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Abstract

Cooperative Multiplexing in Wireless Relay Networks

by

Vinayak Nagpal

Doctor of Philosophy in Electrical Engineering

University of California, Berkeley

Professor Borivoje Nikolić, Chair

Wireless networks are experiencing an explosive growth in the number of users and the de-
mand for data capacity. One of the methods to improve capacity is to use tighter cooperation
between terminals. In order to design a cooperative wireless link, several theoretical as well
as practical challenges need to be addressed. In this dissertation we develop tools for the
design of practical cooperative links that perform very close to fundamental limits.

Using the tools of information theory, we begin by showing that cooperative relaying
provides additional degrees-of-freedom for communication. For a simple network with a
single-antenna source, single-antenna half-duplex relay and a two antenna destination, we
show that cooperation allows the link throughput to increase approximately by a factor of
2.

This gain is achievable using the recently introduced quantize-map-and-forward (QMF)
cooperation scheme. However, QMF requires joint decoding of multiple information streams
at the destination. The computational complexity of joint decoding is prohibitive for prac-
tical implementation. We address this problem by developing a low-complexity practical
coding and system design framework for QMF relaying. The framework presents several
pragmatic design choices to achieve cooperative degree-of-freedom gains in practice. The
framework uses a combination of LDPC and LDGM codes decoded jointly over a low com-
plexity factor graph. Signal processing requirements at all terminals are shown to have
linear time complexity. Density evolution tools are developed for the design of specialized
linear codes and mapping functions. Based on these tools, we demonstrate the design of
cooperative links that perform within 0.5-1.0dB of information-theoretic limits.
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Chapter 1

Introduction

1.1 Motivation

In the past two decades, wireless communications have had a profound impact on human
productivity. The explosive growth in popularity of smartphones, cloud based services and
mobile entertainment has led to the emergence of a wide array of innovative models for
business and social interaction.

Wireless services have burgeoned, both in terms of global reach and capacity for data
throughput. Subscriptions1 have already surpassed 5 billion, which corresponds to 75% of
the world population. Since their inception, wide area cellular networks have increased traffic
capacity by several orders of magnitude. 3GPP Long Term Evolution (LTE) networks cur-
rently in deployment are expected to allow a peak download rate of approximately 300Mbps
at end user terminals. Notwithstanding such accelerated network upgrades, capacity is lag-
ging far behind traffic demand. The research community is faced with the challenge of
meeting this growing demand with aggressive advances in communication technology.

Most challenges in traditional networks were attributed to two fundamental properties
of the wireless channel namely, (a) multi-path propagation and (b) broadcast transmission
over a superposition medium. As per the modern outlook, the same properties present the
most opportunities for addressing the capacity challenge.

a) Multipath Propagation: Wireless transmissions reach their intended destination through
several disparate paths. This phenomenon is a major contributor to the complexity of
current network standards. However, recent advances have transformed this apparent
impediment into an opportunity.

Antenna arrays are used at either end of a link to send multiple transmissions simulta-
neously in different directions. Such multiple input multiple output (MIMO) systems
utilize the rich scattering environment for spatial multiplexing. Early proposals for

1Source: iSuppli 2010.
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MIMO communication emerged in 1993, followed by several years of development. To-
day, MIMO techniques are widely deployed e.g. 802.11n local area networks (LAN),
WiMAX and LTE.

Spatial multiplexing allows linear scaling of link capacity with the number of antennas
in the array. While large arrays can be used at base station terminals, antenna arrays
at mobiles are limited due to constraints on size, weight and power. As a result, spatial
multiplexing is not fully realized in current networks.

b) Broadcast Transmissions over a Superposition Medium: Wireless transmissions from
one user interfere with others in the vicinity. Interference management is one of the
most important considerations in the design and deployment of practical networks.
Nonetheless, this broadcast nature of the wireless medium also presents an opportunity
to improve capacity.

Wireless terminals can hear transmissions from each other, providing a natural op-
portunity for cooperation. Terminals can potentially form cooperative antenna arrays,
thereby allowing improved spatial multiplexing.

Over the last decade, cooperative communication has received tremendous interest
from the research community. Several influential results in information theory have
shown that cooperation can address the capacity challenges of future networks. The
paradigm has also gained acceptance in studies for upcoming network standards like
3GPP LTE-Advanced.

Despite promising indications, several theoretical as well as practical challenges need to
be addressed before cooperative spatial multiplexing techniques can be deployed in practical
networks.

1.1.1 Related Work

The earliest information-theoretic study of cooperative networks is due to Cover and El
Gamal [16](1963). They consider a network called the relay channel with one transmitter,
one receiver and one cooperating relay. It represents the foundational building block for
the study of cooperative communication. Over the past 40 years, several capacity bounds
and cooperation strategies have been proposed for the relay channel. Notwithstanding these
extended efforts, the fundamental capacity of a cooperative link remains an open problem
even for this simple network. Several alternate and tractable metrics have been proposed
to gain insights into performance limits of cooperation. One of the most popular metrics
is the diversity multiplexing tradeoff (DMT). The fundamental DMT was characterized for
specific configurations of the relay channel in 2009. However, it remains open for a general
multiple-antenna relay channel.

In spite of the challenges, there is a widespread consensus that cooperative techniques
will play a key role in addressing the capacity challenges of the future. It was shown in
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2007 by Ozgur et.al.[51] that cooperative MIMO can allow the capacity of an adhoc network
to scale linearly with the number of terminals. In 2009, a deterministic approach proposed
by Avestimehr et.al.[6] led to results providing approximate capacity for several cooperative
networks. While the general characterization of fundamental limits has remained elusive,
results like these represent significant advances in understanding.

Another critical step in the evolution of cooperative communication is to bridge the
divide between theory and practice. Coding schemes and decoding algorithms proposed by
information theory are often too complex for the design of practical systems. Moreover,
cooperation introduces unique performance-complexity tradeoffs in the system. Traditional
system building blocks e.g. modulation, error correcting codes, synchronization and access
control need to be reexamined for the cooperative communication paradigm. So far, these
challenges have recieved relatively little attention.

This dissertation presents an attempt to contribute towards the vision outlined above.
For a relatively simple class of networks, a framework of ideas is proposed to aid the design
of low complexity cooperative wireless links that perform close to fundamental limits.

1.2 Scope and Organization

The focus of this dissertation is cooperative spatial multiplexing i.e. increasing the through-
put of a wireless link using cooperation. In Chapter 2, a full characterization of the funda-
mental DMT for a representative relay channel is presented. If the relay is relatively close
to the transmitter, DMT analysis shows that link throughput can be increased by almost a
factor of 2 even with the help of a single half-duplex relay.

It is identified that the quantize-map-and-forward (QMF) cooperation scheme is ap-
proximately optimal at high signal-to-noise ratio for networks with an arbitrary number of
cooperating relays. However, it presents a unique challenge in the design of computation-
ally efficient error control coding schemes. In Chapter 3, this challenge is addressed with
a low complexity coding and system design framework for QMF relaying. Central to the
framework is a belief propagation algorithm over a sparse factor graph.

In Chapter 4, density evolution techniques are extended to enable systematic analysis
and design of degree profiles for the proposed factor graph. Based on these tools, the design
of code profiles for the relay channel that perform within 0.5−1.5dB of information theoretic
limits is demonstrated.

Finally, Chapter 5 presents a summary of results and directions for future work.
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Chapter 2

Cooperative Multiplexing:
Fundamental Limits

This chapter presents information theoretic tools and results to demonstrate the poten-
tial of cooperative techniques towards improving the performance of wireless networks. It
primarily focuses on the diversity multiplexing tradeoff (DMT) framework for cooperative
communication systems in the delay-constrained high SNR regime. It outlines previous work
on DMT limits for cooperative diversity and presents new results that provide insights into
opportunities for cooperative spatial multiplexing.

The chapter also introduces an enhancement of the DMT framework that allows capturing
relative distances between terminals. It presents a characterization of the fundamental DMT
for a network having a single antenna half-duplex relay between a single-antenna source and
two-antenna destination. The results show that cooperation can achieve a multiplexing gain
greater than that of the direct link and that it is a function of the relative distance between
source and relay compared to the destination.

2.1 Outage Probability

Relay terminals create virtual antenna arrays for communication. Due to this, the charac-
terization of MIMO channels is relevant for the study of cooperative communication. This
section presents an overview of the outage probability formulation for MIMO channels.

Wireless environments are affected by multi-path propagation resulting in random chan-
nel fading. In most systems, the transmitter is not aware of the instantaneous realization of
fading state. It encodes information based on knowledge of average channel statistics. This
is called non-coherent transmission. Note that the receiver can measure instantaneous fading
state by utilizing sounding symbols sent by the transmitter i.e. reception is usually coherent.
Error correcting codes ensure that even if few symbols are corrupted, the receiver can still
successfully decode the message. However, there are some instances when the receiver is
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unable to successfully decode. These result in transmission errors. One of the major goals of
wireless system design is to minimize transmission errors while retaining a high information
throughput.

Fundamental limits for system performance are studied in the context of ergodic Shannon
capacity i.e. the maximum information throughput for which channel coding can ensure
arbitrarily small probability of error. Ergodic capacity represents the maximum achievable
throughput averaged across all fading conditions. Multi-path fading properties of a channel
change over relatively longer timescales (compared to receiver noise) and the fading state
stays fairly constant over an interval called the channel coherence interval. In typical outdoor
settings, the channel coherence interval is of the order of several milliseconds. In order to
use an information rate that is close to the channel’s ergodic capacity, every message block
must be able to average across a sufficiently large number of coherence intervals. This
requires long message blocks and increases the communication delay/latency. Most systems
in practice have a constraint on the maximum tolerable latency which limits the length of
message blocks and hence the number of fading realizations. In situations where the system
delay constraint is comparable to channel coherence time, ergodic capacity does not provide
a meaningful performance limit. These are known as delay-constrained or slow fading [67]
systems.

Another method to study delay-constrained systems is to consider the probability of
decoding error in relation with the information rate. If channel conditions are too severe
to allow reliable communication at a given rate, the channel is said to be in outage. The
probability of decoding error in terms of the outage event is given as follows:

P [error] = P [error|outage]P [outage] + P [error|no outage]P [no outage]

• If the channel is in outage, the probability of decoding error will be high irrespective
of coding scheme i.e. P [error|outage]→ 1.

• If the channel is not in outage, the transmitter uses a coding scheme that allows
decoding error to be made very small i.e. P [error|no outage]→ 0.

If the transmitter uses the best possible non-coherent coding scheme, the probability of
decoding error is dominated by the probability of outage. This formulation gives a useful
handle on the information carrying capacity of delay-constrained fading channels.

2.1.1 SISO Channel

As an example, consider a single input single output (SISO) wireless channel having complex
Gaussian noise, unit input power constraint and average signal-to-noise ratio without fading,
represented as SNR. For simplicity, assume quasi-static flat fading using a single coefficient
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Figure 2.1: 2× 2 MIMO Channel.

h. The maximum instantaneous mutual information I for this channel is given as follows:

I = log2 (1 + |h|2SNR)

If the transmitter communicates using an information rate R, the outage event is the set of
channel realizations where I < R. This condition represents the outage region:

|h|2 < 2R − 1

SNR

For Rayleigh fading, |h|2 is exponentially distributed with parameter λ, the outage proba-
bility P SISO

out is given as follows [37]:

P SISO
out (SNR,R) := P

[
|h|2 < 2R − 1

SNR

]

≈ λ
2R − 1

SNR

This represents a fundamental limit for the SISO channel. It relates the maximum rate R
for a given SNR with the minimum achievable Perror.

2.1.2 MIMO Channels

It is worth noting that for a SISO channel, the transmitter can only code across multiple
symbols in time. For MIMO channels, coding can additionally be performed across multiple
antennas. This offers several options for space time coding strategies. Outage probability
provides a natural benchmark to evaluate performance of various space time coding schemes.
For illustration, a few space-time coding schemes are described below with corresponding
expressions for Pout(SNR,R). Derivations are excluded and can be found in [67].

Consider the 2× 2 MIMO channel shown in Fig 2.1. For simplicity, assume quasi-static
flat fading represented by matrix

H =

[
h11 h12

h21 h22

]
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Two antennas transmit a sequence of symbols X = [x1 x2 . . .], xi =

[
xi,1
xi,2

]
, E[|xi,j|2] = 1.

The received signal sequence is Y = [y1 y2 . . .], y =

[
yi,1
yi,2

]
. Every receive symbol y

experiences independent and identically distributed (i.i.d) Gaussian noise Z = [z1 z2 . . .],

zi =

[
zi,1
zi,2

]
, zi,j ∼ CN (0, σ). The channel is parametrized by the average SNR, SNR = 1/σ2.

The channel output is expressed as follows:

Y = HX + Z

An inner space-time code is used for symbols across blocks of N symbol times i.e. [x1 . . .xN ].
Each symbol xi,j in the inner code is encoded using a capacity-achieving outer code. If a
communication scheme with rate R is used, the fundamental outage probability is given as
follows:

Pout(SNR,R) = P
[
log det

(
I + SNR HH†

)
< R

]
(2.1)

Here the † superscript represents conjugate transpose. Outage probability expressions for
representative space-time coding schemes are shown below.

Repetition Scheme

In this scheme, the same symbol is repeated across both antennas one-by-one while the other
antenna remains quiet. X for repetition coding is given as follows:

[
0 x[1] 0 . . .
x[1] 0 x[2] . . .

]
(2.2)

Here {x[i]}N/2i=1 belong to a capacity-achieving outer code having rate R. The repetition
scheme encodes messages across time as well as antennas (space). However, the scheme sends
only one symbol over two symbol times and is inefficient in terms of throughput. Assuming
the channel remains constant for N symbol times (slow fading), the outage probability is
given as:

P rep
out (SNR,R) = P

[
1

2
log
(
1 + SNR(|h11|2 + |h22|2 + |h21|2 + |h12|2)

)
< R

]
(2.3)

Alamouti Scheme

The Alamouti scheme is more efficient in use of space-time channel slots. For this scheme,
X is given as follows: [

x[1] −x∗[2] x[3] . . .
x[2] x∗[1] x[4] . . .

]
(2.4)
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Symbols {x[i]}Ni=1 belong to a capacity-achieving outer code having rate R. The structure
of X ensures that every transmit symbol can be averaged across all 4 fading coefficients
and also appears orthogonal to other symbols at the receiver. For slow fading, the outage
probability is given as:

PAla
out (SNR,R) = P

[
log
(
1 + SNR(|h11|2 + |h22|2 + |h21|2 + |h12|2)

)
< R

]
(2.5)

V-BLAST

The above two schemes ensure that coding is performed across time as well as antennas. The
vertical Bell Labs space time architecture [22] (V-BLAST) attempts to maximize system
throughput at the cost of averaging across fewer fading coefficients. Under V-BLAST, the
message is split across two coded streams. X is represented as follows:

[
x1[1] x1[2] x1[3] . . .
x2[1] x2[2] x2[3] . . .

]
(2.6)

Here {x1[i]}Ni=1 and {x2[i]}Ni=1 belong to two independent capacity achieving codes having
rates R1 and R2 respectively. For each of the two streams, the transmit antenna remains
fixed and coding is performed only across time.

In the Alamouti scheme, two information symbols appear orthogonal at the receiver due
to the special construction of X. In V-BLAST, such a construction is not used and the
receiver estimates x1[i] and x2[i] from its received signal using signal processing techniques.
The decorrelator, MMSE (minimum mean squared error) and ML (maximum likelihood)
are among various possible decoding techniques listed in order of increasing implementation
complexity and performance. The 2 × 2 MIMO channel with V-BLAST decomposes into
two SISO parallel sub-channels having complex gains p1(H) and p2(H) respectively.

The joint probability distribution of gains p1(H), p2(H) depends on the decoding archi-
tecture used. The outage probability for the scheme is as follows:

P V BLAST
out (SNR,R1,R2) = P

[
2⋃

i=1

(
log
(
1 + SNR|pi(H)|2

)
< Ri

)
]

(2.7)

D-BLAST

The diagonal Bell Labs space time scheme (D-BLAST)[22] uses a diagonal structure and
performs coding across antennas as well as space. The sequence x′ = {x[i]}Ni=1 forms one
codeword belonging to a capacity achieving outer code having rate R. Each codeword is
split into two blocks of symbols x′A and x′B, each having N/2 symbols. The transmitter
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sends several codewords indexed by j and X is given as follows:

[
. . . x′B[j] x′B[j + 1] . . .
. . . x′A[j + 1] x′A[j + 2] . . .

]

In order to initialize the diagonal block structure shown above, one initial block of N/2
symbols i.e. x′B[0] is set to 0. If one considers the information rate for D-BLAST over a
sufficiently large number of codewords, this one-time overhead can be ignored. As discussed
previously, the decorrelator, MMSE and ML receiver structures can be used for D-BLAST.
The diagonal structure also allows successive interference cancellation (SIC) [67]. A detailed
discussion of D-BLAST with MMSE-SIC is presented in Sec 2.5.3. Using D-BLAST, the
MIMO channel decomposes into two parallel SISO sub-channels having gains g1(H) and
g2(H). The outage probability for D-BLAST is given as follows:

PDBLAST
out (SNR,R) = P

[
2∑

k=1

log
(
1 + SNR|gk(H)|2

)
< R

]
(2.8)

The joint distribution of g1(H) and g2(H) is determined by the receiver architecture.

2.2 Diversity Multiplexing Tradeoff

It is interesting to compare the outage conditions for various space-time coding schemes
shown in equations (2.3)(2.5)(2.7)(2.8) with the fundamental channel outage condition given
in Eq. (2.1). A scheme is said to be outage optimal for a given region in {SNR,R}, when
the scheme is in outage if and only if the channel is also in outage for all fading realizations
H. An important goal in studying MIMO channels is to understand these outage optimality
characteristics.

This goal translates into understanding how various coding schemes can tradeoff in-
formation throughput (R) for reliability Pout. There are many ways in which the MIMO
channel can be poorly conditioned to cause outage, making the analysis of outage probability
expressions like (2.1) etc. intractable. In order to overcome this challenge, the diversity mul-
tiplexing tradeoff (DMT) framework was introduced by Zheng and Tse in 2003 [80]. DMT is
widely recognized for its ability to distill outage performance for space time coded systems
in a compact form. Most systems in practice today operate in the moderate to high SNR
regime i.e. transmit power is not the major limiting factor for system capacity. At high SNR,
it becomes necessary to utilize advanced techniques like MIMO and cooperative relaying to
get significant improvement in spectral efficiency. The DMT formulation takes advantage of
this fact and simplifies outage analysis by focusing on the high SNR regime.

