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Abstract

Magnetic resonance imaging (MRI) has long been recognized as a powerful tool for

cardiovascular imaging because of its unique potential to measure blood flow, cardiac wall

motion, and tissue properties jointly. However, many clinical applications of cardiac MRI have

been limited by low imaging speed. In this paper, we present a novel method to accelerate

cardiovascular MRI through the integration of parallel imaging, low-rank modeling, and sparse

modeling. This method consists of a novel image model and specialized data acquisition. Of

particular novelty is the proposed low-rank model component, which is specially adapted to the

particular low-rank structure of cardiovascular signals. Simulations and in vivo experiments were

performed to evaluate the method, as well as an analysis of the low-rank structure of a numerical

cardiovascular phantom. Cardiac imaging experiments were carried out on both human and rat

subjects without the use of ECG or respiratory gating and without breath holds. The proposed

method reconstructed 2-D human cardiac images up to 22 fps and 1.0 mm × 1.0 mm spatial
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resolution and 3-D rat cardiac images at 67 fps and 0.65 mm × 0.65 mm × 0.31 mm spatial

resolution. These capabilities will enhance the practical utility of cardiovascular MRI.

Keywords

Cardiovascular MRI; group sparsity; inverse problems; low-rank modeling; partial separability
(PS)

I. INTRODUCTION

CARDIOVASCULAR diseases such as congenital heart disease or coronary artery disease

are a major cause of death around the globe. It has long been a dream of imaging scientists

to develop advanced imaging methods capable of capturing the structural and functional

changes of the beating heart in real time. Over the last five decades, significant progress has

been made, leading to the successful development and application of several noninvasive

cardiac imaging modalities, including echocardiography [1], cardiac CT [2], cardiac PET

(positron emission tomography) [3], cardiac SPECT (single photon emission computed

tomography) [4], and cardiac MRI (magnetic resonance imaging) [5]. Cardiovascular MRI

has a unique potential to allow multiple comprehensive cardiac assessments in a single

integrated examination [6], such as measurement of blood flow and cardiac wall motion,

assessment of tissue properties, etc. [7], [8]. However, the low imaging speeds of existing

MRI technology have limited its research and clinical impact.

Significant efforts have been made over the last three decades to develop high-speed MRI

technology, resulting in a large number of methods. These methods can be grouped into

three categories: 1) fast scanning methods using special pulse sequences [9]–[13]; 2) parallel

imaging methods using phased array coils [14]–[17]; and more recently, 3) sparse sampling

methods [18]–[36].

Sparse sampling methods for cardiac MRI can be partitioned into two subcategories: those

exploiting the sparsity of cardiovascular images in various domains [22], [24], [25], [26],

[27], and those exploiting the partial separability (PS)-induced low-rank properties of

cardiac images [30]–[33]. Because sparsity and low-rankness are complementary properties,

methods have been proposed recently which jointly enforce both the PS model and signal

sparsity. Examples include PS-Sparse [34], [35] and k-t SLR [36].

In this paper, we present a novel method that synergistically integrates fast scanning, parallel

imaging, and both low-rank and sparse modeling. We have successfully used the technique

to perform 2-D human cardiac imaging up to 22 fps and 1.0 mm × 1.0 mm spatial resolution

and 3-D rat cardiac imaging at 67 fps and 0.65 mm × 0.65 mm × 0.31 mm spatial resolution

without the use of ECG gating, respiratory gating, or breath holds. This unprecedented 3-D

capability enables simultaneous whole-heart imaging of cardiac motion, respiratory motion,

and first-pass myocardial perfusion. This in turn allows multiple cardiac assessments

including measurement of ejection fraction, cardiac output, and myocardial blood flow in a

single experiment. We believe that this capability would improve the practical impact of

cardiovascular MRI.

Christodoulou et al. Page 2

IEEE Trans Biomed Eng. Author manuscript; available in PMC 2014 August 12.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



The rest of the paper is organized as follows. Section II describes the proposed method in

detail. Section III shows some representative results obtained using the proposed method,

and Section IV contains the conclusion of the paper.

