
UCLA
Technical Reports

Title
A Platform for Collaborative Acoustic Signal Processing

Permalink
https://escholarship.org/uc/item/0h69t3ng

Authors
Hanbiao Wang
Lewis Girod
Nithya Ramanathan

Publication Date
2005

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/0h69t3ng
https://escholarship.org
http://www.cdlib.org/


A PLATFORM FOR COLLABORATIVE ACOUSTIC SIGNAL PROCESSING

Hanbiao Wang†, Lewis Girod†, Nithya Ramanathan†, Deborah Estrin†, Kung Yao]

University of California, Los Angeles
Computer Science Department† Electrical Engineering Department]

Los Angeles, CA 90095
{hbwang, girod, nithya, destrin}@cs.ucla.edu†, yao@ee.ucla.edu]

ABSTRACT

In this paper, we present a platform for collaborative acoustic
signal processing, and demonstrate its use with an example appli-
cation. Our platform is built upon the Stargate Linux-based micro-
server, and supports synchronized multi-channel acoustic data ac-
quisition. We implement a dataflow-like staged event-driven pro-
gramming model within the Emstar software framework that sim-
plifies the development of collaborative processing applications.
Unlike previous dataflow systems that emphasize real-time con-
straints, our framework emphasizes collaborative processing across
nodes in a distributed system connected by an energy-conserving
wireless network with non-deterministic message latency. In our
model, an application is constructed by wiring together multiple
stages, where each stage is implemented by an EmStar module.
The modular approach simplifies development by isolating errors
to specific stages, and enables run-time system reconfigurability by
allowing users to swap out implementations of individual stages,
and to reconfigure the dataflow at run time.

1. INTRODUCTION

The recent emergence of sensor network technology is driven by
advances in a range of different disciplines. Collaborative signal
and information processing is one application of sensor networks
that shows great promise to reveal previously indiscoverable prop-
erties of physical phenomena. In contrast to global data collection,
local collaboration and processing can achieve more with the same
resources, by enabling higher sampling densities and by placing
sensors closer to the phenomena under investigation. For exam-
ple, collaborative acoustic signal processing can distill out infor-
mation about the sound source and the propagation media from
the raw data, reducing the incremental network cost to support
each node. Because of its crucial role in many applications, much
research effort has been devoted to collaborative processing algo-
rithms in sensor networks [1, 2]. However, this research into algo-
rithms has typically stopped short of addressing the practical ways
in which platform design, system architecture, and programming
models can facilitate the development and testing of collaborative
processing in sensor networks.

In this paper, we present a platform for exploring collaborative
acoustic signal processing in micro-server based sensor networks.
Our platform supports a dataflow model within each node as well
as collaboration across nodes, all built upon the EmStar software

This work is supported by the National Science Foundation (NSF) un-
der Cooperative Agreement #CCR-0121778.

framework [3, 4]. We have extended the Stargate [5] platform,
adding a synchronized four-channel acoustic data acquisition ca-
pability using the commercial-off-the-shelf (COTS) hardware and
the open-source Linux based software.

Our platform’s data-flow model is implemented by a staged
event-driven programming framework designed to support collab-
orative acoustic signal processing applications. In this model, a
collaborative processing application is divided into a sequence of
stages. Each stage conditionally generates events to trigger the
following stage if and only if the result of the current processing
stage indicates that the observed phenomenon could be relevant to
the sensing application goal. Irrelevant events are filtered at the
earliest time, thus saving system resources. Each stage is imple-
mented in a separate process as an individual Emstar module, thus
isolating errors to the scope of individual stages.