The ergodic capacity C(SNR) for a MIMO channel scales logarithmically with SNR. For
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M transmit and N receive antennas it is given as follows[66]:

C(SNR) = E
[
log det

(
I + SNR HH†

)]

→ min(M,N) log(SNR) as SNR→∞

The outage probability Pout(SNR,R) approaches 0 as SNR → ∞ for any fixed rate R.
However, this fixed R is only a fraction of the high SNR ergodic capacity. If R is increased
in a logarithmic relation to SNR as SNR→∞, then the outage probability can be quantified.

As per the DMT formulation [80], for a coding scheme of interest a family of codes indexed
by SNR is considered. If the rate R for every code in this family is scaled as r log(SNR), then
r represents the normalized data rate and is called the multiplexing gain. A high multiplexing
gain r represents scenarios where R is aggressively increased as SNR increases.

r = lim
SNR→∞

R
log(SNR)

(2.9)

For this family of codes with multiplexing gain r, the outage probability is calculated as a
function of SNR. The slope of Pout versus SNR on a log-log plot is defined as the diversity
gain d(r) of the scheme.

d(r) = lim
SNR→∞

log(Pout)

log(SNR)
(2.10)

This can be expressed in terms of exponential equality as Pout
.
= SNR−d(r). The diversity

gain provides a measure of link reliability. The DMT is usually represented as a plot of
maximum diversity d(r) gain versus multiplexing gain r. The fundamental tradeoff for a
given channel is given by the maximum achievable DMT over all possible coding schemes
and is represented by d∗(r).

2.2.1 2× 2 MIMO DMT

To illustrate the general DMT analysis procedure, the fundamental DMT for the 2×2 MIMO
channel is derived below using the system model in Sec 2.1.2 [67]. The outage probability
for a given multiplexing gain r is given as follows.

P 2×2
out (SNR,R) = P

[
log det

(
I2 + SNR HH†

)
< r log(SNR)

]

= P

[
2∏

i=1

(1 + SNR λi) < SNRr

]
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Here λ1 > λ2 are the ordered eigenvalues of HH† which are expressed in terms of SNR as
λi = SNR−βi

P 2×2
out (SNR,R) = P

[
2∏

i=1

(1 + SNR1−βi) < SNRr

]

At high SNR, only terms with positive powers of SNR remain in the above expression i.e.
for values 0 ≤ β1, β2 ≤ 1.

P 2×2
out (SNR,R)

.
= P [2− β1 − β2 < r]

The set of β1, β2 values for which the outage condition holds is defined as the outage
region i.e.

O(r) = {(β1, β2) : 2− β1 − β2 < r; 0 ≤ β1, β2 ≤ 1} (2.11)

Pout is written as follows:

P 2×2
out (SNR,R) =

∫

(β1,β2)∈O(r)

fβ1,β2(β1, β2) dβ1 dβ2

Here fβ1,β2(β1, β2) is the joint distribution of β1, β2. For Rayleigh fading i.e. entries of H are

i.i.d. CN (0, 1) it is shown in [80] that fβ1,β2(β1, β2)
.
= SNR−(β1+3β2)

P 2×2
out (SNR,R)

.
=

∫

(β1,β2)∈O(r)

SNR−(β1+3β2) dβ1 dβ2

In the limit SNR→∞, this integral can be approximated by using Laplace’s method giving
the diversity as:

d∗2×2(r) = inf
(β1,β2)∈O(r)

β1 + 3β2

For outage region given in (2.11) and r > 1, the infimum is achieved by β2 = 0; β1 = 2− r.
Similarly for for r < 1, β1 = 1; β2 = 1− r. This gives the fundamental DMT for the 2× 2
MIMO channel as follows:

d∗2×2(r) =

{
4− 3r 0 ≤ r ≤ 1
2− r 1 ≤ r ≤ 2

(2.12)

Fig 2.2 shows that the 2× 2 MIMO channel provides a maximum diversity of 4 at r = 0.
This means that a coding scheme can prioritize link reliability by averaging every transmit
symbol over all 4 fading coefficients (Fig. 2.1) h11, h12, h21, h22 to get maximum diversity gain
of 4. Space time coding schemes can achieve this diversity gain by keeping R constant as
SNR→∞. The channel offers a maximum multiplexing gain of 2 (d∗2×2(2) = 0). This implies
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Figure 2.2: Diversity Multiplexing Tradeoff for the 2× 2 MIMO Channel.

that at high SNR, information throughput for the 2 × 2 MIMO channel can be 2 log(SNR)
as opposed to log(SNR) for the SISO channel. The maximum multiplexing gain is achieved
by a scheme that maintains a constant Perror as SNR→∞.

Similarly, maximum tradeoffs for various schemes are calculated using respective outage
probability expressions and shown in Fig 2.2. The Alamouti scheme performs better than
repetition for all r > 0. Both schemes achieve the maximum diversity offered by the channel
and neither achieve the maximum multiplexing gain. V-BLAST outperforms the Alamouti
scheme and achieves the fundamental tradeoff only at high multiplexing gains (r > 1).
However, it can only achieve maximum diversity of 2. It is shown in [71] that the D-BLAST
scheme [22] with MMSE-SIC receiver achieves the fundamental tradeoff d∗(r) for all r.

The DMT framework discussed above has been widely used to study the performance
limits of cooperative channels.

2.3 Relay Channel

A wireless transmission can be received by various terminals in the vicinity due to the broad-
cast nature of the wireless medium. This presents a natural opportunity for cooperation.
Fig. 2.3 shows a canonical cooperative network with a single relay (R) to help transmission
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Figure 2.3: Relay Channel.

from S to D. This is also known as the relay channel.
The earliest generalized information theoretic study of the relay channel was presented

by Cover and El Gamal in [16]. Two fundamental relaying schemes were presented in this
paper namely, decode-and-forward (DF) and compress-and-forward (CF) with corresponding
theorems for channel capacity. Since this seminal work, performance limits for relay networks
have received a lot of interest.

The relay channel can be studied in context of either half-duplex or full-duplex relays.
A full-duplex relay transmits and receives in the same frequency at the same time. On the
other hand, a half-duplex relay uses transmit and receive modes that are non-overlapping e.g.
using time division, frequency division or code division. Practical design of wireless radios
is currently limited to half-duplex operation. Therefore, this dissertation focusses solely on
half-duplex cooperation.

2.3.1 System Model

A discrete memoryless Gaussian relay channel system model is used. It is indicated by
P (y,yR|xS,xR) as shown in Fig. 2.4. It has three half-duplex terminals: source (S), relay
(R) and destination (D) each of which have m,n and k antennas respectively with AWGN
channels. It is called the (m,n, k) relay channel. XS ∈ Cm×NS and XR ∈ Cn×NR are signal
blocks transmitted by the antennas at S and R respectively. Each block is a sequence of
complex symbols having lengths NS and NR respectively. Here bold-face lower case alphabet
denotes a column vector of symbols.

XS = [xS,1xS,2 . . .xS,NS
] (2.13)

XR = [xR,1xR,2 . . .xR,NR
] (2.14)

Without loss of generality, it is assumed that R uses time division for half-duplex operation.
R listens for fraction f ∈ [0, 1] of the signal block and transmits for fraction (1−f) as shown
in Figure 2.5. The block lengths for transmit sequences at S and R satisfy the half-duplex
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Figure 2.4: Discrete Memoryless Relay Channel

constraint:

NR = (1− f)NS

Per-node constraints on average symbol power are considered at the terminals. See Remark 1.

E||xS,i||2 ≤ PS

E||xR,i||2 ≤ PR

The received signal sequences Y ∈ Ck×NS and YR ∈ Cn×fNS are:

Y = [y1y2 . . .yNS
] (2.15)

YR = [yR,1yR,2 . . .yR,fNS
] (2.16)

The received symbols are given as follows:

yi = H1xS,i + H2xR,i + zi

yR,j = HRxS,j + zR,j

Here H1,H2,HR denote the S → D, R → D and S → R channel matrices respectively.
H2 = 0 for i ∈ {1, 2, . . . , fNS} when R is listening. zi and zR,j are i.i.d. zero-mean
Gaussian noise vectors with covariance matrices σ2I and σ2

RI respectively. For Rayleigh
fading, all elements of the channel matrices are i.i.d CN (0, 1). XS (2.13) and Y (2.15) are

partitioned into Xf
S,X

(1−f)
S and Yf ,Y(1−f) using superscript to represent relay’s state e.g.

Xf
S = [xS,1xS,2 . . .xS,fNS

]. This channel is characterized using the following average SNR
parameters:

SNRSR =
PS
σ2
R

, SNRSD =
PS
σ2
, SNRRD =

PR
σ2

Remark 1. The system model above, uses per node constraints on transmit power without
an additional network power constraint (sum of average transmit power at S and R). If
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the network power constraint is dominant, power allocation between terminals needs to be
considered [24]. However, in the high SNR regime, per-node power constraints tend to be
dominant and power allocation does not improve system performance significantly therefore
the network constraint is omitted in our analysis.

2.3.2 Capacity Bounds

While the capacity of the relay channel is not known in general, the following bounds act as
guidelines for information theoretic limits.

Cut-Set Bound

The cut-set bound (max flow min cut theorem) [21, 18] is a useful upper-bound for the
capacity of multi-terminal networks. The network in Figure 2.3 has two cuts namely CS =
{S}, {R,D} and CR = {S,R}, {D}. The mutual information across these cuts for a given
listening fraction f is given as follows:

ICS (f) = fI(Xf
S; YR,Y

f ) + (1− f)I(X
(1−f)
S ; Y(1−f)|XR) (2.17)

ICD(f) = fI(Xf
S; Yf ) + (1− f)I(X

(1−f)
S ,XR; Y(1−f)) (2.18)

Here I(; ) represents mutual information and conditional mutual information as defined in
[17]. The maximum achievable rate beyond which reliable communication is not possible is
bounded using the cut-set bound as follows [17]:

R(cutset) ≤ max
P (XS ,XR)

min(ICS (f), ICD(f)) (2.19)

Decode and Forward

Decode and forward is one of the fundamental schemes for the relay channel introduced in
[16] and studied extensively in literature. Under the DF scheme, R decodes its received
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message and forwards it to D after re-encoding. During the cooperation phase (f) when R
is listening, S must make sure that R can decode i.e. it must use a rate ≤ I(Xf

S; YR). The
maximum achievable rate under DF for a given listening fraction f is given as follows:

R(DF ) ≤ max
P (XS ,XR)

min{fI(Xf
S; YR) + (1− f)I(X

(1−f)
S ; Y(1−f)|XR),

fI(Xf
S; Yf ) + (1− f)I(X

(1−f)
S ,XR; Y(1−f))}

Compress and Forward

In CF, the transmission from R depends on a soft estimate of Xf
S, as opposed to DF which

uses a hard estimate. Soft estimate forwarding relaxes the constraint for decoding at the
relay. R compresses its observation YR to form ŶR and maps it to a transmit codeword
XR. The destination D first decodes XR from Y(1−f) and recovers ŶR by treating the
transmission from S as noise. Since the transmission from S acts as side information at D,
R can use Wyner-Ziv [74] type compression having rate I(ŶR; YR|Yf ). In order to ensure
that D can decode XR this rate cannot be greater than the capacity of the R → D link.
The resulting constraint is expressed as follows:

fI(ŶR; YR|Yf ) ≤ (1− f)I(XR; Y(1−f)) (2.20)

D decodes XS using ŶR and Y. The maximum achievable rate under CF for a given listening
fraction f is given by

RCF ≤ max
P (XS ,XR,ŶR,Y)

fI(XS; ŶR,Y
f ) + (1− f)I(XR; Y(1−f)) (2.21)

subject to (2.20).

Quantize Map and Forward (QMF)

QMF is a modified version of the CF scheme proposed in [6]. Under QMF, R compresses its
observation YR to ŶR and maps it to transmit codeword XR without performing Wyner-Ziv
compression. D decodes XS from Yf and Y(1−f) without explicitly recovering ŶR. For a
single relay, QMF has the same maximum achievable rate as CF (2.21). However, unlike
CF, QMF does not require the relay to have any knowledge of the R→ D channel strength.
Therefore, ŶR does not need to satisfy (2.20). For networks with multiple relays it has been
shown [6] that QMF outperforms CF.
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2.4 Cooperative Diversity

In the high SNR regime, MIMO and cooperative techniques play a key role in improving
system spectral efficiency. Therefore, the high SNR DMT discussed in Sec 2.2 is a natural
fit to analyze the relay channel. The DMT limits of MIMO channels act as upper-bounds
for corresponding cooperative configurations. Various relaying schemes are compared with
each other and corresponding MIMO bounds to draw insights into their performance.

A relay channel with antenna configuration having form (m,n, k = m) is referred to as
a cooperative diversity configuration. The maximum achievable multiplexing gain without
cooperation (no relay) i.e. min{m,m} = m is the same as the multiplexing gain with
unlimited cooperation i.e. min{m + n,m} = m. In these configurations, the range of
achievable multiplexing gains r remains the same, but cooperation allows higher diversity
for any given r.

2.4.1 Single Antenna Case

The (1, 1, 1) relay channel is the simplest cooperative diversity configuration. The funda-
mental DMT of the 1×1 SISO (“no cooperation”) and 2×1 MISO (“unlimited cooperation”)
channels act as DMT benchmarks for this channel. Several relaying schemes are proposed
for the (1, 1, 1) configuration in literature. These include Amplify-and-Forward (AF) [38],
wherein the relay simply forwards its received signal without decoding or compression. AF is
traditionally defined as an “orthogonal” scheme, i.e. during the (1−f) relay-transmit phase,
only relay transmits and the source remains silent. A non-orthogonal version of the scheme
(NAF) is proposed in [45] which allows S and R to transmit simultaneously. Another promi-
nent scheme is dynamic decode-and-forward (DDF). In DDF [7] the relay listening fraction
f is chosen dynamically based on instantaneous channel realizations to minimize outage
probability. DDF outperforms AF, NAF and traditional DF. The DMT for DDF as shown
in Fig 2.6 achieves the 2 × 1 MISO bound for multiplexing gains r ≤ 0.5. At high multi-
plexing gains (r > 0.5), the DDF relay spends a large fraction of time listening and thereby
reducing the throughput. To address this drawback, another scheme is proposed in [55]. It
is called partial-dynamic-decode-and-forward (PDDF), where the transmission from source
is split into two parts. The relay is required to decode only one of those parts using the DDF
protocol. The relay does not participate in the second part, thereby partially relaxing the
constraint on listening time at the relay. While PDDF has a better DMT performance com-
pared to DDF it still does not achieve the 2× 1 MISO bound. Finally, it is shown in [75][52]
that using soft decision forwarding schemes like CF or QMF the 2×1 MIMO DMT bound is
achievable with half duplex cooperation. As opposed to CF, QMF achieves the DMT upper
bound with reduced channel knowledge at relay. The scheme in [75][52] uses a fixed listening
fraction of f = 0.5. These results highlight the power of half-duplex cooperation in terms of
system performance at high SNR.

Fig 2.6 shows DMT performance results for the various schemes described above over the
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Figure 2.6: Diversity Multiplexing Tradeoff for the (1, 1, 1) Half Duplex Relay Channel.

(1, 1, 1) relay channel. Also shown are corresponding DMT bounds for 1× 1 SISO and 2× 1
MISO.

2.4.2 Multiple Antennas

Unlike the single antenna case, the half duplex relay channel with multiple antennas cannot
achieve corresponding MIMO DMT bounds. For the (m = 1, n, k = 1) relay channel, it is
shown in [75] that the fundamental DMT is given as follows:

d∗(1,n,1)(r) =

{
1 + n− 2nr 0 ≤ r ≤ 0.5

2(1− r) 0.5 ≤ r ≤ 1

The above tradeoff is achievable using soft-decision forwarding schemes e.g. CF and QMF
and a static listening schedule with f = 0.5. Fig 2.7 shows the tradeoff for n = 2 in
comparison with the 3× 1 MISO bound.

A general form of the above result is reported in [39] for all cooperative diversity config-
urations (m,n, k = m). The fundamental tradeoff is piecewise linear and can be achieved
using a static schedule with f = 0.5 and CF/QMF relaying. The corner points of the tradeoff
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Figure 2.8: Diversity Multiplexing Tradeoff for the (2, 3, 2) Half Duplex Relay Channel.

are given as follows. l0 = min{m, bn+1
3
c}.

d∗(m,n,m)(l/2) = m2 + (n− l)(m− l)
for 0 ≤ r ≤ l0/2 and l ∈ {0, 1, . . . , l0}

d∗(m,n,m)(l0/2 + l) = l2 + (n+m− l)(m− l0 − l)
for l0/2 ≤ r ≤ m− l0/2 and l ∈ {0, 1, . . . ,m− l0}

d∗(m,n,m)(m− l/2) = l2

for m− l0/2 ≤ r ≤ m and l ∈ {0, 1, . . . , l0}

Fig. 2.8 shows the DMT for (2, 3, 2) configuration with associated “no cooperation” and
“unlimited cooperation” bounds.

2.5 Cooperative Multiplexing

Cooperative diversity refers to the additional diversity gain (over direct link) offered by
cooperation. Similarly, cooperative multiplexing refers to situations where a relay provides
additional multiplexing gain (compared to direct link) [20]. This section presents our findings
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on relay channel configurations that allow cooperative multiplexing i.e. those having form
(m,n, k) with m 6= k.

In this dissertation, only the simplest such configuration i.e. (1, 1, 2) is considered. The
fundamental DMT is fully characterized for this case. The configuration is of special interest
for current cellular and local area networks, wherein base stations commonly have multiple
antennas and mobiles are limited to just one antenna (as discussed in Chapter 1). It is shown
that if the source and the relay are relatively close to each other, cooperative multiplexing
gain is achievable even with half duplex relaying. The full-duplex case is studied in [20]. It
is worth noting that for multiplexing gains less than 1, if source-relay SNR (measured in dB)
is at least two times the source-destination SNR a simple scheme with the relay listening 1

3

of the time and transmitting 2
3

of the time achieves the 2 × 2 MIMO DMT. These results
are reported in [46].

These results lend insight into the fundamental limits of cooperative multiplexing in the
half-duplex relay channel. Two key techniques enable our results:

1. Distance between terminals: In most results, it is seen that relative distances between
source, relay and destination do not affect DMT performance of the relay channel.
Since DMT is calculated at high SNR the path loss and therefore distances are not
easily captured in results. This apparent limitation is overcome by scaling the average
SNR’s of the various links differently.

The proposed approach enriches the DMT framework by adding insights about network
geometry. Sec 2.5.1 describes the model in detail.

2. MIMO with half duplex antenna: The cut-set capacity bound (2.19) is widely used
[75] to calculate an upper bound for DMT performance. Notice in Figure 2.9 that the
{S,R}, {D} cut corresponds to a 2 × 2 MIMO system with one source antenna that
remains active only for a fraction of total communication time (R is half duplex). It
is noted in [75] that an upper bound for mutual information across such a cut is hard
to compute. As a result, in prior work fundamental DMT results are only known for
the special case of diversity configurations (m = k).