II. PROPOSED METHOD

The proposed method achieves high-speed cardiac imaging by using a novel data acquisition

scheme that sparsely samples (k, t)-space. The sparse sampling scheme is enabled by a new

image model capable of reconstructing high-quality images from highly undersampled data.

This model effectively integrates: 1) sparse sampling based on “regional” PS (a form of low-

rank modeling); 2) sparse sampling based on compressed sensing (CS) (a form of sparse

modeling); and 3) sparse sampling based on sensitivity encoding using phased array coils

(often known as parallel imaging). In this section, we describe our proposed method in

detail.

A. Spatiotemporal Image Model

We represent the spatiotemporal changes of cardiac images using an Lth-order PS model

[30], [31],

(1)

Equivalently, the (k, t)-space signal  dr can be

expressed as

(2)

where . The Lth-order PS model in (1) implies that the following

Casorati matrix

which can be constructed for any arbitrary set of indices  has a rank

of no more than L [31], [33]. The same is true for the Casorati matrix C(ρ). It has been

observed that cardiac (k, t)-space signals are often partially separable to a low order (as

illustrated in Fig. 1) because the high degree of spatiotemporal correlation makes

 linearly dependent (M > L).

The basic PS model assumes that the entire image shares a common temporal subspace of

same dimension. There are several ways to extend the basic PS model for cardiac imaging

[37], [38]. For example, noting that cardiac and noncardiac anatomy undergo different types
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of motion, the spatiotemporal signal changes can be more efficiently represented by a

regional PS model as

(3)

where  span the temporal subspace for the cardiac region (Ω)

and the noncardiac region, respectively. In practice, we may further assume that

 since any background motion (e.g., respiratory

motion) also affects the cardiac region. Therefore, we can rewrite (3) as

(4)

where it is assumed that L2 ≥ L1 Equation (4) implies that  span the entire

temporal subspace for d(k, t) or ρ(r, t), while temporal signal changes in noncardiac regions

live only in the subspace spanned by . The basic PS model corresponds to L1 =

L2.

Given a (k, t)-space dataset , we can express the singular value

decomposition (SVD) of its Casorati matrix C(d) as

(5)

where σℓ is the ℓth singular value, and where uℓ and vℓ are the ℓth left and right singular

vectors, respectively. Clearly, we have L = L2. An experimental “fact” that can be taken

advantage of for constructing the PS model in (4) is that the dominant right singular vectors

tend to capture the “low-frequency” (e.g., respiratory) temporal signal changes, while the

“high-frequency” components represent mainly cardiac signal changes (as illustrated in Fig.

2 below and also in Fig. 4 in Section III-A). Therefore, one set of temporal basis functions

for ρ(r, t) can be defined in the form  (note that the ℓth column of v is equal to

vℓ), which is already partitioned according to the assumptions in (4).

B. Data Acquisition

The (k, t)-space signal from a parallel array of Q coils can be expressed as

(6)

where Sq (r) is the sensitivity weighting function and ρq (r, t) = Sq (r)(r, t) the sensitivity-

weighted image of the qth coil. Conventional imaging methods sample k-space at the
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Nyquist rate and reconstruct each ρq (r, t) using conventional reconstruction methods. These

individual coil images  are then typically combined using the sum-of-squares

algorithm, producing . However, sampling highdimensional k-

space at the Nyquist rate results in low imaging speeds which often violate the temporal

Nyquist rate associated with rapid cardiac and respiratory motions. Parallel imaging, low-

rank modeling, and sparse representation each provide a complementary avenue for signal

recovery from undersampled (k, t)-space data. Here, we integrate these capabilities to

achieve high spatiotemporal resolution for cardiac imaging.

The proposed data acquisition scheme is characterized by the collection of two datasets

denoted as D1 and D2 here. For simplicity, we ignore the readout direction of k-space. D1

contains data in a few k-space locations at a high temporal rate (satisfying the temporal

Nyquist criterion), and D2 contains data from sparse (k, t)-space locations. This scheme is

motivated by the signal model in (4): D1 can just be navigator data (or training data) used to

determine the temporal basis functions  and D2 should contain imaging data with

proper contrast-weighting for determining . Using navigator (or training) data for

model estimation in MR dynamic imaging was introduced in [18], and the idea was later

used in several other publications (e.g., [19], [30]-[32]).

