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High-Sensitivity C-Reactive Protein Is a Prognostic
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after Traumatic Brain Injury:
Results from the TRACK-TBI Study
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Abstract

Systemic inflammation impacts outcome after traumatic brain injury (TBI), but most TBI biomarker studies have focused

on brain-specific proteins. C-reactive protein (CRP) is a widely used biomarker of inflammation with potential as a prog-

nostic biomarker after TBI. The Transforming Research and Clinical Knowledge in Traumatic Brain Injury (TRACK-TBI)

study prospectively enrolled TBI patients within 24 h of injury, as well as orthopedic injury and uninjured controls;

biospecimens were collected at enrollment. A subset of hospitalized participants had blood collected on day 3, day 5, and 2

weeks. High-sensitivity CRP (hsCRP) and glial fibrillary acidic protein (GFAP) were measured. Receiver operating

characteristic analysis was used to evaluate the prognostic ability of hsCRP for 6-month outcome, using the Glasgow

Outcome Scale-Extended (GOSE). We included 1206 TBI subjects, 122 orthopedic trauma controls (OTCs), and 209

healthy controls (HCs). Longitudinal biomarker sampling was performed in 254 hospitalized TBI subjects and 19 OTCs.

hsCRP rose between days 1 and 5 for TBI and OTC subjects, and fell by 2 weeks, but remained elevated compared with

HCs ( p < 0.001). Longitudinally, hsCRP was significantly higher in the first 2 weeks for subjects with death/severe

disability (GOSE <5) compared with those with moderate disability/good recovery (GOSE ‡5); AUC was highest at 2 weeks

(AUC = 0.892). Combining hsCRP and GFAP at 2 weeks produced AUC = 0.939 for prediction of disability. Serum hsCRP

measured within 2 weeks of TBI is a prognostic biomarker for disability 6 months later. hsCRP may have utility as a

biomarker of target engagement for anti-inflammatory therapies.
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Introduction

The management of patients with traumatic brain injury (TBI)

relies upon neurological examination and radiographical im-

aging for assessment of injury severity and prognosis. Although

outcome after TBI can range from complete recovery to death or

severe disability, clinical assessments, such as the Glasgow Coma

Scale (GCS) and standard neuroimaging, explain only a small

fraction of the variance in outcome and are largely non-specific for

pathophysiology, limiting our ability to identify patients appropriate

for clinical trials of novel therapies.1–3 Blood-based biomarkers

have the potential to identify patients who may be at risk for clinical

deterioration4 and confirm target engagement by novel therapies

aimed at specific pathophysiological mechanisms.

