that
there would be detectable differences in S. cerevisiae gene expression that would
include genes known to impact the sensory outcome of wine (32). Yet, analysis of
these data was only able to robustly identify the shared CGEP across fermentations (4).
Site-specific differences were unable to be quantified because fermentations pro-
gressed at different rates, even with rigorous control of temperature at a 200-liter scale,
leading to asynchronous biological progression among samples with respect to sam-
pling time (Fig. S2C).

To address this issue and gain insight into site-specific factors altering fermentation
outcomes, DMap-DE was applied to the published sequencing data to identify gene
expression patterns differentiating these fermentations. In DC1, which accounts for the

FIG 2 Diffusion mapping applied to S. cerevisiae exposed to nitrogen for 0 to 240 min. The trajectory
of samples displayed along DC1 (A) captures the transition from aerobic to anaerobic metabolism,
and that along DC6 (B) captures a transient transcriptome remodeling at 30 min.
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largest variation among all samples, a clear transition during fermentation was
observed by the ordering of samples across DC1 based on °Brix (Fig. 3A). To test
whether DMap-DE captured the CGEP during fermentation along DC1, differential
expression over DC1 was compared to values calculated previously across the °Brix
variable using established methods of gene expression analysis (4). Log2 fold change
values were strongly correlated between both methods of differential expression anal-
ysis (Fig. 3B), indicating that DC1 captured the global shift in gene expression during
fermentation and DMap-DE identified the dominant gene expression signal (CGEP) as
reported previously (4).

To identify less-dominant differences among samples, which may include site-spe-
cific differences, subsequent diffusion components (e.g., DC2 through DC8) were inves-
tigated. The specific patterns of gene expression across each DC are discussed below
in detail, but in general, DC2 to DC4 organized samples with respect to the time of fer-
mentation (Fig. 4), while samples from a time point or stage in fermentation separated
across DC5 to DC8, demonstrating variation in gene expression among fermentations
within a sampling time point (Fig. 5; see Table S2 in the supplemental material). As
expected, given that each DC captures a diminishing structure among samples, the
total number of differentially expressed genes also diminished as the diffusion compo-
nent number increased (Table 1).

Lower diffusion components capture progression through fermentation. The
observed separation along DC2 to DC4 is based on °Brix levels and not site (compare
Fig. 4A and B), with genes differentially expressed along these components indicating
continued metabolic remodeling throughout fermentation (Table S2). Differences were
specifically driven by cellular remodeling in early fermentation (DC2 and DC3) and star-
vation during late fermentation (DC4), based on the differentially expressed genes
associated with each diffusion component (Table S2). Along DC2, there were clear sep-
arations among the 2-, 6-, and 16-h samples, while the 64- and 112-h samples fell on
the origin (Fig. 4B). Within the genes captured along this component, the arginine bio-
synthetic process was enriched in genes that were more highly expressed in the 2-h
samples (ARG1, ARG3, ARG5 and -6, and ARG8) (see Fig. S3 and Table S2 in the supple-
mental material). Arginine is likely the most abundant amino acid in Pinot noir grape

FIG 3 Diffusion mapping applied to S. cerevisiae during wine fermentation. (A) DC1 captures the metabolic transition
that occurs as °Brix decreases during fermentation. Each point represents a sample from one time from one
fermentation. Points that are closer along the x axis are more similar. The y axis is ordered by time, and points that
occur at the same point on the x axis are arranged in a swarm for visualization. Points are colored by °Brix, a proxy for
sugar concentration during fermentation, where °Brix = 0 indicates end of fermentation. (B) The graphic displays
calculated correlations between differentially expressed genes in DC1 and genes that were previously determined to
be differentially expressed as °Brix decreased, as detailed in reference 4.
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must (33), and genes that encode proteins involved in arginine biosynthesis are sup-
pressed by the presence of arginine (34). Expression of these biosynthetic genes in
early fermentation likely reflects that S. cerevisiae has yet to adapt to the wine environ-
ment by 2 h after inoculation. By 6 h of fermentation, expression of these genes
decreased, potentially signaling completion of cellular adaptation to the grape must
environment. Four of the 16 genes (YMR244W, YPR078C, YGL117W, and YER085C) differ-
entially expressed in the 2-h samples have no known function. Given that very few
genes were differentially expressed at 2 h, and they were enriched for arginine biosyn-
thesis, one speculation is that these genes may have functions related to nitrogen and
arginine biosynthetic processes. Alternatively, expression of these genes may be asso-
ciated with other cellular processes for early adaptation to the must environment.

