
Lawrence Berkeley National Laboratory
Lawrence Berkeley National Laboratory

Title
Towards an Automatic and Application-Based Eigensolver Selection

Permalink
https://escholarship.org/uc/item/0h60c6d5

Authors
Zhang, Yeliang
Li, Xiaoye S.
Marques, Osni

Publication Date
2005-09-09

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/0h60c6d5
https://escholarship.org
http://www.cdlib.org/

Towards an Automatic and Application-Based
Eigensolver Selection

Yeliang Zhang
Electrical and Computer Engineering Dept.

The University of Arizona
Tucson, AZ 85721

Email: zhang@ece.arizona.edu

Xiaoye S. Li
Osni Marques

Lawrence Berkeley National Lab
Computational Research Division
1 Cyclotron Road, MS 50F-1650

Berkeley, CA 94720-8139
Email: xsli@lbl.gov, oamarques@lbl.gov

Abstract

The computation of eigenvalues and eigenvectors is an important and often time-consuming phase in computer
simulations. Recent efforts in the development of eigensolver libraries have given users good algorithms without
the need for users to spend much time in programming. Yet, given the variety of numerical algorithms that are
available to domain scientists, choosing the “best” algorithm suited for a particular application is a daunting task.
As simulations become increasingly sophisticated and larger, it becomes infeasible for a user to try out every
reasonable algorithm configuration in a timely fashion. Therefore, there is a need for an intelligent engine that can
guide the user through the maze of various solvers with various configurations.

In this paper, we present a methodology and a software architecture aiming at determining the best solver based
on the application type and the matrix properties. We combine a decision tree and an intelligent engine to select a
solver and a preconditioner combination for the application submitted by the user. We also discuss how our system
interface is implemented with third party numerical libraries. In the case study, we demonstrate the feasibility and
usefulness of our system with a simplified linear solving system. Our experiments show that our proposed intelligent
engine is quite adept in choosing a suitable algorithm for different applications.

I. INTRODUCTION AND MOTIVATION

The computation of eigenvalues and eigenvectors is an important and often time-consuming phase in computer
simulations. Eigenvalues and eigenvectors are used in the study of nuclear reactor dynamics (stability of neutron
fluxes [28]), in finite element dynamic analysis of structural models (e.g., seismic simulations of civil infras-
tructure [9], [10]), in the design of the next generation of particle accelerators [17], in the definition of a set of
eigenfaces in biometric-based identification systems [27], in the solution of Schrödinger’s equation in chemistry and
physics [23], in the design of microelectromechanical systems (MEMS [11]), in the study of conformational changes
of proteins [21], and in many other applications. Because of the need for higher level of simulation details and
accuracy, the size and complexity of the computations grow as fast as the advancement of the computer hardware.

In order to cope with the increasing need for solving eigenvalue problems, various useful numerical algorithms
that are suitable for solving large-scale eigenvalue problems have been developed. Some of these numerical libraries
also have parallel implementations [7], [18], [20], [29]. With the growing availability of solvers, domain scientists
are no longer facing the problem of lacking algorithms to use, but facing the problem of too many algorithms to
choose from. (In this paper, “algorithm” is interchangeable with “solver”). However, little consideration is given
to mechanisms that provide a robust and effective way to sift out a best solver for a particular application. For
sequential or parallel algorithms, a suitable choice of solver may have an order of magnitude impact on an application
compared to a bad one. We identify the following challenges in the selection of the “best” solver:� Given the vast number of algorithmic and computer architectures, how to facilitate a naïve user to choose an

algorithm “best” suited for a particular application. Different algorithms have different convergence behaviors,
memory requirements, and trade-offs between accuracy and performance. It is difficult and tedious to manually
track these metrics and select an algorithm based on these metrics. Ideally, this should be done automatically.� There is no unified software framework targeted for high-end computers that facilitates swapping among
different algorithm implementations. The Eigentemplates book [3] provides an excellent algorithmic guideline.