C-reactive protein (CRP) is a non-specific but sensitive bio-

marker of systemic inflammation that is known to rise in response

to numerous conditions, including infection, cancer, surgery, burns,

and tissue infarction, and is routinely used in clinical assessment of

these conditions.5–7 Anti-inflammatory therapies reduce CRP lev-

els in these and other medical conditions, including cardiovascu-

lar disease,8,9 cancers,10,11 and various autoimmune diseases.12–14

CRP belongs to the pentraxin family of calcium-dependent, ligand-

binding plasma proteins, which activate the classical complement

pathway by binding to the phosphocholine expressed on the sur-

face of dead or dying cells and some bacteria.15,16 As a member of

the acute-phase protein class, CRP levels in serum increase up to

1000-fold in response to inflammation, often directly in proportion

to injury severity.5,17

A growing body of evidence implicates CRP as a biomarker in

neurological disease. Although CRP is produced primarily by he-

patocytes, it can be generated by human neurons.18 It is sharply

upregulated in Alzheimer’s disease19 and after spontaneous intra-

cerebral hemorrhage, proportional to hematoma volume.20 In TBI,

elevated levels of serum CRP within the first 24 h post-injury is

associated with more-severe injury21 and presence of intracranial

lesions on neuroimaging.22,23 It is also associated with post-injury

headache and fatigue up to 30 days post-injury24 and poor long-

term outcomes, including premature mortality21 and persistent

post-concussional, psychiatric, and neurocognitive symptoms.25

However, CRP in the acute phase is limited by a lack of specificity

and is affected by concurrent polytrauma.26,27 In previous studies,

CRP has been observed to rise for 3–5 days after TBI28 before

gradually declining, potentially over the course of months.24

Similar trends have been reported in ischemic stroke,29–32 but no

studies have explored the relationship between sustained CRP

elevation and outcome after TBI. Monitoring subacute CRP ele-

vations in these patients may provide important prognostic infor-

mation for identifying patients at risk for unfavorable recovery.33

The current study is a pre-specified analysis of the prospective,

multi-center Transforming Research and Clinical Knowledge in

Traumatic Brain Injury (TRACK-TBI) study (ClinicalTrials.gov:

NCT02119182; and see Methods). We assess the temporal evolu-

tion of high-sensitivity CRP (hsCRP) serum levels over the first

2 weeks post-injury and the utility of serum CRP as a prognostic

biomarker for post-TBI outcome.

Methods

Subjects and study design

Patients presenting with TBI (GCS 3–15) to 1 of 18 participating
level I U.S. trauma centers from February 26, 2014 to July 27, 2018
were identified and enrolled prospectively in the TRACK-TBI

study, as previously described.34,35 Written consent was obtained
from subjects or their legal authorized representatives. Eligibility
criteria included presentation within 24 h of injury with TBI
warranting clinical evaluation with a non-contrast head computed
tomography (CT) evaluation based on practice guidelines.36

Exclusion criteria were positive pregnancy test or known preg-
nancy, imminent death or current life-threatening disease, incar-
ceration, or evidence of serious psychiatric and neurological
disorders that would interfere with consent or follow-up outcome
assessment. The study was approved by the institutional review
board of each enrolling site.

TBI subjects were stratified into three clinical groups differ-
entiated by clinical care path: 1) emergency department and dis-
charged (ER) stratum; 2) admission stratum (ADM): patients
admitted to the hospital but not to the intensive care unit (ICU);
and 3) ICU stratum (ICU): patients admitted directly from ER or
another hospital to the ICU.

Subjects were eligible for inclusion as orthopedic trauma con-
trols (OTCs) if they presented with isolated trauma to their limbs,
pelvis, and/or ribs and had an Abbreviated Injury Score <4 for
those body regions. OTC subjects were identified and enrolled
using the same process as that for patients with TBI, except for the
head CT requirement. Subjects were ineligible from enrollment
as an OTC if they had loss of consciousness, disturbance of con-
sciousness, post-traumatic amnesia/retrograde amnesia, or other
clinical findings suggestive of a TBI.

Finally, healthy controls (HCs) were recruited either based on a
relationship with a TRACK-TBI participant or through public
outreach within TRACK-TBI institutions, and the ability to pro-
vide informed consent. HCs were ineligible for enrollment if they
had a history of TBI, concussion, or any traumatic injury causing
polytrauma in the 12 months preceding enrollment. In this analysis,
HCs were sex- and age-matched to TBI subjects.

The TRACK-TBI Phase 1 Biomarker Cohort (n = 1706) evalu-
ated in this study was a prespecified interim analysis that included
the first half of the enrolled TBI subjects and the OTC and HC
groups (Fig. 1).

Clinical data collection

Demographic, injury, and outcome variables were collected in
accordance with the National Institute of Neurological Disorders
and Stroke (NINDS) TBI Common Data Elements (TBI-CDE).37,38

Demographic data were obtained through a combination of medical
records and patient report. Injury Severity Score (ISS) was collected
for all hospitalized (ADM, ICU) subjects. Outcome assessments
occurred at 2 weeks and 3, 6, and 12 months post-injury. Three-
month assessments were performed by telephone; other assessments
were performed in person. For this study, the primary outcome was
the 6-month Glasgow Outcome Scale-Extended (GOSE) adminis-
tered to assess patient-reported global disability attributable only to
the TBI. Complete recovery was defined as a GOSE = 8. Incomplete
recovery was defined as GOSE <8. Unfavorable outcome was de-
fined as GOSE <5 and favorable outcome as GOSE ‡5.