The 6-h samples segregated to the opposite extreme of DC2 and were the most dif-
ferentiated from the 2-h samples along this component (Fig. 4B). Glycolysis was
enriched among genes induced in these samples (Fig. S3 and Table S2) and was also
accompanied by gene expression changes supporting transition to anaerobic metabo-
lism. For example, induction of the anaerobic translation elongation factor encoded by
ANB1 was detected, which is optimally expressed below 0.5 mmol/liter O2 (35), likely
indicating low must oxygen levels at this time point. Genes important for cell wall
processes were also induced at 6 h, with TIR1 to -4 being 4 of the top 5 genes induced
(Table S2). These genes encode cell wall mannoproteins required for anaerobic growth
(36). These genes are also important in DC3 to separate the 6- and 16-h samples, along

FIG 4 Samples in DC2 to DC4 separated by time in fermentation versus vineyard site. Plots are colored by °Brix (A) or
hours postinoculation (B) and show that DC2, -3, and -4 capture different relationships among samples, with these
components appearing to mainly capture shifts between stages of fermentation, not site. The vertical dashed and dotted
lines in the graphs represent values that are 1 (dashed lines) or 2 (dotted lines) standard deviations from the mean.
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with many genes induced by anaerobiosis, including the DAN1 and PAU genes (PAU2
to -5, PAU7, PAU8, PAU10 to -12, PAU15 to -17, PAU19, PAU20, PAU23, and PAU24) in the
16-h samples (37, 38). Together, the induction of these genes regulated in response to
oxygen across DC2 and DC3 likely signals the transition to anaerobiosis. In DC3, there
were also many other biological processes, cellular compartments, and molecular func-
tions enriched among the 293 genes that were induced in the 16-h samples (see
Fig. S4 in the supplemental material), consistent with a transition to an active growth

FIG 5 Samples in DC5 to DC8 separated by time in fermentation versus vineyard site. Plots are colored by °Brix (A) or
hours postinoculation (B) and show that DC6, -7, and -8 capture differences between sites within the same stage of
fermentation, as seen by samples clustering based on AVA, not °Brix. The vertical dashed and dotted vertical lines in
the graphs represent values that are 1 (dashed lines) or 2 (dotted lines) standard deviations from the mean.
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phase at this stage of fermentation. As diffusion components are ordered with the
most variation among samples occurring first, DC2 and DC3 demonstrated that early
metabolic remodeling was second only to larger gene expression changes that occur
as °Brix decreases (e.g., captured in DC1) during fermentation.

Along DC4, separation of the 64-h samples from the 112-h samples was observed.
In the 64-h samples, transmembrane transport, including amino acid and polyamine
transport, were enriched categories among the genes that were induced (see Fig. S5
and Table S2 in the supplemental material). Induced genes (DUR3, DAL5, and DAL7) are
involved in allantoin metabolism (39), which is a nonpreferred nitrogen source.
Induction of these genes at 64 h likely indicates relief of nitrogen catabolite repression
consistent with decreasing nitrogen concentrations and nutrient availability. Genes
repressed by the presence of amino acids were also induced in the 112-h samples
(GAT2 and ARG3). HXT13 and MAN2 were also among the top induced genes, along
with HXT17, in the 112-h samples (Table S2). These two HXT genes encode mannitol
transporters, and MAN2 encodes mannitol dehydrogenase (40). Expression of these
genes would enable S. cerevisiae to metabolize mannitol as a nonpreferred carbon
source (40–42). Mannitol is produced by non-Saccharomyces organisms, including lac-
tic acid bacteria (43) and other non-Saccharomyces yeast (44). Expression of these
genes late in fermentation could signal a switch to a metabolic program that utilizes
nonpreferred carbon sources as the preferred sugars were exhausted. This could be
tested in future vintages by measuring the concentrations of mannitol and other non-
preferred carbon sources in tandem with gene expression throughout fermentation.