In Sec 2.5.3 a simple channel decomposition is proposed, allowing us to compute the
cut-set DMT bound for the (1, 1, 2) configuration. The technique can be applied to-
wards computing DMT for general m,n and k. In Sec 2.5.4 it is shown that the cut-set
DMT can be achieved using a dynamic QMF scheme.

2.5.1 Asymmetric System Model

Consider the system in Figure 2.9 with source S, relay R and destination D having 1, 1 and
2 antennas respectively. Let Dj, j ∈ {1, 2} denote the jth antenna at D. The channel gain
for S → R is hsr, gains for S → Dj are hsj and R → Dj are hrj. All the channel gains are
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Figure 2.9: Relay channel with 2 antennas at destination and S → R proximity gain η.

assumed to be flat fading having i.i.d. CN (0, 1) distribution. Quasi-static fading is assumed,
i.e. once realized, channel gains remain unchanged for the duration of the codeword and they
change independently between codewords. Noise at all receivers is additive i.i.d. CN (0, 1)
and independent of all other variables in the system. Transmit power at S and R is limited
by an average power constraint specified by the average SNR. For simplicity, it is assumed
that transmissions at S and R are synchronous at symbol level.

Consider an asymmetrical network geometry. S and R are modeled to be close to each
other as compared to {S,R} and D. S → D and R → D are assumed to have the same
average SNR denoted by ρ. S → R on the other hand is modeled to have SNR higher than
ρ by a factor η on dB scale, i.e. the S → R average SNR is ρη. Thus, the S → R channel
(cooperation link) has η − 1 more degrees of freedom than other channels in the network.
We call η the proximity gain and assume η ≥ 1.

Non-coherent transmission and coherent reception is assumed i.e. only average channel
statistics ρ, η are known at S, at D all channel realizations hsr, hsj, hrj are completely known.

Three models for relaying strategy are identified.

• Global: The relay uses knowledge of all instantaneous channel realizations to optimize
its strategy.

• Local: The relay can measure hsr and uses only this (local) information.

• Blind: The relay only uses average channel statistics.

The global strategy is discussed in Sec 2.5.3 while local and blind are discussed in Sec 2.5.5.
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2.5.2 Results Summary

Theorem 2.5.1. The maximum achievable DMT for network described in Sec 2.5.1 is given
by,

d∗(1,1,2)(r) =





min{η + 2, 4} − 3r 0 ≤ r ≤ 1, η ≥ 1
(2η − ηr − 1)/(η − r) 1 ≤ r ≤ 2− 1

η
, η ≥ 2

η − 1
2−r 1 ≤ r ≤ 2− 1

η
, 1 ≤ η ≤ 2

(2.22)

Corollary 2.5.2. For system model described in Sec 2.5.1 the maximum achievable multi-
plexing gain r∗ = infr≥0{r|d∗(1,1,2)(r) = 0} is,

r∗ = 2− 1

η
(2.23)

For a symmetrical geometry with all channels having the same degrees of freedom (η = 1),
this implies r∗ = 1 i.e. cooperation doesn’t provide additional multiplexing gain. To enable
higher multiplexing gain, the S → R channel (cooperation link) needs to have more degrees
of freedom than the S → D channel (communication link).

Let d∗2×2(r) represent the DMT of the 2 × 2 MIMO channel. For finite η, note that
d∗(1,1,2)(r) ≤ d∗2×2(r) with strict inequality over a non-empty region of r. This suggests that

for distributed antennas the finite capacity of the cooperation channel (S → R) poses a
fundamental limitation on the achievable DMT performance. Note that:

lim
η→∞

d∗(1,1,2)(r)→ d∗2×2(r)

Figure 2.10 shows d∗(1,1,2)(r) for several values of η.
Theorem 2.5.1 is proven in two steps. In Sec 2.5.3 it is shown that the cut-set DMT

upper bound for network in Sec 2.5.1 is given by (2.22). In Sec 2.5.4 it is shown that this
bound is achievable.

2.5.3 Cut-Set DMT upper bound

Let 0 ≤ f ≤ 1 denote a listen-transmit schedule for the half duplex relay. R listens for a
fraction f (listening phase) of total communication time and transmits for fraction (1 − f)
(cooperation phase). The two cuts of the network CD = {S,R}, {D} and CS = {S}{R,D}
are shown in Figure 2.11 for these two phases. The instantaneous mutual information across
the two cuts is given in equations (2.17) and (2.18).

To maximize these mutual information expressions, zero-mean complex Gaussian distri-
butions are chosen for Xf

S,X
(1−f)
S and XR. The distributions have covariance matrices which

satisfy respective average power constraints. Using these, mutual information upper bounds
I
′
CS and I

′
CD for ICS and ICD are computed respectively.
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Figure 2.11: Two cuts of network during listen (f) and cooperation phase.(1− f).

ICS ≤ I
′

CS = f log(1 + ρη|hsr|2 + ρ||hs||2)

+(1− f) log(1 + ρ||hs||2)

≈ f max{log(1 + ρη|hsr|2), log(1 + ρ||hs||2)}
+(1− f) log(1 + ρ||hs||2)

ICD ≤ I
′

CD = f log(1 + ρ||hs||2)

+(1− f) log det(I + ρHH†)

Here hs =

[
hs1
hs2

]
,hr =

[
hr1
hr2

]
and H = [ hs hr ]. The approximation is tight to within

one bit.
Note that the expression for I

′
CD is a linear combination of the capacities of two Raleigh

fading Gaussian channels having correlated channel matrices H1 = [ hs 0 ] and H =
[ hs hr ]. Outage probability for the MIMO channel is calculated in [80] using eigen-
value decomposition of the channel matrix. If this same technique is followed, it requires
computing the joint eigenvalue distributions for two correlated hermitian matrices, H1H

†
1

and HH†. It is noted in [75] that this is hard to compute. An easier decomposition can solve
this problem. The second term in I

′
CD is the capacity of a 2× 2 MIMO channel which can be

represented by two parallel Gaussian channels having gains g1 and g2 shown in Figure 2.12.
The channel is given as follows:
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Figure 2.12: Parallel Channel Model for 2× 2 MIMO.

[
y1

y2

]
=
√
ρ

[
g1 0
0 g2

] [
x1

x2

]
+

[
w1

w2

]

Here E[|xi|2] = 1, w1, w2 ∼ CN (0, 1). The capacity for xi → yi is given by log(1 + ρg2
i ). It

is shown in [71][80] that a D-BLAST transmission scheme with MMSE-SIC receiver achieves
the mutual information of the MIMO channel. For this scheme g2

1 and g2
2 are calculated as

follows:

g2
2 = ||hr⊥s||2 +

||hr‖s||2
1 + ρ||hs||2

g2
1 = ||hs||2

where hr⊥s and hr‖s respectively denote the perpendicular and parallel components of hr
with respect to hs.

Note that while g2
1 and g2

2 are correlated, hs,hr⊥s and hr‖s are mutually independent.
Therefore the correlation between g2

1 and g2
2 is analyzable. The destination decodes XR

in the presence of interference from X
(1−f)
S . It cancels XR from its received signal before

decoding X
(1−f)
S . Therefore, S → D is effectively an interference free channel (with gain g1)

during both the listen and the cooperation phases.

I
′

CD = f log(1 + ρg2
1)

+(1− f)[log(1 + ρg2
1) + log(1 + ρg2

2)]

= log(1 + ρg2
1) + (1− f) log(1 + ρg2

2)

Let αsr, α1 and α2 represent channel realizations via the following variable transforma-
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tions.

αsr = lim
ρ→∞

log(1 + ρη|hsr|2)

log ρ

α1 = lim
ρ→∞

log(1 + ρg2
1)

log ρ

α2 = lim
ρ→∞

log(1 + ρg2
2)

log ρ

This gives simplified expressions for mutual information upper bounds.

I
′
CS

log ρ
= α1 + f(αsr − α1)+ (2.24)

I
′
CD

log ρ
= α1 + (1− f)α2 (2.25)

To achieve desired multiplexing gain r at high SNR (ρ→∞) the network must achieve
a rate R = r log ρ. The network is in outage if min{I ′CS , I

′
CD} ≤ r log ρ. For a given r and

schedule f , the outage region O(r, f) is defined over channel realizations ~α = (α1, α2, αsr).

O(r, f) = {~α|min{I ′CS , I
′
CD}

log ρ
≤ r} (2.26)

The outage probability Pout is,

Pout =

∫

~α∈O(r,f)

f~α(α1, α2, αsr)

Here f~α1(α1, α2, αsr) is the joint distribution of (α1, α2, αsr).

Lemma 2.5.3. Proof see Sec 2.6

f~α(α1, α2, αsr)
.
= ρ−s(~α)

where 0 ≤ α1, α2 ≤ 1, 0 ≤ αsr ≤ η and

s(~α) =

{
η + 4− 3α1 − 2α2 − αsr α1 + α2 ≤ 1
η + 3− 2α1 − α2 − αsr α1 + α2 > 1

(2.27)
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For a given listen-transmit schedule f , the cut-set DMT bound is given by,

d∗(1,1,2)(r, f) = inf
~α∈O(r,f)

s(~α) (2.28)

Optimizing over all listen-transmit schedules, gives the DMT upper bound.

d∗(1,1,2)(r) = inf
~α∈O(r)

sup
f
s(~α) (2.29)

Note that this optimization is performed on a per realization basis, i.e. the optimal f depends
on all channel realizations αsr, α1 and α2. Therefore this corresponds to the global strategy
discussed in Sec 2.5.1.

Note that I
′
CS (2.24) is monotonically increasing in f and I

′
CD (2.25) is monotonically

decreasing in f . This indicates that the optimal listen-transmit schedule fglob is one which
sets I

′
CS = I

′
CD .

fglob =
α2

(αsr − α1)+ + α2

This leads to the solution for d∗(1,1,2)(r) given in (2.22).

2.5.4 Achievability: Relaying Scheme

For the same system model described in Sec 2.5.1 but with a single antenna at destination it
is shown in [52] that the QMF relaying scheme (proposed in [5] and [3]) is DMT optimal. It
is shown below that QMF adapts naturally to the case with 2 antennas at destination and
with some modification, achieves the cut-set DMT bound derived in Theorem 2.5.1.

It is interesting to note that if knowledge of all channel gains was available at the source
and at the relay (coherent transmission) then a decode-and-forward relaying scheme would
also achieve the cut-set DMT bound. In this section, the QMF relaying scheme is considered
because it achieves the cut-set DMT bound even without any knowledge of instantaneous
channel gains at S and R. A description of the QMF relaying scheme is provided below.

Description of scheme

Source S has a sequence of messages wn ∈ {1, 2, . . . , 2TR}, n = 1, 2, . . . to be transmitted.
Both source S and relay R create random Gaussian codebooks. S randomly maps each
message to one of its Gaussian codewords and transmits it using T symbol times giving an
overall transmission rate of R. Relay listens to the first fT time symbols of each block i.e.
Xf
S. It quantizes YR to ŶR and then randomly maps it into a Gaussian codeword XR using

a random mapping function fR(ŶR). It transmits this codeword during the next (1 − f)T
symbol times. Given the knowledge of all the encoding functions and signals received, D
attempts to decode the message sent by S.
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DMT of Quantize-Map

By Theorem 7.4.1 in [3], for any fixed listen-transmit schedule f , the quantize-map relaying
scheme, uniformly over all channel realizations achieves a rate within a constant gap to the
cut-set upper bound min{I ′CS , I

′
CD} for that particular f . The random Gaussian code-book

generated at source is independent of f . Also the code-book generated at relay depends on
f only to determine the length of each codeword (1− f)T .

The relay can generate a larger code-book with each codeword of length T . If the relay
chooses a listen-transmit schedule f , it can use the first (1 − f)T symbols of the codeword
to compose XR. The destination always knows the schedule f , hence can adapt its decoder
accordingly. This construction allows the claim that QMF achieves a rate within a constant
gap of min{I ′CS , I

′
CD} uniformly for each dynamic choice of f i.e.

min{I ′CS , I
′

CD} − κ ≤ Rquantize-map(hsr,hs,hr, ρ, f) (2.30)

In the above equation, the constant κ does not depend on the channel gains and SNR.
At the order of DMT, which assumes high SNR (ρ→∞) the effect of κ becomes negligible.
This leads to the following theorem for achievability.

Theorem 2.5.4. For dynamic listen-transmit schedules, the modified QMF relaying scheme
as described above achieves the diversity multiplexing tradeoff of min{I ′CS , I

′
CD}, where I

′
CS

and I
′
CD are given by (2.24)(2.25).

2.5.5 Achievability: Listen-Transmit Schedule

In Sec 2.5.3 the cut-set DMT upper bound was calculated for the globally optimal listen-
transmit schedule fglob. However, in a practical communication scenario global knowledge of
instantaneous channel realizations may not be available at the relay. To account for this, the
local and blind relaying strategies are identified in Sec 2.5.1. In this section, Theorem 2.5.1
is refined to calculate DMT bounds for local and blind schedules.

Blind Scheduling

Theorem 2.5.5. For low multiplexing gain region i.e. r ≤ 1, the blind scheduling strategy
is DMT optimal. Additionally for η ≥ 2 the blind strategy achieves the 2 × 2 MIMO DMT
bound for r ≤ 1. The optimal blind schedule for this region is fblind = 1

3

dblind(1,1,2)(r) = min{η + 2, 4} − 3r r ≤ 1 (2.31)

From (2.28), the DMT bound for blind scheduling can be written as follows:

dblind(1,1,2)(r) = max
f

min
~α∈O(r,f)

s(~α) (2.32)
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i.e. f is optimized without knowledge of channel realizations ~α. Solving this optimization
for r ≤ 1 yields Theorem 2.5.5. This suggests that as long as cooperative multiplexing
is not necessary i.e. desired rate R = r log(ρ) is such that r ≤ 1, static scheduling at
relay is sufficient to achieve the DMT upper bound. fblind = 1

3
turns out to be the optimal

listen-transmit schedule for this region.
For the high rate region (r > 1), the analytical solution for (2.32) is tedious to obtain.

The optimization is convex and has numerical solutions. Figure 2.13 shows a comparison
between d∗(1,1,2)(r) and dblind(1,1,2)(r) for r ≥ 1. Note that for cooperative multiplexing (r ≥ 1)
static scheduling is insufficient to achieve DMT upper bound.

Local Scheduling

Similarly, the DMT bound for local scheduling is expressed as an optimization problem from
(2.28).

dlocal(1,1,2)(r) = min
αsr

max
f

min
α1,α2∈O(r,f)

s(~α) (2.33)

flocal is optimized using knowledge of αsr only. The DMT performance of local scheduling
must be at-least as good as blind scheduling, therefore by Theorem 2.5.5 for r ≤ 1 dlocal(1,1,2)(r) =

dblind(1,1,2)(r) = d(r).

Numerical solution to (2.33) for the high rate r ≥ 1 region is shown in Figure 2.13. Note
that local scheduling performs better than blind, but for higher η this advantage diminishes.

2.6 Proof of Lemma 2.5.3

2.6.1 Marginal Distribution of αsr

fαsr(α) is calculated as,

P [αsr < α] = lim
ρ→∞
P [|hsr|2 < ραsr−η]

fαsr(α)
.
= ρη−α(0 ≤ αsr ≤ η)

2.6.2 Joint Distribution of α1 and α2

Note that g2
1 has a χ2

4 distribution, the marginal distribution of α1 is given by,

fα1(α1) = fg21(ρ−(1−α1))
dg2

1

dα1
.
= ρ−2(1−α1)(0 ≤ α1 ≤ 1)
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Now for (0 ≤ α1, α2 ≤ 1) their joint CDF can be written as,

Fα1,α2(α1, α2) = P [g2
1 ≤ ρα1−1, g2

2 ≤ ρα2−1]

=

∫ α1

x=0

P [g2
1 = ρx−1, g2

2 ≤ ρα2−1]dx

.
=

∫ α1

x=0

ρ−2(1−x)

P(|hs⊥r|2 +
|hs‖r|2
1 + ρx

≤ ρα2−1)dx

.
=

∫ α1

x=0

ρ−2(1−x)

∫ α2−1

y=0

ρyP(|hs‖r|2≤̇ρx+α2−1) dy dx

Case α1 + α2 ≤ 1

Fα1,α2(α1, α2)
.
=

∫ α1

x=0

ρ−2(1−x)

∫ α2−1

y=0

ρx+y+α2−1 dy dx

.
=

∫ α1

x=0

ρ3x+2α2−4 dx

fα1,α2(α1, α2)
.
= ρ3α1+2α2−4

Case α1 + α2 > 1

Fα1,α2(α1, α2)
.
=

∫ 1−α2

x=0

ρ3x+2α2−4 dx

+

∫ α1

x=1−α2

ρ2x+α2−3 dx

fα1,α2

.
= ρ2α1+α2−3

Since αsr is independent of α1, α2 we get Lemma 2.5.3.

2.7 Summary

In this chapter information theoretic limits of cooperative multiplexing are derived. These re-
sults show that half-duplex cooperation is a promising technique for improving link through-
put.
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Chapter 3

Coding for
Quantize-Map-and-Forward

In the previous chapter, information theoretic results that demonstrate the potential of
cooperative relaying were presented. Information theory only proves the existence of error
correcting codes and relay mapping functions. To bring these ideas closer to practice, explicit
construction of codes that perform close to information theoretic limits and have efficient
encoding/decoding algorithms is required. In this chapter progress is reported towards this
goal by developing coding schemes for QMF relaying.

In the past, code design for cooperative systems has focussed mainly on the DF and CF
relaying schemes. The QMF [6] relaying scheme has several properties that makes it suitable
for practical implementation. Additionally, QMF has been shown to achieve the capacity of
arbitrary Gaussian relay networks to within a constant gap. As discussed in Sec 2.3.2, the
soft decisions (side information) forwarded by relays are not decoded explicitly under QMF.
Instead the message is decoded jointly with the side information. This presents a unique
challenge in the design of efficient coding schemes.

In this chapter, a practical coding framework is developed to addresses this challenge. The
initial focus is on the binary input Gaussian relay channel. Two code configurations based on
combinations of binary low density parity check (LDPC) and low density generator matrix
(LDGM) codes are proposed. It is shown that the schemes have linear-time complexity for
encoding, relay-mapping and joint decoding operations. Simulation results are given using
off-the-shelf codes to demonstrate that the schemes provide cooperation gains that are close
to those predicted by information theory. Finally, the binary coding framework is extended
for use with high order signal constellations using bit-interleaved coded modulation (BICM).
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3.1 Error Control Coding

In this section, an overview of error control coding for traditional binary input point-to-point
channels is presented. A message is represented by a sequence of k bits a ∈ {0, 1}k. It is
encoded into n > k bits using a code C to form a transmit codeword b ∈ {0, 1}n. The
codeword is modulated to construct symbols x ∈ Cn that are transmitted over the channel.
The decoder receives a sequence of symbols y ∈ Cn and attempts to estimate the transmitted
message.