Sample collection and biomarker analysis

For subjects who consented to biospecimen collection, blood
samples were collected within 24 h of injury (day 1) and at 2 weeks
and 6 months. For subjects admitted to the hospital (ADM, ICU),
additional blood samples were collected on days 3 and 5, when
possible. Patients with available samples on day 1 and 2 weeks, and
additionally day 3 and/or day 5, were considered to have ‘‘serial
samples’’ and were included in longitudinal analyses. All samples
were dated and time-stamped to compare with time of injury.
The TBI-CDE Biospecimens and Biomarkers Working Group
consensus recommendations for plasma and serum preparation
were followed.37 Plasma and serum aliquots were prepared for
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each subject and frozen at -80�C for future analysis. All samples
were deidentified using a unique study ID, specific to site and sub-
ject, and batch-shipped in temperature-controlled overnight express
freight containers to the TRACK-TBI Biospecimens Repository at
the University of Pittsburgh Medical Center (Pittsburgh, PA).

Blinded sample analysis of hsCRP was carried out by a sin-
gle laboratory (University College of Dublin) using the Abbott
Architect c8000, MULTIGENT CRP Vario assay using the high-
sensitivity method (CRP16). Anti-CRP antibody adsorbed to latex
particles agglutinate when an antigen-antibody reaction occurs
with CRP, resulting in a change in absorbance proportional to
the quantity of CRP in the sample. Serum samples were thawed in
batches at room temperature and centrifuged at 10,000 rfc for
10 min at 4�C before testing. Assays were performed in duplicate
with a lower limit of quantification of 0.1 mg/L and a reportable
range of 0.1–160.0 mg/L. Temporal trends of CRP were analyzed
and reported. Glial fibrillary acidic protein (GFAP) concentrations
were determined using prototype immunoassays on the i-STAT
point-of-care platform (Abbott Laboratories, Abbott Park, IL), as
previously described.34 The i-STAT GFAP test uses the sandwich
enzyme-linked immunosorbent assay method with electrochemical
detection of the resulting enzyme signal.

Computing tomography imaging evaluation
and analysis

Initial head CT scans were deidentified and uploaded to a cen-
tral imaging database at the Laboratory of NeuroImaging (LONI;
University of Southern California, Los Angeles, CA) and inde-
pendently evaluated by a central board-certified neuroradiologist
in accordance with TBI-CDE Neuroimaging Working Group con-
sensus recommendations.36 The study neuroradiologist was blin-
ded to the identity and clinical information associated with each CT
scan. The result of each review was uploaded to the TRACK-TBI
clinical database under the respective subject’s record. CT scans
were read as positive (CT+) if there was any evidence of acute
intracranial pathology consistent with TBI (e.g., contusion, sub-
arachnoid hemorrhage, and subdural hematoma).

Magnetic resonance imaging methods and analysis

Magnetic resonance imaging (MRI) was obtained at 7–18 days.
Image sequences included T1, T2, fluid-attenuated inversion re-
covery, and T2*. The MRI protocol was standardized across all sites
and General Electric, Siemens, and Phillips MRI platforms (avail-
able at https://tracktbi.ucsf.edu/researchers). Baseline phantom
scans were performed at all centers to quantify differences between
magnets and correct geometrical variances across scanners. Struc-
tural MRI abnormalities were quantified according to CDE stan-
dards and definitions36 by a central board-certified neuroradiologist
blinded to the identity and clinical history of the subject. MRI scans
were read as positive (MRI+) if there was any evidence of acute
intracranial pathology consistent with TBI (e.g., contusion, trau-
matic axonal injury, and diffuse axonal injury).

