
UC Berkeley
UC Berkeley Electronic Theses and Dissertations

Title
Enhancer evolution in the Drosophila montium subgroup

Permalink
https://escholarship.org/uc/item/0h41g7jp

Author
Bronski, Michael J

Publication Date
2018
 
Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/0h41g7jp
https://escholarship.org
http://www.cdlib.org/


Enhancer evolution in the Drosophila montium subgroup

By

Michael J. Bronski

A dissertation submitted in partial satisfaction of the

requirements for the degree of

Doctor of Philosophy

in

Molecular and Cell Biology

in the

Graduate Division

of the

University of California, Berkeley

Committee in charge:

Professor Michael Eisen, Chair
Professor Iswar Hariharan

Professor Nipam Patel
Professor Doris Bachtrog

Fall 2018



Enhancer evolution in the Drosophila montium subgroup

Copyright 2018
by

Michael J. Bronski

This dissertation is licensed under the Creative Commons Attribution 3.0 
License, which permits unrestricted use, distribution, and reproduction in 

any medium, provided the original work is properly cited. 



Abstract

Enhancer evolution in the Drosophila montium subgroup

by

Michael J. Bronski

Doctor of Philosophy in Molecular and Cell Biology

University of California, Berkeley

Professor Michael Eisen, Chair

Enhancers drive spatiotemporal patterns of gene expression, and play critical roles in 
development, disease, and evolution. Decades of research have yielded key insights, 
but many questions remain unanswered. A hallmark of enhancer evolution is functional 
conservation in the presence of extensive sequence divergence. However, identifying 
important mutational events between divergent sequences has been challenging. To 
overcome this challenge, I adopted a comparative genomic approach: sequence and 
assemble dozens of closely related species, and study enhancer evolution at the 
earliest stages of divergence. Such a data set provides an unprecedented opportunity to 
identify key changes and events (along with their context) before they are obscured by 
additional mutations. I started by sequencing and assembling 23 genomes from the 
Drosophila montium subgroup, a large group of closely related species. I also aligned 
each montium assembly to the extensively annotated D. melanogaster genome. The 
average scaffold NG50 is 76 kb, but varies widely (400 - 19 kb) depending on repeat 
content and heterozygosity levels. Despite large differences in contiguity, all montium 
assemblies contain high percentages of known genes and enhancers - demonstrating 
their suitably for this comparative genomic approach. To support my subsequent 
analyses, I also reconstructed the montium subgroup phylogeny using 20 Bicoid-
dependent enhancers.

Next, I leveraged this new genomic resource to study enhancer evolution across 24 
montium species and D. melanogaster. I started with the extensively characterized eve 
stripe 2 enhancer, and showed how patterns of (apparent) conservation and variation 
could be used to direct targeted mutagenesis experiments, and to inform models of 
enhancer grammar. To study binding site turnover on a large scale, I investigated 
hundreds of ChIP peaks for the transcription factors Bicoid, Krüppel, and Zelda. I 
treated groups of orthologous binding site scores as continuous traits, reconstructed 
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ancestral scores at each node of the species tree, and then calculated score changes 
along each branch of the tree. For all three factors, binding sites were more likely to be 
gained along branches of the tree that also lost a binding site. This was true for both 
conserved and non-conserved sites, and most differences were statistically significant. 
However, I observed similar patterns when I repeated the analyses using shuffled 
matrices, leaving me unable to conclude these were meaningful changes in 
transcription factor binding. Future analyses will focus on mitigating the effects of 
several confounding factors, including non-functional montium sequences, the forced 
gradualism of the Brownian motion model, and ancestral character estimation with a 
single species tree in the presence of widespread incomplete lineage sorting and / or 
introgression.

Finally, in collaboration with Carolyn Elya and Michael Eisen, I worked on assembling 
the genome of the Drosophila-manipulating fungus Entomophthora muscae ‘Berkeley’. 
This is an excellent system with which to study the mechanistic basis of parasite-
induced manipulations. Infected flies exhibit a suite of behavioral changes, including 
summit disease, proboscis extension / attachment, and raised / spread wings. 
Compared to most previously sequenced fungi, the genome is extremely large and 
repetitive. The total scaffold length is 1.24 Gb, but the haploid genome size might be 
around 650 Mb. Polyploidy appears to be common among related entomopathogenic 
fungi, so estimating the haploid genome size in the absence of additional experimental 
data is challenging. At least 85 % of the genome is repeats. In fact, the genome is so 
repeat-rich that aligning any pair of scaffolds produces characteristic X-alignments, 
where the forward strand of the first scaffold also aligns to the reverse complement of 
the second scaffold. The assembly appears to be missing many known fungal genes, 
but the significance of this is unclear. For genes that are present, the genome often 
appears to contain two distinct haplotypes. In many cases these haplotypes were 
assembled independently on different scaffolds, but many were also collapsed into 
single sequences. The alignment of PacBio long-reads to the assembly suggests that it 
contains numerous mis-assemblies. This was probably unavoidable given the genome’s 
dense repeat structure. Future efforts will focus on improving the assembly. Going 
forward, the E. muscae ‘Berkeley’ genome will support our efforts to understand the 
molecular basis of fungal-induced behavioral manipulations in D. melanogaster.
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Chapter 1: Introduction
Enhancers

Enhancers - cis regulatory modules (CRMs) that drive spatiotemporal patterns of gene 
expression - play critical roles in development [1], evolution [2], and disease [3]. Since 
their discovery in the SV40 genome nearly 40 years ago [4, 5], they have been the 
subject of intensive research. While much has been learned, key questions remain 
unanswered.

Enhancers are relatively small non-coding sequences, ranging in size from several 
hundred to one thousand base pairs. They interact with promoters and the basal 
transcriptional machinery (e.g., RNA polymerase II) to activate gene expression through 
a mechanism that likely involves looping [6]. Enhancers can be located far from the 
promoters / genes they regulate (up to 1 Mb in mammals [7]), and can even ignore 
adjacent genes as they interact with distant promoters [8]. The relative orientation of the 
enhancer sequence is unimportant for its function [4]. Enhancers also contain numerous 
transcription factor binding sites for integrating regulatory input from multiple factors, 
each of which can act as an activator or repressor of transcription [e.g., 9].

Regulation of the eve stripe 2 enhancer

The pair-rule gene even-skipped (eve) is expressed in seven transverse stripes in the 
early Drosophila embryo. The entire pattern is controlled by the combined action of five 
enhancers, each of which drives expression in one or two stripes [10]. The stripe 2 
enhancer is arguably the most extensively studied regulatory sequence in all of biology. 
A detailed summary of its structure, function, and evolution will be illustrative.

Early experiments provided key insights into the structure and function of the eve stripe 
2 enhancer [9, 11-14]. Briefly, the enhancer is activated by the maternal morphogen 
Bicoid and the gap gene Hunchback, and repressed by the gap genes Giant and 
Krüppel. Bicoid and Hunchback form gradients that are concentrated in the anterior half 
of the embryo. Giant is expressed in two bands located in the anterior and posterior of 
the embryo, while Krüppel protein is localized to a single band close to the midline. 
Robust eve stripe 2 expression occurs within a narrow stripe where the activators Bicoid 
and Hunchback are present, but the repressors Giant and Krüppel are absent. Giant 
and Krüppel expression define the anterior and posterior boundaries of the stripe, 
respectively. Binding sites for these factors are found in clusters of overlapping Bicoid-
Krüppel and Hunchback-Giant sites. Subsequent experiments showed that repression 
of eve stripe 2 in the anterior tip of the embryo is mediated by redundant mechanisms, 
including repression by Sloppy-paired 1, and the downregulation of Bicoid activity by 
Torso [15]. The pioneer factor Zelda is also necessary for normal activity [16].
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Comparative analysis of the eve stripe 2 enhancer

Early comparative studies of orthologous eve stripe 2 enhancers across closely and 
distantly related species provided key insights into enhancer evolution [17-19]. Despite 
the fact that the ablation of individual transcription factor binding sites in D. 
melanogaster causes aberrant expression [13, 14], detailed investigation of orthologous 
enhancers in D. yakuba, D. erecta, and D. pseudoobscura showed that binding sites 
were frequently gained and lost on evolutionary timescales, a process known as binding 
site turnover [18]. Furthermore, the size of the enhancer varied between species, as 
well as the distances between key binding sites. Remarkably, when eve stripe 2 
enhancers from these species were transfected into transgenic D. melanogaster, they 
drove the endogenous stripe 2 pattern [18]. An impressive result given that D. 
melanogaster and D. pseudoobscura diverged approximately 60 million years ago [20]. 
Despite this result, differences between species do matter. Chimeric sequences 
constructed from the 5’ and 3’ halves of stripe 2 enhancers from D. melanogaster and 
D. pseudoobscura drove aberrant expression patterns. This indicated that divergent 
compensatory mutations had evolved in each species [19].

Hare et al. [21] extended these findings to sepsid flies, which diverged from Drosophila 
more than 100 millions years ago. Despite the deep divergence time, early embryonic 
patterning appears to be conserved. Expression patterns for the key development 
regulators Giant, Hunchback, and Krüppel are nearly identical in D. melanogaster and 
Themira minor (a Sepsid species). Amazingly, when sepsid eve stripe 2, stripe 3+7, 
stripe 4+6, and muscle-heart enhancers were tested in transgenic D. melanogaster 
embryos, they drove the endogenous expression patterns. This is an astounding result 
given that these species diverged at least 100 million years ago. To better understand 
how these enhancers changed over time, Hare et al. compared computationally-
predicted binding sites across Drosophila and sepsid species. Relative to D. 
melanogaster, binding sites in sepsids were nearly completely rearranged, dramatically 
highlighting functional conservation in the absence of sequence conservation. They also 
showed that overlapping binding sites tended to be more highly conserved than sites 
that were only close or isolated.

Simulating binding site turnover in the eve stripe 2 enhancer

The overlap of binding sites for activators and repressors in the eve stripe 2 enhancer 
suggests a simple mechanistic explanation for how transcription factors can create 
precise expression patterns [9, 12-14]. Furthermore, the fact that overlapping binding 
sites appear to be conserved across distantly related species suggests that such 
arrangements are functionally important [21]. However, other explanations are possible. 
Lusk and Eisen [22] simulated the evolution of the eve stripe 2 enhancer using simple 
rules. Mutations were only accepted if they preserved the overall number of sites for a 
given factor. (For example, a mutation that destroyed a Bicoid site was only accepted if 
the enhancer had already acquired a new Bicoid site.) Interestingly, they found a 
marked enrichment for overlapping Bicoid-Krüppel sites, even though selection acted 
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only to preserve the total number of sites, not their specific spatial arrangement. (Once 
formed, overlapping sites tended to have long half-lives.) Given the deletion bias 
present in Drosophila, they also showed that binding sites tended to cluster together 
over time. When comparing binding sites across species, this process could lead to the 
misleading conclusion that clustered sites were conserved. While these simulations do 
not preclude the functional importance of overlapping or clustered binding sites, they 
highlight important caveats. Such features can also arise as byproducts of neutral 
processes, or selection acting on the overall number of sites, not their local 
arrangement.

The sparkling enhancer

Along with the eve stripe 2 enhancer, the sparkling (spa) enhancer of dPax2 is one of 
the most extensively studied enhancers [23, 24]. In Drosophila, this 362 bp sequence 
drives expression in cone cells in the developing eye. It is regulated by the known 
factors Lz, PntP2/Yan, and Su(H), but also contains many novel regulatory motifs [23]. 
Systematic mutagenesis of the enhancer [23], combined with comparative analyses 
across Drosophila species (including chimeric D. melanogaster - D. pseudoobscura 
constructs) [24], have yielded key insights. For example, spa contains a “remote control” 
element (RCE) that is necessary for long-distance enhancer-promoter interactions [23]. 
Comparative analyses also showed that spa is rapidly evolving, and has undergone 
significant reorganization [24]. However, despite extensive sequence divergence, the 
function of the enhancer has been conserved: D. melanogaster and D. pseudoobscura 
orthologs drive identical expression patterns in transgenic D. melanogaster. Grammar 
elements (local arrangements of binding sites) were also identified, and these elements 
could be flexibly rearranged within spa. Additionally, the loss of a binding site for one 
factor could be compensated for by the acquisition of a site for a different factor. Weak 
sites are also important for spa function [24].

The interplay between binding affinity and syntax

Beyond the eve stripe 2 and sparkling enhancers, detailed investigations of enhancers 
in other model systems have led to importance observations. For example, Farley et al. 
[25] investigated notochord enhancers in Ciona embryos, and identified a relationship 
between binding affinity and syntax. Here, syntax refers to the order, orientation, and 
spacing of binding sites. Notochord enhancers are activated by the transcription factors 
ETS and ZicL. They found that optimal spacing (11 bp) and orientation (oppositional) of 
linked ETS - ZicL sites, so-called syntax, could compensate for weak binding sites. 
Conversely, high-affinity binding sites were able to adopt more flexible spatial 
arrangements. This study highlighted the importance of weak binding sites. It also 
showed how focusing on high-affinity binding sites could obscure underlying syntax 
constraints.
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Genome-wide enhancer screens

Historically, testing sequences for enhancer function was time-consuming and 
laborious. Recently, new assays like STARR-seq (self-transcribing active regulatory 
region sequencing) [26] have made it possible to simultaneously test millions of 
candidate enhancer sequences in a single experiment. Briefly, candidate sequences are 
placed downstream of minimal promoters, where they can potentially drive their own 
expression. The activity of an enhancer is therefore proportional to the level of its own 
RNA. After libraries are transfected into cell lines, polyadenylated RNA is extracted, 
reverse-transcribed, PCR-amplified, and deep-sequenced. Finally, reads are mapped 
back to the genome to quantify enrichment.

The application of STARR-seq to five Drosophila species (melanogaster, yakuba, 
ananassae, pseudoobscura, and willistoni) [27] showed that many D. melanogaster 
enhancers are functionally conserved, even in distantly related species. Despite this 
functional conservation, compensatory binding site turnover between species is 
common. Hybrid enhancers created by fusing halves from different species yielded 
sequences with different activities. Entirely new enhancers also arise frequently, even 
between closely related species. In the approximately 11 million years since the 
divergence of D. melanogaster and D. yakuba, hundreds of sequences acquired 
enhancer function.

Enhancer models

Three enhancer models have been proposed. They differ on whether transcription factor 
binding is cooperative, and the importance of syntax or grammar. The first enhancer 
model was based on the virus-inducible enhancer (really the promoter) for the human 
interferon-β (IFNβ) gene [28, 29]. This 55 bp sequence is bound by eight factors 
forming a highly ordered and continuous complex known as an enhanceosome, after 
which the model is named. These factors bind cooperatively, and the precise spacing 
and orientation of sites is critical. In fact, this sequence is almost perfectly conserved 
across 100 million years of mammalian evolution . Unsurprisingly, enhanceosomes are 
intolerant of binding site turnover . In contrast to the enhanceosome model, the 
information display or “billboard” model does not depend on large-scale cooperative 
binding, or the precise arrangement of sites  [14, 30, 31]. Instead, subelements within 
the enhancer bind transcription factors (activators and/or repressors) independently. 
These regions display their information to the basal transcriptional machinery - either 
iteratively or simultaneously - where it is interpreted. The information presented by 
different regions within the same enhancer can be contrasting. This model was informed 
by experiments on simple genetic switch elements in Drosophila. It is a highly flexible 
model that allows for extensive binding site turnover. Finally, the “TF collective” model is 
based on heart enhancers in Drosophila, which are regulated by at least five factors 
[32]. According to this model, transcription factors bind cooperatively, but unlike the 
enhanceosome, the arrangement of binding sites is unimportant. Motifs for some factors 
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can even be missing. Enhancers regulated in this way would be highly tolerant of 
binding site turnover.