Yet, in order to fully appreciate that book a potential user must be equipped with sufficient knowledge of
numerical analysis and programming skills, in particular on parallel computers. What is needed to bridge
the gap between Eigentemplates and the end user is a software toolbox that contains efficient and scalable
implementations of those algorithms. The libraries currently available are limited in scope, scattered at different
places with different interfaces. Table I presents a brief survey of a variety of eigenvalue packages.� Usually, there are a large number of parameters associated with each algorithm, which can be adjusted in
order to make the algorithm perform more efficiently. For example, the electronic structure calculation codes
often employ conjugate gradient minimization based eigensolvers that require inner-outer iterations, where the
number of iterations is set by the user and usually requires information about the target problem, and therefore
may greatly impact the computational performance. Even if there is a collection of libraries with a unified
interface, as simulations become increasingly sophisticated and larger, it becomes infeasible for the potential
user to try out every algorithm configuration in a timely fashion.

Therefore, there is a need for an intelligent engine that can guide the user through the maze of different solvers
with various configurations and also a database that records all the historical data to provide the intelligent
engine with information that can be used for a judicious decision .

Name Method Version Date Language Parallel
ARPACK Implicitly Restarted Arnoldi/Lanczos 2 1996 F77 MPI

BLZPACK Block Lanczos, PO+SO 04/00 2000 F77 MPI
DVDSON Davidson - 1995 F77 -
GUPTRI Generalized Upper Triangular Form - 1999 F77 -

IETL Power/RQI, Lanczos-Cullum 2.1 2003 C++ -
JDBSYM Jacobi-Davidson (symmetric) 0.14 1999 C -

LANCZOS Lanczos (Cullum, Willoughby) - 1992 F77 -
LANZ Lanczos, PO 1.0 1991 F77 -
LASO Lanczos 2 1983 F77 -

LOBPCG Preconditioned Conjugate Gradient 4.10 2004 C MPI
LOPSI Subspace Iteration 1 1981 F77 -
MPB Conjugate Gradient / Davidson 1.4.2 2003 C -

NAPACK Power Method - - F77 -
PDACG Deflation-accel. conjugate gradient - 2000 F77 MPI

PLANSO Lanczos, PO .10 1997 F77 MPI
QMRPACK Nonsymmetric Lanczos with lookahead - 1996 F77 -

SLEPc Power/RQI, Subspace, Arnoldi 2.2.1 2004 C/F77 MPI
SPAM Subspace Projected Approx. Matrix - 2001 F90 -
SRRIT Subspace Iteration 1 1997 F77 -

SVDPACK SVD via Lanczos, Ritzit & Trace Minim. - 1992 C/F77 -
TRLAN Lanczos, dynamic thick-restart 1.0 1999 F90 MPI

Underwood Block Lanczos - 1992 F77 -

TABLE I

A SKETCHY SURVEY OF EIGENVALUE LIBRARIES

The objective of this paper is to address some of the aforementioned challenges, and present our design and
methodology towards an automatic application-based eigensolver selection toolbox, EIGADEPT, using an intelligent
engine. We implemented a small system in our case study to validate our methodology. Furthermore, to provide
expert advice to the user, we implemented an intelligent engine using a small training set from Matrix Market [22].
The intelligent engine updates the database adaptively as simulations proceed.

In Section II, we present the system architecture of EIGADEPT, how it is implemented and used, what are its major
components and how the component are connected. In Section III, we describe a case study using our framework

Fig. 1. EIGADEPT Architecture

with a prototype intelligent engine to solve linear systems using various algorithms implemented in PETSc [4].
Section IV discusses the progress and the future plans for the intelligent eigensolver. Section 5 describes related
work and states the main differences between our project and others.

II. METHODOLOGY

Choosing an appropriate eigensolver (and its parameters) depends on the mathematical properties of the problem,
the desired spectral information, and the available operations and their costs. The Eigentemplates book [3] provides
some valuable “decision trees” based on the above information (e.g., Tables 4.1 and 5.1 in [3]). Given the large,
high-dimensional algorithm/parameter space, a simple decision-tree mechanism may be insufficient. Furthermore,
such information may not be available at runtime or may be costly to obtain. For example, the decision tree needs
to know if the matrix is positive definite. The answer to this question may require considerable computation which
might not be wanted by the user at runtime. EIGADEPT intends to address the dilemma of “less information but
accurate solving” by providing algorithm recommendations based on previous knowledge.