Let . Here,  covers a few k-space locations to ensure

that the temporal Nyquist criterion is satisfied, without being subject to the spatial Nyquist

constraint or any spatial resolution considerations. In practice,  often sample the

central k-space based on signal-to-noise considerations. For each kj,1, we assume that dq

(kj,1, t) is measured for t = t1, t2,…, tN, and that this sampling rate satisfies the temporal

Nyquist criterion for the underlying signal. The data in D1 can be rearranged into Q Casorati

matrices Cq = C(dq), for q = 1, 2,… , Q. All the Cq’s share the same temporal subspace as

ρ(r, t), as the inclusion of time-invariant coil sensitivity weightings Sq (r) in (6) does not

alter partial separability of the (k, t)-space data. We can then compute the SVD of the

expanded Casorati matrix  and define the temporal

basis functions as  Having this set of prede-fined temporal basis functions is

enormously useful in low-rank modeling [35] because: 1) it reduces the number of degrees-

of-freedom in the PS model; 2) it simplifies the model-fitting inverse problem so that only

the spatial coefficients  need to be determined; and perhaps more importantly, 3)

it improves the quality of the resulting reconstructions.

With  being defined, we have a lot of flexibility in acquiring

 to obtain sufficient data for determining the spatial coefficients

of the PS model without being subject to the Nyquist constraint along both the spatial and

temporal directions. The following practical factors should be considered in deciding the (k,

t)-space sampling locations  in a specific data acquisition scheme.
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First, with sensitivity-encoding using Q receiver coils, we can undersample k-space by a

factor of P ≥ Q according to multi-channel sampling theory [17]. In practice, we choose P

« Q to avoid the well-known ill-conditioning problem associated with conventional parallel

imaging. In conventional parallel imaging, there is a tradeoff between k-space

undersampling and temporal undersampling. By integrating parallel imaging with low-rank

modeling, the proposed method avoids this tradeoff: temporal undersampling is allowed in

PS model-based image reconstruction (as discussed in Section II-C). Therefore, the

proposed method allows more flexibility in placing  and enables sparser

sampling of (k, t)-space than conventional parallel imaging.

Second, in parallel imaging, image reconstruction requires either explicit knowledge of each

Sq (r) [15] or implicit knowledge, often in the form of auto-calibration signal (ACS) lines

measured from Nyquist samples in the central region of k-space [16]. The proposed method

can use either strategy, although we use the latter in our implementation. Third, the proposed

method utilizes a spatial-spectral sparsity constraint to regularize the PS model to avoid any

potential ill-conditioning problem associated with (k, t)-space undersampling [35]. Sparse

modeling is most effective with “incoherent” data acquisition [23]. In our proposed method,

one can gain the desired incoherence by sampling (k, t)-space in a randomized order [22].

Simply put, for a given kj,2 , temporal sampling should not be periodic, i.e., tj,2 ≠ jΔt.

Further details of our implementation can be found in Section III.

C. Image Reconstruction

Equation (1) admits the factorization C(ρ) = ΨΦ, where Ψij = ψj(ri) and Φij = φj(tj) Given a

predetermined  we can reconstruct  (ρ) by solving for . We do this by solving the

following optimization problem:

(7)

where

and

(8)

R{Ψ} concatenates the rightmost columns of Ψ (i.e., Ψ L1 +1 through ΨL2), and vec(·) is the

vector constructed by concatenating the columns of the argument matrix. ∥R{Ψ}∥ enforces
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the subspace structure in (4), and  is a spatial-spectral sparsity contraint

widely used in CS-based cardiac MRI (e.g., [22], [24], [25], [27], [33], [35]).