Within lower diffusion components, outliers from select sites were also noted,
which may indicate site-specific differences influencing S. cerevisiae gene expression
during fermentation. For example, the 6-h samples from Santa Rita Hills site 1 (SRH1)
were shifted toward 16-h samples along DC2 and DC3 (Fig. 4), potentially indicating
faster cellular adaptation to the fermentation environment. However, fermentations
from SRH sites proceeded at an average rate in the 2019 vintage, indicating gene
expression differences did not impact the rate of fermentation (Fig. S2C). Another
example involved a shift of the 64-h samples from Oregon site 1 (OR1) and OR2 along
DC4 toward the 112-h cluster (Fig. 4), which may relate to nutrient conditions specific
to OR sites (see further discussion below). Similarly, 112-h samples from Sonoma Coast
site 1 (SNC1) and Arroyo Seco site 2 (AS2) shifted toward the 64-h samples (Fig. 4).
Given that lower diffusion components separate samples by time in fermentation, it is
expected that these outliers reflect differences between the musts (e.g., nutrient levels
or presence of specific non-Saccharomyces organisms) that impact S. cerevisiae metab-
olism and the timing of gene expression transitions as fermentations progress.

Overall, the patterns of separation along DC1 to -4 reflect gene expression changes
occurring as S. cerevisiae proceeds through fermentation, adapts to the increasingly
nutrient-limited environment, and deals with associated stresses. While these changes
appear common to the fermentations conducted here, additional work is required to
address if individual processes captured in DC2 to -4 occur in the context of other wine

TABLE 1 Number of significantly differentially expressed genes for DC1 to -8

Diffusion component

No. of genes

Positive log2FC Negative log2FC
DC1 470 457
DC2 169 16
DC3 32 293
DC4 57 74
DC5 13 0
DC6 92 46
DC7 50 7
DC8 0 24
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strains and grape varieties or are unique to the wine yeast RC212 and Pinot noir fer-
mentations. Nonetheless, these observations indicate that DMap-DE is a robust analysis
approach for dealing with asynchronous gene expression data across fermentations.
Moreover, the observations raise many questions about the genes important for defin-
ing separation along these DCs, including gene products involved in arginine, manni-
tol, and anaerobic metabolism. Of notable interest are the large family of PAU genes,
the vast majority of which have no known function in S. cerevisiae, but have been pre-
viously noted as induced during fermentation and in response to stress (45).

Higher diffusion components identify site-specific gene expression patterns.
The common patterns and existence of outliers across lower diffusion components
indicate that information about specific sites was captured by these analyses. Because
higher diffusion components were able to separate samples taken at the same time
point (Fig. 5), gene expression differences across the higher DCs were used to investi-
gate site-specific gene expression patterns (Table S2). In this way, S. cerevisiae activities
specific to a site(s) can be inferred based on the gene expression patterns involved.
Samples that separate to the extremes of each DC were focused on, as this separation
indicates that these samples were the most differentiated at the transcriptome level.