Error correcting codes are divided into two structural classes namely, convolutional and
block codes. Block codes encode every message sequence a to codeword b independently.
On the other hand, convolutional codes (e.g. Turbo codes) exhibit memory i.e. codewords
depend not only on one message but several previous messages. In this dissertation, only
schemes based on block coding are considered.

The code rate RC = k
n
≤ 1 represents the number of information/message bits per

transmit symbol. The code C is a k-dimensional subspace of the vector space Vn of all
binary sequences of length n. If the mapping is linear, then C is said to be a linear block
code. Linearity is a desirable property to reduce the implementation complexity of encoding.
Linear blocks codes can be characterized in terms of a generator matrix G having k rows
and n columns (k × n). The encoding operation can be written as:

b = aG

Here b and a are row vectors. An alternate representation of a linear block code is given by
its parity check matrix H having dimensions (n − k) × n. A bit-sequence b is a codeword
in C generated by G if and only if bHT = 0. The rows of the parity check matrix represent
(n− k) parity constraints that must be satisfied by any b ∈ {0, 1}n to be in C.

3.1.1 Low Density Parity Check Codes

LDPC codes were introduced by Gallager in [23]. For point-to-point communication over
Gaussian channels, LDPC codes have the best known performance. They have been shown
to perform within 0.004dB of the Shannon limit [14]. In addition to their high performance,
they can be encoded using a linear-time algorithm and decoded using an intrinsically parallel,
linear time belief propagation algorithm.

LDPC codes use a sparse parity check matrix H. Sparsity ensures that the number of
non-zero entries in H grows only linearly with block length. They can be visualized using
a bipartite graph having adjacency matrix given by H. This is called a Tanner graph [73].
In Fig 3.1, a Tanner graph and parity check matrix is shown for an example code having
rate RC = 2

6
= 1

3
and block length n = 6. Circles represent the n bits, which are also called

variable nodes. Squares represent the (n − k) = 4 parity check constraints, which are also
called check or function nodes.
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Figure 3.1: Parity check matrix and Tanner graph for example LDPC code.

Decoding is based on an iterative belief propagation algorithm [54] over the Tanner graph.
Prior beliefs are calculated for every bit in b from channel observations y. The variable nodes
and check nodes update these beliefs by iteratively passing messages along the edges in the
graph. For an outgoing message along any given edge, the nodes compute updated beliefs
using extrinsic information i.e. based on incoming messages from every other edge. As
iterations progress, every variable node receives updates based on information from distant
nodes in the graph. The algorithm is terminated after a few (usually tens of) iterations, and
final beliefs are read out from the variable nodes. Based on final beliefs, a hard decision is
made about the message.

In 1963, the bipartite graph representation and associated belief propagation algorithm
were first introduced for LDPC codes by Gallager [23]. Later in 1981, Tanner [65] showed
that these graph-theoretic models can be generalized for other codes as well. In 1996, Wiberg
et. al [73] further generalized the formulation to include hidden variables that can represent
decoder state in addition to codeword symbols. In 1997, a formulation called factor graphs
was developed using graphical models to compute marginal product of functions. It was
reported jointly in two landmark papers [36] by Kshischang, Frey, Loeliger and [1] by Aji,
McEliece. Several important algorithms in signal processing, communications and artificial
intelligence are special cases of message passing over factor graphs. These include belief
propagation decoding of LDPC codes, the Viterbi algorithm, the Kalman filter and certain
fast Fourier transform (FFT) algorithms.
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3.2 Factor graphs

The coding schemes for QMF relaying presented in this chapter are derived using the factor
graph formulation. In this section, a brief introduction of the model [36, 1] and its illustration
for LDPC decoding is presented.

Factor graphs were developed based on the insight that many complex algorithms involve
functions of multiple variables and attempt to compute marginal functions. Consider a
collection of variables z1, z2, z3, z4 where each zi (i ∈ {1, 2, 3, 4}) can assume values in a finite
set S. Consider a real-valued function g(z1, z2, z3, z4) of these variables. It is associated
with 4 marginal functions gi(zi) (i ∈ {1, 2, 3, 4}). A marginal g1(z1) is computed by the
summation of g(z1, z2, z3, z4) over all possible values of z2, z3, z4. The not sum or summary
notation (∼) was introduced in [36] to express these. Instead of indicating variables being
summed over, this notation indicates variables not being summed over.

∑

∼{z1}

g(z1, z2, z3, z4) :=
∑

z2∈S

∑

z3∈S

∑

z4∈S

g(z1, z2, z3, z4)

g1(z1) :=
∑

∼{z1}

g(z1, z2, z3, z4)

Efficient algorithms to compute marginal functions can be developed by factorizing the global
function g(z1, z2, z3, z4) into a product of local functions, each of which depend only on a
subset of the variables. Computational efficiency is achieved by using two key techniques:

• Exploit the factorization by using the distributive law to simplify summations.

• Reuse intermediate partial sums.

Assume that the function g(z1, z2, z3, z4) can be factorized into four local functions as follows:

g(z1, z2, z3, z4) = fA(z1)fB(z1, z2, z3)fC(z3, z4)fD(z4) (3.1)

This can be represented as a bipartite graph called a factor graph. Each variable zi is
represented as a variable node and each function fj(·) as a function node. An edge connects
variable zi to function fj(·) if and only if zi is an argument of fj(·). The factorization (3.1)
is shown graphically in Fig. 3.2.

3.2.1 Sum-Product Algorithm

The sum-product algorithm [36, 1] is a generalized message passing algorithm over a factor
graph that efficiently computes all the marginal functions by appropriately exploiting the
factorization and reusing partial sums.

Nodes exchange messages over the edges using extrinsic information. For any node ν, let
n(ν) denote the set of its neighbors in the factor graph. Let µx→f (x) represent the message
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z1 z2 z3 z4

fA fB fC fD

Figure 3.2: Factor graph for function factorization in Eq. (3.1).

sent from variable node x to function node f and µf→x(x) the message in reverse direction.
The generalized message update rules can be written as follows.
Variable to Function:

µx→f (x) =
∏

h∈n(x)\{f}

µh→x(x) (3.2)

Function to Variable:

µf→x(x) =
∑

∼{x}


f(X)

∏

y∈n(f)\{x}

µy→f (y)


 (3.3)

Here X = n(f) is the set of arguments for function f . Message passing initiates at leaf
nodes i.e. nodes with degree 1. A node must compute an outgoing message for each of its
edges once incoming messages have arrived from all other edges. The algorithm terminates
once messages have been exchanged in either direction on every edge. After termination, the
product of all incoming messages give the respective marginal functions at variable nodes.
Here sum and product refer to the point wise product or sum of functions.

As an example, let us consider the factor graph in Fig 3.2 and examine sum-product
updates as defined in (3.2)-(3.3). The algorithm is initiated by nodes z2, fA and fD since
they have degree 1. As the algorithm progresses, all marginal functions are computed. For
illustration, a sequence of message updates leading to the computation of g4(z4) is shown
below.
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µfA→z1 = fA(z1)

µz2→fB
= 1

µz1→fB
= fA(z1)

µfB→z3 =
∑

∼{z3}

fB(z1, z2, z3)fA(z1)

µz3→fC
=
∑

∼{z3}

fB(z1, z2, z3)fA(z1)

µfC→z4 =
∑

∼{z4}


fC(z3, z4)×


∑

∼{z3}

fB(z1, z2, z3)fA(z1)






µfD→z4 = fD(z4)

g4(z4) = µfD→z4 × µfC→z4

= fD(z4)×


∑

∼{z4}


fC(z3, z4)×


∑

∼{z3}

fB(z1, z2, z3)fA(z1)








=
∑

∼{z4}

g(z1, z2, z3, z4)

Note that the sequence of computations exploits the distributive law and reuses all partial
sums. Also note that degree 1 nodes simply send constant messages without performing any
computation. Similarly, degree 2 variable nodes forward messages from one edge to another
without computation. This is a consequence of the extrinsic information transfer property
of the sum-product algorithm.

3.2.2 Graphs with cycles

The sum product algorithm described above can only be used with graphs that have no cycles.
If the graph has cycles, the algorithm can get “stuck”. There may be no nodes with degree
1, or with degree n that have received at least n − 1 incoming messages. For graphs with
cycles, an iterative version of the algorithm has been defined. The iterative algorithm yields
approximate solutions for marginal functions. Nonetheless, extensive simulation results show
that for large graphs which do not have short cycles, the approximation yields sufficiently
accurate results.

The iterative algorithm has no natural start or end conditions and multiple messages
are exchanged over every edge. Initialization does not rely on degree 1 nodes. Instead,
all the edges are initialized with the identity function. A node is said to have a message
pending at an edge e, if it has received new messages on any edge other than e since the
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previous outgoing message on e. Under the iterative algorithm, only pending messages are
transmitted because only pending messages can be different from previously transmitted
ones. Different message passing schedules are possible for iterations, each having different
convergence characteristics.

3.2.3 LDPC Decoding

The above formulation applies naturally to error control coding. As per the coding model
described in Sec. 3.1, decoding involves searching for codeword b ∈ C that maximizes the a
posteriori probability (APP) i.e. maximum a posteriori (MAP) decoding rule. The APP is
given by P [b|y], where y ∈ Cn are observations from the channel. The above search can be
made efficient by computing bitwise APPs:

P [bi|y] =
∑

∼{bi}

P [b|y]

for i ∈ {1, 2, 3, . . . , n}. These are nothing but marginals of the APP function. A factor graph
can be constructed by factorizing the APP function as follows:

P [b|y] =
fy|b(y|b)P (b)

fy(y)

Here fy(y) represents the probability density function (PDF) of the observations. Since y
remains constant for a particular decoding instance, the APP can be considered a function
only of the variables b = [b1 b2 . . . bn].

P [b|y] ∝fy(y|b)P (b)

If the channel is memoryless, fy|b(y|b) can be further factorized into symbol-wise functions.
If the a priori distribution of b is uniform over all codewords, then P [b] = 1C(b)/|C| where
1C(b) represents the indicator function that b ∈ C.

fy(y|b)P (b) =1C(b)
n∏

j=1

fyj
(yj|bj)
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b0 � b2 � b4 = 0 b1 � b3 � b5 = 0 b0 � b1 � b3 = 0 b2 � b4 � b5 = 0

fy0|b0(y0|b0) fy1|b1(y1|b1) fy2|b2(y2|b2) fy3|b3(y3|b3) fy4|b4(y4|b4) fy5|b5(y5|b5)

Figure 3.3: Factor graph for LDPC code in Fig. 3.1.

The indicator function for the code can be further factorized into local functions i.e. parity
constraints that must be satisfied in order for b ∈ C. As an example, consider the example
code shown in Fig. 3.1. The factorization results in four local functions.

1C(b) =1[b0 ⊕ b2 ⊕ b4 = 0]1[b1 ⊕ b3 ⊕ b5 = 0]

1[b0 ⊕ b1 ⊕ b3 = 0]1[b1 ⊕ b3 ⊕ b5 = 0]

The above factorization is expressed as a factor graph in Fig 3.3. It is similar to the Tanner
graph in Fig. 3.1, except for the presence of dangling observation nodes from every variable.
These represent prior beliefs for each of the bits. As discussed in Sec 3.2.1, such degree
1 nodes simply forward the prior beliefs and do not play an active role in the decoding
algorithm. Note that this factor graph has cycles and therefore requires the use of iterative
sum product decoding. All the variables in this graph are binary i.e. over Galois field GF(2)
and all function nodes (with degree > 1) have identical form (parity check constraints).
Therefore, specialized sum-product update rules can be derived from the general expressions
given in (3.2) and (3.3). These are discussed later in Sec. 3.3.8.

3.3 Coding for cooperative channels

In this section, the factor graph formulation is used to design efficient coding schemes for
relay cooperation. As discussed previously, cooperation using multi-antenna terminals in
the high SNR regime is of special interest for practical system design. A cooperative link
typically consists of an information source, a destination and one or more cooperating half
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duplex relays. Coding schemes for such links are closely tied to the relaying scheme used at
relays.

Various strategies for relaying have been proposed in literature. Among these amplify-
and-forward (AF), decode-and-forward (DF) and compress-and-forward (CF) [16, 37] have
received the most attention. Under DF, relays decode the source’s message and forward a
hard estimate of it, whereas under AF and CF they forward soft estimates without explicitly
decoding it. Furthermore, DF and CF relays forward coded information, whereas AF relays
forward it in uncoded form. For the simple one relay configuration with additive white
Gaussian noise, it is known that CF performs better than DF and AF in the high SNR
regime [75]. In fact, CF can perform within one bit/sec/Hz to the information theoretic
capacity [53, 6] for single-antenna terminals.

In the conventional CF scheme, relays compress their observed signal and encode it
before forwarding. The encoding rate is chosen such that the destination can use successive
decoding i.e. first decode compressed signals from relays and then use this as side information
to decode the message from source. Hence, CF requires that every relay know the quality of
its forward channel. For complex networks, this estimation overhead becomes large and rate
adaptation schemes become increasingly difficult. Moreover, for configurations that involve
multiple relays CF is no longer within bounded gap from the information theoretic capacity.

Recent work [6] has shown that QMF achieves performance within bounded gap of ca-
pacity for Gaussian networks with arbitrary number of relays. In addition to having close-
to-optimal performance QMF offers several advantages that make it suitable for practical
system design. In the QMF scheme, a relay quantizes its received signal at noise level, maps
it to a codeword and forwards it. QMF does not require forward channel knowledge at
relays minimizing the channel estimation overhead and simplifying rate adaptation proto-
cols. Not having to perform any decoding reduces processing at relays and allows freedom
to independently optimize the listening-time fraction. QMF has played a key role in several
recent information-theoretic results on cooperative networks [40, 53, 46, 72]. The focus of
this dissertation is on various system components for QMF relaying.

QMF presents a unique challenge in the design of practical coding schemes. Since the
mapping at relays is performed without any knowledge of forward channel strength, the side
information from relays cannot be decoded at the destination independently. Therefore,
QMF uses joint decoding of the message (from source) and side information (from relays).
Joint decoding usually requires higher complexity and makes it harder to design practical
codes. The key result developed in this chapter is a low complexity coding framework for
QMF that performs close to information theoretic bounds.

3.3.1 Related Work

Channel coding schemes for cooperative communication were first proposed around 2003 by
Hunter et.al, Janani et.al. and Zhao et.al. [79, 26, 31]. Majority of previous work has focused
on the DF scheme. DF coding schemes involve computing and forwarding additional parity



42

constraints for the source’s codeword. Turbo code designs with full-duplex and half-duplex
DF relays were shown in [78] and [77] respectively, where the proposed schemes performed
≈ 1dB away from the DF information theoretic threshold. LDPC profiles were first developed
for DF in [13]. A bilayer LDPC structure [57] and the protograph method [49] were used to
get LDPC designs ≤ 0.5dB from DF threshold. The bilayer structure is extended for use at
high SNR using BICM in [56]. Since DF does not perform within bounded gap to capacity,
schemes like CF and QMF always out-perform DF at high SNR.

A coding scheme for CF relaying using a combination of LDPC and irregular repeat
accumulate (IRA) codes is presented in [70]. Rateless coding schemes for both CF and DF
are developed in [69].

In independent work [50], a coding technique for QMF has been proposed based on
lattice strategies. The scheme in [50] reduces the complexity of mapping at the relay to
polynomial-time while the joint decoding complexity remains exponential-time.

3.3.2 Key Ideas

In this work, a coding framework for QMF relaying with linear complexity encoding at the
source, mapping at the relays and joint decoding at the destination is developed. A low
complexity factor graph structure and decoding algorithm are proposed. The framework
is validated using channel simulation experiments. In Chapter 4, the framework is further
enriched by the development of codes specialized for cooperative relaying. The key techniques
used in the framework are summarized as follows:

1. BICM: Binary channel codes with standard higher order signal constellations are con-
sidered, based on the widely used BICM technique [12].

2. LDPC-LDPC and LDPC-LDGM: The proposed scheme uses LDPC codes at the source
for channel coding and either a LDGM, or LPDC code at the relay for mapping.

3. Joint Factor Graph: The joint decoding procedure at the destination is formulated
as a belief propagation algorithm over a factor graph. This graph contains the origi-
nal channel code (LDPC) and relay mapping functions (LDPC/LDGM) as subgraphs
connected via probabilistic constraints that model the QMF relay operations.

4. Practical Decoding Algorithm: Using a suitable space-time architecture, scalar quanti-
zation procedure at relays and specific choice of component codes, the resulting factor
graph can be greatly simplified making it suitable for practical decoder implementation.

5. Code Design: Density evolution analysis tools [58, 59] are used for code design over
joint LDPC-LDGM graphs. This is covered in Chapter 4.
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3.3.3 System Model

Initially, the binary memoryless symmetric (BMS) relay channel is considered as described
below. In Sec 3.4, this model is extended to the high SNR regime.

The BMS Gaussian relay channel has three half-duplex terminals: source (S), relay
(R) and destination (D) with binary input additive white Gaussian (BIAWGN) channels
between them (Fig. 3.4). The model is similar to the one described in Sec. 2.3.1, the only
exception is that channel inputs are binary symbols. The focus of the current discussion
is limited to cooperative multiplexing relay channel antenna configurations having form
(1, 1,M). The transmit codewords are bS ∈ {0, 1}NS and bR ∈ {0, 1}NR . The corresponding
transmit signals are xS ∈ {±

√
PS}NS and xR ∈ {±

√
PR}NR . PS, PR and SNR parameters

SNRSD, SNRSR, SNRRD are as defined in Sec. 2.3.1.

S

R

D
xS

zR

xRyR

Y
Z

Figure 3.4: Half-Duplex Binary Input Gaussian Relay Channel

For the above model, quantize-map-and-forward relaying [6] is summarized as follows: S
transmits a sequence of messages mk ∈ {1, . . . , 2NSR} (k = 1, 2, . . .). At both S and R, binary
linear block codes CbS and CbR are created. S maps each message to one of its codewords
and transmits it using NS symbol times. This results in an overall transmission rate of R.
Relay listens to the first fNS time symbols of each block. It quantizes its observation and
maps it to a codeword in CbR having length (1 − f)NS. In order to construct an efficient
practical scheme, the mapping at relay CbR is assumed to be linear and can be represented
by a fNS× (1− f)NS matrix GR with entries in GF(2). The mapping CbR can be thought of
as a linear block code having generator matrix GR. The linear mapping has a corresponding
parity check matrix HR. Given the knowledge of all encoding functions and signals received
(Y), destination D attempts to decode the message sent by S.