Unanswered questions

Orthologous enhancers frequently exhibit functional conservation in the absence of 
underlying sequence conservation. The rules that allow enhancer sequences to diverge, 
while simultaneously maintaining the same function, are currently unknown. The relative 
importance of syntax or grammar in enhancer evolution is also unclear.
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Chapter 2: Building the Drosophila montium 
subgroup into a genomic resource

Abstract
Enhancers can exhibit remarkable functional conservation despite extensive sequence 
divergence. The rules that allow enhancers to diverge, while simultaneously maintaining 
function, are currently unknown. Attempts to understand this process using divergent, 
yet functionally conserved, sequences are stymied by the large number of mutational 
events that have occurred. To overcome this challenge, I propose a comparative 
genomic approach: sequence and assemble dozens of closely related species, and 
study enhancer evolution at the earliest stages of divergence. The Drosophila montium 
subgroup contains roughly 100 species, and is well-suited to this approach. In this 
chapter, I describe the sequencing and assembly of 23 montium genomes. To make this 
endeavor financially feasible, I sequenced a single, small-insert library for each species. 
All genomes were initially assembled using MaSuRCA, before going through an 
extensive post-assembly pipeline. The average estimated genome size is 195 Mb, and 
most assemblies (total scaffold lengths) reach 85 - 95 % of the estimated genome size. 
The scaffold NG50s vary widely, depending in large part on repeat content and 
heterozygosity levels. The average scaffold NG50 is 76 kb, and individual assemblies 
range from 400 kb to 19 kb. Despite large differences in contiguity, all genomes contain 
at least 96 % of known single-copy Dipteran genes (BUSCOs). To facilitate the 
identification of enhancer sequences within montium species, and to further develop the 
montium clade as a genomic resource, I aligned each montium assembly to the 
extensively annotated D. melanogaster genome. I then used the whole-genome 
alignments to remap coordinates for thousands of D. melanogaster enhancers onto 
each montium assembly. Pairwise BLAST alignments between D. melanogaster and 
montium sequences showed that the vast majority of these sequences appear to be 
orthologous. Finally, I reconstructed the montium subgroup phylogeny using 20 Bicoid-
dependent enhancers. Going forward, this new genomic resource will support my efforts 
to study enhancer evolution.

Introduction
A recurring theme in enhancer evolution is the conservation of function despite 
extensive sequence divergence. This has been demonstrated in detailed analyses of 
individual enhancers, such as eve stripe 2 [17-19, 21] and sparkling [24], along with 
massively parallel screens [27]. How these processes occur is still poorly understood.

What are the rules that allow the number, strength, and arrangement of transcription 
factor binding sites to change over time, while simultaneously preserving enhancer 
function? It’s difficult to answer this question starting with distantly related species. So 
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many mutations have accumulated that the order of key events is unclear, and it’s 
difficult to identify the changes that actually matter.

To answer this fundamental question, I propose a comparative genomic approach: 
sequence and assemble dozens of closely related species, compare hundreds / 
thousands of enhancers, and study enhancer evolution at the earliest stages of 
divergence. This approach has a number of advantages. At these distances, the most 
closely related species will differ at only one or two binding sites. So when an important 
event does occur - like the loss of a conserved site - candidate compensatory changes 
can be identified before they are obscured by additional mutations. Furthermore, by 
exploiting naturally occurring variation, I can gain valuable insight into changes that are 
allowed to occur, as well as those that are forbidden. These data can also be used to 
inform targeted mutagenesis experiments, yielding additional insights. Eventually, these 
data can be used to build models of enhancer evolution that can be tested using 
synthetic constructs.

The Drosophila montium species subgroup contains 98 species [33], and is well-suited 
to this approach. Species from the montium subgroup have been used to study a variety 
of evolutionary, ecological, and behavioral questions, including the genetic basis of 
female-limited color polymorphism [34], cold and desiccation resistance [35], adaptation 
to drought stress [36], and courtship behavior [37]. More than 30 species are available 
in culture, with more on the way. The montium subgroup diverged from D. melanogaster 
approximately 40 million years ago [20]. It’s relative proximity to an extensively studied 
and annotated reference genome means that I can leverage existing tools to identify 
and study montium enhancers.

Two montium genomes have already been assembled. The D. kikkawai genome was 
sequenced to a depth of 182x coverage using a combination of 454 and Illumina 
technology. This produced a 164 Mb assembly with a scaffold N50 of 904 kb [38]. The 
D. serrata genome was sequenced to a depth of 63x coverage using PacBio long-
reads. It yielded a 198 Mb assembly with a contig N50 of 943 kb [39]. While these 
approaches generated high-quality draft assemblies, the associated costs preclude 
sequencing dozens of montium species this way.

Therefore, I needed to assemble dozens of montium genomes in a cost-effective way, 
while also producing assemblies of sufficient quality and completeness to study 
enhancers genome-wide. In this chapter, I describe the sequencing and assembly of 23 
montium genomes. To make this endeavor financially feasible, I sequenced a single, 
small-insert library for each species. This generally led to fragmented assemblies. 
However, despite significant variability in contiguity, I show that all assemblies contain 
high percentages of known genes. I also aligned each montium assembly to the D. 
melanogaster genome, and show that these alignments can be used to identify 
thousands of putatively orthologous montium enhancers. Finally, I reconstruct the 
montium subgroup phylogeny using 20 Bicoid-dependent enhancers.
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Results
Genome sizes and assembly statistics

To assemble dozens of genomes in a cost-effective way, I sequenced a single, small-
insert (350 bp), PCR-free, library to roughly 30x coverage for each species. The 
genomes were assembled using the Maryland Super Read Cabog Assembler 
(MaSuRCA), which combines de Bruijn graph and overlap-layout-consensus (OLC) 
approaches into a novel algorithm based on “super-reads” [40]. The genomes then went 
through an extensive post-assembly pipeline to greatly improve upon the primary 
assemblies. (See the Materials and Methods for an in-depth description of the entire 
pipeline.)

Table 2.1 reports genome size estimates and assembly statistics for 23 montium 
species. The scaffold / contig NG50 is analogous to the well-known N50, but substitutes 
the estimated genome size for the total assembly length [41, 42]. For example, a 
scaffold NG50 of 100,000 bp means that 50 % of the estimated genome size is present 
in scaffolds that are at least 100,000 bp. When this calculation is repeated for all 
integers from 1 to 100, the result is an “NG graph” [42]. Figure 2.1 is an NG graph 
showing the distribution of scaffold lengths for 23 montium assemblies. (While NG 
graphs have typically been used to compare different assemblies of the same species 
[42], I use one here to highlight a limited number of features across multiple species.)

The 23 montium genomes range in size from 153 Mb to 225 Mb (mean = 194.5 Mb; 
median = 198.5 Mb). These sizes are consistent with the previously assembled D. 
kikkawai [38] and D. serrata [39] genomes, with total sequence lengths of 164 Mb and 
198 Mb, respectively. Genome size variation within the montium subgroup is related to 
repeat content (Figure 2.S1).

The scaffold NG50s vary widely, from the remarkably contiguous D. kanapiae assembly 
(402 kb), to the highly fragmented D. triauraria assembly (19 kb). The contiguity of the 
D. kanapiae assembly is somewhat surprising (given the use of a small-insert library), 
but is related to genome and sample characteristics described below. The average 
scaffold NG50 across all montium species is 76,154 bp (median = 58,240 bp).

Many factors influence the contiguity of an assembly, including repeat content, 
heterozygosity, and sequencing depth. Large, repeat-rich genomes are typically difficult 
to assemble, as are highly heterozygous samples. Given that the montium genomes 
were assembled using small-insert libraries, they are especially sensitive to repeat-
content and heterozygosity. For the montium genomes, the most contiguous assemblies 
tend to come from relatively small, repeat-poor genomes, and samples with little 
heterozygosity. (This accurately describes the D. kanapiae genome / sample). On the 
other hand, repeat-rich genomes and/or highly heterozygous samples, proved the most 
difficult to assemble (as was the case with D. triauraria).
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The total scaffold length for most montium assemblies reaches 85 % - 95 % of the 
estimated genome size (In Figure 2.1, this is where the lines intersect the x-axis). This 
was expected given that each genome was assembled using a small-insert library. In 
the absence of long-distance information, in the form of mate-pair libraries or long-
reads, large repeats form unresolvable structures in the de Bruijn graph. This results in 
fragmented assemblies that are missing many repeat copies. Accordingly, the total 
scaffold length should be significantly shorter than the estimated genome size, with the 
magnitude of the difference proportional to the size / number of repeats in the genome. 
For example, D. mayri (225 Mb) and D. pectinifera (220 Mb) have the largest estimated 
genomes, but yielded the shortest assemblies relative to their genome sizes (74.5 % 
and 67.8 %, respectively). (The D. pectinifera sample was also heavily contaminated 
with bacteria. While the bacterial reads were filtered prior to assembly, there initial 
presence lowered the sequencing coverage of the fly genome.) In contrast, the 
relatively small and repeat-poor D. kanapiae genome (153 Mb) yielded an assembly 
that reaches 99.7 % of its estimated genome size.

The total scaffold lengths for D. leontia, D. punjabiensis, and D. watanabe actually 
exceed their estimated genome sizes. (In Figure 2.1, these lines never intersect the x-
axis.) Two of these differences are large: 10.6 Mb for D. punjabiensis, and 16.9 Mb for 
D. watanabe. These differences may be related to heterozygosity. Given modest levels 
of heterozygosity, most assemblers collapse allelic variation into a single consensus 
sequence. As the divergence increases though, allelic variation can be assembled 
independently and placed on two different scaffolds (one usually much shorter than the 
other). This artificially inflates the total scaffold length. Consistent with this effect, all 
three of the above samples were highly heterozygous. However, several other samples 
were also highly heterozygous, but yielded assemblies that were significantly shorter 
than their estimated genome sizes.

Overall, the montium assemblies are fragmented, as evidenced by their modest scaffold 
NG50s. However, taken in isolation, the NG50s say little about the quality of the 
assemblies. Any single metric (especially the NG50) can be a poor predictor of the 
quality / utility of an assembly. It is best to evaluate assemblies using a variety of 
methods, with an eye towards the downstream application [42]. For example, it is often 
advantageous to sacrifice contiguity for accuracy, and many questions can be answered 
without knowing the detailed repeat structure of the genome. I turn now to evaluating 
the montium assemblies in ways that will tell me if they are of sufficient contiguity and 
quality to study genes and enhancers.

The vast majority of montium scaffolds are at least gene-sized

To study genes, a genome assembly should be present in at least gene-sized fragments 
[42, 43]. (By extension, such an assembly would also be useful for studying enhancers, 
since they are significantly smaller than most genes.) Based on existing annotations of 
the PacBio D. serrata genome, the average gene length is up to 6.3 kb [39, 44]. Figure 
2.2 shows the relationship between the scaffold NG50 and the percentage of the total 
scaffold length present in scaffolds that are at least 6.3 kb. (Here I use the total scaffold 
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length instead of the estimated genome size. If the estimated genome size was used, 
the percentages would obviously decrease. However, most montium assemblies are 
significantly shorter their estimated genome sizes because they are missing repeats 
(see above). Therefore, I think it’s reasonable to ask the related question: What 
percentage of the non-repetitive genome is present in at least gene-sized scaffolds?) 
Despite large differences in contiguity, all assemblies are present predominantly as 
scaffolds that are at least gene-sized. While there is a small downward trend with 
decreasing NG50 (r = 0.58, p < 0.004), this effect is modest. Even for the most 
fragmented assemblies, roughly 80 % of the assembly is present in at least gene-sized 
fragments.

All montium assemblies contain high percentages of known genes

The vast majority of scaffolds in each montium assembly are large enough to contain 
genes. Do the assemblies actually contain known genes though? One way to assess 
the quality of an assembly is by annotation: a good assembly should contain a high 
percentage of known genes. Benchmarking Universal Single-Copy Orthologs 
(BUSCOs) are single-copy genes present in more than 90 % of surveyed species [45, 
46]. The Dipteran BUSCO set contains 2,799 genes, and is based on a survey of 25 
species. Figure 2.3 shows the BUSCO assessment results for eight montium 
assemblies. These species were chosen from every major subclade within the montium 
subgroup, and represent a wide range of genome sizes and contiguities. They range 
from the small and highly contiguous D. kanapiae (153 Mb, NG50 402 kb), to the large 
and fragmented D. triauraria (210 Mb, NG50 19 kb). Strikingly, despite the wide range of 
contiguities, there is little variation in gene content: at least 96 % of BUSCOs are 
present and complete across all species. The D. kanapiae assembly exceeds 98 %. Ten 
BUSCOs are missing across all eight species, and likely represent lineage-specific loss 
events within Diptera. For comparison, the previously assembled D. kikkawai and D. 
serrata genomes, which approach scaffold / contig N50s of 1 Mb, reach 98 % and 96 %, 
respectively [39]. Once again, despite their relatively modest scaffold NG50s, my 
assemblies have performed well in metrics that matter for downstream analyses.

Whole-genome alignments of montium species to D. melanogaster

To facilitate the identification of enhancer sequences within montium species, and to 
further develop the montium clade as a genomic resource, I aligned each montium 
genome to D. melanogaster using a previously described whole-genome alignment 
pipeline. (See the Materials and Methods for the complete pipeline.) Briefly, repeats 
were soft-masked in the target and query genomes using RepeatMasker [47] and 
Tandem Repeat Finder (TRF) [48]. Each montium genome was then individually aligned 
to D. melanogaster using LASTZ [49]. The LASTZ alignments were processed into 
structures called “chains” and “nets” using a series of programs, described in detail by 
Kent et al. [50]. Gapless alignments (“blocks”) were linked together into maximally 
scoring chained alignments, or chains. The order of blocks within chains must be the 
same in both target and query genomes. Blocks within chains can be separated by 
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insertions / deletions, inversions, duplications, or translocations. Gaps in high-scoring 
chains were filled in with lower scoring chains, creating hierarchies (parent-child 
relationships) known as nets. This pipeline ultimately produced a liftOver chain file. 
Given a set of coordinates for an annotated feature in the D. melanogaster genome, the 
program liftOver [51] returns coordinates for the (putatively) orthologous sequence in an 
aligned montium genome.

montium assemblies contain thousands of orthologous enhancer 
sequences

With the genomes aligned, I turned to looking for known enhancer sequences in the 
montium assemblies. I used a previously described set of 3,500 experimentally verified 
enhancers that drive expression in the D. melanogaster embryo [52]. Using liftOver [51], 
I remapped the D. melanogaster coordinates onto each montium assembly. Nearly all of 
the enhancer sequences were “lifted” successfully (Table 2.S1). However, do the 
corresponding montium coordinates contain orthologous sequence? The original DNA 
fragments (tiles) from D. melanogaster are roughly 2 kb in length. Non-coding sequence 
tends to be elongated in montium species, so orthologous sequence should generally 
be at least 2 kb. (This might not always be the case though. The draft genomes are 
fragmented, so a single enhancer could be divided across two scaffolds. The size of the 
sequence may have also changed significantly since the lineages diverged, especially if 
the sequence is non-functional in a montium species. Enhancers themselves are known 
to turnover, even between closely related species [51].) Accordingly, I focused on a 
subset of remapped enhancer sequences that were between 1.5 kb and 3.5 kb. For 
each montium assembly, roughly 87 % of remapped sequences fall within this range. I 
then aligned each D. melanogaster sequence to its putative montium ortholog using 
BLASTn. Figure 2.4 shows illustrative results for D. lacteicornis. Based on the query 
coverages, percent identities, and Expect values (E), it is extremely likely these 
sequences are orthologous. On average, 67 % of the D. melanogaster sequence aligns 
to sequence from D. lacteicornis (query coverage). The average percent identity is 75 
%, and the E value for the vast majority of alignments is essentially zero. Based on 
these results, it is clear that I can remap coordinates for thousands of D. melanogaster 
enhancers onto any montium assembly, and with a high level of confidence extract 
putatively orthologous sequences.