The architecture of EIGADEPT is shown in Figure 1. The main components of the system are:

1) A Universal User Interface. For different numerical algorithms with different parameters, it is much easier
for the user to call the algorithms with one universal interface. Since most of the legacy scientific codes are
programmed in FORTRAN, we provide a universal FORTRAN interface in EIGADEPT. The user call this
subroutine in his/her application to invoke EIGADEPT which will then find and execute a suitable algorithm
and return the result to the user. The selection process and execution are transparent to the user. The user
could also specify his/her preferences for any desired algorithm or execution criteria (such as memory limit,
convergence rate, iteration counts, etc.) This information can be useful for choosing the most appropriate
solver if there are several candidates available.

2) A Data Analyzer. It receives the input data submitted by the user, extracts the necessary information required
by the intelligent engine to make algorithm-wise decision, and passes this information to the intelligent
engine. For example, the data analyzier decides wheather the matrix provided is sparse, symmetric, etc. It
also provides the intelligent engine with all the necessary information that can be collected without substantial
computation. For example, determining wheather a matrix is transposable is costly, so the data analyzer may
not be able to provide such information to the intelligent engine. Although this information may be missing,
the intelligent engine is still able to find a suitable algorithm provided a similar problem was previously
solved.

3) Decision Trees. It is a repository of decision trees incorporated from [3].
4) A Relational Database. The database initially contains some training sets from which the best solvers and

preconditioners for certain applications are known beforehand. The training set is obtained from prior work
with various applications. Information about each new application solved by the intelligent engine is stored
in the database with all the application properties and solver information. Each database record stores the
information about the input problem, including symmetry, sparsity, the best solver and preconditioner, the
numerical library that provided this solver and preconditioner, the parameter setting, the execution time using
the best solver and preconditioner, and the application type, etc. The database gradually improves its contents
as more problems are solved by the intelligent system, thereby making the algorithm prediction increasingly
accurate. In particular, the database can be adapted at runtime through the repeated solutions of similar
eigensystems form a specific application domain. The database is implemented with MySQL, which is a free
open source database software with a reliable C API.

5) An Intelligent Engine. This is the central part of the EIGADEPT system. After receiving the information from
the data analyzer, the intelligent engine first searches the decision tree for an appropriate algorithm. If there is
a match, it searches the underlying numerical libraries for a matching subroutine and passes the user’s input
with the proper parameters to that subroutine. After execution, the intelligent engine returns to the user the
results and runtime statistics. If the decision tree does not lead to a choice of a solver, the intelligent engine
queries the database for a suitable solver based on the matrix properties and the application type. There could
be three outcomes from this query:� Exactly one record in the database fits all the specifications provided by the intelligent engine. Then the

solver, the preconditioner and the numerical library are selected.� More than one record in the database fit the specifications. Then the intelligent engine tries to find
an algorithm based on the user’s preferred algorithm characteristics such as least amount of memory,
convergence rate, etc.� No record is found in the database. Then a default solver is used. Note that this decision may not be the
best one. However, when computational resources are available, the problem can be solved with different
algorithms, in what we call the off-line execution. If the off-line execution indicates that a better algorithm
could have been used for the application, the database is updated accordingly with better accuracy.

After choosing the algorithm, the intelligent engine passes the function call with the proper parameters to the
corresponding numerical library and returns the execution results to the user when finished.

Complementary to the system’s intelligent engine, the user can provide his/her own choice of algorithm.
Then the system will directly use this algorithm from the available numerical libraries without consulting the
decision tree and the database. If the user-specified algorithm is not available in the current library repository,
the intelligent engine will ask the user to provide his/her own implementation or returns an error message.
Each execution will be fed back to the database by the intelligent engine for future reference. Since the
algorithm chosen from the decision tree or the database may or may not be optimal, the off-line execution
and feedback mechanisms provide adaptation for the algorithm selection.
The intelligent engine is programmed in C because of its portability, low overhead, and ease of interfacing
with other languages. Another reason we use C is because many modern, popular numerical libraries such as
PETSc is programmed in C. Therefore, our C program will be easily incorporated into the applications that

are using these libraries. We have implemented a Fortran wrapper so that the intelligent engine can also be
called from a Fortran application.