3.3.4 QMF Joint Decoding Factor Graph

The proposed scheme is based entirely on the use of sparse graph codes. It is known that
encoding operations for such codes have linear complexity [41, 60]. Therefore, it is sufficient
to focus on the joint decoding operation at destination which is central to QMF relaying. As
discussed previously, linear binary block codes CbS and CbR can be represented as bipartite
Tanner graphs. Our scheme expresses the joint decoding problem as a factor graph that has
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Tanner graphs of component codes (CbS,C
b
R) as its sub-graphs. The sub-graphs are connected

via probabilistic constraints. These constraints represent the QMF relaying operation.
Joint decoding involves searching for the codeword bS ∈ CbS that maximizes the APP

P (bS|Y). Here Y represents all the channel observations at D. Consider the bitwise MAP
decoder, where the bitwise APPs are computed.

P (bS,i|Y) =
∑

∼bS,i

P (bS|Y) i ∈ {1, 2, . . . NS}

This is achieved by marginalizing the APP using the following factorization:

P (bS|Y) =
∑

bR

f (Y|bS,bR)P (bS,bR)

f (Y)

∝
∑

bR

f (Y|bS,bR)P (bS,bR) .

For the first fNS bits, R is listening and D observes an interference-free signal from S.
During the remaining transmissions, D observes a superposition of signals from S and R.
As a result, the term f (Y|bS,bR) can be factorized as follows:

f(Y|bS,bR) =

fNS∏

i=1

f(yi|bS,i)
NR∏

j=1

f(y(fNS+j)|bS,(fNS+j), bR,j)

The codes CbS and CbR have characteristic functions 1(bS ∈ CbS) and 1(bR ∈ CbR) respectively.

P (bS,bR) = P (bS)P (bR|bS)

∝ 1
(
bS ∈ CbS

)
P (bR|bS)

(a)
= 1[bS ∈ CbS]1[bR ∈ CbR]P (bR|bS) .

(a) is due to the fact that bR must be a codeword in CbR. As discussed previously, if CbS and
CbR are sparse, then their indicator functions can be factorized into local parity checks.

The resulting factor graph is shown in Fig. 3.5. In addition to nodes representing channel
observations i.e. f(yi|bS,i, bR,j), the subgraphs 1

(
bS ∈ CbS

)
and 1

(
bR ∈ CbR

)
are connected

by P (bR|bS). These connections represent the quantization operation at R.
The complexity of a sum-product algorithm over a factor graph is proportional to the

number of edges in the graph. If the component codes CbS and CbR are sparse, the overall
factor graph is also sparse. This implies that decoding complexity is linear in the length of
component codes.

Note that the sum-product update rules at the function node P (bR|bS) may get very
complex due to its high degree (NS + NR). Moreover, nodes like this introduce very short
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Figure 3.5: Joint Decoding Factor Graph.

cycles in the graph. In this case, sum-product decoding does not approach the performance
of MAP decoding. In order to approach MAP performance and low decoding complexity, the
P (bR|bS) nodes need further factorization. In the following subsections, specific techniques
are discussed for the same.

3.3.5 LDPC-LDGM Configuration

The factor graph shown in Fig. 3.5 corresponds to an LDPC-LDPC configuration i.e. source
and relay both use LDPC codes. LDGM codes are another class of sparse graph codes that
are commonly used for lossy data compression [44]. As their name suggests, they utilize a
sparse generator matrix, which can be represented as a Tanner graph. Note that the parity
check matrix of an LDGM code is not guaranteed to be sparse. In an LDGM Tanner graph,
variable nodes represent n input bits, check nodes represent k parities that form the output.
For an LDGM code, if k ≤ n, then it performs data compression, else (k > n) it introduces
redundancy in the output. Estimates for the input bits can be recovered from observations
of the output by using sum-product decoding over the corresponding Tanner graph.

Two alternative factor graph configurations are studied in this chapter. The first one uses
LDPC codes at both S and R as discussed previously. Henceforth, it is referred to as the
LDPC-LDPC configuration. The second choice is to use an LDPC code at S and an LDGM
code at R. This is referred to as the LDPC-LDGM configuration. In order to construct
LDPC-LDGM factor graphs, auxiliary variable nodes bQ = {bQ,i}KR

i=1 are introduced. bQ
represents the KR bits after quantization at R. bQ is mapped to the codeword bR of length
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NR, after GF(2) multiplication with low density generator matrix GR. The LDGM code has
rate NR/KR and characteristic function 1[bR ∈ CbR]. Since bR is a deterministic function of
bQ, P (bR|bS) is factorized as follows (Fig 3.6):

P (bR|bS) = P (bR,bQ|bS)

= P (bR|bQ,bS)P (bQ|bS)

= 1[bR ∈ CbR]P (bQ|bS)

The bR variable nodes always have degree 2 and simply perform forwarding of messages
under the sum product algorithm.

3.3.6 Scalar Quantizer

It is possible to perform vector quantization at R. However, it is shown [6] that QMF
performs within bounded gap of capacity even with a scalar quantizer. Under scalar quan-
tization, observations at R are independently quantized in a symbol-by-symbol fashion. For
the LDPC-LDGM configuration, if each yR,i is quantized into bQ[Ai] (i ∈ {1, 2, . . . fNS}),
then the P (bQ|bS) function node factorizes into fNS separate nodes. Each of them represent
a scalar quantization operation.

P (bQ|bS) =

fNS∏

i=1

P (bQ[Ai]|bS,i) , where

fNS⋃

i=1

Ai = {1, 2, . . . , KR}, Ai ∩ Aj = ∅ ∀i 6= j

Here Ai denotes the subset of indices in bQ that symbol yR,i is quantized into.
A similar factorization is possible for the LDPC-LDPC configuration as well [47]. The fac-

torized nodes represent P (bQ[Ai]|bS,i) relations for LDPC-LDGM and P (bR[Ai]|bS,i) relations
for the LDPC-LDPC configurations respectively. Henceforth, these nodes are called quantize
(Q) nodes, because they represent quantization at the relay. Example factor graphs showing
the LDPC-LDGM and LDPC-LDPC constructions are illustrated in Fig 3.6 and Fig. 3.7. In
the examples, each symbol observation yR,i is quantized into one bit (i.e. KR = fNS and
A[i] = {i}) . As shown, there are four kinds of nodes in the resulting factor graphs: Obser-
vation (OBS) nodes, Variable (VAR) nodes, Check (CHK) nodes, and Quantize (Q) nodes.
Some VAR nodes in the CbS subgraph share OBS nodes with VAR nodes in the CbR subgraph.
This is a consequence of multiple access at D i.e. both S and R transmit simultaneously for
(1− f)NS symbols and their observations interfere at D.
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Figure 3.6: LDPC-LDGM factor graph with 1 bit scalar quantizer.

Q Q

bS,1 bS,2 bR,1 bR,2 bR,NR
bS,NS

f(y1|bS,1) f(y2|bS,2)

f(y(fNS+1)|bS,(fNS+1), bR,1) f(yNS
|bS,NS , bS,NR

)

CHK CHK

VAR VAR

OBS

OBS

SOURCE
RELAY
(LDPC)

Figure 3.7: LDPC-LDPC factor graph with 1 bit scalar quantizer.
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3.3.7 Space Time Architecture
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R

D
xS

zSR

xRySR

ZRD

YRD

YSD

ZSD

Figure 3.8: Channel model using a space time coding scheme like DBLAST.

The factor graphs shown in Figs. 3.6-3.7 are further simplified by the use of a suitable
space-time architecture. Several space-time coding schemes for MIMO channels are discussed
previously in Sec. 2.1.2. Similar schemes are applicable to the relay channel. Repetition
and Alamouti schemes (2.2)-(2.4) require that both transmit antennas have knowledge of
all codeword bits. This is not achievable with QMF relaying, because R only has noisy
estimates of the first fNS codeword bits.

The V-BLAST architecture (2.6) requires both antennas to use independent codewords.
S and R transmissions belong to independent codebooks but represent the same underlying
message. This leads to correlation between xS and xR. In spite of this, an architecture
similar to V-BLAST can be used for QMF relaying, if correlation between codewords is
appropriately handled at the receiver D.

Correlation between xS and xR is a form of coding across transmit antennas. The D-
BLAST space time architecture is natural fit for this scenario. D-BLAST for the relay
channel is also proposed in [77, 78, 22, 34]. In a MIMO channel, coding across antennas
is deterministic i.e. introduced by the inner code. In the relay channel, this correlation is
probabilistic because xR is derived from a noisy observation of xS.

The MMSE-SIC decoding scheme discussed in Sec 2.5.3 can be used over the relay chan-
nel. It involves introducing a delay of one block at the relay. At the k-th block, the destina-
tion receives the superposition of the following:

• signal from the source containing message sent at block p, namely, xS(mp)

• signal from the relay, containing side information about source’s message at block p−1
i.e. xR(mk−1)

Messages from the source are independent across blocks. At the p-th block, the destination
jointly decodes block p − 1, i.e. (xS(mp−1)) and side information (xR(mp−1)) by treating
xS(mp) as Gaussian noise. The receiver subtracts relay’s codeword xR(mp−1) from its re-

ceived signal Y[p] and retains residual Ỹ[p] for decoding the next block. This architecture
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permits the use of a simplified equivalent channel model shown in Fig. 3.8. The destination
observes two orthogonal sets of observations. This leads to factorization of the degree 2 OBS
nodes (representing multiple access). The factorization is shown in equation (3.4) where
Y := [YSD YRD].

f(Y|bS,bQ) =

fNS∏

i=1

f(ySD,i|bS,i)
NR∏

j=1

f(ySD,(fNS+j),yRD,(fNS+j)|bQ,j, bS,(fNS+j))

=

fNS∏

i=1

f(ySD,i|bS,i)
NR∏

j=1

f(ySD,(fNS+j)|bS,(fNS+j))f(yRD,(fNS+j)|bQ,j)

=

NS∏

i=1

f(ySD,i|bS,i)
NR∏

j=1

f(yRD,(fNS+j)|bQ,j), (3.4)

Examples of simplified LDPC-LDPC and LDPC-LDGM factor graphs are shown in
Figs. 3.9-3.10. Note that VAR nodes of the S and R Tanner graphs are connected only
through Q nodes. Since yRD,i = 0 for i ∈ {1, . . . , fNS}, we rename yRD,(fNS+j) ≡ yRD,j, for
j = 1, . . . , NR.

The structure of resulting graphs is very similar to Tanner graphs with the exception of
Q constraints.

Remark 2. Consider the original channel model (without D-BLAST) in Sec. 3.3.3 and the
DBLAST-equivalent channel. Note that the capacities of these two channels are within two
bits of each other. This conclusion is based on the following observations:

1. The cut-set capacity upper bound for both channels is within a one bit gap (for any
listening fraction f ∈ [0, 1]).

Q Q

bS,1 bS,2 bR,1 bR,2 bR,NR
bS,NS

f(ySD,1|bS,1) f(ySD,NS
|bS,NS

) f(yRD,1|bR,1) f(yRD,NR
|bR,NR

)

Figure 3.9: Simplified LDPC-LDPC factor graph with one-bit scalar quantizer and DBLAST.
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Figure 3.10: Simplified LDPC-LDGM factor graph with one-bit scalar quantizer and
DBLAST.

The mutual information across cut {S}, {R,D} is the same for the two channels.
Consider the mutual information across the cut {S,R}, {D}. It is known that SIC
achieves the sum capacity of multiple-access channels. In the original channel (Fig. 3.4),
S and R are allowed unlimited cooperation. This is not the case in the D-BLAST
equivalent channel. As a result, the cut-set bound for DBLAST incurs a power-gain
loss of at most (1− f) bits.

2. QMF relaying scheme achieves the cut-set upper bound to within one bit for both chan-
nels.

Constant gap to cut-set bound is shown in the original work on QMF [6]. It is also
shown that for a single relay network the gap is within one bit [6].

3.3.8 Decoding Algorithm

Sum product decoding computes the MAP estimate precisely only if the factor graph has
no cycles. Otherwise, it computes the approximate APP for each bit. For the factor graph
presented above, messages passed on the edges and update rules at the VAR/CHK nodes
remain unchanged from the case of LDPC decoding. The only new ingredient in the mix are
Q nodes introduced by the joint factor graph framework.

For completeness, the messages and update rules at all kinds of nodes are described in
this section. Let the subscripts V, K, and Q denote VAR nodes, CHK nodes, and Q nodes
respectively. For F ∈ {K,Q}, let ω

(l)
VF denote the message sent from variable node V to

function node F in the lth iteration. Every edge in the graph is connected to exactly one
variable node and a message on the edge represents the APP for the respective variable.
Messages can be represented as log likelihood ratios (LLR), but for the sake of simplicity,
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consider messages represented by a two-dimensional vector1.

ωVF := [p0 p1]

Here ωVF(1) = p0 ∈ [0, 1] represents the probability that bit V is 0 and ωVF(2) = p1 ∈ [0, 1]
represents the probability that bit is 1 (p0 + p1 = 1).

As per (3.2), the message sent from V to node F ∈ {K,Q} is the normalized product of
all incoming messages into node V except the message from F. Normalization ensures that
p0 + p1 = 1 for the outgoing message.

Variable nodes having degree 2 do not play an active role in computing updates, they
merely forward messages from one edge to another. For a node V having degree 3, the
message sent on any edge is a function of the incoming messages on the 2 other edges.
Consider incoming messages, ωF1V = [p0 p1] and ωF2V = [q0 q1], the update rule is written as
a function VAR3(ωF1V, ωF2V). This is computed from (3.2) as follows.

ωVF3 = VAR3(ωF1V, ωF2V) =

[
p0q0

p0q0 + p1q1

p1q1

p0q0 + p1q1

]
(3.5)

Updates for variable nodes having degree > 3 are computed recursively from (3.5).

ωVF4 = VAR4(ωF1V, ωF2V, ωF3V) = VAR3(ωF1V, VAR3(ωF2V, ωF3V))

The message sent from check node K to node V′ is the indicator function that the check
is satisfied, marginalized on the bit represented by V′. A degree 2 CHK node represents the
function 1[b1⊕ b2 = 0] which is equal to 1[b1 = b2]. The update rule for degree 2 CHK nodes
therefore is given as

ωKV2 = CHK2(ωV1K) = ωV1K

Update rule for a degree 3 check node is computed from (3.3) in terms of incoming messages
ωV1K = [p0 p1] and ωV2K = [q0 q1].

ωKV3 = CHK3(ωV1K, ωV2K) = [p0q0 + p1q1 p0q1 + p1q0] (3.6)

Updates for check nodes of higher degree are computed recursively from (3.6).
At node Q, the message sent from Q to V is the marginalization of the function p (bQ[Ai]|bS,i)

on the bit represented by V. bQ is computed from a noisy observation of bS,i. Since the quan-
tization is scalar, ∀u ∈ {0, 1}|Ai| and v ∈ {0, 1},

g(u, v) := p (bR[Ai] = u|bS,i = v)

The above function is fully represented by a lookup table with 2|Ai|+1 values. As an example,

1Later in Chap. 4, ω is replaced by w, the commonly used message log p0
p1

(LLR) in belief propagation.
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Figure 3.11: Equivalent LDPC-LDGM factor graph of that in Fig. 3.10. The Q constraints
are decomposed into check constraints and a dummy variable node.
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Figure 3.12: Equivalent LDPC-LDPC factor graph of that in Fig. 3.9. The Q constraints
are decomposed into check constraints and a dummy variable node.
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consider a one-bit scalar quantizer at the relay. Note that Ai = {i}, i = 1, 2, . . . , fNS, and
KR = fNS. ∀u ∈ {0, 1} and v ∈ {0, 1},

g(u, v) :=p (bR,i = u|bS,i = v)

=(1− pf )1{u = v}+ pf1{u 6= v}

where pf := 1
2

erfc
√

SNRSR

2
denotes the probability of bit error for scalar one-bit quantization

over a BIAWGN channel. Since the function g is symmetric in u and v, assume that the
VAR node belongs to the source and the marginalization is on v. Let the other VAR node
be V ′.

ωQV(1) = (1− pf )ωV′Q(1) + pfωV′Q(2)

ωQV(2) = (1− pf )ωV′Q(2) + pfωV′Q(1),

The update has the same form as a degree 3 CHK node (3.6) with incoming messages ωV′Q

and [1 − pf pf ]. In this example, the Q node specializes to a CHK node with additional
dummy VAR node sending constant message [1− pf pf ] that depends on SNRSR. Resulting
LDPC-LDGM and LDPC-LDPC factor graphs are depicted in Figs. 3.11-3.12.

3.4 Bit Interleaved Coded Modulation

Thus far, only the binary input Gaussian relay channel (xS ∈ {±
√
PS}NS and xR ∈

{±√PR}NR) has been considered. The capacity advantage of cooperative relaying and effec-
tiveness of QMF is most significant in the high SNR regime. In this regime, general complex
input symbols xS ∈ CNS and xR ∈ CNR must be considered. Information theory suggests
the use of input symbols drawn randomly from a Gaussian distribution in order to achieve
channel capacity. This is impractical for implementation because of two reasons:

• modulators capable of generating arbitrary symbols are required

• decoding requires an exhaustive search over all possible symbol sequences

For efficient implementation, it is desirable to have input symbols drawn from a fixed
finite alphabet and consider design of codes over sequences of such elementary waveforms e.g.
xS ∈ ANS and xR ∈ ANR where A represents a finite set of constellation points. The goal
is to have schemes that use preferably simple, structured signals and yet offer a reasonably
large space of possible codes to choose from. Examples of signal constellations (modulation
schemes) like pulse amplitude modulation (PAM), quadrature amplitude modulation (QAM)
etc. with representations in I-Q (inphase-quadratude) signal space are shown in Fig. 3.13.

Various coded modulation methods have been proposed to address the above goal. Schemes
like trellis coded modulation (TCM) [68] and multilevel coded modulation (MLC) [29] pro-
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Figure 3.13: I-Q signal space representation for popular modulation constellations.

pose a unified approach for designing coding and modulation schemes jointly. BICM, intro-
duced by Zehavi [76] in 1992, uses a radically different approach. It logically separates the
coding and modulation problems by using an interleaving permutation. BICM is inherently
sub-optimal i.e. involves loss of information between demodulation and decoding operations.
It proposes soft-output demodulation followed by soft-input decoding to minimize informa-
tion loss. A comprehensive analysis of BICM due to Caire et. al. [12] in 1998, shows that
the loss incurred by BICM is very small. The ease of design and system flexibility outweigh
this minor performance loss. For practical wireless systems, BICM is considered the de facto
standard and is widely used in both cellular and local area networks. BICM has also been
proposed for various cooperative communication systems [34][33][8][56]. In this section, a
brief overview of BICM is provided, followed by its extension to the factor graph based
coding framework developed above.