The constraint ∥R{Ψ}∥1,2 promotes group sparsity of  in order to enforce the

subspace structure in (4). Defining x(i) as the ith group of some vector x, then the mixed

(1,2)-norm is defined as  [39], [40]. Equation (8) distributes the higher-

order spatial coefficients  into different groups. For each L1 < l ≤ L2, each set

of cardiac spatial coefficients {ψl(rm)}m|rm ∈Ω comprises a group, as does each individual

noncardiac spatial co-efficient ψl(rm), rm ∉ Ω. As a result, the cardiac region takes on an

effective model order up to L2 and each noncardiac voxel individually takes on an effective

model order of L1 or slightly higher. This grouping promotes a uniformly high model order

over the cardiac region and a spatially varying low model order over the noncardiac region,

introducing flexibility to the choices of L1 and L2 . This flexibility is desirable for model

order selection and region identification in practical applications because: if either L1 or L2

is chosen too small, then the representational power of the model is reduced, leading to

model bias; if either L1 or L2 is chosen too high, then the model becomes sensitive to noise

and reconstruction quality will be heavily dependent on regularization. Similarly, this

flexibility also allows imprecise specification of Ω, as voxels incorrectly placed outside Ω

would also be allowed to take on a higher model order. Voxels incorrectly placed inside Ω

will have higher model orders than necessary, but the model overfitting problem would still

be addressed by spatial-spectral sparsity regularization. The group sparsity constraint

reduces these potential pitfalls while still allowing the option to exactly enforce the basic PS

model by using L1 = L2.

Note that when λ1 = 0 or L1 = L2, the reconstruction problem in (7) integrates the ℓ1-norm

regularized basic PS model [34], [35] with parallel imaging. If we further select L1 = L2

min{M, N}, i.e., reconstruct a full-rank image, then we would obtain an (r, f)-space sparsity

inverse problem similar k-t SPARSE-SENSE [27].

We solve the convex optimization problem in (7) by using an additive half-quadratic

minimization algorithm [41], [42] extended to handle (1,2)-norm regularization and

combined with a continuation procedure [43]. This algorithmic approach has previously

been shown to be efficient for similar problems [35]. For simplicity of notation, we define

the operator  in order to express the

regularization constraints in (7) using an alternative (1,2)-norm expression with groupings

such that

(9)

Using this simplified notation, (7) becomes
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(10)

which is a straightforward (1,2)-norm regularized inverse problem.

The sensitivity encoding functions  must also be known in order to solve (7). In

our implementation, we obtain these functions from GRAPPA [16] reconstructions of the

time-averaged measured data. We first average the measured (k, t)-space data at each k-

space location over time, yielding a static k-space dataset  We treat each of

these datasets as measurements of a function  which in our implementation is

downsampled in the ky direction by a factor of P (except over the ACS region, which has

NACS Nyquist-sampled k-space lines). We then use GRAPPA to reconstitute each  for

which inverse Fourier reconstruction yields  The sensitivity encoding functions are

then defined as  where ρref (r) is a coil reference image usually

produced from  by the sum-of-squares algorithm. This strategy, which extends

themethod in [44] to produce full-resolution sensitivity encoding functions, combines

advantages of GRAPPA reconstruction (e.g., robustness to overlapping geometry) with the

simple joint-channel reconstruction of the SENSE [15] inverse problem.

III. RESULTS AND DISCUSSION

All data in this paper were collected according to the strategy outlined in Section II-B, with

implementation as follows. Successive readouts of  alternated between D1 and

D2 such that J1 = J2 = J and tj,2 = (tj, 1 + TR) ∀j, where TR is the time between readouts.

Assuming that kx was the readout direction, then D1 contains (k, t)-space data from Nd

unique (ky , kz)-space locations, sampled in repeating order: kj,2 = k(j−Nd), 2 ∀ j < Nd. For D2,

each ky,j,2 was drawn from a set consisting of 1) NACS central ky-space locations with a

sampling rate Δky satisfying the Nyquist criterion and 2) additional ky-space locations at the

sampling rate PΔky. No k-space undersampling was performed in the kz direction. We

produced the sampling schedule  from successive random permutations

of the resulting (ky, kz)-space locations. Fig. 3 illustrates a 2-D example of the sampling

patterns implemented throughout this paper.