In order to support the unique properties of sensor networks,
we have designed this model to be much more loosely coupled
than many previous dataflow system designs. Whereas most cur-
rent dataflow implementations foster determinism in order to prov-
ably meet real-time requirements, this is often an impossibility in
the context of sensor networks. In order to reduce the energy re-
quirements of the wireless networks connecting sensor nodes, the
network protocols employed often increase the variance of net-
work latency to conserve energy. In the context of collaboration,
this variance translates to signal buffering, because the importance
of signal data may not be known until after a delayed message
arrives. The decreased reliability of individual nodes and network
links further exacerbates this problem, as protocols must often han-
dle cases where some nodes fail to respond.

Given these relaxed timing requirements, our framework lever-
ages this loose coupling to simplify application development and
to build a more flexible and robust system. By implementing each
stage as a separate EmStar module, we gain several advantages.

First, the system is both easier to debug and more robust, be-
cause numerical errors and other failures are isolated to specific
stages, rather than occurring somewhere in a monolithic block.
Robustness is particularly critical in deployment, because errors
can be triggered by conditions that arise only in the field, such
as unusual or unexpected sources of noise and system failures in-
duced by a harsh environment. In our framework, EmStar can
restart individual stages of the dataflow when they crash or hang,
without disrupting the whole system.

Second, the system is much more flexible because of its mod-
ular construction. Because the dataflow “wiring” is determined at
run-time, our model enables the system to switch between differ-
ent implementations of the same stage after deployment, or even



to completely change the data-flow wiring at run-time. Such re-
configurability helps the system adapt to changes in application
requirements, signal characteristics, and physical environment.

In this paper, we present three main contributions. First, we
present a hardware platform that integrates a Stargate processor
module with a sound subsystem that captures sound synchronously
through four channels and integrates to other EmStar services.
Second, we present a staged event-driven programming model de-
signed for collaborative processing applications that conserves net-
work and system resources, eases collaborative processing pro-
gramming, and enables run-time system reconfigurability. Third,
we present an example collaborative signal processing application
that we have built using this model and platform.

The rest of the paper is organized as follows. Section 2 de-
scribes the hardware and software building blocks of the platform
for collaborative acoustic signal processing. Section 3 describes
the staged event-driven programming model on top of Emstar. Sec-
tion 4 illustrates the platform with an example of collaborative pro-
cessing that localizes woodpeckers using sound. Section 5 com-
pares our approach with traditional embedded signal processing
systems. Section 5 also reviews existing work on collaborative
processing in sensor network. Section 6 concludes this paper

2. BUILDING BLOCKS

This section describes the subsystem for synchronized multi-channel
data acquisition and the Emstar software environment supporting
the staged event-driven programming model.

2.1. Acoustic data acquisition

Our previous work in acoustic beamforming applications used COTS
iPAQs [6, 7]. Using this platform, we were forced to use the
iPAQ’s built-in microphones and audio codecs, which provided a
single channel with high internal noise and low sensitivity. How-
ever, this hardware is not sufficient to capture weak signals such as
wild bird calls.

To address these limitations, we developed a new platform
based on the Stargate processing module and a high-quality multi-
channel sound card and external microphones. The Stargate [5] is
a micro-server class platform based on the 400 MHz PXA55 XS-
cale processor with 64 MB of SDRAM, 32MB of flash memory,
and provides similar processing capability to the iPAQ. To the Star-
gate we add the VXpocket 440 PCMCIA sound card [8] to support
acoustic sampling, and a Compact Flash 802.11 card to support
a wireless network. The VXpocket has 4 balanced mic/line ana-
log inputs, provides 24-bit high-quality audio measurement, and
a sampling frequency that ranges from 8kHz to 48 kHz in 100 Hz
steps. We chose the M53 [9] for our low noise, low distortion mea-
surement microphone. We connect the M53 to the VXpocket440
card using a cable that converts the TB3M connector of the M53 to
a standard 3-pin male XLR connector of the VXpocket440. Each
M53 microphone is calibrated using a free-field comparison pro-
cedure with a laboratory grade reference microphone. The calibra-
tion produces a precision error response curve which can be used
for correcting the response.