Reconstructing the montium subgroup phylogeny

Finally, to support my study of enhancer evolution within the Drosophila montium 
species subgroup, I need an accurate phylogeny with non-coding branch lengths. 
Previous phylogenetic reconstructions of the montium subgroup - typically based on a 
small number of genes - have produced incongruent trees [34, 37, 53-56]. For this 
analysis, I added the previously sequenced D. kikkawai genome [38], bringing the total 
number of montium genomes to 24. Chen et al. [57] previously described 66 Bicoid-
dependent enhancers in D. melanogaster. I identified a subset of 20 enhancers that are 
present in all 24 montium assemblies, and are also spread out across the genome. 
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Figure 2.5 is a maximum likelihood tree constructed using RAxML [58] for 20 Bicoid-
dependent enhancers. Most branches are highly supported, but the support values are 
relatively low for three branches. (Also see Figure 2.S4 for a matrix of distances in the 
montium clade.)
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Figure 2.1. NG graph showing the distribution of scaffold lengths for 23 montium 
assemblies.
To calculate the scaffold NG50, scaffold lengths are ordered from longest to shortest, 
and then summed. The NG50 is the scaffold length that brings the sum above 50 % of 
the estimated genome size [41, 42]. When this calculation is repeated for all integers 
from 1 to 100, the result is an NG graph [42]. NG graphs were constructed for each 
montium species using the corresponding genome size estimates. When a series 
intersects the x-axis, it means the total scaffold length is shorter than the estimated 
genome size. Similarly, if the series never touches the x-axis, then the assembly is 
longer than the estimated genome size. Due to filtering, the shortest scaffold present in 
any assembly is 1 kb.
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Figure 2.2. For all montium species, the vast majority of the assembly is present 
in at least gene-sized scaffolds, despite large differences in contiguity.
Based on annotations of the previously assembled D. serrata genome, the average 
gene length is up to 6.3 kb [39, 44]. For each montium species, the blue bar graph 
shows the scaffold NG50, and the red line graph shows the percentage of the total 
scaffold length (assembly) present in scaffolds that are at least 6.3 kb in length. Species 
are listed in order of scaffold NG50, starting with the longest.
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Figure 2.3. All montium assemblies contain a high percentage of known genes 
despite large differences in contiguity.
BUSCO [45, 46] assessment results for eight montium genomes representing a 
diversity of genomes / assemblies. The Dipteran BUSCO set contains 2,799 genes. For 
each assembly, the bar graph reports the number of BUSCOs that are complete and 
single-copy, complete and duplicated, fragmented, and missing. The scaffold NG50 for 
each assembly is shown on the right.
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Figure 2.4. Thousands of orthologous montium enhancers can be identified by 
remapping D. melanogaster enhancer coordinates onto montium assemblies.
Approximately 3,500 experimentally verified D. melanogaster enhancers from [52] were 
remapped onto the D. lacteicornis assembly using liftOver [51]. The D. melanogaster 
sequences were approximately 2 kb, and the putative D. lacteicornis orthologs were 
filtered to contain sequences between 1.5 kb and 3.5 kb. In total, 3,010 pairs of D. 
melanogaster and D. lacteicornis sequences were aligned using BLASTn [59]. D. 
lacteicornis was chosen for illustrative purposes because it is the assembly with the 
median scaffold NG50. A) 2D histogram showing query coverage and percent identity 
for 3,010 pairwise BLASTn [59] alignments. Query coverage is the percentage of D. 
melanogaster sequence that is aligned to D. lacteicornis sequence. B) Distribution of 
Expect values (E) for alignments in Part A. 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Figure 2.5. Maximum likelihood tree of the Drosophila montium subgroup based 
on 20 Bicoid-dependent enhancers.
Bicoid-dependent enhancers are from [57]. The phylogeny was reconstructed using 
RAxML [58] with the General Time Reversible (GTR) model of nucleotide substitution, 
the Gamma model of rate heterogeneity, and maximum likelihood estimates of base 
frequencies. All parameters were estimated independently for each of the 20 partitions. 
Branch support values (shown in red) are based on 100 searches using a rapid 
bootstrapping algorithm. Branch lengths are in substitutions per site. 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Discussion
In this chapter, I described the creation of a novel genomic resource for the study of 
enhancer evolution. I sequenced and assembled 23 genomes from the Drosophila 
montium species subgroup, a large group of closely related species. I aligned each 
montium assembly to the extensively annotated D. melanogaster genome, and showed 
that my assemblies contain high percentages of known genes and enhancers.

The estimated genome sizes for my montium species range from 153 Mb to 225 Mb. 
This is consistent with the previously published D. kikkawai (164 Mb) [38] and D. serrata 
(198 Mb) [39] genomes.

To make this endeavor financially feasible, I sequenced a single, small-insert library for 
each species. This impacted the assemblies in a number of ways. The absence of long-
distance information made the assemblies especially sensitive to repeats and high 
levels of heterozygosity. As a result, many of the assemblies are fragmented, and the 
scaffold NG50s vary widely based on genome / sample characteristics. The average 
scaffold NG50 is only 76 kb, and the total scaffold length of most assemblies is 
significantly shorter than the estimated genome size. Repeat content and 
heterozygosity act as opposing forces on the total scaffold length. In the absence of 
long-distance information, repeats form unresolvable structures in the de Bruijn graph. 
This leads to many breaks in the assembly, and an underestimate of the number of 
repeat copies in the genome. So as the number and size of repeats increases, so too 
does the gap between the estimated genome size and the total scaffold length. On the 
other hand, divergent haplotypes in a highly heterozygous sample might be assembled 
independently, and placed on different scaffolds. (Assemblers like Meraculous-2D [60] 
and Platanus [61] that are designed to handle high levels of heterozygosity typically 
require mate-pair libraries.) This increases the scaffold length, and artificially closes the 
gap between the estimated genome size and the total scaffold length. Finally, some 
assemblers can over-assemble the data and produce many small contigs / scaffolds, 
also known as “chaff” [62]. Unsurprisingly, the three assemblies that exceed their 
estimated genome size are all highly heterozygous. Even heterozygous samples can 
come up short though if the repeat content is large enough.

Just because most assemblies are fragmented, does not mean they are poor quality. 
Quite to the contrary, the BUSCO analysis showed that all assemblies, regardless of 
contiguity, contain at least 96 % of known single-copy Dipteran genes. I also used the 
whole-genome alignments to lift coordinates for thousands of D. melanogaster 
enhancers onto the montium assemblies. Pairwise alignments between D. 
melanogaster and montium sequences showed that this process correctly identified 
putative montium orthologs. Despite their modest scaffold NG50s, the montium 
assemblies are contiguous enough to study genes and enhancers.

All draft genomes contain assembly errors, and mine are no different. Most errors occur 
during scaffolding, or near the ends of contigs. I used REAPR [63] and Pilon [64] to 
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identify and correct as many errors as possible. These programs work best with large-
insert libraries (which I didn’t have), but they still made significant improvements. I also 
“phased” the assemblies so they represented the single majority haplotype - within the 
limits of a small-insert library. Small tandem alleles can also be a problem with highly 
heterozygous samples. Remaining tandem alleles in the montium assemblies can often 
be identified by the presence of single-N gaps.

In the future, efforts should focus on sequencing additional montium species. Five 
montium species were lost as a result of contamination in the laboratory (data not 
shown). Since my project began, several new species have also been collected. These 
species should be (re)acquired and sequenced. Despite the challenges, efforts should 
be made to intensively inbreed the lines for at least several generations prior to 
sequencing.

Any montium assembly can also be improved on an as-needed basis. For my purposes, 
the assemblies are generally contiguous and accurate enough to study enhancers. But 
if another researcher needs a high-quality draft genome, they could easily pair my short-
read data with traditional mate-pair libraries or PacBio long-reads to generate a vastly 
more contiguous assembly that also includes most / all repeat copies.

Going forward, these genomes will enable me to study hundreds of enhancers / 
transcription factor bound regions across the montium subgroup. They are also a new 
and valuable resource for any researcher studying ecological, evolutionary, or 
behavioral questions using montium species.

Materials and Methods
Library Preparation and Sequencing

Fly lines for each montium species reported in Table 2.1 were gifts of Artyom Kopp and 
Michael Turelli, or were acquired from the Drosophila Species Stock Center.

For each species, DNA was extracted from three female flies using the QIAGEN 
QIAamp DNA Micro Kit. Sequencing libraries were constructed using the Illumina 
TruSeq DNA PCR-Free Kit for 350 bp inserts, and visualized on Agilent High Sensitivity 
DNA chips. Libraries were clustered on an Illumina HiSeq 2000 or HiSeq 2500 System, 
generating 100 bp paired-end reads. All sequencing was done at the Vincent J. Coates 
Genomics Sequencing Laboratory at UC Berkeley. Multiple species were pooled on 
each lane in an effort to reach a sequencing depth of at least 30x coverage per species.

Read Exploration and Pre-Processing
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Prior to assembly, read quality and genome / sample characteristics (e.g., genome size, 
repeat content, and heterozygosity) were explored using FastQC (v. 0.11.2) [65] and 
String Graph Assembler (SGA) Preqc (v. 0.10.15) [66].

Reads were adapter-trimmed for known Illumina adapters using BBDuk (BBMap v. 
36.11) [67] with the options ktrim=r, k=23, mink=9, hdist=1, minlength=75, tpe=t, and 
tbo=t. The adapter-trimmed reads were then quality-trimmed to Q10 using BBDuk 
(which implements the Phred algorithm) with the options qtrim=rl, trimq=10, and 
minlength=51.

Read Decontamination

Two sequencing libraries were heavily contaminated with bacteria: D. pectinifera and D. 
vulcana (Figure 2.S1).

For D. pectinifera, I adopted a decontamination strategy similar to Kumar et al. [68]. The 
reads were first assembled using SOAPdenovo2 [69] with the options -K 49 and -R. 
Assembled scaffolds at least 1 kb in length were used to create a GC % vs. average k-
mer coverage plot. Scaffolds with 35 <= GC % <= 66 and 40.5 <= average k-mer 
coverage <= 68 were considered candidate bacterial scaffolds. To avoid removing any 
Drosophila scaffolds, candidate bacterial scaffolds were aligned to sequences in NCBI’s 
Nucleotide database using BLASTn (v. 2.2.31+) [59]. Candidate bacterial scaffolds that 
aligned to known bacterial sequences with bit scores greater than 214 were classified 
as genuine bacterial scaffolds. Finally, the original reads were aligned to the bacterial 
scaffolds using Bowtie 2 (v. 2.2.3) [70] with the option --local, and pairs of reads that 
aligned concordantly were removed prior to the subsequent primary assembly.

For D. vulcana, 10,000 reads were sampled from the R1 FASTQ file using seqtk sample 
(v. 1.0-r75-dirty) [71], and then converted to FASTA format using seqtk seq. High-GC % 
reads within the range 53 <= GC % <= 57 were identified, and a subset of 400 high-GC 
% reads were aligned to sequences in NCBI’s Nucleotide database using BLASTn (v. 
2.2.31+) [59]. This led to the identification of closely related bacterial (and yeast) 
genomes, which were combined into a single reference. Finally, the original reads were 
aligned to the reference using Bowtie 2 (v. 2.2.3) [70] with the option --local, and pairs of 
reads that aligned concordantly were removed prior to assembly.

Some libraries were also contaminated with highly abundant individual sequences, or 
groups of similar sequences. (For example, the per sequence GC % plot for D. vulcana 
also showed a low-GC % “spike” corresponding to an eight-bp simple sequence repeat 
(SSR) that was present in both the forward and reverse reads. The origin of the 
sequence was unclear.) Once the contaminating sequence was identified, matching 
sequences were removed from the reads using BBDuk (BBMap v. 36.11) [67] with the 
options k=75 and hdist=1.

Choosing an assembler

�22



Exploration of the data using SGA Preqc (v. 0.10.15) [66] showed that the montium 
genomes / samples represented a diversity of genome sizes, heterozygosity levels, and 
sequencing error rates. Extensive tests were conducted to identify the assembler that 
performed the best across these diverse samples.

I tested the following assemblers: ABySS [72], MaSuRCA [40], Meraculous-2D [60], 
SOAPdenovo2 [69], SPAdes [73] / dipSPAdes [74], and Velvet [75]. The resulting 
assemblies were evaluated using a number of metrics, including contiguity statistics, 
REAPR [63], Feature Response Curves (FRCbam) [76], BUSCO assessments [45, 46], 
and the scrutiny of individual enhancer sequences.

Primary assemblies

All genomes were assembled using MaSuRCA [40]. The assembler was provided with 
reads that had not been adapter-trimmed or quality-trimmed.

The configuration file for each species contained the insert-size mean and standard 
deviation for the corresponding sequencing library, as well as the following parameters: 
GRAPH_KMER_SIZE = auto, USE_LINKING_MATES = 1, CA_PARAMETERS = 
cgwErrorRate=0.15, KMER_COUNT_THRESHOLD = 1, and SOAP_ASSEMBLY=0. 
The Jellyfish hash size (JF_SIZE) was set to the product of the estimated genome size 
and estimated coverage.

Post-assembly pipeline

For each assembly, the MaSuRCA assembler created a small number of scaffolds with 
massive gaps (tens of kb in length). Given the insert-sizes of the sequencing libraries (~ 
350 bp), these gaps had to be erroneous. Therefore, scaffolds were split on any gap 
that was unreasonably large relative to the insert-size of the library. (Typically around 
300 - 600 bp, depending on the library.)

REAPR (v. 1.0.18) [63] was used to identify errors in the assemblies, and to generate 
new “broken” assemblies that were split on errors occurring over gaps. Errors within 
contigs were hard-masked with Ns. The command reapr smaltmap was used to align 
adapter-trimmed reads to the assemblies, and reapr pipeline generated the broken 
assemblies. Sequences starting with “REAPR_bin” (i.e., the original unmasked 
sequence) were later filtered from the broken assemblies.

Gaps in the assemblies were closed using a two-step process with adapter-trimmed and 
quality-trimmed reads. The first round of gap closing was performed using GapCloser (v. 
1.12) [69]. This also helped to identify tandem alleles (a type of mis-assembly), which 
GapCloser left as single-N gaps. The second round was done using Sealer (abyss-
sealer v. 2.0.2) [77], with the option -P 10. For each assembly, “k sweeps” typically 
ranged from k=80 to k=30 (in decrements of 10), but varied if Sealer became stuck on a 
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given k-mer size. After two rounds of gap closing, the D. triauraria assembly still 
contained more than 2,000 single-N gaps. The remaining single-N gaps (and associated 
flanking sequence) were hard-masked with 300 Ns, and Sealer was run a second time 
using the above settings. This potentially extended the flanking sequence extracted by 
Sealer beyond the boundaries of the original tandem allele, thereby making it possible 
to find a connecting path in the graph.

The assemblies were further improved using Pilon (v. 1.22) [64] with the options --fix 
all,amb, --diploid, and --mingap 1. This attempted to fix SNPs, indels, local 
misassemblies, and ambiguous bases, as well as fill remaining gaps.

A detailed inspection of aligned reads showed that many scaffolds were mosaics of 
multiple haplotypes present in the original sample. This was a significant problem for 
highly heterozygous samples, as it could create recombinant enhancer sequences not 
found in nature. My goal therefore was to create a “phased” assembly that reflected the 
majority haplotype at each variable locus.

Pilon (v. 1.22) [64] was run a second time on the improved assemblies, but this time it 
was used as a variant detection tool to generate VCF files (option --vcf). Variants in the 
VCF file were phased using the read-based phasing tool WhatsHap (v. 0.14.1) [78], with 
the options phase, --ignore-read-groups, --tag=PS, and --indels. BCFtools (v. 1.5) [79] 
with the options view, --phased or --exclude-phased was then used to create VCF files 
with only phased or un-phased variants. To facilitate parsing of the phased VCF file, a 
sequence dictionary was first created with the tool CreateSequenceDictionary from 
Picard (v. 2.12.1-SNAPSHOT) [80], and then VariantsToTable from the Genome 
Analysis Toolkit (GATK) (v. nightly-2017-09-13-g315c945) [81] was used to create a tab-
delimited table of variants. For each phase set in the table, the majority haplotype was 
determined based on the cumulative read count of variants on each haplotype (A or B), 
with indels weighted half as much as SNPs (because of alignment issues with indels). 
Phased variants that were present on majority haplotypes were retained. For un-phased 
variants, the majority allele was retained. A new VCF file was then created using only 
the retained phased and un-phased variants. Finally, BCFtools consensus was used to 
create a new “phased” assembly by applying the variants in this VCF file to the original 
“un-phased” assembly.

Lastly, any remaining ambiguous bases (except N) were randomly assigned to a single 
base, and scaffolds shorter than 1 kb in length were removed.

BUSCO analysis

The assemblies were searched for known genes using BUSCO (v. 3.0.2) [45, 46] with 
the profile library diptera_odb9. The following options were specified in the configuration 
file: mode = genome, evalue = 1e-3, limit = 3, and long = False. The BUSCO plot was 
constructed using the included script generate_plot.py.
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Whole-genome alignment pipeline

Each montium genome was individually aligned to the D. melanogaster genome (NCBI 
Assembly ID: 202931, Release 6 plus ISO1 MT / UCSC Genome Browser Assembly ID: 
dm6). Target and query genomes were soft-masked using RepeatMasker (v. 
open-4.0.7) [47] and Tandem Repeat Finder (TRF) (v. 4.04) [48], with the options -s,  -
species drosophila, -gccalc, -nocut, and -xsmall. Pairs of genomes were aligned using 
LASTZ (v. 1.03.73) [49], with the following options from Chen et al. [38]: 
target_genome[multiple], --masking=50, --hspthresh=2200, --ydrop=3400, 
--gappedthresh=4000, --inner=2000, and --format=axt. The LASTZ alignments were 
then processed using a series of programs described in detailed by Kent et al. [50]. 
Briefly, FASTA files for the target and query assemblies were converted to 2bit format 
using faToTwoBit. Files containing chromosome / scaffold lengths were created using 
faSize with the option -detailed. Chains were built using axtChain with the option 
-linearGap=medium. The chains were then filtered using chainPreNet, and ordered into 
nets using chainNet with the option -minSpace=1. Nets were annotated using 
netSyntenic. Finally, subsets of chains found in nets were extracted using 
netChainSubset, creating liftOver chain files.