A. Analysis of the Low-Rank Model

Here, we present an analysis of low-rank structure in a numerical cardiovascular phantom

ρ(r, t). This analysis demonstrates the utility of the model in (4) when combined with the

proposed data acquisition/subspace definition scheme using the SVD of D1 to define . The

phantom was generated from in vivo human short axis MR images, and it features variable-

rate cardiac and respiratory motion. D1 was collected with Nd = 5. Section III-B describes

this phantom in greater detail.
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The SVD of C(ρ) yields insight into the low-rank structure of cardiovascular images. As ℓ

increases, signal in the spatial “eigenmaps”  becomes more concentrated in the

cardiac region than in the noncardiac region. Fig. 4 shows image representations of |uℓ| and

Re{vℓ} for ℓ = 1, 5, 19 from the cardiac phantom. Each eigenmap contains cardiac signal;

however, by ℓ = 19, the noncardiac signal is highly sparse, limited to only a few voxels over

the vasculature.

In the following paragraphs, we will denote C1 and C2 as the mutually exclusive

submatrices of C(ρ) which represent the cardiac and noncardiac regions of the image,

respectively. Formally, these submatrices are described as C1 = [C(ρ)mn]m |rm ∊Ω, n= 1,2,…,N

and C2 = [C (ρ)mn]m |rm ∉Ω, n= 1,2,…,N. We further denote  as the column space of

 and E1 and E2 as the rank-L Eckart-Young column spaces for 

respectively. The root-mean-square (RMS) error of a matrix X approximating some C is

given by the Frobenius norm ∥C - X∥F, and the corresponding normalized RMS (NRMS)

error is given by ∥C - X∥F/∥C∥F.

Here, we compare the approximation errors resulting from different low-rank

approximations of  The lowest RMS approximation errors achievable by an

Lth-order PS model with predetermined  result from projecting  onto

. The lowest possible rank-L approximation errors foreach region result from

projecting  onto E1 and E2, respectively; these approximation errors can be

calculated directly from the singular values of C1 and C2

Fig. 5 shows the corresponding NRMS error values as a function of model order L. The

error curves from the Eckart–Young approximation are an indicator of the intrinsic rank

properties of each region. It is evident that very low-order representations of the noncardiac

region can match the accuracy of moderately low-order representations of the cardiac

region. Here, a rank-6 approximation of C2 is as accurate as a rank-54 approximation of C1

(as measured by NRMS error). When compared to the ideal regional subspaces, there only is

a small loss of accuracy associated with use of the suboptimal estimate  the relatively

small size of this loss suggests that the intrinsic rank properties of cardiovascular images can

be successfully and practically exploited using the nested subspace strategy represented in

(4) as combined with the proposed data acquisition/subspace definition scheme using the

SVD of D1 to define .

B. Simulation Results

We have evaluated the proposed method using the same numerical cardiac phantom. The

source images for this phantom were collected using retrospective ECG and respiratory

gating, resulting in images of a single representative cardiac cycle. These images were

looped and time-warped to simulate a variable-rate heartbeat, and then spatially deformed to

simulate variable-rate respiration. The phantom image sequence contains one complex-

valued 200 × 256 frame every 3 ms over a duration of 30 s. We provide reconstruction

examples using the proposed method as well as sliding window reconstructions (i.e., direct
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Fourier reconstructions of the sparsely sampled (k, t)-space data after nearest-neighbor

temporal interpolation), and CS model reconstructions.

In all simulations, we sparsely sampled (k, t)-space data from the numerical phantom. The

sampling pattern was limited to a single (k, t)-space readout line every 3 ms (the effective

TR ) to represent real-world sampling conditions. Data were collected with Q = 1, P = 1, and

Nd = 5.

Reconstructions were performed according to (7) with a variety of parameters.

Regularization parameters were chosen for the minimum NRMS reconstruction error

 after a comprehensive sweep. All reconstructions have a frame

rate of 33 fps, which is equal to the temporal resolution of the training data (i.e., 1/2Nd TR ).

Table I presents the NRMS reconstruction errors over a range of values for L1 and L2 .