6) Numerical Libraries. This is a collection of the currently available libraries for the eigenvalue problems. They
are implemented in different programming languages and with different calling sequences. Once an algorithm
is chosen by the intelligent engine, it is the intelligent engine’s responsibility to pass the parameters required
by the underlying library.

7) Computational Environment. This is where the application is executed. It can be a stand alone desktop, a
Linux cluster, or a hybrid of MPP and shared memory machines.

III. CASE STUDY

In this section, we present a case study using our proposed system to select an iterative solver and a preconditioner
for solving a linear system

�������
. Here, we used PETSc [4] as the underlying numerical library since PETSc is

widely used and provides a uniform interface to many different linear solvers. The intelligent engine and relational
database are implemented in C and MySQL, respectively. The decision tree used is shown in Figure 2, which is
taken from [5]. PETSc contains all the algorithms in this decision tree. Among all the solvers and preconditioners
provided by PETSc, we have chosen eight solvers: Conjugate Gradient (cg), BiConjugate Gradient (bicg), Gen-
eralized Minimal Residual (gmres), BiCGSTAB (bcgs), Conjugate Gradient Squared (cgs), Transpose-Free Quasi-
Minimal Residual (tfqmr), Conjugate Residual (cr) and Least Squares Method (lsqr), and four preconditioners: No
Preconditioner (none), Jacobi (jacobi), Block Jacobi (bjacobi) and Additive Schwarz (asm). Altogether, there are
32 solver/preconditioner combinations to choose from.

The user invokes the solution process through our universal interface, which has the following prototype:

solve (�
	�� , �
	� , �
	�� , ..., A, b)
where �
	������ �������������

contains the matrix properties such as �
	 �! #"%$ �&�('*),+��.- , �
	 / 0" 	�12+ " ' , etc. Those matrix
properties that the user does not know can be left as NULL. The Data Analyzer receives the function call from the
user interface, and checks if it can provide further information for the NULL fields. It then passes all the matrix
properties to the intelligent engine after analyzing the input information.

After receiving all the information it needs, the intelligent engine first searches the decision tree (see Figure 2)
to find out if there is a suitable solver for the problem. In some cases, the decision-tree-search does not result in a
leaf if there is missing informantion. From that point, the intelligent engine will query the database to find a matrix
with similar properties and its previous solver. The database will return the solver and preconditioner from PETSc
and their required parameters. The intelligent engine will use this information to solve the problem. Often, the
decision tree is sufficient to determine a solver but the choice of preconditioner remains open. If so, the database
can still be consulted to select the right preconditioner.

To begin our experiment, we need to establish the initial content for the database. To this end, we chose
20 small sized matrices from Matrix Market [22] as our training set. These matrices come from such diverse
application domains as acoustic scattering, astrophysics, biochemistry, fluid flow, and quantum physics, etc. We
include matrices from different domains for the sake of generality. Although the training set contains only limited
types of applications, it is a good starting point for the solver and preconditioner selection for the user application.
For each of the 20 matrices in the training set, we ran all 32 solver/preconditioner combinations provided by PETSc,
and recorded the best solver/preconditioner in the database, together with the matrix properties and the application
domain. In this case study, the “best” means the one with the fastest execution time. For the sake of simplicity,
we used only one processor in these experiments. Note that information regarding the new problems and their
performance using the solver/preconditioner chosen by the intelligent engine will be added into the database.

We then tested our intelligent system with three matrices from real applications. Table II tabulates the main
properties of the three matrices, including application domain, data type, size and number of nonzeros. These three
matrices were drawn from the same application domains as the matrices in the training set, but they are of much
larger size and more representative of the production runs. For each of the three matrices, we input the following
properties through the universal input interface: symmetry, real or complex, size, and application domain. For all
three matrices, these properties are not sufficient to arrive at a solver based solely on the decision tree. Therefore,

Fig. 2. Decision Tree For Iterative Methods (Taken from [5])

the intelligent engine actually consulted the database for the knowledge of the previous runs of the similar problems
in the training set.