Statistical analysis

Descriptive summary statistics were used to characterize the
demographics and clinical attributes of the study cohort. hsCRP
levels were reported using the median and 25th/75th percentiles
and were compared using a Wilcoxon’s rank-sum test between TBI
subjects and OTC/HC; among TBI subjects with and without in-
tracranial lesions on CT; among TBI CT-negative subjects with
and without intracranial lesions on MRI; among TBI subjects by
ISS total score categories (£9, 10–16, 17–25, and >25); and among
TBI subjects by GOSE outcomes (unfavorable, <5 vs. favorable,
‡5; and complete recovery, = 8 vs. incomplete recovery, <8). Re-
ceiver operating characteristic (ROC) analysis was performed to
assess the ability of hsCRP level at each time point to predict GOSE
at 6 months post-injury, and area under the ROC curve (AUC) was
calculated with a 95% confidence interval (CI). AUCs of >0.9 were
considered excellent, 0.8–0.9 as good, 0.7–0.8 as adequate, and
<0.7 as poor. All data were analyzed and plotted using statistical
software R (version 3.6.1; http://www.r-project.org).

Results

The TRACK-TBI Phase 1 Biomarker Cohort included 1706

subjects (1375 TBIs, 122 OTCs, and 209 HCs; Fig. 1). Serum was

available for hsCRP assay in 1206 TBI subjects. Most TBI subjects

were Caucasian, male, and had mild injury (GCS 13–15). The most

common cause of injury was road traffic accidents, followed by

falls. Full demographic and clinical data are presented in Table 1.

High-sensitivity C-reactive protein rises in traumatic
brain injury and orthopedic trauma controls
and is increased in computed tomography–positive
vs. computed tomography–negative cases

Day 1 hsCRP was higher in TBI subjects compared to HC (me-

dian [interquartile range], 9.091 [2.110–30.932] vs. 1.34 [0.642–

FIG. 1. TRACK-TBI phase 1 biomarker cohort CONSORT
diagram. ADM = admission stratum: patients admitted to the
hospital but not to the ICU. ICU = ICU stratum: patients admitted
directly from ER or another hospital to the ICU. D1 = day 1.
D3 = day 3. D5 = day 5. 2W = 2 weeks. Serial samples: available
hsCRP samples on day 1 and 2 Weeks, and day 3 and/or day 5.
GOSE = Glasgow Outcome Scale-Extended. CRP, C-reactive
protein; CONSORT, Consolidated Standards of Reporting Trials;
ER, emergency room; ICU, intensive care unit; TBI, traumatic
brain injury; TRACK-TBI, Transforming Research and Clinical
Knowledge in Traumatic Brain Injury.
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2.785] mg/L; p < 0.0001). hsCRP values rose over the first 5 days in

both TBI and OTC. In those with serial samples (day 1 and 2 weeks,

as well as day 3 and/or day 5), there was no significant differ-

ence in hsCRP between TBI and OTC at any time point (Fig. 2),

suggesting that OTCs were well matched to TBI subjects for sys-

temic injury severity. Among patients with mild TBI (mTBI; GCS

13–15), a slight trend toward decreased hsCRP compared with

OTC was observed at all time points, which did not reach signifi-

cance. Please refer to Supplementary Table S1 for hsCRP numer-

ical values for mTBI patients.

In TBI patients with day 1 samples, median hsCRP was higher in

CT+ cases compared to CT– cases on day 1 (20.415 [5.979–54.244]

vs. 4.233 [1.327–17.479] mg/L; p < 0.0001). Within CT– cases, day

1 hsCRP was higher among MRI+ cases compared with MRI– cases

(3.905 [1.840–16.219] vs. 2.94 [0.800–11.349] mg/L; p = 0.0075).

In those with serial samples, hsCRP remained significantly higher

in CT+ versus CT– cases at all time points, increasing from days 1 to

5 in CT+ cases and plateauing between days 3 and 5 in CT– cases.

Given that future clinical trials may require enrolling subjects

within time windows shorter than 24 h, we investigated hsCRP

elevation by blood-draw time intervals from 0 to 6, 7 to 12, 13 to 18,

and 19–25 h post-injury. hsCRP increased temporally over the first

24 h in both CT– and CT+ TBI subjects, and hsCRP was signifi-

cantly higher in CT+ cases at all time points. Please refer to Sup-

plementary Table S2 for hsCRP numerical values.