Entries where L1 = L2 are denoted by “*,” and the full-rank (i.e., CS) reconstruction is

denoted by “†.” The smallest overall reconstruction error appears in bold. Model order

combinations where L1 > L2 are inconsistent with the assumption in (4) that L2 ≥ L1 and are

therefore grayed out. The left column of Fig. 6 depicts 2-D spatiotemporal slices from the

phantom (i.e., the gold standard) and the noiseless reconstructions which yielded the

smallest NRMS error for each method. The right column depicts the error image for each

reconstruction, scaled by a factor of 2 for clarity.

Fig. 7 depicts normalized singular value curves of the cardiac region  and the noncardiac

region  of the proposed reconstruction with L1 = 25 and L2 = 64. The constraint ∥R{Ψ}

∥1,2 successfully promoted sparsity of the noncardiac spatial co-efficients indexed above L1

= 25, yielding effective ranks of L2 = 64 for the cardiac region and L1 = 25 for the

noncardiac region.

C. 2-D Human Imaging

We also demonstrate the proposed method in vivo in human subjects. We implemented the

data acquisition scheme on a Siemens TRIO 3 T scanner using a customized FLASH pulse

sequence. Typical imaging parameters were as follows: TR = 4.6 ms, TE = 2.5 ms, flip angle

(FA) = 18°, field-of-view (FOV) = 328 mm × 350 mm, matrix size 330 × 352, in-plane

spatial resolution = 1.0 mm × 1.0 mm, slice thickness = 6.0 mm, Q = 12, Nd = 5, NACS = 42,

and P = 3. The total acquisition time was 3 min. All data were collected continually with

neither ECG gating nor breath holding. The experiments were approved by the local

Institutional Review Board, and all subjects gave informed consent prior to scanning. We

reconstructed the sparsely sampled (k, t)-space data according to the proposed model with

L1 = 16 and L2 = 48, the proposed model with L1 = L2 = 48, and the full-rank (i.e., CS)

model. All regularization parameters λ1 and λ2 were set according to Morozov’s discrepancy

principle [45]. Specifically, the data discrepancy of our reconstructions matches the

expected discrepancy of a perfect, noiseless reconstruction:  where J is

the number of measured samples per channel and σ2 is the variance of the measurement

noise. A data discrepancy  is associated with overfitting of noise, and
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a data discrepancy  is associated with model bias. We estimated σ2

from our outermost k-space data, which have a low signal-to-noise ratio. Fig. 8 depicts an

end-diastolic snapshot from the reconstruction with L1 = 16 and L2 = 48 as well as

spatiotemporal slices through the left ventricle from all reconstructions. The frame rate of all

reconstructions is 22 fps.

A similar experimental procedure was used to demonstrate the effectiveness of the proposed

method in human subjects with cardiac arrhythmias. The imaging protocol remained the

same, with specific imaging parameters as follows: TR = 4.3 ms, TE = 2.5 ms, FA = 18°,

FOV = 286 mm × 340 mm, matrix size = 130 × 192, in-plane spatial resolution = 2.2 mm ×

1.8 mm, slice thickness = 7.0 mm, Q = 12, Nd = 5, NACS = 32, and P = 3. The total

acquisition time was 2 min. We performed reconstruction according to the proposed model

with L1 = 15 and L2 = 64, the proposed model with L1 = L2 = 64, and the full-rank (i.e., CS)

model. All regularization parameters λ1 and λ2 were set according to Morozov’s discrepancy

principle. Fig. 9 depicts an end-diastolic snapshot from the reconstruction with L1 = 15 and

L2 = 64 as well as spatiotemporal slices through the left ventricle from all reconstructions.

The frame rate of all reconstructions is 23 fps.

D. 3-D Rat Imaging With First-pass Myocardial Perfusion

To demonstrate the proposed method in vivo in rats, we implemented the data acquisition

scheme on a Bruker Avance AV1 4.7 T scanner using a customized FLASH pulse sequence.