Identification of orthologous montium enhancers

Kvon et al. [52] previously described a large set of DNA fragments (tiles) that drive 
expression in the D. melanogaster embryo. A total of 3,457 tiles were positive for 
enhancer activity and PCR-verified. D. melanogaster coordinates were lifted onto each 
montium assembly using liftOver [51] with the options -minMatch=0.1 and -multiple. 
(The liftOver program was originally written to remap coordinates between assemblies 
of the same species. However, it is routinely used for interspecies lifts, and in my 
experience, it performed well.) For each montium species, the output was filtered to only 
include sequences between 1.5 kb and 3.5 kb. Pairs of D. melanogaster and putatively 
orthologous montium sequences were aligned using BLASTn (v. 2.2.31+) [59] with the 
options -task blastn-short, -dust no, -evalue 0.00029, -reward 2, and -outfmt 6.

Phylogeny reconstruction

Chen et al. [57] previously described 66 Bicoid-dependent enhancers in D. 
melanogaster. I identified a subset of 20 enhancers that were present in all 23 montium 
assemblies and spread out across the genome. I extracted coordinates for 1.4 kb 
regions centered on each enhancer, and remapped them onto each montium assembly 
using liftOver [51], with the options -minMatch=0.1 and -multiple. Sequences for each 
enhancer were aligned using MAFFT (v. 7.407) [82-84] with the linsi preset, along with 
the options --anysymbol, --ep 0.123, and --nuc. The Drosophila montium species 
subgroup phylogeny was reconstructed using maximum likelihood, as implemented in 
RAxML (v. 8.2.12) [58] with the General Time Reversible (GTR) model of nucleotide 
substitution, the Gamma model of rate heterogeneity, and maximum likelihood 
estimates of base frequencies. All parameters were estimated independently for each of 
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the 20 partitions. Branch support values were calculated based on 100 searches using 
a rapid bootstrapping algorithm. The full list of options included -p 12345, -x 12345, -# 
100, -m GTRGAMMA, --no-bfgs, and -f a. D. melanogaster was specified as the 
outgroup using the -o option.
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Supporting Information

Figure 2.S1. Diverse genome sizes, repeat contents, and heterozygosity levels 
across montium species / samples.
Figures and genome size estimates are from SGA Preqc [66]. A) Repeat content and 
genome size estimates for three montium species. The frequency of repeat branches in 
the de Bruijn graph is shown as a function of k-mer size (k=21 to k=71). The fly genome 
is plotted in dark purple. Each figure also includes six diverse reference genomes for 
comparison: bird (light blue), fish (aqua), human (dark green), oyster (yellow), snake 
(light red), and yeast (pink). Genome size estimates are based on the k-mer frequency 
spectrum, using a method that also corrects for error k-mers. Note that larger genomes 
have more repeat branches. B) Heterozygosity levels for three montium species / 
samples. The frequency of variant branches in the de Bruijn graph is shown as a 
function of k-mer size. The fly genome is plotted in dark purple, along with the 
previously described references.
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Figure 2.S2. The D. pectinifera library was heavily contaminated with high-GC % bacteria. 
Per sequence GC plots are from FastQC [65], and GC % bias plots were generated by SGA 
Preqc [66]. A) Per sequence GC plot for the contaminated reads shows a broad, high-GC % 
peak. Such secondary peaks are usually indicative of a contaminating genome. B) GC % bias 
plot of the contaminated reads shows the presence of high-GC %, high-coverage k-mers that 
are distinct from the fly genome k-mers. C) Per sequence GC plot for the decontaminated 
reads. In total, 17.3 % of the reads were removed. D) GC % bias plot for the decontaminated 
reads.

Figure 2.S3. A preliminary D. pectinifera assembly identifies high-GC %, high-average k-
mer coverage bacterial scaffolds.
The contaminated reads were assembled using SOAPdenovo2 [69]. The candidate bacterial 
scaffolds form two distinct clusters of high-GC %, high-average k-mer coverage scaffolds that 
are distinct from the fly genome scaffolds. Reads that aligned to bacterial scaffolds were 
removed (see Figure 2.S2 Parts C and D) prior to the primary MaSuRCA assembly. 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Table 2.S1. Remapping experimentally verified D. melanogaster enhancers [52] 
onto montium assemblies.

Species Attempted
Lifts

Successful 
Lifts

Number of Putative 
Orthologs 

(1.5 - 3.5 kb)

Percentage of 
Putative 

Orthologs (%)

D. kanapiae 3,457 3,449 3,117 90.2

D. birchii 3,457 3,449 3,134 90.7

D. truncata 3,457 3,449 3,095 89.5

D. punjabiensis 3,457 3,449 3,065 88.7

D. bunnanda 3,457 3,447 2,989 86.5

D. bocki 3,457 3,449 3,103 89.8

D. vulcana 3,457 3,448 3,058 88.5

D. asahinai 3,457 3,450 3,023 87.4

D. mayri 3,457 3,449 3,159 91.4

D. serrata 3,457 3,447 2,970 85.9

D. jambulina 3,457 3,450 3,032 87.7

D. lacteicornis 3,457 3,451 3,010 87.1

D. seguyi 3,457 3,444 3,057 88.4

D. pectinifera 3,457 3,449 3,055 88.4

D. tani 3,457 3,451 3,030 87.6

D. watanabe 3,457 3,449 2,969 85.9

D. auraria 3,457 3,448 3,019 87.3

D. rufa 3,457 3,452 3,020 87.4

D. bakoue 3,457 3,451 3,074 88.9

D. leontia 3,457 3,444 3,030 87.6

D. nikananu 3,457 3,451 3,012 87.1

D. burlai 3,457 3,450 3,057 88.4

D. triauraria 3,457 3,448 2,945 85.2
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Figure 2.S4. Distance matrix for the Drosophila montium subgroup based on 20 
Bicoid-dependent enhancers.
Bicoid-dependent enhancers are from [57]. Distances were calculated using the function 
dist.dna from the package ape (v. 5.2) [85], with the options model=“TN93" and 
gamma=TRUE. This uses a model developed by Tamura and Nei [86].
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Chapter 3: Studying binding site turnover in the 
Drosophila montium subgroup

Abstract
Enhancers often exhibit remarkable functional conservation despite extensive sequence 
divergence. Understanding the rules that allow enhancers to diverge, while 
simultaneously maintaining function, is a major challenge. If I can observe binding site 
turnover within the montium subgroup, then I have an unprecedented ability to identify 
key changes and events (along with their context) before they are obscured by 
additional mutations. I start by comparing the eve stripe 2 enhancer across 24 montium 
species and D. melanogaster. Importantly, I can observe one or two changes in 
transcription factor binding sites between closely related species. I also show that I can 
observe previously described patterns of binding site conservation and proximity. Next, I 
showed how patterns of (apparent) conservation and variation within the montium 
subgroup could be used to direct targeted mutagenesis experiments, and to inform 
models of enhancer grammar. To study binding site turnover on a large scale, I 
investigated the top ChIP peaks for the anterior morphogen Bicoid, the gap gene 
Krüppel, and the pioneer factor Zelda. I treated groups of orthologous binding site 
scores as continuous traits, reconstructed ancestral binding scores at each node of the 
tree, and then calculated score changes along each branch of the tree. For all three 
factors, gain events were more likely to occur along branches of the tree that also lost a 
binding site. This was true for both non-conserved and conserved sites, and most 
changes were statistically significant. However, when the analysis was repeated using 
shuffled matrices, the results were similar - though generally not as large - leaving me 
unable to conclude these were meaningful changes in transcription factor binding. The 
analysis was likely confounded by a significant fraction of non-functional montium 
sequences. Additional complications included the use of the Brownian motion model of 
evolution, and ancestral character estimation with a single species tree in the presence 
of widespread gene tree / species tree incongruence. Future analyses should focus on 
a set of high-quality bound regions, and ancestral states should be reconstructed using 
leap / jump models and individual gene trees.

Introduction
In the previous chapter, I described the sequencing and assembly of 23 genomes from 
the Drosophila montium subgroup, a large group of closely related species. I showed 
that my assemblies contain high percentages of known genes and enhancers. I also 
aligned each montium assembly to the D. melanogaster genome, and reconstructed the 
montium subgroup phylogeny using 20 enhancer regions.
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In this chapter, I leverage the resources I created in the montium subgroup to address 
fundamental questions about enhancer evolution. Enhancers frequently show 
conservation of function despite extensive sequence divergence. This has been 
demonstrated in detailed analyses of individual enhancers, such as eve stripe 2 [17-19, 
21] and sparkling [24], along with massively parallel assays like STARR-seq [27]. One 
explanation for this observation is binding site turnover: the gain and loss of sites for the 
same factor over evolutionary timescales [27, 87-91]. While such studies have provided 
dramatic examples - for example, functional conservation of the eve stripe 2 enhancer 
across 100 million years of evolution despite near-complete rearrangement of binding 
sites [21] - they also highlight key challenges. When divergence times are large, so 
many mutational events have occurred that it’s difficult to identify the compensatory 
changes that actually matter, and to order key events. By working with a large number 
of closely related species in the montium subgroup, I can study enhancers at the 
earliest stages of divergence. If binding site turnover is observable within the montium 
subgroup, then I have an unprecedented ability to identify key changes and events 
(along with their context) before they are obscured by additional mutations.

In this chapter, I start by studying the well-described eve stripe 2 enhancer across 25 
Drosophila species. Crucially, I show that individual changes in transcription factor 
binding sites are visible between closely related species. To study binding site turnover 
on a large scale, I investigated the top ChIP peaks for the factors Bicoid, Krüppel, and 
Zelda. These loci strongly overlap with known enhancers. I predicted binding sites 
within each bound-region, and looked for correlated changes in binding site scores 
along each branch of the species tree. While I did see a marked enrichment for binding 
score increases along branches that had also experienced loss events, these patterns 
were ultimately similar to those observed using shuffled matrices.

Results
Initial investigations of the eve stripe 2 enhancer

I start by investigating the extensively studied eve stripe 2 enhancer in the montium 
subgroup. Coordinates for the minimal enhancer in D. melanogaster [13] were 
remapped onto each montium species using liftOver [51], and binding sites for the 
known regulators Bicoid, Giant, Hunchback, Krüppel [9, 13], Sloppy Paired 1 [15], and 
Zelda [16] were predicted using PATSER [92], with ln(p-value) cutoffs from [21]. 
Predicted binding sites were then mapped onto a 25-species multiple sequence 
alignment (MSA) generated by MAFFT [82-84]. Figure 3.1 is a binding site plot for the 
eve stripe 2 enhancer across 24 montium species and D. melanogaster.

Detailed inspection of the plot shows that closely related species differ by only one or 
two binding sites. This is important, because it means that when key changes do occur, 
I can observe the context in which those changes happened, before they are obscured 
by additional mutational events.
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The overall arrangement of the eve stripe 2 enhancer appears to be highly conserved 
across all species (i.e., the montium subgroup and D. melanogaster). This is not 
surprising given the modest divergence times [20]. Twenty two orthologous binding sites 
are present in D. melanogaster and at least 21/24 montium species, including 
overlapping Bicoid-Krüppel, Bicoid-Giant, and Hunchback-Giant sites thought to play an 
important role in the regulation of the enhancer [9, 12-14] (but see also [22]). 
Conversely, three binding sites - a Bicoid site at MSA position 433, and two Krüppel 
sites at positions 578 and 634 - appear to be highly conserved across the montium 
subgroup, but missing in D. melanogaster. In the case of the two Krüppel sites, they 
tightly flank a cluster of highly conserved Bicoid, Hunchback, and Sloppy Paired 1 sites. 
Interestingly, this cluster is also present in D. melanogaster, but instead of flanking 
Krüppel sites, it contains a single Krüppel site overlapping one of the Bicoid sites. This 
suggests that the location of a Krüppel site relative to these Bicoid, Hunchback, and 
Sloppy Paired 1 sites might be functionally important - at least in the context of the 
overall arrangement of sites present in D. melanogaster and the montium subgroup.

I turn now to investigating previously described patterns of binding site conservation and 
arrangement in the eve stripe 2 enhancer [21]. The results are shown in Figure 3.2. 
Each group of orthologous binding sites was assigned a simple conservation score 
based on the fraction of montium species it was observed in: high, moderate, low, or 
none. Within the montium subgroup, most sites show either high conservation or no 
conservation, with little in between (Part A). Given the relatively large number of 
species, there are many novel sites, hence the excess of sites showing no 
conservation. This is consistent with a core group of binding sites that are conserved 
across the entire subgroup, along with the acquisition of new sites within small 
subclades or individual species. Each group of orthologous binding sites was also 
classified based on its proximity to sites for different factors, using the nomenclature 
from [21]. Overlapping binding sites share at least one base pair; close binding sites are 
within ten base pairs, but do not overlap; and isolated binding sites are more than 10 
base pairs apart. There is a marked enrichment for overlapping binding sites: nearly 70 
% of all binding sites overlap a site for a different factor (Part B).

To better understand the relationship between conservation scores and binding site 
proximity, Figure 3.2 also shows proximity as a function of conservation (part C), and 
conservation as a function of proximity (part D). Highly conserved sites are almost 
exclusively overlapping, as are moderately conserved sites (but in the latter case, the 
sample size is very small). Sites with low or no conservation also tend to be 
overlapping, but also include a sizable fraction of sites that are close or isolated. 
Similarly, overlapping binding sites are either highly conserved or show no conservation. 
The fraction of highly conserved binding sites decreases in sites that are close and 
isolated; whereas the fraction of sites showing low or no conservation increases. Given 
these dynamics, I wanted to better understand proximity for novel sites, which by 
definition are present in only one species. Interestingly, when a new site arises, it is far 
more likely to overlap an existing site (for a different factor), than to be close or isolated 
(Part E).
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Historically, laborious and time consuming structure-function experiments were used to 
dissect the eve stripe 2 and sparkling enhancers. While these approaches yielded key 
insights, they are impractical for large numbers of enhancers. One of the advantages of 
sequencing a large number of closely related species is that observed patterns of 
conservation and variation can be used to direct targeted mutagenesis experiments, 
and to inform models of enhancer grammar. For example, overlapping activator and 
repressor sites are thought to play an important role in the function of the eve stripe 2 
enhancer [13]. In this context, selection acts directly to preserve the arrangement of 
overlapping sites. However, simulations have shown that long-lived pairs of overlapping 
activator and repressor sites can also arise when selection acts to preserve the overall 
number of sites - not their specific arrangement - in the context of a deletion bias [22].

The extreme 5’ end of the minimal enhancer contains what appears to be a highly 
conserved cluster of overlapping Giant, Krüppel, and Zelda sites. In D. watanabe, a pair 
of adjacent substitutions decreased the strength of the Krüppel and Zelda sites. The 
predicted binding score for Krüppel dropped by more than seven points, while the score 
change for Zelda was much smaller (only 0.3 points), but enough to lower the ln(p-
value) below the plotting cutoff. (This highlights a limitation of any binding site plot: a 
site can always be present just beneath the plotting threshold.) Intriguingly, D. watanabe 
also acquired new Krüppel and Zelda sites elsewhere in the enhancer. The new Krüppel 
site is located 40 bp away, and actually appears to have arisen in the ancestor of D. 
watanabe and D. punjabiensis. If this new Krüppel site compensates for the loss of 
another site in D. watanabe, then its targeted ablation should yield aberrant eve stripe 2 
expression. Such a result would also illustrate an important point: while this looks like a 
highly conserved cluster of overlapping binding sites, the relative arrangement of sites 
might not be that important, so long as they are present somewhere in the enhancer 
[22].