Table 1. Demographic and Clinical Characteristics of the TRACK-TBI Phase 1 Biomarker Cohort

TBI (n = 1206) OTC (n = 122) p value* HC (n = 209)

Patient care pathway
ER discharge 343 (28.4%) 45 (36.9%) 0.0005
ADM, hospital admit 437 (36.2%) 70 (57.4%)
ICU, ICU admit 426 (35.3%) 7 (5.7%)

Sex
Female 390 (32.3%) 43 (35.3%) 0.5434 104 (50%)
Male 816 (67.7%) 79 (64.8%) 105 (50%)

Age (mean – SD) 40.0 – 17.0 39.2 – 15.0 0.9173 39.0 – 17.0
Years of education (mean – SD) 13.4 – 2.9 13.8 – 2.6 0.0702
Race

White 924 (77.3%) 95 (81.2%) 0.6192
Black 196 (16.4%) 15 (12.8%)
Other 75 (6.3%) 7 (6.0%)

Hispanic
No 934 (78.2%) 91 (76.5%) 0.6443
Yes 261 (21.8%) 28 (23.5%)

Cause of injury
Road traffic accident 705 (58.5%) 43 (38.0%) 0.0005
Incidental fall 314 (26.1%) 40 (35.4%)
Violence/assault 82 (6.8%) 1 (0.9%)
Other 104 (8.6%) 29 (25.7%)

GCS on ER arrival
3–8 117 (9.8%) 0 (0%) 0.0005
9–12 43 (3.6%) 0 (0%)
13–15 1030 (86.6%) 122 (100%)

CT
CT– 731 (61.3%)
CT+ 461 (38.7%)

Data are n (%) or mean – SD.
*p values were calculated comparing TBI and OTC using Wilcoxon’s rank-sum test for continuous variables and Fisher’s exact test for categorical variables.
TBI, traumatic brain injury; OTC, orthopedic trauma control; HC, healthy control; ER, emergency department and discharged (ER) stratum; ADM,

admission stratum: patients admitted to the hospital, but not to the ICU; ICU, ICU stratum: patients admitted directly from the ER or another hospital to
the ICU; GCS, Glasgow Coma Scale; SD, standard deviation; CT, computed tomography.

FIG. 2. hsCRP at days 1, 3, and 5 and 2 weeks, comparing TBI,
OTC, and HC. Line plot indicates median and 25th–75th percentile.
Among patients with serial hsCRP samples (day 1 and 2 weeks, and
day 3 and/or day 5), Wilcoxon’s rank-sum test found no significant
difference in hsCRP level between TBI and OTC at any time point.
Baseline hsCRP level in HC was measured at one time point and
was significantly lower than TBI and OTC at all time points. HC,
healthy controls; hsCRP, high-sensitivity C-reactive protein; OTC,
orthopedic trauma controls; TBI, traumatic brain injury.
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C-reactive protein rises with increasing overall Injury
Severity Score

In subjects with recorded ISS and day 1 samples, day 1 hsCRP

increased with ISS (Fig. 3A), with similar findings observed in

mTBI subjects. In subjects with serial samples, median hsCRP

increased with ISS at all time points (Fig. 3B). In mTBI subjects

with serial samples, hsCRP increased with ISS at all time points,

but reached significance only on days 1, 3, and 5.

C-reactive protein is a prognostic biomarker
for predicting death/severe disability (Glasgow
Outcome Scale-Extended [GOSE] <5) vs. moderate
disability/good recovery (GOSE ‡5)

In TBI patients with serial samples, hsCRP level at each of

the four time points was significantly elevated in subjects with

death/severe disability (GOSE <5) compared to those with mod-

erate disability/good recovery (GOSE ‡5; Fig. 4A). The AUC

of hsCRP for discriminating 6-month disability was highest at

2 weeks (AUC = 0.892; Table 2). The same analysis was performed

in mTBI subjects and revealed similar findings with 2-week hsCRP

(AUC = 0.928). When stratified based on degree of peripheral in-

jury (peripheral ISS [excluding head/neck] £9, = 10–16, and ‡17),

predictive value of 2-week hsCRP remained high across all strati-

fications (AUC = 0.897, 0.922, and 0.800, for ISS £9, = 10–16, and

‡17, respectively). When stratified based on GCS (3–12, 13–15),

predictive value of 2-week hsCRP was found to be higher in the

subset of patients with milder injury (AUC = 0.779 and 0.928 for

GCS 3–12 and 13–15, respectively).