The images were collected with the following parameters: TR = 7.5 ms, TE = 2.4 ms, FA =

18°, FOV = 40 mm × 40 mm × 40 mm, matrix size = 62 × 62 × 128, and spatial resolution =

0.65 mm × 0.65 mm × 0.31 mm, Q = 4, Nd = 1, and P = 1. The total acquisition time was 24

min. All data were collected continually with neither ECG gating/triggering nor breath

holding. Dynamic contrast enhancement for first-pass myocardial perfusion imaging was

performed by injecting a 0.2 mmol/kg bolus of gadolinium contrast agent (Gd-DTPA) into

each subject after the start of data acquisition. The animals used in the left anterior

descending (LAD) coronary artery. All animals received humane care in compliance with

the Guide for the Care and Use of Laboratory Animals, published by the National Institutes

of Health, and the animal protocol was approved by the Carnegie Mellon University

Institutional Animal Care and Use Committee.

We reconstructed the sparsely sampled (k, t)-space data according to the proposed model

with L1 = 15 and L2 = 48 and the proposed model with L1 = L2 = 48. The full-rank (i.e., CS)

solution was not computed due to memory constraints. All regularization parameters λ1 and

λ2 were set according to Morozov’s discrepancy principle. Fig. 10 depicts end-systolic

snapshots from the reconstruction with L1 = 15 and L2 = 48 as well as spatiotemporal slices

from each reconstruction. The frame rate of all reconstructions is 67 fps. Fig. 10 depicts

baseline-corrected signal intensity curves from the four apical segments of the myocardium

in rats with and without ligation of the LAD coronary artery [46]. Hypoperfusion is apparent

in the apical and septal segments, both of which are associated with LAD blood supply [47];

the ligated artery was identifiable using the proposed method.
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E. Discussion

In simulations, the proposed method with L1 < L2 yielded the most accurate reconstruction

(in the NRMS error sense) as well as providing the most faithful representation of the true

cardiovascular dynamics. For each fixed L2 , the minimum-error reconstruction occurs for

some L1 < L2. Each of the low-rank results achieved significantly less error than the full-

rank (i.e., CS) method. The superior performance of the proposed method with L1 < L2 over

that with L1 = L2 can be attributed to the variable-rank model which better reflects the nature

of cardiovascular images. In contrast, the low-rank model with L1 = L2 and the full-rank

model do not distinguish between the regions of the image, imposing regionally unspecific

model assumptions.

For the human data, the proposed method with L1 < L2 shows clear improvement over the

proposed method with L1 = L2 and the full-rank (i.e., CS) methods. The reconstructions with

L1 < L2 clearly depict the cardiac and respiratory cycles without the blurring seen in the

other reconstructions. All three reconstructions fit the data to the same degree, but the model

with L1 < L2 is the most flexible: it exhibits the least model bias and captures more subtle

temporal variations than do the other models. The other reconstructions show a clear model

bias, relying far more heavily on (r, f)-space sparse regularization than did the model with

L1 < L2.

In 3-D imaging of rat hearts, the proposed method with L1 < L2 shows some improvement

over the proposed method with L1 = L2, although the differences between the

reconstructions are less obvious than in the human case. As in the human case, all

reconstructions match the measured data to the same degree. The images from the proposed

method with L1 < L2 are sharper and show slightly less model bias than the images from the

proposed method with L1 = L2. The increased similarity between the two reconstructions can

be partly attributed to the increased reliance of the proposed method with L1 < L2 on the (r,

f)-space sparse regularization term for more highly under-sampled scenarios such as whole-

heart 3-D imaging. The low-rank model allows storage of C(ρ) in the factored form ΨΦ, al-

lowing memory-efficient computation even in high-dimensional cases for which C(ρ) cannot

be stored in memory. The CS method requires the full C(ρ) to be stored at each iteration,

and was therefore not computed due to memory limitations.

The ability to perform high-speed whole-heart 3-D imaging has wide-ranging implications.

The improved spatial coverage allows for more comprehensive assessment of the heart than

methods which capture only a handful of slices. The ability to image the whole heart in 3-D

also eliminates the need for scan plane localization and excessive scout scans, as the

reconstructed volumes can be retroactively sliced in arbitrary directions.