Apps Matrix Type Size nnz
Reaction-Diffusion rdb3200l real, unsymmetric 3547676!893:4%656 18880

BCS Structural Engineering bcsstk26 real, symmetric ;=<:474�8>;?<5454 30336
Bounded Finline Dielectric Waveguide bfw782b real, symmetric @*A54�8B@*A:4 5982

TABLE II

PROPERTIES OF THE APPLICATION MATRICES

Matrix Automatic Selection Best time Worst time % of Failures
rdb3200l bicg + none 2.54 (bicg + none) 22.16 (bcgs + asm) 56.2%
bcsstk26 cr + bjacobi 1.62 (cr + bjacobi) 11.78 (bicg + none) 43.8%
bfw782b cr + jacobi 0.0645 (cr + jacobi) 0.0942 (lsqr + asm) 9.3%

TABLE III

PERFORMANCE OF THE ITERATIVE METHODS AND OUR INTELLIGENT ENGINE. TIMES ARE IN SECONDS.

Table III summarizes the results of the experiments. The second column of the table shows the solver/preconditioner
selected by the intelligent system. As a comparison, we ran all 32 solver/preconditioner algorithm combinations
for the three matrices. Columns 3 and 4 show the best and worst solution times and the associated algorithm
choices are given in the parenthesis. For these three linear systems, the algorithm selected by our intelligent engine
is always the best. The last column in the table shows the percentage of failures (non-converged) among all the
solver/preconditioner combinations. As can be seen, if a user with little numerical experience decided to use any of
the 32 combinations, the algorithm could fail to converge or take long time to converge. For example, for rdb3200l,
56.2% solver/preconditioner combinations do not converge. Thus, based only on random selection without any
guidance, the user may have to try many times before finding one algorithm that converges. Even if the user chosen

solver/preconditioner algorithm converges, the convergence rate varies greatly. The worst/best performance ratios
are 8.73, 7.29 and 1.46 for rdb3200l, bcsstk26 and bfw782b, respectively.

We recorded the runtime overhead of our intelligent engine. For all the three applications, the overhead from
intelligent engine is less than 1% of the total execution time.

IV. STATUS AND FUTURE WORK FOR EIGENSOLVER

Automatically choosing an optimal eigensolver is in many ways more difficult than doing so with linear solvers.
In eigenvalue analyses, some of the important data to be taken into account include: the dimension of the problem,
number of eigenvalues (and/or eigenvectors) required, location of the required solutions in the eigenvalue spectrum
(i.e. smallest, largest, close to a reference value, etc.), accuracy of the required solutions, and availability of
approximate solutions (e.g., obtained from previous simulations with similar problems) [3]. In contrast to iterative
linear solvers, the available memory is also important because it can influence the effectiveness of restarting strategies
implemented in several algorithms. For many large-scale applications an iterative scheme is the method of choice.
However, some simulations may require increasing number of eigenvalues to be computed from one run to another.
In this case, we may reach a breaking point where switching to a direct method becomes a viable alternative [7].

We focus on a class of eigensolvers based on projection methods, which transform the original eigenvalue
problem into a problem associated with an appropriate subspace of much reduced dimension, and find the best
approximations from this reduced subspace. These methods are amenable to scalable implementations. Algorithms
of this type have already been implemented in various parallel libraries, including ARPACK (implicitly restarted
Arnoldi method) [18], BLZPACK (block Lanczos method) [20], JaDa (block Jacobi-Davidson method) [26], and
TRLan (thick-restart Lanczos method) [29]. Table I lists the other candidate implementations. We will enhance
some of these eigensolvers with shift-and-invert capabilities using existing scalable sparse direct linear solvers,
such as SuperLU [12] and MUMPS [2]. Parallel implementations for some other newly emerged algorithms are
not yet available, which is the case with the automatic multilevel substructuring (AMLS) method [6], [15].