In other cases, large changes are present without any obvious compensatory changes. 
For example, the extreme 3’ end of the minimal enhancer contains a cluster of 
overlapping Hunchback-Giant-Sloppy Paired 1 and Bicoid-Krüppel sites. A single 
substitution in D. pectinifera dropped binding scores for Hunchback and Sloppy Paired 1 
by 5.78 and 4.97 points, respectively. These sites are present in D. melanogaster and 
all other montium species, and overlapping activator / repressor sites are thought to 
play an important functional role in the enhancer [13]. However, D. pectinifera has not 
acquired any new Hunchback or Sloppy Paired 1 sites elsewhere in the enhancer. This 
raises several possibilities: 1) Despite the appearance of conservation, the Hunchback / 
Sloppy Paired 1 sites are unimportant, 2) Compensatory mutations involving Hunchback 
and Sloppy Paired 1 are present outside of the minimal enhancer, and 3) The loss of a 
(presumably functional) binding site is not always associated with the gain of a new site 
for the same factor. In the latter case, compensatory mutations might involve distance 
changes for existing sites, or the acquisition of new sites for different factors (as 
reported for the sparkling enhancer [24]).
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Binding site turnover in Bicoid, Krüppel, and Zelda-bound regions

Next, I move on to studying binding site turnover across hundreds of enhancers / bound 
regions. To study binding site dynamics, I needed a large set of sequences with well-
defined transcription factor binding. I investigated the top ChIP peaks from D. 
melanogaster for the anterior morphogen Bicoid (n=619) [93], the gap gene Krüppel 
(n=1,000) [93], and the pioneer factor Zelda (n=998) [94]. The top ChIP peaks are not 
strictly synonymous with enhancers, but there is strong overlap. Kvon et al. [52] 
identified roughly 3,500 embryonic enhancers by tiling across 15 % of the non-coding, 
non-repetitive D. melanogaster genome. The overlap between ChIP peaks and 
experimentally verified enhancers is 162/619 (26 %) for Bicoid; 245/1,000 (25 %) for 
Krüppel; and 190/998 (19 %) for Zelda. Given these results, it’s likely the vast majority 
of top ChIP peaks intersect enhancers within the D. melanogaster genome.

Coordinates for bound regions in D. melanogaster were remapped onto each montium 
species using liftOver [51]. The montium sequences were then filtered in an attempt to 
remove sequences / regions that were not conserved relative to D. melanogaster. 
Significant changes in the size of an orthologous bound region might indicate changes 
in binding, so such sequences were removed. After removing individual short / long 
sequences, entire regions missing four or more montium species were removed. After 
filtering, there were 393 Bicoid-bound regions (9,528 sequences), 576 Krüppel-bound 
regions (13,865 sequences), and 528 Zelda-bound regions (12,872 sequences).

Mapping changes in binding site scores onto the species tree

One approach to studying binding site dynamics would be to predict sites using a p-
value cutoff, and then treat the presence or absence of a site as a discrete trait. 
Characters could then be mapped onto the tree using parsimony or stochastic mapping. 
I adopted a different approach, in an attempt to include weaker sites, and to observe 
changes in binding strength in granular detail.

I predicted binding sites in each sequence using PATSER [92] with a score cutoff of 
zero. The binding site score is the sum of weights in the position weight matrix (PWM). 
Scores greater than zero indicate the sequence is more likely to be an instance of the 
motif than the background. This is generally more permissive than most p-value cutoffs. 
Predicted binding sites were then mapped onto multiple sequence alignments (MSAs) 
created by MAFFT [82-84], and clustered into groups of orthologous binding sites using 
a custom algorithm. Given the relatively large number of species (n=25), and the 
prevalence of low-complexity sequence in non-coding regions, alignment error was a 
significant challenge. Left uncorrected, such errors could create the false appearance of 
paired gain / loss events. I then treated each group of orthologous binding sites as a 
continuous trait, and reconstructed ancestral binding site scores at each internal node of 
the tree using maximum likelihood and the Brownian motion (BM) model of evolution, as 
implemented in the function anc.ML from the package phytools [95]. From there, I 
inferred increases / decreases in binding scores along each branch of the tree by taking 
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the difference between parent - child nodes. Overall, I think this was a more realistic 
approach than only looking at all-or-nothing gain / loss events on the tree. It also 
maximized my ability to observe binding site changes between closely related species. 
(Later on, for simplicity, I sometimes talk about “gains” and “losses”, but use the term to 
refer to both true gain / loss events, as well as changes in binding scores that do not 
completely eliminate a site.)

I started by looking at the magnitude and frequency of binding site changes across all 
branches of the tree. Figure 3.3 shows the distribution of binding score changes for 
Bicoid, Krüppel, and Zelda. The pattern is the same for all three factors. Most score 
changes are small, and the number of observed changes decreases exponentially as 
the magnitude of the change increases. Interestingly, there are twice as many gain 
events as loss events.

Correlated gain - loss changes along branches of the tree

If selection acts to preserve the total number of binding sites for a given factor in an 
enhancer / bound region, then compensatory gain - loss events should be correlated on 
the tree. (Simulations of the eve stripe 2 enhancer showed that such a simple rule could 
recapitulate well-described features such as clustered and overlapping binding sites 
[22].) When a binding site is lost (or undergoes a large decrease in binding score) along 
a given branch, are gain events (or increases in binding score) more likely to occur 
along the same branch, or its parent branch? For each transcription factor and branch 
on the tree, I divided bound regions into two groups: regions where the score of at least 
one binding site decreased by a factor-specific threshold, and regions with no such 
decrease. For each bound region, I then summed the total score increase along the 
original branch and its parent branch. Finally, I calculated the average score increase 
under both conditions (loss / no loss).

Figure 3.4 shows results for Bicoid, Krüppel, and Zelda-bound regions. Each branch on 
the tree is color-coded based on the ratio of the average score increase under the 
conditions loss / no loss. Darker reds indicate bigger differences. If a branch was too 
short for a meaningful comparison, it was colored black. The melanogaster branch, and 
the branch leading to the montium clade, were also excluded from the analysis and 
colored black. For Bicoid and Krüppel-bound regions, on average, cumulative binding 
scores increase by more than 40 % with a loss, compare to no loss. All branches (n=27) 
are statistically significant (Welch’s t-test, p < 0.05) for Bicoid, and 19/24 branches are 
significant for Krüppel. For Zelda-bound regions, binding scores increase by 
approximately 65 % with a loss, compare to no loss. Changes for 22/30 branches are 
statistically significant.

As a control, I shuffled the columns of the original matrices, and repeated the entire 
analysis. The results are similar, but the differences are generally smaller. When there’s 
a loss event, on average, cumulative binding site scores increase by 33 % within Bicoid-
bound regions, 24 % within Krüppel-bound regions, and 40 % within Zelda-bound 
regions. Many of these differences are also statistically significant: 23/27 branches for 
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Bicoid-bound regions, 17/24 branches for Krüppel-bound regions, and 10/27 branches 
for Zelda-bound regions (Welch’s t-test, p < 0.05).

Correlated gain - loss changes for conserved binding sites along branches 
of the tree

Next, I repeated the above analysis, but focused exclusively on the loss of (apparently) 
conserved binding sites. If the loss of a conserved site has a larger impact on function, 
then it might be more likely to be associated with compensatory changes. When a 
conserved site is lost (or undergoes a large decrease in binding score) along a given 
branch, are gain events (or increases in binding score) more likely to occur along the 
same branch, or its parent branch? Since changes in conserved binding sites are rare, I 
could not repeat the branch-level comparisons detailed above, while also maintaining 
adequate sample sizes. Instead, I controlled for branch length and created a single set 
of branches / bound regions that had lost a conserved site. I then created a control set 
by randomly sampling branches / bound regions that had not lost a conserved site, 
while maintaining the same composition of branches / bound regions. (For example, if 
the D. asa branch lost a conserved binding site in 15 bound regions, then the control set 
included a random sample of 15 bound regions where the D. asa branch did not lose a 
conserved site.) To control for sampling error, I created 100 randomly sampled control 
sets.

Figure 3.5 shows results for Bicoid, Krüppel, and Zelda-bound regions, for both the 
original matrix, and a shuffled matrix. When a conserved Bicoid or Krüppel site is lost 
along a branch, scores for other binding sites are more likely to increase along that 
branch as well, on average, compared to branches / bound regions that did not lose a 
conserved site. These differences are statistically significant, and do not depend on the 
control set used. However, from a practical standpoint, these differences are largely 
trivial, and shuffled matrices show similar patterns. For Zelda-bound regions, the 
relative difference is somewhat larger, but still small. Once again, the difference is 
statistically significant, and robust to various control sets. A shuffled Zelda matrix yields 
smaller differences compared to the original matrix, only half of which are statistically 
significant.
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Figure 3.1. The arrangement of binding sites in the eve stripe 2 enhancer appears 
to be highly conserved across the montium subgroup and D. melanogaster, and 
individual changes are visible between closely related species.
Coordinates for the minimal eve stripe 2 enhancer in D. melanogaster [13] were 
remapped onto each montium assembly using liftOver [51]. Binding sites for the 
regulators Bicoid, Giant, Hunchback, Krüppel [13], Sloppy Paired 1 [15], and Zelda [16] 
were predicted in each montium species using PATSER [92], with the ln(p-value) cutoffs 
from [21]. Predicted binding sites were then mapped onto a 25-species multiple 
sequence alignment (MSA) generated by MAFFT [82-84]. In the plot, each binding site 
is represented by a color-coded rectangle, the height of which is proportional to the ln(p-
value) of the predicted site. Stronger binding sites are represented by taller rectangles. 
Within each species, binding sites above the line were predicted on the positive strand, 
while sites below the line were predicted on the reverse strand. Aligned sequence in 
each species is represented by black lines; gaps are shown in gray. MSA coordinates 
are shown at the bottom of the alignment. A species tree based on 20 Bicoid-dependent 
enhancers from Chapter 2 is shown on the left. 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Figure 3.2. Binding site conservation and proximity in the eve stripe 2 enhancer 
across 24 montium species.
A) The distribution of conservation scores for all predicted binding sites. Each group of 
orthologous binding sites was assigned a simple conservation score based on the 
fraction of montium species it was observed in: high ≥ 0.8; 0.5 ≤ moderate < 0.8; 0.2 ≤ 
low < 0.5; and none < 0.2. B) Each group of orthologous binding sites was also 
classified based on its proximity to sites for different factors, using the nomenclature 
from [21]. Overlapping binding sites share at least one base pair; close binding sites are 
within ten base pairs, but do not overlap; and isolated binding sites are more than 10 
base pairs apart. C) Binding site proximity as a function of conservation score. D) 
Conservation score as a function of binding site proximity. E) Binding site proximity for 
all singleton sites, which by definition are present in only one montium species. 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Figure 3.3. Distribution of binding score changes across all branches of the 
montium subgroup tree for Bicoid, Krüppel, and Zelda.
For each factor and bound region, binding sites were predicted in each species using 
PATSER [92], with a score cutoff of zero. Predicted binding sites were then mapped 
onto multiple sequence alignments (MSAs) generated by MAFFT [82-84], and clustered 
into groups of orthologous sites. For each group of sites, I reconstructed ancestral 
binding site scores at each internal node of the tree using maximum likelihood and the 
Brownian motion (BM) model of evolution, as implemented in the function anc.ML from 
the package phytools [95]. Changes along each branch of the tree were calculated by 
taking the score difference between parent - child nodes. Since binding sites were 
predicted using a cutoff of zero, the magnitude of the maximum score change is equal 
to the maximum binding score. This is 7.584 for Bicoid, 10.622 for Krüppel, and 10.515 
for Zelda. In the figure, score changes are shown as fractions of the maximum score 
change, with a cutoff of 0.1. Changes were aggregated across all branches of the tree. 
The analysis was conducted using the original matrices, as well as matrices with 
shuffled columns. For comparison, note that there is a significant difference in the size 
of bound regions between factors. For Bicoid and Krüppel, the original bound regions in 
D. melanogaster were 1 kb, and between 300 - 400 bp for Zelda. A) Bicoid: 83,668 gain 
events, and 45,696 loss events. B) Bicoid Shuffled: 75,206 gain events, and 40,544 loss 
events. C) Krüppel: 48,823 gain events, and 23,618 loss events. D) Krüppel Shuffled: 
50,765 gain events, and 23,787 loss events. E) Zelda: 10,072 gain events, and 5,183 
loss events. F) Zelda Shuffled: 8,212 gain events, and 3,879 loss events. 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Figure 3.4. Correlated changes in binding site scores across branches of the 
montium subgroup species tree.
For each factor and bound region, binding sites were predicted in each species using 
PATSER [92], with a score cutoff of zero. Predicted binding sites were then mapped 
onto multiple sequence alignments (MSAs) generated by MAFFT [82-84], and clustered 
into groups of orthologous sites. For each group of binding site scores, ancestral scores 
were reconstructed at each internal node of the tree using maximum likelihood and the 
Brownian motion (BM) model of evolution, as implemented in the function anc.ML from 
the package phytools [95]. Changes along each branch of the tree were calculated by 
taking the score difference between parent - child nodes. Bound regions were divided 
into two groups: regions where the score of one or more binding sites decreased by at 
least a factor-specific threshold, and regions with no such decrease. The cutoffs were 
-1.896 for Bicoid, -2 for Krüppel, and -1 for Zelda. For each bound region, I then 
summed the total score increase along the original branch and its parent branch. 
Finally, I calculated the average score increase under both conditions (loss / no loss). 
Each branch on the tree is color-coded based on the ratio of the average score increase 
under the conditions loss / no loss. Darker reds indicate bigger differences. If a branch 
was too short for a meaningful comparison, it was colored black. The D. melanogaster 
branch, and the branch leading to the montium clade, were also excluded from the 
analysis and colored black. The analysis was repeated using shuffled matrices for each 
factor.
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Figure 3.5. Correlated changes in binding scores for conserved sites across 
branches of the montium subgroup species tree.
For each factor (Bicoid, Krüppel, and Zelda) and condition (original or shuffled matrix), 
box plots compare the cumulative score increase with and without the loss of a 
conserved site. Cumulative score increases are per bound region, and adjusted for 
branch length differences on the tree. Results are shown for a single control set. The 
bracket linking adjacent box plots indicates whether or not the difference is statistically 
significant using Welch’s t-test (*), and also shows the number of control sets that 
produce a statistically significant difference. A) Bicoid matrix: 2,028 branches / bound 
regions lost a conserved site. The average cumulative score increase with a loss is 
4.50, and 4.04 without a loss. This difference is statistically significant (p < 1.50e-8). All 
control set comparisons are also statistically significant (p < 0.05). Shuffled Bicoid 
matrix: 1,736 branches / bound regions lost a conserved site. The average cumulative 
score increase with a loss is 3.89, and 3.59 without a loss. This difference is statistically 
significant (p < 0.0002). All control set comparisons are also statistically significant (p < 
0.05). B) Krüppel matrix: 1,685 branches / bound regions lost a conserved site. The 
average cumulative score increase with a loss is 2.83, and 2.63 without a loss. This 
difference is statistically significant (p < 0.0005). All control set comparisons are also 
statistically significant (p < 0.05). Shuffled Krüppel matrix: 1,507 branches / bound 
regions lost a conserved site. The average cumulative score increase with a loss is 
2.87, and 2.69 without a loss. This difference is statistically significant (p < 0.002). For 
the remaining control sets, 98/100 comparisons are also statistically significant (p < 
0.05). C) Zelda matrix: 1,585 branches / bound regions lost a conserved site. The 
average cumulative score increase with a loss is 0.73, and 0.55 without a loss. This 
difference is statistically significant (p < 2.96e-14). All control set comparisons are also 
statistically significant (p < 0.05). Shuffled Zelda matrix: 832 branches / bound regions 
lost a conserved site. The average cumulative score increase with a loss is 0.49, and 
0.45 without a loss. This difference is not statistically significant (p = 0.11). For the 
remaining control sets, 55/100 comparisons are statistically significant (p < 0.05).
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Discussion
I started by looking at the extensively studied eve stripe 2 enhancer across 24 montium 
species and D. melanogaster. As expected, given the density of species and the recent 
divergence times, I observed one or two changes in transcription factor binding sites 
between closely related species. This level of resolution ensures that when key 
mutational events do occur, I can observe potential compensatory changes before they 
are obscured by additional mutations. I then showed that I could observe previously 
described patterns of binding site conservation and proximity for the known regulators of 
the eve stripe 2 enhancer [21]. Within the montium subgroup, a core group of sites 
appeared to be conserved across the radiation. Many new sites also appeared in 
subclades or individual species. The vast majority of binding sites were overlapping - 
whether they appeared to be highly conserved, or arose in a single species.

Next, I showed how patterns of (apparent) conservation and variation within the 
montium subgroup could be used to direct targeted mutagenesis experiments, and test 
models of enhancer grammar. Overlapping pairs of activators and repressors are 
thought to play an important functional role in the enhancer [9, 12-14]. However, 
simulations have shown that well-described enhancer features - such as overlapping 
and clustered sites - can also arise when selection acts on the overall number of sites, 
not their specific arrangement [22]. I highlighted two cases in which a seemingly highly 
conserved and overlapping binding site was lost in a single montium species. In the first 
case, a new, non-overlapping site arose elsewhere in the enhancer - suggesting that 
close proximity to other binding sites was not strictly necessary. Mutagenesis of the new 
site could help to answer this question. In the second case, no new binding site was 
visible in the minimal enhancer. This again challenges the potential importance of 
overlapping and conserved sites. It also shows that should compensatory changes 
exist, they don’t necessarily have to involve the acquisition of sites for the same factor. 
Again, mutagenesis experiments could help to identify the compensatory changes in 
such cases.