3.4.1 Classical and Parallel BICM

The classical BICM [12] scheme for a point to point channel consists of a binary code C,
a bit interleaver represented by permutation π and a binary mapping µ. The modulation
order 2L represents the cardinality of symbol constellation A. The mapping µ : {0, 1}L → A
corresponds to a binary labeling for every symbol in the constellation. As an example,
consider a 4-PAM constellation with average symbol energy P as shown in Fig. 3.14. 4-

PAM has a cardinality of 4 i.e. A = {−3
√
P

2
,−
√
P

2
,
√
P

2
, 3
√
P

2
}. Consider a sequence of binary

codewords c0, c1, c2, ... each having blocklength N . Assume that the interleaver π has a
depth of ξ codewords i.e. π is a random permutation with Nξ bits at input arranged as
a ξN/L sequence of L-tuples at output. For L = 2, the tuples are simply ordered pairs of
form {bA, bB}. Each tuple is mapped to a symbol in A using the mapping µ, used to form
transmit symbols x ∈ ANξ/2. In the 4-PAM example, consider µ to be a Gray labeling as
shown in Fig. 3.14.
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Figure 3.14: 4-PAM with Gray labeling.

At the receiver, consider the inverse mapping of µ i.e. bj : A → {0, 1}. bj(x) is used to

denote the j bit in the labeling of symbol x ∈ A e.g. bA(
√
P

2
) = 1. The following subsets of

A can be defined:
Aj,b := {x ∈ A : bj(x) = b}

For the 4-PAM example, these are given below:

AA,0 =

{
−3
√
P

2
,−
√
P

2

}

AB,0 =

{
−3
√
P

2
,
3
√
P

2

}

AA,1 =

{√
P

2
,
3
√
P

2

}

AB,1 =

{
−
√
P

2
,

√
P

2

}

The BICM demodulator treats each bit in the symbol independently and computes a bit
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wise APP metric from channel observations y ∈ CNξ/2.

PBj |Y [bj = b|y] =
1

|Aj,b|
∑

x′∈Aj,b

PX|Y (x′|y)

For the 4-PAM example, PBj |Y (bB = 0|y) can be computed as:

PBj |Y (bB = 0|y) =
1

2
PX|Y

(
x = −3

√
P

2
| y
)

+
1

2
PX|Y

(
x =

3
√
P

2
| y
)

These bitwise soft estimates are rearranged by deinterleaving i.e. using reverse permutation
π−1 before respective codewords are decoded independently.

A sufficiently deep interleaver ξ →∞ ensures that for any codeword c, each bit is mapped
to an independent transmit symbol with high probability. For a memoryless channel, this
also implies that there is no correlation between bits (of the same codeword). Assume
that transmit codewords c0, c1, . . . are i.i.d and uniformly distributed over the space of all
possible codewords. This means that for bj from a given symbol x, the other bits bk 6=j in the
symbol are Bernoulli(1/2) random variables. Since every codeword is decoded separately,
correlation between bits of different codewords is explicitly ignored leading to a minor loss
of information.

Caire et. al. [12] proposed a useful model to visualize BICM, wherein the original
memoryless channel is decomposed into parallel independent memoryless “sub-channels”.
Every “sub-channel” PY |B,S(y|b, s) has binary inputs b ∈ {0, 1}. It depends on state s ∈
{1, 2, . . . , L} which is chosen uniformly and known to both the terminals. At the receiver,
LLR for a bit that was mapped to state s is calculated from observation y ∈ C.

LLR(y, s) = log
PB|Y,S(b = 0|y, s)
PB|Y,S(b = 1|y, s)

LLR(y, s) ∈ R serves as the output for each logical binary “sub-channel”.
These binary “sub-channels” are not guaranteed to be output-symmetric i.e. the detec-

tion error probability for a bit is not independent of its value. Let fΛ(λ) represent the PDF
of LLR(y, s), the channel is output symmetric if the following condition is true:

fΛ|B(λ|b = 0) = fΛ|B(−λ|b = 1)

In the 4-PAM example, the demodulation rule is to select the constellation point in A that
is nearest to the channel observation y. If bB = 0 is transmitted, the error event at the
demodulator is :

E0→1(y) := 1[<(y) ∈ (−
√
P
√
P )]
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Figure 3.15: PBICM Architecture: {di}Li=1 are dithers, and d′i = 1− 2di.

Instead, if bB = 1 is transmitted the error event is:

E1→0(y) := 1[<(y) ∈ (−∞,−
√
P ) ∪ <(y) ∈ (

√
P ,∞)]

As seen from Fig. 3.14, for Gaussian y:

P [E0→1(y)] 6= P [E1→0(y)]

Conventional methods for analysis and design of linear coding schemes cannot be used
with asymmetric channels. This issue can be resolved by adding random dithers at ev-
ery bit to make the channel output-symmetric as proposed in [12, 25, 30]. Dithers are i.i.d.
Bernoulli

(
1
2

)
variables known to both the transmitter and receiver. For a dither d ∈ {0, 1},

the channel pY |B,S,D(y|b, s, d) is BMS. Its output is given by:

LLR(y, s, d) = (−1)dLLR(y, s)

This method is called parallel BICM (PBICM) in [30]. Fig. 3.15 shows the architecture
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for a PBICM point to point link having L states. {mi}Li=1 represent messages. bi and b′i
represent the transmit codewords before and after dithering. The equivalent BMS channel
is characterized by the number of states L, the SNR of the underlying AWGN channel and
the symbol mapping in modulation. It is known that Gray labeling is close to optimal in
several BICM scenarios. Therefore, Gray labeling is used for all examples in the rest of
this dissertation. For the 4-PAM example considered above, b′B is the transmitted bit after
applying Bernoulli(1

2
) random dither to bB. The detection error probability Perror[b

′
B] for b′B

is independent of its value as shown below:

Perror[b
′
B] =

1

2
P [E0→1(y)] +

1

2
P [E1→0(y)]

3.4.2 BICM for QMF relaying

In order to use PBICM with the relay channel, a definition of the quantize-and-map operation
under PBICM is required. With a PBICM modulator at source S, the observations at relay R
(yR) represent L interleaved codewords. If R performs quantization at the symbol level, then
the PBICM decomposition into independent binary sub-channels is lost. As an alternative,
it is proposed that R perform quantization at the bit level.

S and R use PBICM modulator blocks with constellation size 2L having state and dither
vectors given by sS, sR,DS andDR respectively. The QMF operation at R is described below
(depicted in Fig. 3.16):

1. For observed symbol sequence ySR := {ySR,j}fNS
j=1 perform PBICM demodulation. The

output is represented as {nSR,i}Li=1 where each nSR,i := {nSR,i,j}fNS
j=1 represents LLRs

for the ith codeword.

2. Quantize every LLR in {nSR,i}Li=1. As an example, for a one bit scalar quantizer this
simply involves observing the sign of LLRs.

3. Encode the quantizer output {mR,i}Li=1 using an LDPC/LDGM code.

4. Transmit the resultant codewords {bR,1}Li=1 using a PBICM modulator.

Using this definition of QMF, the Gaussian relay channel is decomposed into L parallel BMS
relay channels. It is characterized by constellation size and SNRs of the underlying AWGN
links i.e. SNRSR, SNRSD, SNRRD.

3.5 Simulation Experiments

In this section, results from simulation experiments are shown. Factor graphs shown in
Figs. 3.11-3.12 i.e. using a scalar quantizer at the relay and D-BLAST channel decomposition
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are used. For the experiments, bit-error-rate (BER) performance is computed as a function
of SNR. For construction of the joint-factor graph, component sparse graph code matrices
using off-the-shelf designs are used. Sparse graph code matrices are broadly classified into
regular and irregular codes. In a (dv, dc) regular code, every variable node has degree dv
and every check node has degree dc. Irregular codes allow nodes to have arbitrary degree
distributions subject to maximum constraints dmax

v and dmax
c . Since decoding is performed

on the joint factor graph, performance of the coding scheme depends on the combination of
component codes chosen for the experiment. In this section, only results from selected code
combinations that were found to perform well are discussed.

Both LDPC-LDPC and LDPC-LDGM graphs structures are considered. Off-the-shelf
LDPC code matrices designed in [58] are used. For the LDPC-LPDC scheme, both com-
ponent LDPC codes CbS and CbR are chosen from an irregular code profile designed in [58]
having dmax

v = 8 and dmax
c = 7. For the LDPC-LDGM scheme, the same profile is used for CbS

with a regular (10, 5) LDGM code CbR at relay. The design rate for the codes are as follows:

rLDPC = 0.5 rLDGM = 2

To satisfy the half-duplex constraint with these rates, a listening fraction at the relay f = 1/3
is used. Practical wireless systems use channel codes with blocklengths ≈ 103 − 104. In our
simulations NS = 20400 is used. NR = 13600 is calculated from the listening fraction f and
NS.

The SNRs of the channels are as described in Sec. 3.3.7. Network geometry is modeled
by considering SNRSD as reference and using linear scaling factors qSR and qRD for other
SNR quantities.

SNRSR = qSRSNRSD

SNRRD = qRDSNRSD

To provide a baseline for performance comparisons, an information theoretic upper bound is
used on maximal achievable rate using QMF relaying with continuous Gaussian inputs and
a vector Gaussian quantizer at the noise level.

RQMF = min

{
(1− f)CG (SNRSD) + fCG

(
SNRSR

2
+ SNRSD

)
,

(1− f)CG (SNRRD) + CG (SNRSD)− f

}
(3.7)

where CG (z) := log (1 + z) is the AWGN point-to-point capacity at signal-to-noise ratio z. If
inputs are constrained to structured constellations like 16-QAM, 64-QAM etc, the achievable
QMF rate with BICM is given as follows:

RQMF
L = min

{
(1− f)CL (SNRSD) + fCL

(
SNRSR

2
+ SNRSD

)
,

(1− f)CL (SNRRD) + CL (SNRSD)− f

}
(3.8)
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Here CL (z) denotes the point-to-point capacity at SNR ratio z with QAM structured signal
constellations and BICM. L denotes the constellation order i.e. |A| = 2L. As a reference,

the cut-set bound (defined in Sec. 2.3.2) under BICM (R(cutset)
L ) is also computed. CL (z)

and simulation performance of CbS over a point-to-point channel (no cooperation) are used
as comparison benchmarks.

Since the chosen binary codes have rate 0.5, the overall throughput after modulation is
fixed to 0.5× L. The maximum achievable rate quantities described above are expressed in
terms of the minimum SNR threshold at which the rate 0.5 × L becomes achievable2. For
2-PAM (L = 1) and 16-QAM (L = 4) calculated SNR thresholds are shown in Table. 3.1-3.2.
Corresponding BER simulations for the selected codes and above parameters plotted w.r.t.
SNRSD are shown in Fig. 3.18-3.21.

Table 3.1: Information theoretic quantities in terms of SNRSD (decibels) for 2-PAM (L=1)
and f = 1/3

Point-to-Point Relay: qRD = 1, qSR = 2 Relay: qRD = 1, qSR = 10

CL R(cutset)
L RQMF

L R(cutset)
L RQMF

L

0.19 −1.51 −1.11 −2.83 −2.56

Table 3.2: Information theoretic quantities in terms of SNRSD (decibels) for 16-QAM (L=4)
and f = 1/3

Point-to-Point Relay: qRD = 1, qSR = 2 Relay: qRD = 1, qSR = 10

CL R(cutset)
L RQMF

L R(cutset)
L RQMF

L

5.11 3.44 3.95 1.79 2.72

3.5.1 Discussion

In Fig. 3.18, note that the BER performance over the relay channel with the LDPC-LDPC
coding scheme is ≈ 0.9dB better than the same code over a point-to-point channel (cooper-
ation gain). The plot also shows the corresponding information-theoretic thresholds CL and
RQMF
L for chosen parameters f, qSR, qRD. The gap between these two thresholds is ≈ 1.3dB.

This can be considered as the theoretical maximum cooperation gain using a 1-bit quantizer
and QMF relaying. The observed performance gains are therefore quite comparable to those
predicted by information theory. Moreover, the threshold corresponding to RQMF

L is only

2A rate is said to be achievable at a given SNR if there exists a coding scheme that has arbitrarily small
probability of decoding error at that SNR.
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0.4dB away from the cut-set upper bound, indicating that even with a 1-bit scalar quantizer,
QMF relaying allows performance very close to capacity.

BER performance of a scheme depends both on the choice of code structures and the
blocklengths. Large blocklengths offer better BER performance but are not very suitable
for delay-constrained systems. Irregular point-to-point LDPC code designs that perform
within 0.1dB of the Shannon limit are shown in [58] using a block length of 106. However,
even the best point-to-point codes from [58] perform ≈ 0.8dB away from the Shannon limit
at a blocklength of 104. Consider the BER performance for system parameters shown in
Fig. 3.21 using block-lengths of the same order (104). Note that the performance of the
LDPC-LDGM scheme is just ≈ 1dB away from the QMF information theoretic threshold.
This is an encouraging indication that the proposed cooperative coding scheme can perform
very close to fundamental limits in some scenarios.

However, a general comparison between the LDPC-LDPC and LDPC-LDGM configu-
rations is not possible using above results. Furthermore, for 3 of the 4 cases shown, BER
performance of both LDPC-LDPC and LDPC-LDGM schemes are still far (> 1.5dB) from
RQMF
L .

Choice of component codes for the above results is based on an empirical “trail-and-error”
process. Such an ad hoc design approach prevents exploration of the full design space. In
the next chapter, progress towards addressing this limitation is presented.
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Chapter 4

Code Profiles

The previous chapter outlines a coding and system design framework for the relay channel
using QMF. It is based on using sparse binary codes, BICM and iterative sum-product
decoding over a low complexity factor graph. By using simulation experiments, it is shown
to achieve gains similar to those predicted by information theory. The scheme uses a pair
of codes, one at the source and the other for mapping at the relay. The overall performance
depends on the choice of suitable code pairs.

In Chapter 3, off-the-shelf code profiles are picked using a trail-and-error procedure for
finding good pairs. Each trail involves time consuming simulation experiments. For practical
systems that operate over a wide range of channel conditions, it is desirable to have a more
systematic approach to study code pairs.

This chapter presents progress towards the above goal. Density evolution techniques
are typically used for analysis and design of LDPC codes. This chapter presents methods
to adapt these tools for analysis of QMF factor graphs. In Chapter 3, two configurations
are considered namely, LDPC-LDPC and LDPC-LDGM. It turns out that density evolution
tools do not adapt readily to LDPC-LDPC graphs. Nonetheless, they are suitable for analysis
and design of codes in the LDPC-LDGM configuration. Based on these tools, examples of
LDPC-LDGM code designs that perform within 0.5− 1.5dB of information theoretic limits
are demonstrated for the relay channel.

4.1 Analysis of Sparse Graph Codes

This section presents an overview of the density evolution framework developed by Richard-
son and Urbanke [59]. A sketch of the theory and associated historical context is provided
followed by a detailed discussion of selected components. In Sec. 4.2, these tools are applied
towards analysis of QMF factor graphs.

A “good” code over a given channel is one that achieves a small probability of decoding
error at a rate that is close to the channel’s information theoretic threshold. Constructing
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specific codes that are provably good is difficult. Most constructions are based on the
probabilistic method. An ensemble of codes is constructed using a random process and it is
shown that good codes occur in this ensemble with high probability. Several information
theoretic results are based on codes drawn from loosely constrained random ensembles. For
example, any linear code picked uniformly at random is “good” with high probability over
a binary symmetric channel (BSC). However, the ML decoder for an arbitrary linear code
is NP-Complete [10] i.e. decoding is exponential in block length. This remains true even if
the destination has full knowledge of the code and unlimited pre-processing time to find an
efficient decoder [11].

Design of practical codes with efficient encoding and decoding algorithms requires the
use of constrained and structured ensembles. This work focuses on ensembles of sparse
bipartite graphs in conjuction with belief propagation algorithms, which are known to have
low complexity (Ch. 3).

4.1.1 Overview of Density Evolution

The earliest approach to design and analyze LDPC codes for a BSC is due to Gallager [23]
(1963). This method considers a sequence of (dv, dc)-regular bipartite graphs with increasing
block length n containing no cycles shorter than 2`(n) where:

`(n) :=
lnn− ln dvdc−dv−dc

2dc

ln[(dc − 1)(dv − 1)]

Consider belief propagation decoding over this sequence (of graphs). Messages passed along
graph edges may be correct or incorrect. For an incorrect message, the associated hard
decision does not agree with the true value of the associated codeword bit. The average
fraction of incorrect messages passed at the `th iteration is expressed as a system of coupled
recursive functions. The functions depend on the channel parameter (i.e. BSC crossover
probability δ) and the degree profile of the graph sequence (dv, dc). Based on these recursions
the following condition is tested: “Does average probability of error approach zero as number
of iterations are increased?” The worst channel parameter (e.g. highest δ) for which the
condition holds true is called the belief propagation threshold for the graph sequence.

Luby, Mitzenmacher, Shokrollahi and Spielman [42, 43] (1998) propose a refinement of
this approach. They observe that codes with irregular degree profiles have better performance
than regular codes.

For an intuitive explanation of this phenomenon [42, 43], consider a game to design a
fixed rate code. The variable and check nodes are players in the game and each player wants
to determine its degree. One constraint is that the sum of degrees on the variable node
side must equal the sum of degrees on the check node side. In order to get information
from as many check nodes as possible and thereby improve their chances of being decoded
correctly, variable nodes tend to high degrees. Check nodes want to have a low degree so as
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to transmit more valuable information to their respective neighbors. Irregular graphs offer
greater flexibility to balance these competing requirements. Some variable nodes can end
up with high degrees while others with low degrees. The variable nodes with high degrees
tend to correct their value in just a few iterations. In turn, they provide more valuable
information to check nodes which pass it on to variable nodes having lower degrees. This
leads to a wave effect and improves the overall decoding performance.

Gallager’s construction, which uses a sequence of graphs with increasing block-length and
tight constraints on the length of cycles, becomes intractable for complex irregular graphs.
Therefore, Luby et.al deviate from it and consider graphs that are sampled from random
ensembles without having any constraints on cycles. Richardson, Urbanke and Shokrollahi
have unified the above ideas into a comprehensive density evolution framework presented in
two seminal papers [59, 58]. They have extended the analysis tools beyond the BSC and
binary erasure channel (BEC) to cover a broad class of channels and decoding algorithms.
For example, their tools are readily applicable to general binary memoryless symmetric
(BMS) channels. The BICM equivalent QMF relay channel discussed in Ch. 3 falls under
this category.

The theory is built upon three fundamental observations which are summarized below.
Rigorous proofs are available in [59, 61].

1. Concentration around ensemble average:

For any random ensemble defined using degree profiles, almost all graphs in it behave
increasingly alike with increasing block-length. This convergence is exponentially fast
in block-length. Therefore, it suffices to study the average behavior of the ensemble,
to characterize any individual graph contained in it. The essence of this observation is
that decoding performance inherently depends on the structure of local neighborhoods
in the graph. For large block-lengths, all graphs in an ensemble have similar local
neighborhoods.