We have already identified a number of applications that can be used to further study and validate the ideas
discussed in this paper (see the beginning of Section I). The fundamental obstacle was that the aforementioned
solvers have different interfaces and parameters. Therefore, our first task was to effectively and efficiently package
them so as to deal with their distinct requirements in inputs and outputs. This is the “Library Collection” layer
depicted in Figure 1. We implemented this layer in C++. The object programming paradigm in C++ gives us
convenient way to add new linear solver or eigensolver into EIGADEPT. Polymorphism provided by C++ enables
EIGADEPT to solve the problem using the same library but different input parameters. Another reason of using C++
to implement the Library-Collection layer is due to C++’s good interoperability with C and Fortran. This feature
makes C++ a better choice than another popular object-oriented language Java.

By now, we have implemented three major classes: LINSolver (Linear Solver) class, EIGSolver (Eigenvalue
solver) class and Options (Options for EIGSolver) class. For sparse matrices, we support both Compress Row
Storage (CRS) and Compressed Column Storage (CCS) schemes. We have a Matrix class to define the two storage
formats and have implemented various methods of the needed operations with these sparse formats. The Options
class contains all the eigensolver libraries’ common input options, such as how many eigen values needed, tolerance
etc. If the user has his own eigensolver, he can add it into EIGADEPT by extending EIGSolver and Options
classes. The same scenario holds if the user wants to add a new linear solver into EIGADEPT. In user’s application,
after defining all the LINSolver, EIGSolver and Options objects, the user shall be able to use a unified interface
to solve his problem. If the user wants EIGADEPT to select an eigensolver, any undefined option value is assigned
a default value and is passed to the eigensolver chosen by EIGADEPT. The user may choose to use a particular
solver by specifying the solver name in the user interface. In this scenario, the user needs to define all the options
for this sovler. We have incorporated PARPACK in the EIGADEPT framework using these classes. We are currently
importing several other numerical libraries into the framework, including BLZPACK and AMLS.

So far, we have not considered the memory limit, the available computing resources and the user’s time
requirement. The user will be able to specify this kind of information through the input interface and this information
will affect the algorithm selection. The information regarding the application execution environment and the
underlying architecture will be used to choose the right implementation. In order to ensure scalable and portable

performance of the eigensolvers, we will identify and isolate the performance critical kernels, capture the important
hardware characteristics, including memory/communication latency and bandwidth, cache size and incorporate these
information into our knowledge base.

We will conduct more research on our data analyzer because the more information it provides, the closer is the
selected algorithm to the optimal. Some information such as “Is the matrix transpose available?” or “Is the matrix
positive definite?” are useful, but the answer to these questions may require intensive computation. Therefore, we
need to find an effective approach to obtain an accurate guess with low overhead.

We will wrap our intelligent system as a CCA [8] component. A great deal of effort has been dedicated to
building numerical algorithms with CCA. With the CCA providing/using the “port” mechanism, our intelligent
engine can be directly coupled with the other newly developed eigensolver components. Along these lines, the
intelligent engine can even be used outside our eigensolver context through well-defined component interface to
accommodate different scientific applications.

V. RELATED WORK

There exists a number of research projects seeking goals similar to ours but using different approaches. The
Self-Adaptive Numerical Software (SANS) system [13], [14] contains an intelligent engine, a history database, a
network scheduler and the underlying adaptable libraries. SANS employ a user provided metadata to automatically
analyze the problem and then a scripting language to compose a “ploy-algorithm”. For problems in which that
information cannot be quickly obtained, SANS searches a heuristic database storing previous performance data for
self-tuning rules. Netsolve [25], [1] is a client-agent-server system which provides remote access to hardware and
software resources from a variety of scientific problem solving environments. After the client submits a function
request, from a list of all available servers, the agent finds an available server in which the demand of the software
request can be met. Then the server executes the function for the client and returns the results. Unlike SANS and
our system, Netsolve does not provide suggestions to the user about which solver will be the best and it loyally
selects the server hosting the service that the client requests to fulfill the task.