After an initial exploration of the eve stripe 2 enhancer, I moved on to investigating 
hundreds of regions bound by the transcription factors Bicoid, Krüppel, and Zelda 
across 25 Drosophila species. I modeled groups of orthologous binding site scores as 
continuous traits, reconstructed ancestral binding scores at each node of the tree, and 
calculated score changes along each branch of tree. I think this was a more realistic 
methodology compared to all-or-nothing approaches to binding site dynamics. It allowed 
me to observe both true gain and loss events, as well smaller increases or decreases in 
binding strength.

Bound regions that lost a binding site (or saw a large decrease in binding score) along a 
given branch of the tree were more likely to gain sites along the same branch (or parent 
branch), compared to regions that did not lose a site. The average increase was about 
40 % for Bicoid and Krüppel-bound regions, and 65 % for Zelda-bound regions. Most of 
these differences were statistically significant. Bound regions that lost a conserved site 
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also showed similar results. Taken in isolation, these results indicate that the loss of a 
binding site is often (but certainly not always) compensated by the gain of a new site for 
the same factor. However, shuffled matrices for Bicoid, Krüppel, and Zelda show similar 
patterns, making it difficult to conclude these are meaningful changes in transcription 
factor binding. That being said, the fact that the original matrices produced larger 
differences suggests that there may be real (but subtle) signals that are being obscured 
by a variety of confounding factors.

One likely possibility is the presence of large numbers of non-functional montium 
sequences. Multiple studies have shown that transcription factor binding can diverge 
between closely related species [27, 88-91]. Enhancers themselves can also turnover 
[27]. In this chapter, I remapped known ChIP peaks from D. melanogaster onto montium 
assemblies. It’s possible that a significant fraction of these regions are unbound in one 
or all montium species. Problems related to remapping coordinates between species 
using liftOver [51] are also possible. If an orthologous enhancer / bound region was no 
longer under selection, then it would essentially drift, accumulating both gain and loss 
events at an increased rate. If such regions were mixed with a larger pool of constrained 
sequences, they could drive the correlated gain / loss signal seen with both the original 
and shuffled matrices - for reasons that have nothing to do with compensatory changes.

Accordingly, future efforts should focus on manually curating bound regions to identify 
individual sequences (or even entire regions) that no longer appear to be constrained, 
or are otherwise problematic. I attempted to do this with several algorithmic filtering 
steps, but manual inspection of each locus is likely required. After creating a set of high-
quality regions, the entire analysis should be repeated. If non-functional sequences 
were obscuring a real signal, then the difference between the original and shuffled 
matrices should increase. In the future, it might also be advantageous to generate ChIP-
seq and STARR-seq data within the montium subgroup itself. Data from only a handful 
of species would suffice to cover all major subclades.

Another confounding factor is that the suite of potential compensatory mutations might 
be large. In this chapter, I focused on gain - loss events for the same transcription 
factor. Many other changes are possible though. For example, the loss of a binding site 
for one factor might be compensated by the gain of a site for a different factor. Or 
instead of gaining a new site, the spacing between existing sites - for either the same 
factor, or different factors - could change so as to mitigate the effects of a loss. Evidence 
from the sparkling enhancer indicates that compensatory changes can involve different 
factors [24]. In my own analysis of the eve stripe 2 enhancer, I observed that D. 
pectinifera lost a strong Hunchback site that appeared to be conserved across the 
montium subgroup and D. melanogaster, suggesting functional importance.  
(Conservation can sometimes be illusionary though [22].) D. pectinifera did not acquire 
any new Hunchback sites. As the diversity of compensatory changes increase, it 
becomes harder to see a signal for any one type of change. But such processes could 
account for the flexibility seen in the eve stripe 2 and sparkling enhancers. This would 
also align with flexible models of enhancer evolution, such as the “billboard” [14, 30, 31] 
and “TF collective” [32] models. Understanding the full suite of compensatory changes, 
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their relative importance, and how / when they operate, will be a major challenge going 
forward.

In addition, this analysis posed a number of methodological challenges. Another 
limitation is using the Brownian motion (BM) model of evolution to estimate ancestral 
binding site scores. While this model is often used for estimating ancestral states of 
continuous characters [e.g., 85, 95], forcing changes to occur gradually can be 
misleading. For example, consider a single mutational event that causes a large and 
discontinuous increase in binding site score. This change should generally occur along 
a single branch of the tree. However, the forced gradualism of the BM model spreads 
this change out across multiple nodes, leading to the inference of multiple gain events 
across the tree. It can also create the erroneous appearance of loss events in closely 
related species. (This can also confound any conclusions about the relative number of 
gain / loss events for binding site scores.) Recently, models have been developed that 
allow for leaps / jumps in the evolution of continuous characters [e.g., 96, 97, 98]. 
However, current implementations of these models for ancestral character estimation 
are prohibitively time-consuming when tens of thousands of characters must be 
reconstructed for a single transcription factor / set of bound regions.

Finally, another potential problem is ancestral character estimation using a single 
species tree in the presence of widespread gene tree / species tree incongruence. 
Previous phylogenetic reconstructions of the montium subgroup - typically based on a 
small number of genes - have produced incongruent trees [34, 37, 53-56]. I also 
observed incongruence between individual gene trees when reconstructing a species 
tree based on 20 Bicoid-dependent enhancers (data not shown). Given the large 
number of closely related species, incomplete lineage sorting (ILS) and introgressive 
hybridization are likely major drivers of discordance. When characters are mapped onto 
a single species tree, incongruence creates the appearance of homoplasy, and leads to 
an overestimate of the number of gain / loss events on the tree. This phenomenon is 
known as hemiplasy [99-101]. This could confound my efforts to observe correlated gain 
/ loss events along branches of the tree. Future efforts should focus on developing 
ancestral character estimation methods that can account for ILS. Short of that, the 
analysis could be repeated by mapping characters onto each gene tree. To aggregate 
the data, this would require combining results across all branches for a single bound 
region. So with the exception of the leaves of the tree, I would lose the ability to observe 
branch-level differences as in Figure 3.4.

Despite these limitations and challenges, the montium subgroup has proven itself to be 
a tractable system with which to study enhancer evolution.

Materials and Methods
montium eve stripe 2 enhancer analysis
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Coordinates for the minimal eve stripe 2 enhancer in D. melanogaster [13] (RedFly ID: 
RFRC:0000000276.003) were remapped onto each montium assembly using liftOver 
[51], with the options -minMatch=0.1 and -multiple.

Binding sites for the factors Bicoid, Giant, Hunchback, Krüppel, Sloppy Paired 1, and 
Zelda were predicted in each species using PATSER (v. 3e) [92], with the options -c, -lp, 
-s, and a background file based on the average nucleotide frequencies across the top 
Bicoid-bound regions. Frequency matrices for Bicoid, Hunchback, and Krüppel were 
from [102]; Giant from [103, 104]; Sloppy Paired 1 from [105]; and Zelda from [104]. For 
all factors except Zelda, I used the ln(p-value) cutoffs from [21], which were chosen so 
that predicted binding sites coincided with experimentally verified sites (DNase I 
footprinting) in D. melanogaster. The cutoffs were as follows: Bicoid: -6, Giant: -5.5, 
Hunchback: -6, Krüppel: -6, and Sloppy Paired 1: -6. Separately, the ln(p-value) cutoff 
for Zelda was set to -6.

Orthologous sequences for each enhancer were aligned using MAFFT (v. 7.407)  
[82-84] with the linsi preset, along with the options --anysymbol, --ep 0.123, and --nuc. 
Predicted binding sites were then mapped onto the multiple sequence alignment (MSA). 
See Figure 3.1 for additional details about the binding site plot.

ChIP data

For Bicoid and Krüppel, I started with coordinates for the top ChIP-chip peaks (1 % 
FDR, symmetric-null test) from stage 5 embryos in D. melanogaster [93]. This included 
619 Bicoid-bound regions, and 1,000 Krüppel-bound regions. For each bound region, I 
extracted coordinates for a 1 kb region centered on the peak. For Zelda, I started with 
coordinates for the top 1,000 ChIP-seq peaks from cycle 14 embryos in D. 
melanogaster [94]. These peaks were generally far more resolved than the broader 
Bicoid and Krüppel peaks. Bound regions shorter than 300 bp, or larger than 400 bp, 
were removed, leaving 796 Zelda-bound regions.

The overlap between the above ChIP peaks, and the D. melanogaster enhancers 
described in [52], were determined using BEDTools (v. 2.17.0) [106] intersect.

Coordinates for D. melanogaster ChIP peaks were remapped onto each montium 
assembly using liftOver [51], with the options -minMatch=0.1 and -multiple. For Bicoid 
and Krüppel-bound regions, individual montium sequences shorter than 750 bp, or 
longer than 1,300 bp, were removed. For Zelda-bound regions, montium sequences 
shorter than 250 bp, or longer than 400 bp, were removed. Finally, entire bound regions 
were removed if they contained less than 21 montium species.

Predicting binding sites and mapping them onto MSAs of ChIP regions

Binding sites for the factors Bicoid, Krüppel, and Zelda were predicted in each species 
using PATSER (v. 3e) [92], with the options -c, -ls 0, -s, and a background file based on 

�52



the average nucleotide frequencies across the top Bicoid-bound regions. This predicted 
sites on both strands with scores greater than or equal to zero. For a given species and 
factor, binding sites on the same strand were collapsed into a single site if they 
overlapped by four or more bases.

Orthologous sequences for each bound region were aligned using MAFFT (v. 7.407)  
[82-84] with the linsi preset, along with the options --anysymbol, --ep 0.123, and --nuc. 
Predicted binding sites were then mapped onto MSAs. Because of insertion events in 
other species, coordinates for mapped binding sites might be divided across one or 
more gaps. In such cases, the site was anchored onto the MSA at the position with the 
largest number of continuous bases.

Binding sites in different species that were on the same strand and position in the MSA 
were grouped into arrays of orthologous sites. Because of alignment error, orthologous 
binding sites might not always map to the same position in the MSA. This is a significant 
problem, since it can erroneously create the appearance of gain / loss events. I wrote 
an algorithm that merged nearby binding sites into arrays of putatively orthologous sites. 
First, all overlapping arrays on the same strand were grouped together. The algorithm 
then iteratively attempted to merge all arrays within the same group, starting with the 
closest and highest scoring arrays. If a binding site for at least one species was present 
in both arrays, and the scores were greater than or equal to one-tenth the maximum 
score, the merger was rejected. This equated to 0.75 for Bicoid, and 1.0 for Krüppel and 
Zelda. When a merger was accepted, the alignment position of the higher-scoring array 
was retained. If the alignment error was large enough, orthologous binding sites might 
not even overlap in the MSA. So after merging overlapping arrays, the algorithm went 
back and attempted to merge all adjacent arrays within six base pairs, using the method 
described above.

Reconstructing ancestral binding site scores

Ancestral binding site scores were estimated by the function anc.ML from the package 
phytools (v. 0.6.60) [95], using maximum likelihood, Brownian motion (model=“BM”), 
and the species tree reported in Chapter 2. Score changes along each branch of the 
tree were calculated by taking the difference between parent - child nodes. 

For each branch, bound regions were divided into two groups (loss / no loss) based on 
whether or not the score of at least one binding site decreased by a factor-specific 
threshold. The cutoffs were -1.896 for Bicoid, -2 for Krüppel, and -1 for Zelda. 
Cumulative score increases were calculated along each branch and parent branch by 
summing all score increases above a factor-specific threshold (one-tenth the maximum 
score increase). This equated to 0.7584 for Bicoid, 1.0622 for Krüppel, and 1.0515 for 
Zelda.
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Chapter 4: Sequencing the genome of E. 
muscae ‘Berkeley’, a parasite that manipulates 
D. melanogaster behavior
The work detailed in this chapter was a joint effort between Michael Bronski, Carolyn 
Elya, and Michael Eisen. The chapter itself was written by Michael Bronski. 

Abstract
Elya et al. [107] recently discovered a strain of Entomophthora muscae infecting wild 
Drosophila, and developed methods to maintain infected D. melanogaster in the 
laboratory. This is an exceptional system with which to study the molecular basis of 
parasite-induced behavioral manipulation. E. muscae ‘Berkeley’ produces a suite of 
behavioral changes, including summit disease, proboscis extension / attachment, and 
raised / spread wings. In this chapter, we describe the sequencing and assembly of the 
E. muscae ‘Berkeley’ genome. Based on a k-mer frequency spectrum, the estimated 
genome size is 1.3 Gb. We assembled the genome from a 10X Chromium library using 
the Supernova assembler. This yielded a 1.24 Gb assembly. Given that large genome 
sizes and polyploidy appear to be common among related entomopathogenic fungi, 
estimating the haploid genome size in the absence of additional experimental data is 
challenging - but it might be around 650 Mb. The E. muscae ‘Berkeley’ genome is highly 
repetitive, with a repeat content of roughly 85 %. The BUSCO assessment of the 10X 
assembly showed that 40 % of known single-copy fungal genes are missing or 
fragmented. The significance of this is unclear. In a separate analysis using single-
isoform BUSCOs (SIBs), we showed that the average coverage of single-copy SIBs is 
twice that of duplicated SIBs; and that single-copy SIBs contain large numbers of 
unfiltered biallelic SNPs. These data indicate that single-copy SIBs represent genomic 
regions where only one of two closely related haplotypes was assembled. In a 
testament to the high repeat content, the alignment of scaffolds containing the same 
duplicated SIB produced characteristic X-alignments, where the forward strand of one 
scaffold also aligned to the reverse complement of the second scaffold. Finally, to look 
for mis-assemblies, we aligned PacBio long-reads to the 10X assembly. Nearly one 
quarter of the alignments include flaps of at least 4 kb, nearly half the average read 
length. The majority of these flaps cannot be explained by intersections with scaffold 
ends or large gaps, suggesting numerous-misassemblies. Future efforts will focus on 
improving and annotating the genome. Going forward, the E. muscae ‘Berkeley’ 
genome will support our efforts to understand the mechanistic basis of fungal-induced 
behavioral manipulations in D. melanogaster.
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Introduction
Parasitic manipulation of host behavior is ubiquitous

Many parasites have evolved the ability to manipulate the behavior of their host, often
in dramatic fashion. Notable examples include Ophiocordyceps-infected “zombie ants” 
that bite down on north-facing leaves with precise temperature and humidity conditions 
[e.g., 108], and rats that lose their natural aversion to cat urine when infected by 
Toxoplasma gondii [e.g., 109, 110]. The sheer number of known examples indicates that 
such ecological interactions are ubiquitous. Despite widespread interest in extended 
phenotypes [111], we know little about the molecular basis of these manipulations. This 
is driven in large part by the dearth of resources available in most host-parasite 
systems. What’s needed is a resource-rich and tractable host-parasite system.

The insect destroyer (and manipulator) Entomophthora muscae

The entomopathogenic fungus Entomophthora muscae, first described by
Cohn [112], infects flies from several Dipteran families, including Muscidae and
Drosophilidae [e.g., 113]. In the late afternoon and early evening, critically ill flies climb 
to elevated positions to die, a phenomenon known as summit disease. Once in position, 
the fly extends its proboscis to the substrate, where it is anchored in place by rhizoids 
and fungal-produced secretions [114]. The fly then spreads it wings, raises them up and 
off the abdomen, and finally dies in place [115]. Throughout the night and early morning, 
the sporulating cadaver showers the surrounding area (and any exposed flies) with 
infectious conidia [116, 117]. What’s more, healthy male house flies appear to be 
attracted to mycosed female cadavers, and become infected when they attempt to 
mount the cadavers [e.g., 118]. The molecular basis of these manipulations is entirely 
unknown. An extensive literature describes E. muscae infection in the house fly, Musca 
domestica. This stems in large part from the desire to use E. muscae to control filth fly 
populations on farms. Elya et al. [107] recently discovered an E. muscae strain infecting 
wild Drosophila in Berkeley, CA, and developed methods to maintain infected D. 
melanogaster in the laboratory. We start by reviewing the M. domestica literature, and 
then move on to recent advances in D. melanogaster.

Typical E. muscae symptoms in infected house flies

Today, Entomophthora muscae (Cohn) Fresenius [112] is known to be a species-
complex, its members collectively referred to as Entomophthora muscae sensu lato. 
The complex is currently divided into six species based on the number of nuclei per 
conidium, the nuclear diameter, the dimensions of the primary conidia, and the host 
species [119-122].