2. Convergence to cycle-free case:

Local neighborhoods in typical graphs appear like trees if the number of iterations
is fixed and block-lengths tend infinity. Consequently for large graphs, cycles can
be ignored from analysis of typical structures. It suffices to simply consider message
passing over typical computation trees.

3. Density evolution and threshold determination:

The typical computation tree for an ensemble is expressed using normalized degree
profiles. It is possible to track the PDF of a typical message as it passes through a
typical computation tree. The evolution is expressed as a system of coupled recursive
functions that allow computation of the average probability of decoding error at any
given iteration. For channels that can be ordered by physical degradation e.g. BSC,
BEC and BIAWGN, the channel parameter shows a threshold phenomenon. The belief
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propagation threshold clearly separates a region where probability of decoding error
converges to zero and a region where it converges to a non-zero value.

The framework allows optimizing over the space of degree profiles to find ensembles whose
average performance is close to fundamental limits. In [58], degree profile designs for irreg-
ular LDPC codes within 0.06dB of Shannon capacity are demonstrated for the BIAWGN
channel. Code profile optimization is known to be non-convex and computationally challeng-
ing. The density evolution procedure by itself is significantly complex and involves tracking
continuous PDF functions over many iterations. To simplify the search for good degree
profiles, Chung et.al. propose [15] (2001) a Gaussian approximation to density evolution.
If messages are approximated to have a Gaussian distribution, density evolution reduces to
the tracking of one scalar quantity. Though approximate, this simplified procedure allows a
more comprehensive exploration of the design space and has led to better code designs.

In the remainder of this section, random graph ensembles, density evolution recursions
and the Gaussian approximation are discussed in greater detail.

4.1.2 Random Graph Ensembles

A binary linear block code C of rate R = k
n

is represented either by a k × n generator
matrix G or a (n− k)× n parity check matrix H. Note that these matrices are not unique.
Elementary row transformations on G and H do not change the code. This is because, C is
formed by the column space of G and the null space of H. A code has several possible G
and H matrices. An LDPC code has at least one sparse H and an LDGM code has at least
one sparse G. Sparse matrices are represented using sparse bipartite graphs as discussed in
Sec. 3.1.1. An LDPC code is represented by a bipartite graph having n variable nodes and
(n−k) check nodes and H as the graph adjacency matrix. An LDGM code is represented by
a bipartite graph having n variable nodes and k check nodes and G as its adjacency matrix.

Degree Profiles

An ensemble of bipartite graphs is defined by using two polynomials. The number of variable
nodes having degree i is Λi. The number of check nodes with degree i is Pi. These are written
in polynomial form as :

Λ(x) =
∑

i

Λix
i

P (x) =
∑

i

Pix
i

Note that each graph in the ensemble has Λ(1) variable nodes and P (1) check nodes. The
number of edges emanating from variable nodes and check nodes must be equal. Therefore,
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the polynomials must satisfy the following condition on their first derivative.

Λ′(1) = P ′(1)

Edge Perspective

A random graph ensemble is completely characterized by the polynomials (Λ, P ). These
are called degree distributions from the node perspective. The goal of this formulation is to
search for random graph ensembles that are likely to contain “good” codes. As discussed in
Chapter 3, performance of a code is related to its block-length n = Λ(1). Codes with longer
block-length perform closer to information theory limits. Therefore, it is useful to consider
degree distributions normalized by block-length.

A convenient normalized representation is to consider degree distributions λ(x) and ρ(x)
from the edge perspective.

λ(x) =
∑

i

λix
i−1 =

Λ′(x)

Λ′(1)

ρ(x) =
∑

i

ρix
i−1 =

P ′(x)

P ′(1)

λi represents the fraction of edges that connect to a variable node of degree i. Similarly ρi
is the fraction of edges that connect to a check node of degree i.

Random Sampling from Ensembles

Consider sampling a random graph from ensemble (Λ, P ). This is achieved by the following
construction procedure. Consider Λ(1) variable nodes and P (1) check nodes. Λi variable
nodes have degree i and Pi check nodes have degree i. For a node with degree i, consider i
sockets on the node such that there are Λ′(1) = P ′(1) sockets on each side of the graph. Label
the sockets on each side with the set [Λ′(1)] = {1, 2, . . . ,Λ′(1)}. Consider a permutation σ
on [Λ′(1)]. Connect the socket labelled j on the variable side with socket labelled σ(j) on the
check side. Induce a uniform probability distribution on the set of possible permutations.
This implies that the graph is sampled uniformly at random from the ensemble. As discussed
previously, a graph does not uniquely identify a code. Therefore, codes are not sampled using
a uniform distribution.

The resulting graph may have multiple edges connecting a given pair of variable and
check nodes. Consider a P (1) × Λ(1) adjacency matrix M for the graph with the entry at
row i and column j giving the number of edges between check node i and variable node
j. The purpose of constructing this graph is to represent a binary linear code with check
nodes representing addition in the GF(2) finite field. Multiple edges between two nodes are
superfluous from this perspective. A transformation of the graph is defined by removing all
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even pairs of multiple edges. This results in a graph, which has at most one edge between
any variable node and check node. The resulting adjacency matrix A has {0, 1} entries
obtained by interpreting the entries of M in GF(2) i.e. ( mod 2).

The resulting graph and adjacency matrix A, have multiple interpretations. A can be
interpreted as a parity check matrix H resulting in an LDPC construction. Alternatively A
can be interpreted as a generator matrix G resulting in an LDGM construction.

Design Rate

The ensemble (Λ, P ) is said to have an LDPC design rate:

rLDPC(Λ, P ) =
k

n
= 1− n− k

n
= 1− P (1)

Λ(1)

The LDGM design rate is equivalently written as:

rLDGM(Λ, P ) =
k

n
=
P (1)

Λ(1)

The ensemble design rate does not give the rate of every code in the ensemble. The random
edge construction can possibly lead to parity checks that are not linearly independent. This
can result in a code rate that is higher than the ensemble design rate.

For large block lengths, the actual rate of a random element is close to the design rate
with high probability [61].

Design rates are also defined in terms of the edge perspective (n, λ, ρ) representation as
follows:

rLDPC(λ, ρ) = 1−
∫ 1

0
ρ(x) dx

∫ 1

0
λ(x)dx

rLDGM(λ, ρ) =

∫ 1

0
ρ(x) dx

∫ 1

0
λ(x)dx

For example, a (3, 6) regular graph ensemble with arbitrary block-length is represented
as follows:

λ(x) = x2 ; ρ(x) = x5

This gives an ensemble of LDPC codes having design rate rLDPC = 1/2. It also gives an
ensemble of LDGM codes having design rate rLDGM = 1/2. Not all profiles have both
LDPC and LDGM interpretations. As noted previously, LDGM codes are used for both
data compression (k < n) and channel coding (k > n) scenarios. Consider a regular (6, 3)
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profile.

λ(x) = x5 ; ρ(x) = x2

This represents an LDGM ensemble with design rate rLDGM = 2. Since LDPC codes are
only defined for 0 ≤ rLDPC ≤ 1, this profile cannot represent a valid LDPC ensemble.

4.1.3 Recursive Density Updates

Density evolution recursion functions for LDPC/LDGM codes are described in terms of
ensembles defined above. Consider the iterative sum-product algorithm with LLRs as the
messages passed among nodes. Let w

(`)
KV and w

(`)
VK denote the message sent from the check

node K to the variable node V and vice versa, at the `-th iteration.
The update rules for the algorithm in terms of LLRs are written as follows: (N (·) here

denotes the set of neighboring nodes)

w
(`)
VK =

∑

K′∈N (V)\{K}

w
(`)
K′V (4.1)

w
(`+1)
KV = 2 tanh−1


 ∏

V′∈N (K)

tanh

(
1

2
w

(`)
V′K

)
 (4.2)

In this representation, the messages w
(`)
{·} are continuous in (−∞ ∞). Extreme values

±∞ represent full confidence for the associated bit. The goal is to track the PDF of a
typical message as it propagates through a typical computation tree. Long block-lengths
and cycle free graphs are assumed for the purpose of analysis. Due to these assumptions and
the extrinsic information transfer property, the messages are treated as independent random
variables. As seen in Eq. (4.1), the updates at variable nodes simply involve summation of
such independent variables. As a result, PDF of an outgoing message from a variable node is
computed as the convolution (denoted as ⊗) of the PDF’s of incoming messages. For check
nodes, the update rule is more complex (4.2). In [58] a variable transformation rule Γ(·)
and its inverse Γ−1(·) are defined. Under this transformation, the check node update rule

is also expressed as a summation of incoming messages. If the density of the message w
(`)
{·}

is denoted by P
(`)
{·} , the density evolution recursion for a graph ensemble (λ, ρ) is written as



74

follows:

P
(`+1)
KV = Γ−1

(∑

j

ρj

(
Γ
(
P

(`)
VK

))⊗(j−1)
)

P
(`)
VK = PV ⊗

∑

i

λi

(
P

(`)
KV

)⊗(i−1)

Here PV represents the conditional PDF of the LLR’s at the output of the channel, condi-
tioned on the actual codeword that was transmitted. If the channel is output symmetric,
error performance does not depend on the transmitted codeword. Consequently, it suffices
to pick any one codeword for conditioning. A natural choice is to use the all-zero codeword.
Since all codes in the ensemble are linear, they must all contain it. For the BIAWGN channel
having noise variance σ2, the PV function is given as follows:

PV(y) =

√
σ2

8π
exp

(
−(y − 2

σ2 )2

8

)

The above recursion on continuous PDF functions is significantly complex for symbolic
analysis. Efficient numerical techniques are reported in [58, 15]. The Gaussian approximation

approach [15] is widely used to obtain a simplified formulation. P
(`)
{·} is approximated by a

Gaussian distribution N (µ, σ). It is shown that, for such messages, σ2 = 2µ due to the
symmetry condition, which is preserved under density evolution [58, 15]. This implies that
the recursion can be written in terms of a scalar variable. The recursion for ensemble (λ, ρ)
is written in terms of the density mean µ(`) at the `-th iteration as follows:

µ(`) =
∑

j

ρjφ
−1

(
1−

[
1−

∑

i

λiφ
(
µ0 + (i− 1)µ(`−1)

)
])

(4.3)

Here µ0 is the mean of PV. φ(·) is a continuous and monotonically decreasing function on
[0 ∞) defined as follows:

φ(x) :=

{
1− 1√

4πx

∫
R tanh u

2
exp

(
− (u−x)2

4x

)
du if x > 0

1 if x = 0

For a BIAWGN channel with noise variance σ2, the starting point of the recursion is given
by µ0 = 2

σ2 . Fig. 4.1 shows this evolution for a (3, 6) (design rate = 0.5) ensemble over
a BIAWGN channel with various noise parameters. Since it is assumed that the all-zero
codeword is transmitted, incorrect messages correspond to LLR’s that are less than zero.
If the mean of the message PDF tends to infinity, the fraction of incorrect messages tends
to zero. The Gaussian approximation belief propagation threshold (GABPT) is evident in
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Figure 4.1: Density evolution using Gaussian approximation for (3, 6) regular LDPC ensem-
ble on BIAWGN channel.
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Fig. 4.1. For noise standard deviation σ > 0.874, the mean converges to a finite value whereas
for σ ≤ 0.874, it mean tends to ∞ with increasing iterations. For comparison, consider an
irregular LDPC ensemble with same design rate from [58, 15] having profile:

λ(x) = 0.30013x+ 0.28395x2 + 0.41592x7 ; ρ(x) = 0.22919x5 + 0.77081x6 (4.4)

This irregular profile has dmax
v = 8 and dmax

c = 7 and is used previously for simulation results
shown in Chapter 3. Note that it has a better threshold than the regular (3, 6) profile in
Fig 4.2.

4.2 Analysis of QMF Factor Graphs

The above analysis model is applicable to QMF factor graphs. As discussed in Chapter 3,
the BICM equivalent relay channel is BMS allowing the construction of an equivalent density
evolution framework. Joint decoding for QMF relaying is based on factor graphs shown in
Figs. 3.9-3.10 based on either the LDPC-LDPC or LDPC-LDGM configurations respectively.
Both these configurations involve Q function nodes that model the QMF operation at relay.
The number of Q nodes depends on the relay listening fraction f . The degree of Q nodes
depends on the quantization levels. For given channel parameters, f is computed based
on the network cut-set bound as discussed in Chapter 2. In Chapter 3, it is shown that a
simple one-bit scalar quantizer performs reasonably well and yields a practical decoder. It
is desirable to have a model for random QMF factor graphs where these parameters can
be designed using the above considerations. This is achieved by defining some fixed graph
elements i.e. fixed for all graph instances in the ensemble.

4.2.1 QMF Factor Graph Ensembles

In Sec. 4.1.2, random ensembles of Tanner graphs representing LDPC or LDGM codes are
considered. A Tanner graph has only two types of nodes (variable V, check K) and one type
of edge (VK). However, the corresponding factor graph also has observation nodes O and
(VO) type edges. O nodes always have degree one and do not play an active role in the
decoding. Including them in the analysis framework will lead to the same density evolution
functions and thresholds as before.

For the sake of explanation, consider an ensemble for LDPC/LDGM factor graphs in-
cluding these additional nodes and edges. Each instance in the ensemble has (VK) type edges
drawn using a random permutation between sockets as defined previously. Additionally, the
graph has fixed O nodes attached to every V node by (VO) type edges. This distinction be-
tween random edges/nodes and fixed edges/nodes allows the construction of complex graph
ensembles.

QMF factor graphs have multiple classes of nodes and edges. Consider factor graphs
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Variable Nodes

Node Class K-Degree Q-Degree O-degree Neighbor Selection

VS random random (0 or 1) fixed random (KS)

VR random random (0 or 1) fixed random (KR)

Function Nodes

Node Class VS-Degree VR-Degree Neighbor Selection

KS random - random

KR - random random

Q fixed (always 1) fixed (always 1) random

OS fixed - fixed

OR - fixed fixed

Table 4.1: Random LDPC-LDPC graph ensemble construction.

developed in Chapter 3 with one-bit scalar quantizer at relay. The LDPC-LDPC configura-
tion has two classes of variable nodes {VS,VR} representing the codewords at source bS and
relay bR. Similarly, the LDPC-LDGM configuration has variables {VS,VQ,VR} representing
codeword at source bS, quantized bits at relay bQ and codeword at relay bR respectively.
Each variable node is connected to multiple classes of function nodes (K,Q,O etc.) thereby
having multiple types of degrees e.g. K-degree, Q-degree etc. The structures of these degrees
are chosen to be fixed or random depending on the configuration. There are five classes
of function nodes {KS,KR,Q,OS,OR} namely, check constraints at source, at relay, quan-
tization constraints and observations. This leads to many classes of edges. Depending on
the ensemble configuration i.e. LPDC-LDPC or LDPC-LDGM, some of these classes are
considered to be fixed and others to be random. The construction of random edges and se-
lection of random node degrees is based on the same socket permutation procedure described
previously.

1. LDPC-LDPC Graph Ensemble: Various classes of nodes and edges for the
LDPC-LDPC configuration are shown in Fig. 4.3. Ensemble properties for various
nodes are listed in Table 4.1. Note that the number and degree of Q nodes is fixed
but their neighbors are selected at random. This leads to 4 classes of random edges
{(VSKS), (VRKR), (VSQ), (VRQ)}. All other edge-classes are fixed. Degree profiles are
considered only for 4 classes of nodes i.e. {VS,VR,KS,KR}, this is because degrees of
other nodes are fixed.

2. LDPC-LDGM Graph Ensemble: Node classes for the LDPC-LDGM ensemble
are shown in Fig. 4.4 with properties listed in Table 4.2. Similar to the LDPC-LDPC
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Figure 4.3: Various classes of nodes and edges for LDPC-LDPC configuration. Solid lines
depict fixed edges in the random ensemble.
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Figure 4.4: Various classes of nodes and edges for LDPC-LDGM configuration. Solid lines
depict fixed edges in the random ensemble.
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Variable Nodes

Class K-Degree Q-Degree O-degree Neighbor Selection

VS random random (0 or 1) fixed random (KS)

VQ random fixed (always 1) - random (KR)

VR fixed (always 1) - fixed fixed

Function Nodes

Class VS-Degree VQ-Degree VR-Degree Neighbor Selection

KS random - - random

KR - random fixed (always 1) random (VQ)

Q fixed fixed - random for VS, fixed for VQ

OS fixed - - fixed

OR - - fixed fixed

Table 4.2: Random LDPC-LDGM graph ensemble construction.

case, degree profiles for 4 classes of nodes are considered {VS,VQ,KS,KR} along with
4 classes of random edges {(VS,KS), (VQ,KR), (VS,Q), (VQ,Q)}.

Let λK
S,i,j represent the total fraction of (VSKS) edges that are connected to a VS node

having K-degree i and Q-degree j. Similarly, define λK
R,i,j for VR(VQ) nodes in the LDPC-

LDPC(LDPC-LDGM) configurations respectively. It is possible to marginalize these profiles
over the Q-degree and denote them as (λ̃S, ρ̃S). The (VSQ) edges are distributed equally
among VS nodes of all degrees based on the listening fraction f .

λK
S,i,0 = fλ̃S,i

λK
S,i,1 = (1− f)λ̃S,i

Similarly, consider marginalized profiles for the relay mapping (λ̃R, ρ̃R) between VR (VQ) and
KR nodes for the LDPC-LDPC (LDPC-LDGM) configuration.

λK
R,i,0 =

{
fλ̃R,i for LDPC-LDPC

0 for LDPC-LDGM

λK
R,i,1 =

{
(1− f)λ̃R,i for LDPC-LDPC

λ̃R,i for LDPC-LDGM

Check node profiles ρ̃S,i and ρ̃R,i have only one degree dimension because all check nodes
have only one random neighbor as shown in Tables 4.1-4.2. It is also possible to compute λQ

S,i
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representing the fraction of VSQ edges connected to a VS node having K-degree i. (Q-degree
is always 1 for VSQ edges)

λQ
S,i =

λK
S,i,1

i
∑

k

λK
S,k,1

k

Similarly, λQ
R,i is computed as follows.