Grid-TLSE [16] provides user a web interface for sparse matrix computation on a computational grid. The
main part is an expert site consist of: writing the procedures for the expertise, inclusion of the sparse matrix
software, building a database including a bibliography on sparse matrix software and collections of sparse matrices
(Rutherford-Boeing and PARASOL data sets). The Scalable Multimethod Sparse Solvers project (SuperSolvers) [24]
aims at developing new sparse solution schemes, their analysis, and applications to computational modeling and
simulation. SuperSolvers incorporate hybrid solvers (using flexible incomplete sparse factorization preconditioners
combined with a range of pure iterative and pure direct method) and composite solvers (using a sequence of
basic solution schemes on a single linear system and an adaptive solver dynamically selecting a sparse solution
scheme to match changing numerical attributes across iterations of a long running simulation). SuperSolvers focus
on selecting a robust and scalable solver tailored to meet application demands. In [19], the authors developed a
Linear System Analyzer (LSA) based on component programming paradigms. Users can choose available linear
system solver components defined by IDL. As a prototype to exploit the usefulness of component architecture on
distributing scientific problem solving, LSA does not give much advice to the users on how to select the solvers
and preconditioners to reduce the runtime and improve performance. Thus for a naive user, LSA will not be able
to deliver a best optimized result.

EIGADEPT is focusing on large-scale eigenvalue applications. Unlike SANS, EIGADEPT is not using metadata
defined by the user to describe the input data. Instead, information comes from the heuristic database and the
data analyzer that examines the user input data. The intelligent engine acts as a middleware to connect the user
application and the numerical libraries. The user does not need to change her application code if she wants to
use another library. The combination of on-line and off-line mechanisms adaptively increase the “wisdom” of the
intelligent engine algorithm selection procedure.

ACKNOWLEDGMENT

This work was supported by the Director, Office of Advanced Scientific Computing Research, Division of
Mathematical, Information, and Computational Sciences of the U.S. Department of Energy under contract number
DE-AC03-76SF00098.

We would like to thank Parry Husbands and Tony Drummond of Lawrence Berkeley National Laboratory for their
valuable suggestions on our system design. We thank Konrad Malkowski of Penn State University for providing
the initial C++ implementation of the eigensolver interface.

REFERENCES

[1] S. Agrawal, J. Dongarra, K. Seymour, and S. Vadhiyar. Netsolve: Past, present, and future - a look at a grid enabled server. In
A. Hey eds. F. Berman, G. Fox, editor, Making the Global Infrastructure a Reality, 2003.

[2] P. R. Amestoy, I. S. Duff, J.-Y. L’Excellent, and J. Koster. MUltifrontal Massively Parallel Solver (MUMPS version 4.3) Users’ Guide.
Technical report, ENSEEIHT-IRIT, Toulouse, France, July 2003.

[3] Z. Bai, J. Demmel, J. Dongarra, A. Ruhe, and H. van der Vorst, editors. Templates for the solution of Algebraic Eigenvalue Problems:
A Practical Guide. SIAM, Philadelphia, 2000.

[4] S. Balay, K. Buschelman, V. Eijkhout, W. D. Gropp, D. Kaushik, M. G. Knepley, L. C. Mclnnes, B. F. Smith, and H. Zhang. Petsc
users manual. http://www.mcs.anl.gov/petsc.

[5] Richard Barrett, Michael W. Berry, Tony F. Chan, James Demmel, June Donato, Jack Dongarra, Victor Eijkhout, Roldan Pozo, Charles
Romine, , and Henk van der Vorst. Templates for the Solution of Linear Systems: Building Blocks for Iterative Methods. SIAM,
Philadelphia, 1994.

[6] J. K. Bennighof and R. B. Lehoucq. An automated multileve substructuring method for eigenspace computation in linear elastodynamics.
SIAM Journal on Scientific Computing, 25(6):2084–2106, 2004.

[7] L. S. Blackford, J. Choi, E. D’Azevedo, J. Demmel, I. Dhillon, J. Dongarra, S. Hammarling, G. Henry, A. Petitet, K. Stanley, D. Walker,
and R. C. Whaley. ScaLAPACK Users’ Guide. SIAM, Philadelphia, 1997.

[8] The common component architecture forum. http://www.cca-forum.org.
[9] F. Y. Cheng. Matrix Analysis of Structural Dynamics: Applications and Earthquake Engineering. Marcel Dekker, New York, N.Y.,

2000.
[10] A. K. Chopra. Dynamics of Structures: Theory and Applications to Earthquake Engineering. Prentice Hall, Upper Saddle River, N.J.,

2nd edition, 2000.
[11] J. V. Clark, D. Bindel, N. Zhou, S. Bhave, , Z. Bai, J. Demmel, and K. S. J. Pister. SUGAR: Advancements in a 3D multi-domain

simulation package for MEMS. In Proceedings of the Microscale Systems: Mechanics and Measurements Symposium, Portland, OR,
June 4 2001.