FIG. 3. Relationship between hsCRP and ISS at (A) day 1 and
(B) days 1, 3, and 5 and 2 weeks. Boxplots indicate median and
25th–75th percentile (interquartile range; IQR) of hsCRP values.
Upper whisker indicates the smaller value of: the maximum value
or 75th percentile +1.5*IQR, and lower whisker indicates the lar-
ger value of: the minimum value or 25th percentile -1.5*IQR. ISS
total score was separated into four score categories: £9, 10–16, 17–
25, and >25. (A) Among all TBI patients with available day 1
hsCRP samples, Ddy 1 hsCRP rises with increasing ISS total score.
(B) Among patients with serial hsCRP samples (day 1 and 2
weeks, and day 3 and/or day 5), hsCRP rises with increasing ISS
total score at all time points. hsCRP, high-sensitivity C-reactive
protein; ISS, Injury Severity Score; TBI, traumatic brain injury.

FIG. 4. hsCRP and outcome after TBI: (A) GOSE ‡5 versus <5
(B) GOSE = 8 versus <8. Line plots indicate median and 25th–
75th percentile. (A) In patients with serial hsCRP samples (day 1
and 2 weeks, and day 3 and/or day 5), hsCRP level was compared
between patients with unfavorable outcome (GOSE <5, indicating
death/severe disability) and favorable outcome (GOSE ‡5). Pa-
tients with favorable outcome had significantly higher hsCRP
level at all time points compared to patients with unfavorable
outcome. (B) In patients with serial hsCRP samples, hsCRP level
was compared between patients with complete recovery
(GOSE = 8) and incomplete recovery (GOSE <8). Patients with
incomplete recovery had significantly higher hsCRP level at the 2-
week time point compared with patients with complete recovery,
but were not significantly different at any other time point. GOSE,
Glasgow Outcome Scale-Extended; hsCRP, high-sensitivity
C-reactive protein; TBI, traumatic brain injury.
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Notably, among TBI subjects, combining 2-week hsCRP (AUC =
0.892) and 2-week GFAP (AUC = 0.890) improved discrimination

of 6-month GOSE <5 versus GOSE ‡5 to AUC = 0.939 (95% CI,

0.900–0.978), higher than either marker individually (Table 3; ROC

curves shown in Fig. 5).

When comparing the AUC of the model using age and GCS

score category only compared to the model using age, GCS score

category, and hsCRP, the addition of 2-week hsCRP signifi-

cantly improved predictive ability of the model (Supplementary

Table S3). Imaging results were not included as CT+ versus CT–

status was not significant in the age + GCS model.

C-reactive protein is a poor predictor of complete
recovery (Glasgow Outcome Scale-Extended
[GOSE] = 8) vs. incomplete recovery (GOSE <8)

Median hsCRP differed between subjects who experienced

complete recovery (GOSE = 8) from those with incomplete recov-

ery (GOSE <8) at only the 2-week time assessment (Fig. 4B). The

AUC of hsCRP for discriminating complete recovery at 6 months

increased with time after injury, but was poor at all time points

(Table 2), similar to findings in the mTBI subjects with 2-week

hsCRP (AUC = 0.547).

Discussion

hsCRP, a measure of systemic inflammation, is a prognostic

biomarker for poor 6-month outcome after TBI when measured

acutely. hsCRP is elevated in the first 2 weeks after TBI, propor-

tional to the severity of systemic injury and more so in subjects

with intracranial lesions on CT or MRI scans. Elevation of hsCRP

in TBI subjects was indistinguishable from orthopedic controls at

all time points after injury. In TBI subjects, hsCRP at all time

points increased linearly with worsening ISS, a clinical measure of

injury severity in six body regions.