At 2 h of fermentation, samples from Santa Maria Valley site 1 (SMV1), SRH1,
Anderson Valley site 2 (AV2), and Russian River Valley site 3 (RRV3) fell 2 standard devi-
ations above the mean along DC5, while samples from RRV2 and Carneros site 1
(CRN1) fell 2 standard deviations below the mean (Fig. 5). When comparing these sites,
a standout difference was the induction of genes supporting vitamin metabolic and
cell wall processes (see Fig. S6 and Table S2 in the supplemental material). Previous co-
culture experiments have demonstrated that S. cerevisiae induces genes involved in
cell wall remodeling and vitamin biosynthesis in response to the presence of non-
Saccharomyces yeasts (6, 46, 47). As such, the presence of non-Saccharomyces yeasts in
the 2-h samples was correlated with DC5 values using gene counts for non-
Saccharomyces yeasts determined for these fermentations in a previous study (30).
Indeed, DC5 values correlated with total gene expression of Hanseniaspora uvarum
(R2 = 0.49, P , 0.001), but not with total gene expression of other tested organisms
(Table 2), suggesting that the presence of H. uvarum prior to these early fermentation
samples may have impacted S. cerevisiae metabolism. This is consistent with a previous
study, which reported that S. cerevisiae remodels its cell wall in the presence of H. uva-
rum at 3 h postinoculation in a wine fermentation (6). PDC5 was among genes induced
along DC5 in fermentations associated with H. uvarum (Table S2). PDC5 encodes one of
three isoforms of pyruvate decarboxylase, an enzyme involved in the formation of fla-
vor-active higher alcohols in wine via the Ehrlich pathway (48–50). In wine fermenta-
tions, overexpression of PDC5 has led to increased concentrations of 2,3-butanediol,
other higher alcohols, and acetaldehyde (46, 49, 50). This suggests that the presence of
H. uvarum may lead to gene expression changes directly impacting wine sensory out-
comes. Given the potential for H. uvarum to impact S. cerevisiae gene expression and
metabolism, it will be important to determine what factors promote H. uvarum (in)ac-
tivity in select fermentations.

TABLE 2 Correlation between non-Saccharomyces organism total gene expression and DC5

Organism R2 P value
Aureobasidium pullulans 20.03555 0.947
Botrytis cinerea 20.03261 0.774
Cladosporium sp. strain SL 16 20.03341 0.804
Hanseniaspora opuntiae 20.03524 0.911
Hanseniaspora uvarum 0.490605 ,0.001
Lachancea thermotolerans 20.02741 0.638
Metschnikowia fructicola 0.069637 0.086
Pichia kudriavzevii 20.02819 0.654
Rhizopus stolonifer 20.02439 0.582
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SMV and SRH are neighboring AVAs in southern California (Fig. S2A), and while
samples from the SMV sites and SRH1 group together at 2 h, they separate at 16 h of
fermentation along DC7 (Fig. 5). This suggests that while these sites were initially similar,
they differed later in fermentation. While few genes were significantly induced in SMV
versus SRH samples along DC7, ADH4 was the top induced gene (Table S2). ADH genes
encode alcohol dehydrogenases that play an important role in fermentation by facilitat-
ing transitions between acetaldehyde and ethanol involving the redox cofactor NAD1.
ADH1 encodes the primary alcohol dehydrogenase isoform responsible for this reaction
during wine fermentation (51). Alcohol dehydrogenases are also involved in the forma-
tion of fusel alcohols within the Ehrlich pathway (52). As such, differences in ADH4 gene
expression could be an important site-specific difference with a role in S. cerevisiaemetab-
olism and wine aroma development. Other genes more highly expressed in SMV sites
were involved in cell growth processes, including translation (MRP2 and TIF2), transcrip-
tion (MED1), and cell division (CLB6) (Table S2). In site SRH1, more highly expressed genes
along DC7 versus SMV were involved in oxidative stress (RCK1) and sporulation (SPO74
and SSP1). These site-specific differences in gene expression involving factors linked to
growth (SMV) versus stress (SRH1) indicate varied fermentation environments leading to
altered gene expression at 16 h. Given that genes associated with the Ehrlich pathway
and fusel alcohol anabolism differentiated SMV sites and SRH1 at 2 and 16 h of fermenta-
tion, the Ehrlich pathway may be an important component to consider in the context of
site-specific differences in these Pinot noir wines.