The VXpocket card is supported by an Advanced Linux Sound
Architecture (ALSA) [10] device driver, a user space library, and
management tools. Compared to the Linux implementation of
Open Sound System (OSS), ALSA has many advantages. ALSA’s

consistent and generic control API for managing low-level hard-
ware controls enables a developer to easily take advantage of the
advanced features of the sound cards. ALSA uses a ring buffer to
store outgoing or incoming samples with two pointers to allow pre-
cise communication between application and sound card device.
The hardware maintains the pointer to the most recently captured
sample while the application maintains the pointer to the first un-
read sample. ALSA supports both standard read/write transfer for
simplicity and direct read/write transfer via direct memory access
(DMA) for efficiency. The ALSA API has event waiting routines
and asynchronous notification handling constructs. Using ALSA,
we have managed to synchronously sample sound on 4 input chan-
nels of the same VXpocket 440 sound card with a measured time
synchronization discrepancy across input channels of about 2∼ 5
µs.

2.2. Emstar software environment

Emstar [3, 4] is a comprehensive software environment for de-
veloping heterogeneous, distributed applications. Emstar provides
tools for simulation, emulation, and visualization of Emstar based
distributed systems. It also provides many services such as net-
working and time synchronization across nodes. The strengths
of Emstar lie in its message-passing inter process communication
(IPC) primitives. Each Emstar based system consists of multiple
logically separable modules implemented as individual processes.
Modules communicate with one another using message-passing.
Within this framework, modules are implemented and debugged
separately, thus the application development becomes much eas-
ier.

Emstar’s message-passing IPC is implemented in user space
device drivers. The Framework for User Space Devices (FUSD) [4]
consists of a kernel module and user space libraries. FUSD can
create device files and then proxy system calls on FUSD device
files into user-space device drivers. From the client’s point of view,
FUSD device files respond in the same way as ordinary device files
semantically, although there is typically a performance penalty rel-
ative to an in-kernel driver. Compared to device drivers imple-
mented in kernel, FUSD-proxied device drivers add the overhead
of additional system calls, scheduling latency, and additional data
copy. However, given ever-increasing hardware speed, it makes
sense for Emstar to favor development flexibility over system per-
formance, and only add optimizations as they are needed by appli-
cations. In collaborative signal processing applications, real-time
performance is often not a practical objective. Because energy-
conserving network communication often incurs nondeterministic
latency, our systems are typically required to buffer data so that
it can later be processed, after the network messages arrive. This
relaxation of real-time requirements for collaborative processing
applications reduces the importance of the additional latency in-
troduced by FUSD message-passing.

On top of the message-passing IPC mechanism provided by
FUSD devices, Emstar implements an event-driven programming
model using the Glib event framework. Emstar modules that gen-
erate events create a FUSD device and then emit event messages
through that device. Emstar modules that need to receive those
events listen to that FUSD device, and are notified asynchronously
when new event messages arrive. The Emstar libraries support
several different types of of FUSD devices and their clients, many
of which are customized to support specific classes of application
with minimal effort. The details of creating the FUSD devices and



listening on file descriptors are all abstracted away from the appli-
cation programmer.

The sensor device interface is a FUSD device specifically de-
signed to support signal data streams and detection events in col-
laborative signal and information processing applications. The
sensor device interface has two primary functions: buffering and
time-stamping. The sensor device provides a ring buffer that stores
a sequence of data samples or events and integrates with the Em-
star time synchronization service to time-stamp the data elements.
A client module of the sensor device driver can request data either
synchronously or asynchronously. The client module can request a
single sample from a specific time, a replay of data from a specific
time interval, or a continuous stream of samples as they arrive.
The sensor device interface provides the foundation for the staged
event-driven collaborative processing model.