λQ
R,i =

λK
R,i,1

i
∑

k

λK
R,k,1

k

4.2.2 Recursive Density Updates

Using the above model, recursive density updates for the QMF factor graph are derived.
Both configurations have 4 classes of edges that play an active role in the decoding algorithm.
Therefore, it is required to track the PDF of 4 messages at each iteration. To simplify the
evolution, a Gaussian distribution for all the messages is assumed and 4 message means are
tracked. For the LDPC-LDPC configuration, the evolution of µKSVS

, µQVS
, µKRVR

, µQVR
is

derived and shown below:

µ
(`+1)
KSVS

=
∑

k

ρ̃S,kφ
−1


1−

(
1−

∑

i,j

λK
S,i,jφ

(
µVS

+ (i− 1)µ
(`)
KSVS

+ jµ
(`)
QVS

))k−1



µ
(`+1)
QVS

= φ−1

(
1− tanh

(
L

2

)(
1−

∑

i

λQ
R,iφ

(
µ

(`)
KRVR

)))

µ
(`+1)
KRVR

=
k∑
ρ̃R,jφ

−1


1−

(
1−

∑

i,j

λK
R,i,jφ

(
(i− 1)µ

(`)
KRVR

+ jµQVR

))k−1

(1− φ(µVR
))




µ
(`+1)
QVR

= φ−1

(
1− tanh

(
L

2

)(
1−

∑

i

λQ
S,iφ

(
µVS

+ iµ
(`)
KSVS

)))

Here µVS
and µVR

represent the mean LLR for observations from source and relay respec-
tively. L is defined as follows:

L := log

(
1−Q(

√
SNRSR)

Q(
√

SNRSR)

)

The updates for LDPC-LDGM are obtained by replacing µKRVR
and µQVR

with µKRVQ
and

µQVQ
respectively in the above.
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4.2.3 Initial Conditions

As in the point-to-point case, initial means i.e. µVS
and µVR

are required to compute the
GABPT. Without loss of generality, it is assumed that the all-zero codeword is transmitted
from the source. However, it cannot be assumed that the relay also transmits the all-zero
codeword because the source to relay channel is noisy.

This creates a roadblock in the analysis of LDPC-LDPC graphs preventing further
progress. It is required to determine the typical codeword bR transmitted by the relay.
This depends on (a) statistics of the noisy channel between source and relay and (b) the
characteristics of the LDPC encoder at relay. Encoding of linear block codes is based on the
generator matrix. Given just a degree profile for an LDPC ensemble it is difficult to draw
insights into the structure of generator matrices for the codes in the ensemble.

The LDPC-LDGM configuration does not present a roadblock. LDPC-LDGM ensembles
allow characterization of the typical sparse generator matrix used for encoding at relay.
Conditioned on bS = 0 and a given value of SNRSR, there is a typical sequence bQ that is
mapped to a typical bR based on the LDGM code. The probability of occurrence for atypical
codewords vanishes as the block length becomes large and is ignored for the ensemble average
performance. A typical bQ comprises of fNS(1 − pf ) 0’s and fNSpf 1’s (pf is defined in

Sec. 3.3.8). For a given marginalized relay degree profile
(
λ̃R, ρ̃R

)
, each bit of the typical

bR is i.i.d. Bernoulli(q), where q depends on the probability of having odd number of 1’s
in a column of the relay generator matrix (drawn randomly from the LDPC-LDGM QMF
ensemble).

q =
∑

j

(
ρ̃R,j/j∑
i ρ̃R,i/i

)
1− (1− 2pf )

j

2

µVR
is the marginal density of the LLR of the relay to destination channel under the marginal

law that bR is i.i.d. Bernoulli(q). Using this µVR
the probability of error in decoding of bS

and associated thresholds for LDPC-LDGM ensembles can be computed.

4.2.4 Simulation Experiments

In this subsection, the analysis framework developed above is validated using channel sim-
ulation experiments. For the LDPC code at source, consider marginalized degree profiles
(λ̃S, ρ̃S) as given in Eq. (4.4). For the LDGM relay mapping, consider (6, 3) and (8, 4)
regular profiles. Both ensembles have matching design rates and correspond to a relay lis-
tening fraction of f = 1/3. Channel parameters are defined similarly as in Sec. 3.5 with
qSR = 10, qRD = 1. GABPT (SNRSD) for these LDPC-LDGM ensembles are listed in Ta-
ble. 4.3. They are calculated based on the condition that mean of messages to VS nodes
tends to∞ with increasing iterations i.e. assuming bS = 0. The evolution of means is shown
in Fig. 4.5 for one of the ensembles at the GABPT. Note that at around 300 iterations the
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LDPC Profile LDGM Profile GABPT (dB)

λ̃S(x) = 0.30013x+ 0.28395x2 +
0.41592x7 ; ρ̃S(x) =
0.22919x5 + 0.77081x6

λ̃R(x) = x5 ; ρ̃R(x) = x2 -1.81

λ̃R(x) = x7 ; ρ̃R(x) = x3 -2.04

Table 4.3: Thresholds (GABPT) for selected LDPC-LDGM ensembles.
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Figure 4.5: Evolution of µKSVS
and µKRVQ

for LDPC-LDGM ensemble in first row of Table 4.3
at SNRSD = −1.81dB.



84

-0.5-2.5 -2.2 -2 -1.8 -1.6 -1.4 -1.2 -1 -0.8

100

10-6

10-5

10-4

10-3

10-2

10-1

SNR (dB)

BE
R

Profile A (3,6)Profile B (4,8)

Profile A (3,6)
BP Threshold

Profile B (4,8)
BP Threshold

Figure 4.6: GABPT of two LDPC-LDGM ensembles shown in Table 4.3 and BER perfor-
mance simulation over a BIAWGN channel.
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Figure 4.7: BER performance comparison of two LDPC-LDGM ensembles shown in Table 4.3
over an AWGN channel using 16QAM modulation and BICM.

message mean for VS grows rapidly towards ∞. At the same time message mean for VQ
nodes stabilizes to a finite value. This is because the typical bQ 6= 0, as discussed previously.

In Fig. 4.6, the BER performance of graph instances from these two ensembles is shown
for the BIAWGN relay channel. The block length is chosen to be NS = 20400. Cycles of
length 2 and 4 are avoided. The iterative sum product algorithm is run for 50 iterations each
time. The calculated thresholds reasonably predict the BER performance of the ensembles.

4.2.5 BICM Equivalent Channel

In the examples above, GABPT is computed for LDPC-LDGM ensembles over the BIAWGN
channel. The next step is to consider the BICM equivalent BMS channel (as discussed in
Sec. 3.4). The Gaussian approximation to density evolution assumes a Gaussian distribution
for all messages. In this computation the channel model plays a role only during the compu-
tation of initial conditions. In order to extend the above analysis for BICM equivalent BMS
channels, these initial conditions need to be derived. Note that the goal of this analysis is
to produce a comparative ordering of ensembles by GABPT. Such an ordering allows the



86

search of profiles that have good thresholds. For this purpose, the absolute value of GABPT
is not important. This leads to the following claim.

Claim 1. Consider an ordering of LDPC-LDGM ensembles based on GABPT calculated
over the BICM equivalent BMS relay channel. If equivalent GABPTs are computed over the
BIAWGN relay channel, the ordering is retained.

Consider a point-to-point Gaussian channel and its corresponding BICM equivalent BMS
channel. Let the underlying Gaussian channel have signal-to-noise ratio SNRAWGN. For a
fixed modulation order, the BMS channel is also parameterized by SNRAWGN and ordered
by physical degradation. Note that the BICM BMS channel is not Gaussian. Alternatively
consider a BIAWGN channel having parameter SNRBIAWGN. The parameter is chosen such
that this channel has the same mean LLR as the BMS channel above, conditioned on the
all-zero codeword. Note that SNRBIAWGN varies monotonically with SNRAWGN.

The above argument also applies to the BICM equivalent BMS relay channel. SNRSD is
used to parametrize the relay channel:

SNRRD = qRDSNRSD, SNRSR = qSRSNRSD

For given qRD, qSD > 0 terms and modulation order, this BMS channel is ordered by physical
degradation using SNRSD. An equivalent BIAWGN relay channel is defined with same scaling
factors and parameter SNRBIAWGN

SD which is monotonically increasing in SNRSD. Since the
mapping between SNRSD and SNRBIAWGN

SD is monotonic, BIAWGN thresholds can be used
to order factor graph ensembles by comparative performance.

Fig. 4.7 shows BER performance of the ensembles in Table 4.3 using BICM and 16QAM
modulation. As shown, the ensemble with (4, 8) regular LDGM mapping performs better as
predicted by BIAWGN GABPTs.

In the next section, above techniques are used to design example cooperative links. For
given relay channel parameters, density evolution (assuming BIAWGN channels) is used to
search for degree profiles that have the best GABPT. Procedures to select modulation order
and relay listening fraction are also outlined.

4.3 Link Design Examples

Consider a Gaussian (1,1,2) relay channel with system parameters defined previously qRD =
1, qSR = 10, i.e.

SNRSD = SNRRD, SNRSR = 10× SNRSD (4.5)

In previous simulation experiments, modulation order and relay listening fraction f were
chosen arbitrarily. In this section, selection of these parameters is performed using informa-
tion theoretic guidelines. As discussed previously, for QMF the listening-time fraction f at
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Figure 4.9: Optimal listening fraction plotted with respect to SNRSD. qSR = 10, qRD = 1

R is independently optimized to maximize system throughput [75, 46, 53]. The optimal f ∗

is found by balancing the two terms in the minimization of (3.7):

f ∗ =
CG (SNRRD)

1 + CG (SNRRD) + CG

(
SNRSR

2
+ SNRSD

)
− CG (SNRSD)

Equivalent optimal fractions are computed when modulation constraints and BICM are
considered as in Eq. (3.8). Fig. 4.8 shows a plot of the information theoretic QMF achievable
rate upper bound for Gaussian, 16QAM, 64QAM and 256QAM constrained channel inputs
(with BICM) as computed in Eqs.(3.7) and (3.8). For each point in the plots, an optimized
listening fraction f ∗ is used to compute the rate.

Consider the design of a cooperative link that achieves an information throughput of
5.4bits/sec/Hz. Practical choices for modulation order using BICM can be made using
Fig. 4.8 as shown. Since the required SNRSD to achieve this rate is comparable for 64QAM
and 256QAM inputs, let us choose the simpler scheme with 64QAM. This gives a fundamental
information theoretic threshold for the link i.e. SNRSD = 14.18dB. A plot of the optimal
listening fraction for 64QAM inputs is shown in Fig. 4.9. As shown, the optimal fraction
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Figure 4.10: BER simulation for bS using design rate of 5.4bits/sec/Hz with 64QAM. qSR =
10, qRD = 1

corresponding to SNRSD = 14.18dB is f ∗ ≈ 2/3.
64QAM supports at most 6 coded bits per symbol. To achieve an information rate of

5.4bits/sec/Hz, the source should use an LDPC design rate rLDPC = 5.4
6

= 0.9. The optimal
listening fraction determines the LDGM design rate

rLDGM =
1− f
f
≈ 1

2

4.3.1 Profile Design

An LDPC-LDGM ensemble optimized for the above system parameters is designed using
density evolution tools. In order to reduce the computational complexity of profile opti-
mization, the Gaussian approximation to density evolution is used as developed in [15].
Additionally, the following heuristics are used to reduce the search space of profiles.



90

1812.5 13 13.5 14 14.5 15 15.5 16 16.5 17 17.5

-2

-7

-6

-5

-4

-3

SNR_SD(dB)

lo
g(

BE
R)

Block Length ~ 10^4

QMF Threshold

14.18dB

DF Threshold
15.7dB

No Cooperation
17.7dB

Block Length ~ 10^5

Figure 4.11: BER simulation for bR using design rate of 5.4bits/sec/Hz with 64QAM. qSR =
10, qRD = 1



91

1. For the LDPC code, check degree profiles are constrained to be concentrated [15] i.e.
all check degrees (from edge perspective) are either k or k + 1 for some integer k ≥ 2.

2. For the LDPC code: variable degree profiles have maximum degree of dmax
v = 8.

3. For the relay mapping: search is limited to regular LDGM profiles.

Profile optimization techniques based on linear programming proposed in [14, 58] can-
not be readily adapted to the multi-dimensional density evolution of QMF factor graphs.
Therefore, a coarse brute force optimization over all possible degree profiles using the above
heuristics is used to find the following degree profile:

λ̃S(x) = 0.28x+ 0.32x2 + 0.28x3 + 0.12x6 + 0.0009x7

ρ̃S(x) = 0.04x28 + 0.96x29

λ̃R(x) = x4, ρ̃R(x) = x9

Simulation results for BER in decoding of bS using two graph instances (with block lengths
NS = 20400 and NS = 204000 respectively) drawn from above profiles are shown in Fig. 4.10.
The simulation models BICM with 64QAM modulation, one bit scalar quantizer and an
ideal interleaving. 50 iterations of sum product decoding are used at every step. As shown,
the BER performance is within ≤ 1dB of the QMF threshold. For a network with one
relay, information theoretic thresholds for QMF and CF are identical. But unlike CF, QMF
does not require forward channel knowledge at relay and remains within bounded gap to
capacity for networks with more relays. As references for comparison, equivalent1 information
theoretic thresholds for DF and the no-cooperation case are shown. For this example, QMF
is 1.5dB better than DF and 3.5dB better than no-cooperation.

For the DBLAST architecture, bR must also be reliably decoded at or below the target
SNR (for successive interference cancellation to work). Fig. 4.11 shows the BER for bR
which is also within ≤ 1dB of the QMF threshold for both of the block-lengths considered.

4.3.2 Log Scaled Model

In Chapter 2, an alternative model is introduced where the channel parameters SNRSD, SNRRD
and SNRSR are scaled logarithmically using proximity gain η.

SNRRD = SNRSD

SNRSR = (SNRSD)η

1DF threshold is computed with BICM and 64QAM inputs. f is optimized so as to maximize throughput
for the DF scheme.
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The previous design example used a linear scaling model:

qSR =
SNRSR
SNRSD

=
24.18dB

14.18dB
= 10

Let us consider a design example using the logarithmic model with η = 3. Under this
scaling, for SNRSD = 14.18 the channel can support 6bits/sec/Hz using 256QAM as shown
in Fig. 4.12. The optimal listening fraction is f ∗ = 9

19
as shown in Fig. 4.13. The design

rate parameters are calculated as rLDPC = 0.75 and rLDGM = 1−f
f

= 10
9

= 1.11. To simplify
design of code profiles, approximate choices are made: f = 0.5 and rLDGM = 1. The following
optimized degree profile is found for these parameters:

λ̃S(x) = 0.34x+ 0.25x2 + 0.15x3 + 0.23x5 + 0.0066x6

ρ̃S(x) = x11

λ̃R(x) = x9, ρ̃R(x) = x9

BER simulations for bS using NS = 209000 are shown in Fig. 4.14. The performance is
within ≈ 1.5dB of the fundamental threshold.
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Chapter 5

Conclusion

5.1 Summary of results

In this dissertation, an improved understanding of cooperative relaying for wireless networks
is presented. Based on the fundamental DMT of the (1, 1, 2) relay configuration, it is shown
that cooperation improves the throughput of wireless links by providing additional degrees
of freedom.

The QMF cooperation scheme introduced by Avestimehr et. al. in 2009 promises to
achieve the above cooperation gains in a fashion that scales with the number of cooperating
terminals in the network. However, it presents unique challenges in terms of designing
schemes for efficient coding and decoding. With a focus the single relay network, a coding
framework that brings QMF cooperation closer to practical implementation is proposed. It
is shown that the framework has linear complexity encoding, mapping and joint decoding
operations.

The proposed decoder is based on a sparse factor graph. Using suitable choice of codes,
space time coding strategies and quantization procedures it is shown that the decoding
algorithm can be reduced to belief propagation over a Tanner graph. Simulation results
validate that the proposed scheme can achieve cooperation gains as predicted by information
theory.

Finally, tools based on density evolution techniques are presented for systematic analysis
and design of factor graphs. The design of profiles that perform within 0.5 − 1.5dB of
fundamental limits is demonstrated.

The maximum achievable information throughput for the (1, 1, 2) relay channel with
asymmetric network model (Ch.2) is plotted in Fig. 5.1. For comparison, the point-to-point
AWGN Shannon capacity is also shown. Two points are shown corresponding to performance
of link designs presented in Chapter 4.

This dissertation focuses on a network with one relay. However, the principles can be
applied to networks with multiple relays leading to possibly an order-of-magnitude improve-
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ment in spectral efficiency allowing future cellular and local area networks to deliver improved
user experience.

The principles of cooperative communication studied in this dissertation can also be
applied to other scenarios. As an example, NASA’s Deep Space Network (DSN) uses large
ground based antenna arrays to communicate with deep space probes. Intermediate probes
or space stations can be used as relays to improve the range and capacity of these deep space
communication links.

5.2 Future Directions

5.2.1 Improved Profiles

Code design examples reported in this work use the Gaussian approximation to density
evolution. This approximation is poor for graphs that have function nodes with small degrees
[2] like Q nodes. Precise density evolution for BICM equivalent BMS channels can be used
to address this.

For link design examples, a brute force optimization technique is used. This procedure
requires several simplifying heuristics and does not explore the available design space ex-
haustively. The study of optimization techniques like differential evolution [64] may lead to
better code constructions.

5.2.2 Rate Adapation

Optimizing code design for every instantaneous channel realization is not feasible in practice.
Most systems use rate adaptation mechanisms wherein terminals switch between a small set
of characteristic codes and constellations as channel conditions vary.

A large set of channel parameters must be considered for cooperative relay networks e.g.
a single relay network has 3 SNR parameters. Design of efficient rate adaptation schedules
with many channel parameters is a challenging problem.

A possible direction is to develop cooperative rate-less techniques based on schemes such
as Fountain or Tornado codes.

Another alternative is to incorporate modern rate adaptation mechanisms like hybrid
automatic repeat request (hybrid ARQ) into the proposed framework.

5.2.3 Multiple Relays

As discussed previously, a major advantage of the QMF scheme is that it can perform within
bounded gap to fundamental limits for arbitrary relay networks. An important direction for
future work is to develop practical schemes for networks with multiple relays.
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Consider a network having one source, one destination and N half duplex relays. Several
interesting problems arise in the study of this topology. Optimal listening fractions for each
relay are determined based on channel conditions at all other relays. This requires a large
overhead for sharing channel knowledge among terminals. Practical techniques to minimize
such overhead are required. Furthermore, while one relay listens several other terminals
could be transmitting. Signal processing techniques to appropriately handle situations like
this need to be studied.

5.2.4 Practical System Design Constraints

Communication systems have several components. Frequency and timing offsets between
terminals need to be estimated and corrected, channel coefficients must be estimated using
pilot symbols etc.

The use of physical layer cooperation increases the complexity of all these operations.
It also imposes tighter constraints on several related system parameters. Further study is
required to manage this complexity.

5.2.5 Unified Cooperation Framework

It has been shown that cooperation [51] can achieve optimal scaling of capacity in wireless
networks. Relaying is just one of the several proposed cooperative communication techniques.
Other approaches like cooperative interference alignment and cancellation are equally promis-
ing. A long term research vision is to bring all these techniques closer to implementation
and design a unified framework for practical cooperative wireless networks.
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