Separation was also observed among 64-h samples along DC6, with OR1/2 and
RRV2 samples segregated to one extrema (Fig. 5). Genes induced in these samples
were associated with nitrogen limitation (DAL5, PUT1, and PUT2) (1), while genes
involved in ammonia metabolism (MEP3, SSY1, and AUA1) were induced in fermenta-
tions from sites at the other extrema (Table S2). In line with these patterns that reflect
differences in nitrogen availability, DC6 values correlated with initial grape must nitro-
gen as measured by an o-phthaldialdehyde assay (NOPA) and NH3 measurements (ini-
tial NOPA, R2 = 0.62, P , 0.001; initial NH3, R2 = 0.60, P , 0.001), led by low initial nitro-
gen levels in OR1, OR2, and RRV2 (Fig. 6). While the initial nitrogen levels in OR1, OR2,
and RRV2 were the lowest among all fermentations, these fermentations were supple-
mented approximately 24 h after inoculation with a combination of diammonium
phosphate (DAP) and complex nitrogen sources to adjust total yeast assimilable nitro-
gen (YAN) levels to 250 mg/liter. Yet, these data indicate nitrogen limitation for these
sites at 64 h, suggesting that the nitrogen additions may not have been sufficient to
meet nutrient requirements in these fermentations. While it is also possible that initial
nitrogen concentrations may correlate with DC6 for other reasons, these findings sug-
gest that more research is needed to understand the impact of nitrogen additions on
fermentation, including the timing of addition and the nitrogen source.

In DC8, SNC1 and AS2 separated at 112 h (Fig. 5): 14 of the 24 genes induced in
these samples are of unknown function (Table S2). Among the induced genes with
known functions were DDR2 and HSP30, which are stress-related genes transcribed in
response to a variety of environmental or physiological factors (53), as well as
YDL218W, which is induced in response to the mycotoxin patulin produced by a variety
of molds (54). Associated with these stress-related genes were genes that function in
meiosis and sexual reproduction, including SPO74, MFA1, and AFB1. These data suggest
that stresses in these fermentations could be driving the wine yeast into meiosis and a
sexual reproduction cycle. This is of particular note, since the stresses associated with a
wine fermentation environment are thought to impart strong selective pressures that
drive adaptive evolution (55). This is reflected by the fact that S. cerevisiae strains asso-
ciated with wine show a propensity for genetic diversity, including many instances of
hybridization (56). Future research will be required to understand what particular
stresses in Sonoma Coast site 1 (SNC1) and Arroyo Seco site 2 (AS2) are driving these
unique patterns of gene expression, in addition to what outcome this has on fermenta-
tion performance.
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Finally, across diffusion components, it is worth noting that fermentations from the
same AVA were commonly grouped together, with diffusion component values within
1 standard deviation or less of other samples from the same AVA (Fig. 4 and 5). For
example, fermentations from Oregon (OR in DC6 and DC8), Anderson Valley (AV in
DC5 and DC8), and Santa Maria Valley (SMV in DC5) grouped together, providing sup-
port for the concept of the AVA and regional differences from the perspective of S. cer-
evisiae gene expression. However, we did not observe grouping among all fermenta-
tions from the same AVA along all diffusion components. For example, samples from
Arroyo Seco (AS) grouped together along DC5 (2 h) and DC6 (64 h), but not in DC8
(112 h). The AS sites are separated by 1 km, and yet separation along DC8 suggests
there was detectable variation in S. cerevisiae metabolism in primary fermentation
(Fig. 4 and 5). Replicates from the same site have similar DC values, suggesting that
lack of reproducibility in fermentations was not a factor in this observation. Similarly,
fermentations from the Russian River Valley (RRV) did not group together along any
diffusion component, suggesting that subappellations within the Russian River Valley
are associated with significantly different S. cerevisiae gene expression patterns (Fig. 4
and 5). This matches recent findings that show subregional variation in elemental pro-
files of wine from the Russian River Valley (57). Importantly, the gene expression differ-
ences detected across each of these diffusion components provide candidate genes
and pathways that may underlie site-specific fermentation outcomes.