Prognostically, hsCRP measured through the first 2 weeks post-

injury was significantly higher in subjects with outcome of

death/severe disability (GOSE <5) compared with those with fa-

vorable outcome (GOSE ‡5) at 6 months. Using ROC analysis,

only 2-week hsCRP demonstrated good discriminative ability (AUC

>0.8) for discriminating between favorable (GOSE ‡5) and unfa-

vorable outcome (GOSE <5). In comparing subjects with full re-

covery (GOSE = 8) and those who were not fully recovered (GOSE

<8), hsCRP was significantly higher in fully recovered patients only

at the latest time point (2 weeks), with poor discriminative ability

(AUC <0.7). These findings indicate that subacute hsCRP is a useful

prognostic biomarker for detecting death/severe disability after TBI,

particularly in combination with the prognostic biomarker, GFAP,

and demonstrate the important association between both systemic

injury and inflammation with outcome after TBI.

The mechanism of injury in TBI is characterized by an initial

primary injury, during which mechanical forces lead to axonal

shearing and necrosis, followed by a later secondary injury, driven

by inflammation, blood–brain barrier (BBB) disruption, apoptosis,

metabolic disturbances, and oxidative stress, which may have long-

lasting effects.39 In patients with isolated TBI, injury to the BBB

allows peripheral inflammatory factors to access the brain tissue,

leading to activation of neuroinflammatory cascades.40 It is rea-

sonable to hypothesize that concurrent polytrauma leads to greater

systemic inflammation that can breach the BBB, further exacer-

bating inflammation both systemically and in the brain.41 Previous

studies support this hypothesis. Polytrauma in TBI results in in-

creased levels of inflammatory cytokine interleukin (IL)-6, com-

pared with patients with isolated TBI.42,43 Animal studies in rodent

models of concurrent polytrauma in TBI have also found increased

levels of inflammatory markers, including IL-6, tumor necrosis

factor alpha, and chemokine (C-C motif) ligand 2,44,45 in the acute

phase of injury. Further, peripheral delivery of IL-1ß in a rat model

of TBI led to significantly worse behavioral outcomes com-

pared with control vehicle-treated animals,46 demonstrating a link

between systemic inflammatory response and unfavorable outcome

in TBI.

Several clinical studies have examined the role of concurrent

polytrauma on mortality and functional outcome after TBI, as re-

viewed in detail by McDonald and colleagues.41 Overall findings

Table 2. Predictive Performance of Acute

Measurement of hsCRP on GOSE at 6 Months

after Traumatic Brain Injury

AUC (95% CI)

GOSE <5 vs. GOSE ‡5
Day 1 0.640 (0.521–0.760)
Day 3 0.800 (0.729–0.871)
Day 5 0.777 (0.691–0.862)
2-week 0.892 (0.839–0.944)
Multiple time points 0.872 (0.818–0.925)

GOSE <8 vs. GOSE = 8
Day 1 0.570 (0.477–0.662)
Day 3 0.569 (0.474–0.665)
Day 5 0.607 (0.480–0.735)
2-week 0.615 (0.525–0.705)
Multiple time points 0.608 (0.519–0.698)

GOSE <5 indicates unfavorable outcome (severe disability/death).
GOSE = 8 indicates complete recovery.

hsCRP, high-sensitivity C-reactive protein; GOSE, Glasgow Outcome
Scale-Extended; AUC, area under the receiver operating characteristic
(ROC) curve; CI, confidence interval.