[12] James W. Demmel, John R. Gilbert, and Xiaoye S. Li. SuperLU Users’ Guide. Technical Report LBNL-44289, Lawrence Berkeley
National Laboratory, September 1999. Software is available at http://crd.lbl.gov/˜xiaoye/SuperLU/.

[13] J. Dongarra and V. Eijkhout. Self-adapting numerical software and automatic tuning of heuristics. In Proceedings of the International
Conference on Computational Science, June 2 2003.

[14] J. Dongarra and V. Eijkhout. Self-adapting numerical software for next generation applicatins. The International Journal of High
Performance Computing Applications, 17(2):125–131, 2003.

[15] Weiguo Gao, Xiaoye S. Li, Chao Yang, and Zhaojun Bai. Performance evaluation of a multilevel sub-structuring method for sparse
eigenvalue problems. In Proceedings of the 16th International Conference on Domain Decomposition Methods, January 2005.

[16] GRID-TLSE. http://www.enseeiht.fr/lima/tlse/survey.html.
[17] K. Ko, N. Folwell, L. Ge, A. Guetz, V. Ivanov, L. Lee, Z. Li, I. Malik, W. Mi, C. Ng, and M. Wolf. Electromagnetic systems simulation

- from simulation to frabrication. SciDAC Report, 2003. Menlo Park, CA.
[18] Rich Lehoucq, Kristi Maschhoff, Denny Sorensen, and Chao Yang. Parallel ARPACK.

http://www.caam.rice.edu/ C kristyn/parpack home.html.
[19] The linear system analyzer. http://www.extreme.indiana.edu/pseware/LSA/LSAhome.html.
[20] O. A. Marques. BLZPACK: Description and User’s Guide. Technical Report TR/PA/95/30, CERFACS, Toulouse, France, 1995.
[21] O. A. Marques and Y.-H. Sanejouand. Hinge-Bending Motion in Citrate Syntase Arising from Normal Modes Calculations. Proteins:

Structure, Function and Genetics, 23:557–560, 1995.
[22] Matrix Market. http://math.nist.gov/MatrixMarket.
[23] M. Payne, M. P. Teter, D. C. Allan, T. A. Arias, and J.D. Joannopoulos. Iterative minimization techniques for ab initio total energy

calculations: Molecular dynamics and conjugate gradients. Rev. Mod. Phys., 1045, 1992.
[24] B. Norris S. Bhowmick, L. McInnes and P. Raghavan. Robust algorithms and software for parallel pde-based simulations. In Proceedings

of HPC 2004, The Twelfth Special Symposium on High Performance Computing at the 2004 Advanced Simulation Technologies
Conference, pages 37–42, Arlington, VA, April 2004.

[25] K. Seymour, A. Yarkhan, S. Agrawal, and J. Dongarra. Netsolve: Grid enabling scientific computing environments. In L. eds. Grandinetti,
editor, Grid Computing and New Frontiers of High Performance Processing, 2005.

[26] A. Stathopoulos and J.R. McCombs. A Parallel, Block, Jacobi-Davidson Implementation for Solving Large Eigenproblems on
Coarse Grain Environments. In Proceedings of the International Conference on Parallel and Distributed Processing, Techniques
and Applications, pages 2920–2926. CSREA Press, 1999.

[27] M. Turk and A. Pentland. Eigenfaces for Recognition. Technical report, Vision and Modeling Group, The Media Laboratory, MIT,
1990.

[28] G. Verdu, D. Ginestar, V. Vidal, and J. L. Muñoz Cobo. 3D D -Modes of the Neutron-Diffusion Equation. Ann. Nucl. Energy, 21:405–421,
1994.

[29] Kesheng Wu and Horst Simon. Thick-restart lanczos method for large symmetric eigenvalue problems. SIAM J. Matrix Anal. Appl.,
22(2):602–616, 2001.