Comparison of diffusion maps to other dimensionality reduction techniques.
The ability of DMap-DE to highlight gene expression patterns among the asynchro-
nous samples tested here raises the question of how it compares to other methods.
Generally, dimensionality reduction techniques are applied to RNA-sequencing data—
often as a visualization method to detect outliers or cluster samples. Each algorithm
produces a distinct reduced space accompanied by benefits and drawbacks (58, 59). In

FIG 6 Initial nitrogen concentration in the grape must compared to DC6. (A) Initial concentration of
NH3 and nitrogen by o-phthaldialdehyde assay (NOPA) across sites. (B and C) Initial NH3 (B) and NOPA
(C) concentrations in grape must plotted against DC6 sample values. All concentrations are reported
in mg/liter.
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the context of differential expression, diffusion mapping has strengths over other
dimensionality reduction algorithms like t-distributed stochastic neighbor embedding
(tSNE) and principal-component analysis (PCA), which are commonly applied to
sequencing data to identify sources of variation (58, 59). Unlike tSNE, diffusion map-
ping preserves long-distance structure between samples; tSNE excels at forming clus-
ters by exaggerating local structure and thereby produces intuitive visualizations that
demarcate groups, and as such, it is fundamentally inappropriate to use tSNE embed-
dings for continuous differential expression. This can be observed using different per-
plexities, a parameter within tSNE that controls the balance between local and global
structure in the data when computing clusters. It can be observed that small changes
in perplexity maintain the local clustering, while the relationship between clusters
changes (Fig. 7A). This demonstrates that tSNE clusters samples taken at the same time
point in fermentation but does not retain relationships between time points.

In comparison to PCA, diffusion mapping is less impacted by noise in gene expression
data sets, producing a tighter grouping of similar samples within components and struc-
ture across components. For example, in both the fermentation and hypoxia data sets,
DMap-DE sequentially orders samples by time along the first diffusion component, while
PCA does not (Fig. 7B and C). In the fermentation data set, it is observed that higher prin-
cipal components lack discernible patterns, separating samples neither by sampling time
or site (see Fig. S7 and S8 in the supplemental material). Furthermore, diffusion mapping
does not suffer from the “horseshoe effect,” a U-shaped positioning of samples in

FIG 7 tSNE and PCA plots of wine and hypoxia data sets. (A) Perplexity is an internal parameter of tSNE plots
that controls the balance between local and long-distance structure during tSNE computation. Plots of the
same data at three different perplexity settings are shown with the impact on clustering and long-distance
associations between clusters. Principal component 1 (PC1) values were plotted against time in fermentation
(B) or time exposed to nitrogen (C). (D) Plot of PC1 versus PC2 using the wine data set, with samples colored
based on °Brix.
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dimensionality reduction space that arises because of difficulty in discriminating differen-
ces between samples that share few expressed genes in common (60). Because diffusion
mapping compares each sample to the kmost similar samples, it avoids this effect, which
was observed with PCA using fermentation data (Fig. 7D) and which can be observed in
the PCA performed on the hypoxia data set in reference 28. These properties make diffu-
sion mapping paired with differential gene expression analysis a powerful tool for inter-
rogating time series gene expression data, as demonstrated here for S. cerevisiae in the
context of the wine fermentation environment.

Conclusions. In this study, diffusion mapping was paired with differential expres-
sion to capture global shifts in gene expression. The DMap-DE method revealed differ-
ences in primary fermentation of Pinot noir wine from 15 sites, as well as changes in S.
cerevisiae gene expression induced by hypoxia. Use of diffusion mapping was espe-
cially well suited for these data sets because, in both cases, cells progressed asynchro-
nously through transcriptome changes with respect to sampling time. Through the
analysis of wine fermentations, site-specific gene expression patterns correlating with
H. uvarum gene expression and initial nitrogen composition of grape must were dis-
covered, as well as indications of sexual reproduction in select fermentations.
Together, these data provide important insights into the wine fermentation environ-
ment, including metabolic pathways, individual genes, and environmental factors that
should be considered in the context of differential fermentation outcomes.