Infection begins when a conidium (an infectious spore) penetrates the host cuticle, 
almost always on the abdomen. Protoplasts first invade the hemocoel, and then 
colonize the fat-rich abdomen. Fungal growth is concentrated in the abdomen for the 
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majority of the four to five-day incubation period. However, after consuming the fat body, 
the pathogen begins to invade tissues and organs in the abdomen, thorax, and head 
(including the brain). At this point, the fly is near death [123].

Throughout the course of the incubation period, infected house flies show varying
responses to temperature. On days two and three of a five-day incubation period, flies
actively seek out warm temperatures, a phenomenon known as behavioral fever. When
placed in a temperature gradient ranging from 26oC to 42oC, most infected flies quickly 
move to 42oC, where they remain for the next several hours. At this point in the 
infection, incubation at 35oC - 42oC for 4 - 6 hours is sufficient to cure most flies of the 
pathogen. As the infection progresses though, behavioral fever is replaced by heat 
avoidance, a behavioral manipulation thought to benefit the sporulation / germination of 
the fungus. When placed in the same temperature gradient on day five, most infected 
flies quickly move to 26oC, and remain there (or at 28oC) until death [124, 125]. As 
death approaches, additional behavioral changes appear.

In the late afternoon and early evening, critically ill flies crawl to elevated positions to
die, a phenomenon known as summit disease. Flies usually come to rest on vertical 
surfaces, but in those rare instances when they die on horizontal surfaces, they are 
always found on the underside of the object [117]. After coming to rest in an elevated 
location, the fly extends its proboscis to the substrate, where it is anchored in place by 
rhizoids and a sticky secretion [114]. The fly then spreads its wings latero-dorsally, 
raises them up and off the abdomen, and then finally dies in place. This sequence – 
from the last locomotory movement to the complete lifting of the wings – usually takes 
75 minutes [115, 122].

Several hours after host death, conidiophores erupt from intersegmental membranes
along the abdomen, forming prominent white bands. Throughout the night and early
morning, the cadaver releases showers of forcibly ejected primary conidia, which in turn 
give rise to secondary conidia. Peak primary discharge occurs 10 - 12 hours post 
mortem, while the lagged secondary discharge peaks 16 -18 hours post mortem. From 
its elevated location, the cadaver is well positioned to shower the surrounding area (and 
any exposed flies) with infectious conidia. Interestingly, the discharge of highly 
infectious secondary conidia peaks between the hours of 7 and 10 a.m., a time when 
flies are active and aggregating [116, 117].

The observation that infected flies always die in the late afternoon / early evening
prompted detailed ethological experiments in the laboratory. By altering light-dark cycles 
in the laboratory, Krasnoff et al. [115] showed that infected house flies always die 0 - 5 
hours before the onset of darkness. This pattern is consistent with a gated phenomenon 
controlled by a biological clock. Killing flies in the late afternoon / early evening likely 
ensures a cool and humid environment for the sporulation of the cadaver and the 
germination of conidia. But, as Mullens and co-authors speculated, host death may be 
timed so that highly infectious secondary conidia are released at a time when they can 
infect large numbers of exposed flies.
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In addition to conidia showers, the pathogen appears to spread through house fly
populations by manipulating the attractiveness of mycosed females. Reports from both 
the field and the laboratory indicate that healthy male house flies frequently attempt to 
copulate with mycosed female cadavers [117, 118, 126, 127]. What’s more, when 
presented with a choice between a mycosed female and an uninfected female cadaver, 
males almost always choose the mycosed female [118]. The visual and / or chemical 
cues that mediate this attraction are unknown, but it may account for the higher 
incidence of infection seen in males [117, 126]. As they attempt to mount the cadaver, 
males come into direct contact with the sporulating abdomen, all but ensuring infection 
and death. Before succumbing to the mycosis though, they continue to transfer spores 
to numerous uninfected females via mechanical transmission [128].

E. muscae infections in Drosophila

Historically, three members of the E. muscae s. l. species complex were reported to 
infect Drosophila: E. ferdinandii, E. muscae sensu stricto, and E. schizophorae [113, 
122, 129, 130]. Furthermore, two of these species were known to infect D. 
melanogaster – both in the field and in the laboratory – and produce typical infections 
(e.g., summit disease, proboscis extension / attachment, and white bands of 
conidiophores). Goldstein [129] described naturally occurring epizootics in New York 
that produced typical E. muscae s. l. symptoms in D. melanogaster and D. repleta. 
Based on sketches of primary conidia, these outbreaks appear to have been caused by 
E. ferdinandii. In the laboratory, Steinkraus and Kramer [113] exposed flies from eight 
Dipteran families – including D. melanogaster – to conidia showers from an isolate of E. 
schizophorae. This isolate infected 11 % of exposed D. melanogaster, and produced a 
typical mycosis. This study also highlights the impressive host range of some isolates.

Elya et al. [107] recently discovered a strain of E. muscae s. l. infecting wild Drosophila 
in Berkeley, CA, and developed methods to maintain infected D. melanogaster in the 
laboratory. Under optimized laboratory conditions, E. muscae ‘Berkeley’ kills 
approximately 80 % of CantonS flies after a 4 - 5 day incubation period. Based on 
imaging of primary conidia, this isolate appears most closely related to E. muscae 
sensu stricto. E. muscae ‘Berkeley’ infection produces characteristic symptoms, 
including summit disease, proboscis extension / attachment, raised / spread wings, and 
white bands of conidiophores around the abdomen. Elya et al. [107] also assembled the 
E. muscae ‘Berkeley’ transcriptome, and profiled host and parasite gene expression at 
key time points throughout the infection. Intriguingly, histological experiments showed 
that the parasite invades the nervous system early, and is visible in the brain within 48 
hours of infection. However, the significance of this finding as it relates to behavioral 
manipulation is still unclear.

Little is known about the E. muscae genome. The closest reference genome is 
Conidiobolus coronatus, which at 40 Mb is typical for most fungi [131]. However, it is a 
distantly related member of the phylum Entomophthoramycota [132, 133]. In contrast, 
experimental evidence from the far more closely related fungus Entomophaga aulicae 
indicates its genome might be as large as 8 Gb [134]. Evidence also suggests that E. 
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muscae could be polyploid. Ultrastructural studies of mitosis in species from the genera 
Erynia and Strongwellsea reported chromosome counts of 8, 12+, 16, and 32 [reviewed 
in 135]. These genera belong to the subfamily Erynioideae, one of two subfamilies in 
the larger Entomophthoraceae. The other subfamily, the Entomophthoroideae, includes 
E. muscae [132, 133]. Based on this limited survey, polyploidy might be common in the 
Entomophthoraceae, with a basal chromosome number of 8 [135, Richard Humber, 
personal communication].

In this chapter, we describe our efforts to assemble the E. muscae ‘Berkeley’ genome. A 
draft genome will aid our current and future efforts to understand the mechanistic basis 
of E. muscae ‘Berkeley’-induced behavioral manipulations.

Results
Assembling the E. muscae ‘Berkeley’ genome using Chromium linked-
reads 

Early on, when the size of the E. muscae ‘Berkeley’ genome was still unclear, we 
sequenced 350 bp and 550 bp Illumina PCR-Free libraries, along with two PacBio 
SMRT Cells. The Illumina libraries clustered poorly, and much of what did cluster was 
adapter dimer. But we were able to create a low-coverage k-mer frequency spectrum 
(Figure 4.S1). This indicated that the E. muscae ‘Berkeley’ genome is around 1.3 Gb, 
and initial exploration of the PacBio reads showed that it is also highly repetitive.

To contend with a large and highly repetitive genome, we assembled the E. muscae 
‘Berkeley’ genome with the SuperNova assembler [136] using Chromium linked-reads 
from 10X Genomics [137, 138]. While this technology uses Illumina short-reads, the 
library making process preserves long-distance information that can be used to 
assemble large phase blocks. Table 4.1 reports summary statistics for the 10X 
assembly. The scaffold N50 is 435,293 bp, and the longest scaffold is 2,251,750 bp. The 
total scaffold length (assembly size) is 1,235,972,964 bp. The assembly contains 
approximately 110 Mb of gaps. Contig sizes are significantly shorter, with a contig N50 
of 34,915 bp. When the standard N50 calculation is repeated for all integers from 1 to 
100, the result is an “Nx plot” [139]. Figure 4.1 includes an Nx plot showing the 
distribution of scaffold lengths across the assembly, along with a cumulative scaffold 
length plot. The GC content of the assembly is 41.33 %. We discuss the E. muscae 
genome size, which is not necessarily synonymous with the assembly size, at the end 
of the Results.

The E. muscae ‘Berkeley’ genome is highly repetitive

We annotated repeats in the E. muscae 10X assembly using RepeatModeler [140] and 
RepeatMasker [47]. Commensurate with its large size, the E. muscae genome is highly 
repetitive. Our initial annotation shows that approximately 83 % of the genome is 
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repeats (Table 4.2). The majority of repeats fall into various classes of retrotransposons, 
but there is also a small but significant fraction of DNA elements. Repeats vary in size 
and age, and based on the transcriptome, some are still active. Subsequent curation 
suggests that the repeat content is at least 85 % (Michael Eisen, personal 
communication).

The 10X assembly is missing many known genes

One way to assess the quality of an assembly is by annotation: a good assembly should 
contain a high percentage of known genes. Benchmarking Universal Single-Copy 
Orthologs (BUSCOs) are single-copy genes present in more than 90 % of surveyed 
species [45, 46]. The fungal BUSCO (v. 3.0.2) set contains 290 genes, and is based on 
a survey of 85 species. Figure 4.2 shows the BUSCO (v. 3.0.2) assessment results for 
the 10X assembly. Forty percent of BUSCOs are missing or fragmented. For the 60 % 
of BUSCOs that are complete, roughly half are duplicated.

The BUSCO results are difficult to interpret. Typically, large numbers of missing and 
fragmented genes indicate problems with the assembly. However, given that E. muscae 
is only distantly related to other sequenced fungal genomes, the BUSCO set might be a 
poor measure of genes present in E. muscae and related species. Many genes also 
appear to be duplicated. We return to this observation later in the Results.

PacBio long-reads suggest many mis-assemblies in the 10X genome

Early on, when the size of the E. muscae genome was still uncertain, we sequenced 
two PacBio SMRT Cells. Later, we sequenced five more, bringing the total to seven. 
The relatively high cost of PacBio data precluded sequencing additional SMRT Cells.

After processing all seven SMRT Cells, there were 527,523 circular consensus 
sequence (CCS) reads totaling 5,396,500,791 bp of sequence. This equates to 
approximately 4.4x coverage of the 1.24 Gb assembly. Figure 4.3 shows the length 
distribution of CCS reads. The average read length is 10,230 bp (median = 9,231 bp; 
maximum = 59,863 bp).

Given the highly repetitive nature of the E. muscae genome, long-reads could be 
advantageous during the initial de novo assembly. The Maryland Super Read Cabog 
Assembler (MaSuRCA) can perform hybrid de novo assemblies using Illumina short-
reads and PacBio/MinION long-reads [40, 141]. The lower limit for PacBio coverage is 
generally around 10x, but we were curious if 4.4x coverage could produce a working 
assembly. However, we were unable to secure a high-memory machine (512 Gb - 1 Tb) 
that could run an assembly for 3 - 4 weeks. Low-coverage PacBio data can also be 
used to identify structural variants (SVs) in existing assemblies, using tools like 
Parliament [142] and PBHoney [143]. Unfortunately, these tools were not designed for 
large and highly repetitive draft genomes (Andrew Carroll, personal communication).
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Given these limitations, we did the next best thing: use the alignment of PacBio long-
reads to look for errors in the 10X assembly. Long-reads that fail to align end-to-end 
could indicate misassemblies.

CCS reads were aligned to a “long” form of the 10X assembly (scaffolds >= 40 kb) using 
BLASR [144], with settings optimized for the human genome (another large and 
repetitive genome). Nearly 98 % of the reads aligned to the 10X assembly. Reads that 
failed to align tended to be short (Figure 4.S2). For reads that did align, BLASR 
assigned a mapping quality (MAPQ) to each alignment that ranged from 0 to 254 (the 
best); however, in practice, these qualities were “binary”. For example, 481,515 reads 
aligned with MAPQ=254, while 33,104 reads aligned with MAPQ=0. (The remaining 889 
reads fell somewhere in between.) Unlike reads that didn’t align at all, MAPQ=0 reads 
were not short. In fact, there were discernible differences in the read length distributions 
of MAPQ=0 and MAPQ=254 reads, suggesting problems with the assembly, not the 
reads themselves (Figure 4.S2).

To evaluate the 10X assembly in granular detail, we parsed the cigar strings of the 
MAPQ=254 reads. The cigar string is a detailed record of every match, mismatch, 
insertion, deletion, and soft clip in the alignment. (If the 5’ or 3’ end of a read doesn’t 
align to the reference, those bases are soft clipped in the alignment, creating a “flap”.) 
Despite the high mapping quality, many of the alignments contain large insertions, 
deletions, and flaps. For example, as reported in Table 4.3, 198,135 alignments (41 %) 
have at least a 1 kb flap; and 107,515 alignments (22 %) have at least a 4 kb flap - 
nearly half the average read length.

There are several reasons why a long-read might not align end-to-end. The “long” 10X 
assembly contains approximately 108 Mb of gaps, some as long as 60 kb. Gaps of that 
size are difficult for even the longest of PacBio reads to span, leading to soft clipping at 
the margins of the gap. Similarly, the fragmented assembly contains 3,677 scaffolds. 
Long-reads will be soft clipped when an alignment reaches the end of a scaffold. We 
repeated the above the calculations, but this time ignored flaps that were near ends of 
scaffolds or large gaps. At most, gaps and scaffold ends account for only 20 % of flaps 
(Table 4.3). This suggests that the 10X assembly is missing large chunks of the E. 
muscae genome. Given the highly repetitive nature of the genome, these regions could 
include collapsed repeats and other misassemblies.

To visualize all of the alignments in aggregate, we compared the predicted and 
calculated accuracies for all MAPQ=254 reads (Figure 4.4). Based on several quality 
metrics, each PacBio CCS read has a predicted accuracy. The average predicted 
accuracy is 0.86. For every aligned read, we compared the predicted accuracy to an 
adjusted calculated accuracy, where we accounted for mismatches and deletions that 
intersected gaps in the assembly, as well as flaps that occurred near scaffold ends or 
large gaps. While the calculated accuracies for many reads were similar to their 
predicted accuracies, the “smear” down the middle of the plot indicates that many reads 
aligned poorly to the 10X assembly. Taken as a whole, this suggests that the 10X 
assembly contains many misassemblies.
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Read Depth and SNPs within Genes in the 10X Assembly

An initial analysis of the transcriptome assembly showed that there were two closely 
related haplotypes for many genes. We next wanted to see how these haplotypes were 
present in the 10X assembly. For simplicity, we initially focused on a small subset of 311 
genes that met the following criteria: 1) The Trinity transcriptome assembly produced a 
single isoform, and 2) Based on a BUSCO (v. 1.1) [45] analysis of the transcriptome, the 
gene was complete and single-copy. We called such genes single-isoform BUSCOs 
(SIBs).

We aligned single-isoform BUSCOs to the 10X assembly and identified SIBs that are 
complete on one scaffold (single-copy), or two different scaffolds (duplicated). Across 
the 10X assembly, 87 SIBs are single-copy, and 117 are duplicated. (Other SIBs fall 
outside these categories for a variety of reasons, including being fragmented across 
one or more scaffolds; complete on one scaffold but fragmented on at least one other 
scaffold; or duplicated on the same scaffold.) We then mapped short-read Illumina data 
to the 10X assembly, and compared the average coverage across single-copy and 
duplicated SIBs (Figure 4.5). Coverage levels within both SIB classes are variable, but 
the mean coverage for single-copy SIBs is twice that of duplicated SIBs (p < 5.1e-55, 
Welch’s t-test). The duplicated SIBs are also generally clustered around the average 
coverage across the entire 10X assembly (1X in Figure 4.5). In contrast, single-copy 
SIBs approach twice the assembly-wide average (2X in Figure 4.5).