Table 3. Combined Predictive Performance of Acute

Measurement of hsCRP and GFAP on GOSE ‡5
vs. <5 at 6 Months after Traumatic Brain Injury

AUC (95% CI)

Day 1
logGFAP 0.768 (0.662–0.875)
loghsCRP 0.640 (0.521–0.760)
logGFAP + loghsCRP 0.769 (0.663–0.876)

Day 3
logGFAP 0.873 (0.798–0.949)
loghsCRP 0.800 (0.729–0.871)
logGFAP + loghsCRP 0.904 (0.846–0.963)

Day 5
logGFAP 0.900 (0.827–0.972)
loghsCRP 0.777 (0.691–0.862)
logGFAP + loghsCRP 0.913 (0.853–0.973)

2-week
logGFAP 0.890 (0.823–0.956)
loghsCRP 0.892 (0.839–0.944)
logGFAP + loghsCRP 0.942 (0.905–0.979)

GOSE <5 indicates unfavorable outcome (severe disability/death).
hsCRP, high-sensitivity C-reactive protein; GFAP, glial fibrillary acidic

protein; GOSE, Glasgow Outcome Scale-Extended; AUC, area under the
receiver operating characteristic (ROC) curve; CI, confidence interval.
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suggest that TBI, compounded by concurrent polytrauma, results in

increased mortality47–49 and worsened functional outcomes.47,48,50,51

In a large retrospective study of 39,274 TBI patients with and

without major extracranial injury, van Leeuwen and colleagues

found that patients with both TBI and major extracranial injury had

significantly higher mortality, with a stronger effect noted in mild

and moderate TBI (odds ratio of 2.14 and 1.46, respectively) than

in severe TBI (odds ratio of 1.18),49 a trend that has been previ-

ously observed.52,53 Functional outcome, measured using GOS or

GOSE score, was also worse in TBI patients with concurrent

polytrauma,48,51,54 although a few studies have reported no dif-

ference42,55 or even improved outcome in polytrauma patients.53

This divergence may be attributable to the observation that patients

with TBI and concurrent polytrauma are often significantly youn-

ger than patients with isolated TBI, which may mask the effects of

concurrent polytrauma on outcome.41

A broad span of therapeutic agents have been shown to reduce

systemic inflammation and hsCRP level in cardiovascular dis-

ease,56 including statins,57 cyclooxygenase inhibitors,58 angiotensin-

converting enzyme inhibitors,59 and more targeted therapies, such

as canakinumab9 (IL-1b monoclonal antibody). Targeting sys-

temic inflammation in cardiovascular disease has been shown

to improve outcomes, for instance reducing atherosclerotic bur-

den57 and decreasing rate of recurrent cardiovascular events.9

Similar investigations are ongoing in the treatment of autoim-

mune disease13,14,60,61 and cancers,10,11,62 with growing evidence

for the significant relationship between CRP level and outcomes.

Future efforts may explore the application of similar therapies

in TBI.

Our study has several important limitations. ISS is a crude

measure of polytrauma and was only available in hospitalized

TRACK-TBI participants, making it impossible to correlate ISS

with hsCRP levels in less severely injured subjects who did not

require in-patient care. A granular assessment of how much dis-

ability was attributable to central nervous system (CNS) versus

extra-CNS injury is beyond the scope of this study. In addition,
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FIG. 5. Receiver operating characteristic (ROC) curves for hsCRP and GFAP in predicting GOSE ‡5 versus <5 at 6 months after
traumatic brain injury. ROC curves for GFAP alone, hsCRP alone, and GFAP + hsCRP at (A) day 1, (B) day 3, (C) day 5, and
(D) 2 weeks post-injury. GOSE <5 indicates unfavorable outcome (severe disability/death). GFAP, glial fibrillary acidic protein; GOSE,
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hsCRP levels are also affected by a number of other conditions,

including acute and chronic inflammatory conditions, surgical

interventions, and complications such as ventilator associated

pneumonia, which we do not account for in this study. The role of

systemic inflammation in TBI requires further exploration and is

likely to have important implications for prognostication and future

clinical trial design.

Conclusions

Serum hsCRP measured within 2 weeks of TBI discriminates

unfavorable from favorable recovery at 6 months. Our data support

the role of hsCRP as a prognostic marker with potential utility for

both early identification of subjects at risk for poor outcome and as

a tool for subject stratification and cohort enrichment for clinical

trials of anti-inflammatory treatments.
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