The proposed method requires identification of the cardiac region Ω. In our initial

implementation, cardiac regions were identified manually from the time-averaged reference

image ρref(r). However, it may be preferable to automate this process through image

segmentation methods for more practical routine use, especially for 3-D imaging

applications.
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IV. CONCLUSION

Cardiovascular MRI can be significantly accelerated by leveraging parallel imaging

alongside low-rank and sparse modeling. This paper has described a novel method to

integrate these three approaches to sparse sampling, achieving imaging speeds high enough

to represent cardiac and respiratory motion without the need for gating or triggering. Very

high imaging speeds are even achievable in 3-D: for example, speeds of up to 67 fps at 0.65

mm × 0.65 mm × 0.31 mm spatial resolution were demonstrated in rats, depicting cardiac

motion, respiratory motion, and myocardial perfusion in a single experiment. Images

generated by the proposed method should allow comprehensive evaluation of the heart

through the visualization and measurement of cardiac structures and functions in very high

spatial and temporal resolution.
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Fig. 1.
Plot of the normalized singular values (denoted by ρ) of the Casorati matrix of a typical

cardiac dataset. As can be seen, the singular values decay very quickly, resulting in an

effective rank of about L = 16.
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Fig. 2.
Separation of respiratory and cardiac signal changes in the SVD of a typical human cardiac

MR dataset. The Casorati matrix was created from data measured at a limited number of k-

space locations. The figure plots the real parts of v2 and v18, respectively. Both vectors are

complex, but only the real parts are shown for the purposes of simplicity. As can be seen, v2

contains the low-frequency signal changes (related to respiratory motion), whereas v18

captures faster cardiac motion.
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Fig. 3.
Illustrative example of the sampling patterns implemented throughout this paper. Subfigure

(a) depicts the (k, t)-space sampling schedules for D1 (outlined circles) and D2 (filled

circles) for 2-D imaging with parameters Nd = 3, NACS = 9, and P = 4. Subfigures (b) and (c)

depict the k-space sampling locations  respectively.
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Fig. 4.
Representations of |uℓ| and Re{vℓ} from C(ρ) for (a) ℓ = 1, (b) ℓ = 5, and (c) ℓ = 19.
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Fig. 5.
NRMS error of low-rank approximations from projecting the cardiac and noncardiac

matrices  onto different temporal subspaces. In both cases, the noncardiac

region can be estimated with a low-order model as accurately as the cardiac region can with

a higher-order model.
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Fig. 6.
(a) Gold standard, (b) sliding window reconstruction, and reconstructions using (c) the full-

rank (i.e., CS) model, (d) the proposed model with L1 = L2, and (e) the proposed model with

L1 < L2. The error images are scaled by a factor of 2.
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Fig. 7.
Normalized singular value curves from the cardiac and noncardiac regions of the proposed

reconstruction with L1 = 25 and L2 = 64. The proposed method successfully enforced the

desired effective ranks.

Christodoulou et al. Page 24

IEEE Trans Biomed Eng. Author manuscript; available in PMC 2014 August 12.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Fig. 8.
End-diastolic cardiac snapshot and spatiotemporal slices from human experimental results

using (a) the full-rank (i.e., CS) model, (b) the proposed model with L1 = L2, and (c) the

proposed model with L1 < L2.
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Fig. 9.
End-diastolic cardiac snapshot and spatiotemporal slices from arrhyth-mic human

experimental results using (a) the full-rank (i.e., CS) model, (b) the proposed model with L1

= L2, and (c) the proposed model with L1 < L2.
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Fig. 10.
End-systolic cardiac snapshots and spatiotemporal slices from experimental results in rats

using (a) the proposed model L1 = L2 and (b) the proposed model with L1 < L2.
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Fig. 11.
Baseline-corrected signal intensity curves from apical segments of the myocardium in (a) a

healthy rat and (b) a rat with a ligated LAD coronary artery.
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TABLE I

Normalized RMS Reconstruction Errors in Simulations

L1 (Non-cardiac)

16 25 32 64 1000

L2(Cardiac)

16 3.67%*

25 3.37% 3.46%*

32 3.32% 3.35% 3.42%*

64 3.35% 3.28% 3.53% 3.81%*

1000 9.31%
†

*
denotes a result where L1 = L2, and

†
denotes the full-rank (i.e., CS) result. The model order combinations corresponding to are grayed out. The smallest reconstruction error appears in

bold.
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