Next, we compared the number of unfiltered single nucleotide polymorphisms (SNPs) in 
single-copy and duplicated SIBs. The difference is striking. There are 2,260 biallelic 
SNPs spread across 76/87 single-copy SIBs, but only 88 SNPs divided between 16/117 
duplicated SIBs (Figure 4.5). Taken together, the coverage and SNP results indicate that 
single-copy SIBs represent genomic regions where only one of two closely related 
haplotypes was assembled. When short-reads are aligned to the genome, reads from 
both haplotypes pileup in the same region, doubling the coverage and vastly increasing 
the number of SNPs. For duplicated SIBs, both haplotypes were assembled 
independently and placed on different scaffolds, suggesting that such sequences are 
not present on the same physical chromosome. Small numbers of SNPs can plausibly 
arise within duplicated SIBs. For example, the assembler might collapse a repeat 
present on one haplotype.

To better understand large-scale structures in the genome, we aligned pairs of scaffolds 
using LASTZ [49]. Figure 4.6 shows the alignment of three pairs of scaffolds that share 
at least one single-isoform BUSCO, along with two random scaffolds that do not share 
any SIBs. All scaffold pairs produce a characteristic X-alignment, indicating that the 
forward strand of the first scaffold also aligns to the reverse complement of the second 
scaffold. X-alignments were first described in bacteria, where the most likely mechanism 
involves large chromosomal inversions about the origin of replication or terminus [145]. 
In E. muscae, we think such alignments are likely a product of the genome’s dense 
repeat structure. Due to extensive retrotransposition, any two regions of the genome 
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share a large number of repetitive elements, inserted in various orientations. In this way, 
elements on the forward strand of one scaffold can align to similar elements on the 
reverse complement of another scaffold - even if the scaffolds share no non-repetitive 
sequence. The density of repeats makes it difficult to compare the similarity of non-
coding regions. For the scaffold pairs in Parts A and B, the alignments appear to be 
driven by more than just random repeats, with relatively long alignment blocks. There 
are also significant gaps. The scaffold pair in Part C looks no different than random 
scaffolds, indicating that the alignment is driven largely by repetitive elements.

How Large is the E. muscae Genome?

Our initial k-mer frequency spectrum suggested the E. muscae ‘Berkeley’ genome might 
be around 1.3 Gb. The cumulative length of the 10X assembly is also 1.24 Gb. A de 
novo transcriptome assembly showed that many genes contain two distinct haplotypes, 
and based on our analysis of single-isoform BUSCOS (SIBs) in the 10X genome 
assembly, many of these haplotypes were assembled independently on different 
scaffolds. Absent additional biological data, accurately estimating the genome size is 
difficult - especially considering that polyploidy appears to be common in closely related 
species [135]. Taken as a whole though, the evidence suggests that the haploid 
genome size might be around 650 Mb.
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Figure 4.1. Nx plot and cumulative scaffold length plot for the E. muscae 10X 
assembly.
A) To calculate the scaffold N50, scaffold lengths are ordered from longest to shortest, 
and then summed. The N50 is the scaffold length that brings the sum above 50 % of the 
total scaffold length (assembly size). When this calculation is repeated for all integers 
from 1 to 100, the result is an Nx graph [139]. B) Scaffold lengths are ordered from 
longest to shortest, and summed. The cumulative scaffold length is plotted as a function 
of the number of summed scaffolds (scaffold index).
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Table 4.1. E. muscae 10X Assembly Statistics.

Number of Scaffolds 43,011

Total Scaffold Length (bp) 1,235,972,964

Scaffold N50 (bp) 435,293

Longest Scaffold (bp) 2,251,750

Number of Gaps 44,558

Total Gap Length (bp) 110,478,770

Contig N50 (bp) 34,915

Longest Contig (bp) 323,750
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Table 4.2. RepeatModeler [140] / RepeatMasker [47] results for the E. muscae 10X 
assembly.

Element Type Number of 
Elements

Length 
Occupied (bp)

Percentage of 
Assembly (%)

SINEs 0 0 0

ALUs 0 0 0

MIRs 0 0 0

LINEs 5,667 5,521,628 0.45

LINE1 2,430 1,590,366 0.13

LINE2 0 0 0

L3/CR1 0 0 0

LTR Elements 244,926 380,724,694 30.80

ERVL 419 173,082 0.01

ERVL-MaLRs 0 0 0

ERV_classI 11,657 12,807,371 1.04

ERV_classII 2,602 943,225 0.08

DNA Elements 150,480 200,904,537 16.25

hAT-Charlie 0 0 0

TcMar-Tigger 0 0 0

Unclassified 554,590 433,490,114 35.07

Total Interspersed Repeats 1,020,640,973 82.58
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Figure 4.2. Many genes in the E. muscae 10X assembly are missing, fragmented, 
and duplicated.
BUSCO [45, 46] assessment results for the E. muscae 10X assembly. The fungal 
BUSCO set contains 290 genes. The bar graph shows the number of BUSCOs that are 
complete and single-copy, complete and duplicated, fragmented, and missing.

Figure 4.3. Length distribution of E. muscae PacBio CCS reads.
Length distribution for 527,523 CCS reads from seven SMRT Cells. The average CCS 
read length is 10,230 bp (median = 9,231 bp), and the longest is 59,863 bp.
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Table 4.3. Many PacBio CCS reads align to the E. muscae 10X assembly with large 
flaps, the vast majority of which cannot be explained by gaps or scaffold ends.
In total, 481,515 PacBio CCS reads aligned with a mapping quality of 254. The numbers 
below include only MAPQ=254 reads.

Figure 4.4. The calculated accuracy for many PacBio CCS reads aligned to the E. 
muscae 10X assembly is significantly lower than the predicted accuracy.
For each PacBio CCS read with MAPQ=254, we plotted the predicted accuracy and an 
adjusted calculated accuracy. The calculated accuracy was equal to the number of 
matches divided by the sum of matches, mismatches, insertions, deletions, and flaps. 
Mismatches or deletions that intersected gaps in the 10X assembly were excluded from 
the calculation, as were flaps that occurred near scaffold ends or large gaps. The 
dashed line is y = x. 

Length of 5’ or 3’ 
Flap (bp)

Number of Reads 
with Flap

Number of Reads 
with Flap Near 
Scaffold End or 

Gap

Percentage of 
Reads with Flap 

Near Scaffold End 
or Gap (%)

500 223,331 42,076 18.8

1,000 198,135 39,181 19.8

2,000 160,809 32,490 20.2

4,000 107,515 20,830 19.4
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Figure 4.5. Single-copy SIBs have twice the average coverage, and vastly more 
SNPs, than duplicated SIBs.
Single-isoform BUSCOs (SIBs) (n=311) were aligned to the 10X assembly using 
BLASTn [59], revealing 87 SIBs that are complete on one scaffold (single-copy) and 117 
SIBs that are complete on two different scaffolds (duplicated). A) Illumina short-reads 
were aligned to the 10X assembly, and used to calculate the average coverage within 
single-copy and duplicated SIBs. These regions include introns and exons. B) The 
number of unfiltered biallelic SNPs within single-copy and duplicated SIBs in the 10X 
assembly. 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Figure 4.6. The alignment of pairs of E. muscae scaffolds with at least one shared 
single-isoform BUSCO produces X-alignments.
Pairs of scaffolds were aligned using LASTZ [49], and dot plots representing alignment 
blocks (gap-free segments) were constructed in R. Parts A), B), and C) show 
alignments between pairs of scaffolds that share at least one duplicated SIB. Efforts 
were made to select pairs of scaffolds with similar sizes; however, the SIB was not 
always centrally located on both scaffolds. D) The alignment of random scaffolds that do 
not share any genes from our small set of SIBs. All scaffold pairs produce a 
characteristic X-alignment, indicating that the forward strand of the first scaffold also 
aligns to the reverse complement of the second scaffold.
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Discussion
In this chapter, we described the sequencing and assembly of the challenging E. 
muscae ‘Berkeley’ genome. It is exceptionally large compared to previously sequenced 
fungi, and highly repetitive (at least 85 %). Our best assembly was generated using 
technology from 10X Genomics.

The alignment of PacBio long-reads to the 10X assembly suggests that it contains many 
misassemblies. Nearly one quarter of the alignments include flaps of at least 4 kb, 
nearly half the average read length. This indicates that scaffolds are missing large 
pieces of the genome. (It’s unlikely flaps arise because of systematic problems with the 
PacBio reads themselves.) Given the highly repetitive nature of the genome, many of 
these sequences likely involve repeats. But other lines of evidence suggest that the 10X 
assembly may also be missing genes.

The BUSCO assessment of the 10X assembly showed that 40 % of known single-copy 
fungal genes are missing or fragmented. This typically indicates problems with the 
assembly. However, given that Entomophthora is distantly related to previously 
sequenced fungal species, the BUSCO set might not be a good way to assess the genic 
content of the assembly. In a separate analysis using single-isoform BUSCOs (SIBs), 
we found that the average coverage of single-copy SIBs is twice that of duplicated SIBs. 
Single-copy SIBs also contain large numbers of unfiltered biallelic SNPs. These data 
indicate that single-copy SIBs represent genomic regions where only one of two closely 
related haplotypes was assembled. So the 10X assembly does appear to be missing 
some genic regions.

At this point, generating an improved assembly requires additional sequencing data. If 
we can secure a high-memory server for 3 - 4 weeks, a hybrid de novo assembly using 
MaSuRCA is an attractive option. This assembler can combine Illumina short-reads with 
either PacBio long-reads or Oxford Nanopore MinION ultra-long reads (but not both) 
[40, 141]. So one option is to double our existing PacBio coverage so that it approaches 
the requisite 10x coverage. Or, we could generate MinION ultra-long reads (which can 
reach hundreds of kb), and then evaluate the resulting assembly using our low-
coverage PacBio data. Given the size and density of repeats, the latter approach might 
be the most useful.

Going forward, it will also be helpful to annotate the genome - using either our existing 
10X assembly, or a new de novo assembly. Given that many of the annotated genes will 
likely be novel, understanding their function will be a challenge.

Future efforts to characterize the E. muscae ‘Berkeley’ genome should also include 
experimental work. Accurately estimating the genome size is difficult using only 
sequencing data. The haploid genome size might be around 650 Mb. Flow cytometry 
could be used to estimate the total amount of DNA in a single nucleus, and 
ultrastructural studies of mitosis could provide chromosome counts. Previous work 
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indicates that polyploidy might be common in the Entomophthoraceae, with a basal 
chromosome number of 8 [135, Richard Humber, personal communication]. Additionally, 
all cell types (e.g., protoplasts, conidiophores, and conidia) appear to be multinucleate. 
One intriguing possibility is that different nuclei within the same cell differ genetically, a 
phenomenon known as heterokaryon. Given that the number of nuclei per cell type 
varies within a somewhat broad range, the partitioning of nuclei does not appear to be 
strictly controlled. This probably makes heterokaryon unlikely. To answer this question 
experimentally, future work should focus on isolating and sequencing individual nuclei 
from the same cell.

Going forward, the E. muscae ‘Berkeley’ genome will support our ongoing efforts to 
understand the mechanistic and molecular basis of behavioral manipulation. It will also 
aid future comparative studies aimed at understanding the evolution of genome size 
and repeat content within this ancient fungal lineage.

Materials and Methods
Initial Illumina data and 10X assembly

We ran into several practical difficulties when we tried to sequence this genome. We 
first created 350 bp and 550 bp Illumina TruSeq DNA PCR-Free libraries, and attempted 
to cluster them on a HiSeq2500 System. The libraries clustered poorly, and up to 40 % 
of what did cluster was adapter dimer. We created a k-mer frequency spectrum using 
the remaining data. k-mers were counted using Jellyfish (v. 2.2.6) [146] with k=31. 
Based on a method from [147], the estimated genome size is roughly 1.3 Gb. Next, a 
PCR-amplified library was created, and run a HiSeq4000 System. This library appeared 
to be significantly biased, probably because of the PCR amplification.

A 10X Chromium [137, 138] library was prepared by the UC Davis Genomics Core. The 
library was first clustered on an Illumina HiSeq4000 System, generating 150 bp paired-
end reads. Later, the same library was clustered on an Illumina HiSeq2500 System, 
generating 150 bp paired-end reads. The second round of sequencing was done at the 
Vincent J. Coates Genomics Sequencing Laboratory at UC Berkeley. All results in this 
chapter describe assembly and analysis from the first round of sequencing. Reads were 
assembled using Supernova [136], with the output option --style=pseudohap. This 
creates a single record for each scaffold.

Repeat Annotation and BUSCO Analysis of the 10X Genome Assembly

Repeats in the 10X assembly were annotated using RepeatModeler [140] and 
RepeatMasker [47].

The 10X assembly was searched for known genes using BUSCO (v. 3.0.2) [45, 46], with 
the profile library fungi_odb9. This BUSCO set contains 290 genes. The following 
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options were specified in the configuration file: mode = genome, evalue = 1e-3, limit = 3, 
and long = False. The BUSCO plot was constructed using the included script 
generate_plot.py.

PacBio Data

We sequenced seven SMRT Cells on a PacBio RSII Instrument using P6v2/C4v2 
chemistry. The resulting SMRT Cell movies (.bax.h5 files) were converted to unaligned 
PacBio BAM files using bax2bam (v. 0.0.8) with the options --subread and  
--pulsefeatures=DeletionQV,DeletionTag,InsertionQV,IPD,MergeQV,SubstitutionQV, 
PulseWidth,SubstitutionTag. Subreads from the same ZMW were merged into a single 
circular consensus sequence (CCS) using the ccs program (v. 2.1.0 (commit a256e12-
dirty)) with the options --maxLength=60000, --minPasses=0, 
--minPredictedAccuracy=0.75, --polish, and --richQVs.

CCS reads were aligned to the “long” version of our E. muscae 10X assembly using 
BLASR (v. 5.3.9c6f0a5) [144], with the following options from Chaisson et al. [148]: 
--bestn 1, --maxAnchorsPerPosition 100, --affineAlign, --affineOpen 100, 
--affineExtend 0, --insertion 5, --deletion 5, --extend, --maxExtendDropoff 20, 
--clipping soft, and --bam.

The adjusted calculated accuracy of an alignment was equal to the number of matches 
divided by the sum of matches, mismatches, insertions, deletions, and flaps. 
Mismatches or deletions that intersected gaps in the 10X assembly were excluded from 
the calculation. Soft clipping (flaps) were also ignored if they occurred within 150 bp of a 
scaffold end, or within 50 bp of the boundary of a large gap (on either side).

Single-isoform BUSCO Analysis

BUSCO (v. 1.1b1) [45] was run on the Trinity transcriptome assembly with the options -l 
fungi and -m trans. The fungi BUSCO set contained 1,438 genes. If the Trinity 
transcriptome assembly produced a single isoform, and the BUSCO analysis showed 
the gene to be complete and single-copy, we called it a single-isoform BUSCO (SIB). 
(Genes with multiple splice isoforms are sometimes marked as duplicated in a BUSCO 
analysis.) There were 311 SIBs.

Single-isoform BUSCOs (SIBs) were aligned to the 10X assembly using BLASTn (v. 
2.2.31+) [59] with an Expect value (E) cutoff of 1e-9. The output was parsed to identify 
SIBs that were complete on one scaffold, or on two different scaffolds. Reads from a 
10X library run on an Illumina HiSeq2500 System were adapter trimmed, and then 
aligned to the 10X assembly using Bowtie2 (v. 2.2.3) [70] with the options --local and -X 
800. Per-base coverage values were calculated using pileup (BBMap v. 36.11) [67] with 
the options 32bit=t, delcoverage=f, secondary=f, and basecov. Unfiltered SNPs were 
called with samtools (v. 0.1.19-96b5f2294a) [79] mpileup with the options -u and -g, 
followed by bcftools (v. 0.1.19-96b5f2294a) with the options -v, -m, and -O z.
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Pairs of scaffolds containing the same SIB were aligned using LASTZ (v. 1.03.73) [49], 
with the options --chain and --format=rdotplot. Alignment blocks (gap-free segments) 
were plotted in R.
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Supporting Information

Figure 4.S1. k-mer frequency spectrum (k=31) for E. muscae ‘Berkeley’.
The k-mer frequency spectrum was generated using data from Illumina TruSeq DNA 
PCR-Free libraries (350 bp and 550 bp) clustered on a HiSeq2500 System. The 
libraries clustered poorly, hence the low coverage. k-mers were counted using Jellyfish 
[146] with k=31. Using a genome estimation method from [147], the E. muscae 
‘Berkeley’ genome is approximately 1.3 Gb.

Figure 4.S2. PacBio CCS reads that did not align to the E. muscae 10X assembly 
tend to be short, whereas aligned reads with MAPQ=0 are full-length reads.
A) The length distribution of 11,965 unaligned PacBio CCS reads. B) The length 
distribution of 33,104 reads that aligned with a mapping quality (MAPQ) of zero. 
Mapping qualities were assigned by BLASR [144]. 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