Given the tremendous complexity of gene-environment interactions, it is expected
these data also serve to highlight the large amount of work to be done to understand
both the biological mechanisms at play and how this knowledge can be applied by
industry. Of particular note is the observed transcriptomic heterogeneity that arises
from the same strain of yeast, fermented in the same facility, using grape must from
genetically identical grape clones. How this variability changes across the diverse land-
scape of wine yeast strains and fermentation environments (e.g., grape varieties,
including rootstocks, and associated chemical and microbiological profiles) remains to
be seen. Importantly, the approaches pioneered here for studying S. cerevisiae gene
expression in a complex environment using DMap-DE provide an effective tool to
probe these questions.

MATERIALS ANDMETHODS
Sampling, sequencing, and preprocessing of wine fermentation sequencing samples. The wine-

making protocol (9, 31) and wine sample collection, RNA extraction, and sequencing (4, 30) have been
described previously.

Sequencing data were downloaded from the Sequence Read Archive using accession no. PRJNA680606.
Sequencing samples were preprocessed according to the manufacturer’s recommendations. First, we
hard-trimmed the first 12 bp from each read and removed Illumina TruSeq adapters and poly(A) tails.
Next, STAR was used to align reads against S. cerevisiae S288C genome (R64, GCF_000146045.2) with
the following parameters: –outFilterType BySJout –outFilterMultimapNmax 20 –alignSJoverhangMin 8
–alignSJDBoverhangMin 1 –outFilterMismatchNmax 999 –outFilterMismatchNoverLmax 0.6 –alignIntronMin
20 –alignIntronMax 1000000 –alignMatesGapMax 1000000 –outSAMattributes NH HI NM MD –outSAMtype
BAM SortedByCoordinate (61). UMI-tools was used to deduplicate alignments (62). Reads mapping to each
open reading frame were quantified using htseq count (63).

Hypoxia data set. Gene expression count data were downloaded from GEO using accession no.
GSE85595 and GSE115171.

Construction of diffusion maps. Diffusion maps were built as described previously (64). To build dif-
fusion maps from wine fermentation samples, k = 10 nearest samples was used, while for hypoxia, k = 20
was used. We increased the k size for hypoxia given the larger number of samples (n = 150 in 2019 vintage
and n = 336 in hypoxia). Prior to diffusion map construction, gene counts were to nonmitochondrial mRNA,
and read counts were normalized based on total number of reads per sample (library size).

Differential expression. To determine which genes drove separation of samples along each compo-
nent, differential expression was used to correlate each gene with diffusion component values. The R
package limma was used to fit a linear regression model to each gene (20). As input to differential
expression, raw sequencing counts were used as input to differential expression and were filtered and
normalized with the limma package using the calcNormFactors() function (20). Using this model, the
log2 fold change is the slope of the line for each unit increase in the diffusion component. Log2 fold
change values were normalized by calculating the length of the diffusion component and multiplying
all log2 fold change values by this amount: (maximum 2 minimum) � log2 fold change. Log2 fold
change values that were greater than 2 were analyzed: i.e., genes with a log2 fold change of at least 2
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between the most-separated samples along a diffusion component. Gene Ontology and KEGG enrich-
ment analyses were performed using the functions enrichKEGG and enrichGO in the R clusterProfiler
package to perform overrepresentation analysis (65). Bonferroni P value correction was performed, and
P, 0.05 was used for the significance cutoff.

Data availability. Analysis code is available at https://github.com/montpetitlab/Reiter_et_al_2020
_DiffusionMapping.
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