3. STAGED EVENT-DRIVEN MODEL

In order to support collaborative signal and information processing
applications, we have developed a staged event-driven signal pro-
cessing model implemented within the EmStar framework. This
model is similar to the dataflow computation model in which a set
of processing functions are connected by data queues. A process-
ing function consumes data from its input queues and produces
data in its output queues. Execution of a processing function starts
if only if data is available at its input data queues. There is no
central control, and all processing functions run autonomously in
parallel. Data flow is a natural paradigm for building digital signal
processing applications for concurrent implementation on parallel
or distributed hardware. Its history goes back to the sixties when
Estrin and Turn proposed an early dataflow model [11]. Over the
years, many variants and extensions of the basic dataflow model
have been developed [12, 13, 14].

In our implementation, we borrow the basic ideas of the dataflow
computation model to organize collaborative processing applica-
tions in Emstar, while relaxing the requirement for real-time schedul-
ing of processing functions. With message-passing IPC and an
asynchronous event framework, Emstar naturally supports the ba-
sic dataflow computation model. Each processing function can be
implemented as an Emstar sensor device driver module whose de-
vice ring buffer serves as output data queue. In order for a process-
ing function to use a data queue for input, the Emstar module that
implements the processing function requests data from the sensor
device that implements the data queue.

In the staged event-driven programming paradigm, a collab-
orative processing application is decomposed into a sequence of
processing stages. Signals enter the system from the network or
through a data acquisition stage. Contrary to some variants of
the dataflow model such as synchronous dataflow [13], the staged
event-driven processing of incoming signals does not always reach
the final stage. Rather, each processing stage will only generate an
event to trigger the following processing stage if its result meets a
specified condition.

This staged processing model is a natural fit for monitoring ap-
plications that would like to ignore many irrelevant events. For ex-
ample, a system to identify and locate woodpeckers using sounds
can be decomposed into 4 stages as shown in Fig. 1. The first stage
samples sound, time-stamps samples, and buffers them. The sec-
ond and third stages perform detection algorithms and generate an
event to the following stage only if the signal is important to the
application. The fourth stage, target localization, combines data

from multiple nodes and multiple channels to localize the wood-
pecker, and provide that output to a higher layer application. By
stopping the dataflow early, we save system resources that would
otherwise be wasted in the following stages.

Fig. 1. Example block diagram of staged event-driven processing
for woodpecker localization applications. Grey rectangles stand
for processing stages. Block arrows represent asynchronous data
or event queues implemented using sensor devices that connect
adjacent processing stages.

The staged event-driven programming model improves uti-
lization of system resources and eases system development. This
model naturally decomposes a complex application into a set of
simpler processing stages that are accurately specified by a block
diagram and are readily allocated among a team of developers. It
also enables individual processing stages to be independently im-
plemented and debugged, since each processing stage is incorpo-
rated inside an Emstar module and is executed as an autonomous
process. Compared to a monolithic architecture, the staged even-
driven framework greatly simplifies the implementation of a col-
laborative processing application, and results in a more robust so-
lution. Using the staged even-driven framework, numerical errors
only affect a single module, and thus are easier to trace. In the
event that a numerical bug is uncovered in a deployment, the sys-
tem can kill and restart the misbehaving stage without causing the
whole system to fail.

The staged event-driven framework in Emstar also enables
system reconfigurability. Given a processing task, there are of-
ten multiple processing algorithms that realize it. For example,
there are many different algorithms to estimate target location us-
ing sound, which have different characteristics in terms of signal
requirements, computation complexity, and estimation error. For
the same processing stage, we can implement multiple versions
using different processing algorithms. Since all of the different
implementations of the same processing stage use the same data
input and output interfaces, we can select an implementation at
run-time based on application requirements, system resources, and
even dynamic signal characteristics.

4. CASE STUDY

In this section, we describe the implementation of the staged event-
driven processing in a simple sensor network using two nodes
to localize a woodpecker using acoustic signals. The system is
schematically shown in Fig. 2. Each node has four microphones
to capture the sound synchronously. Using acoustic beamform-
ing, each node can individually estimate the Direction of Arrival
(DOA) of sound from the target. The target location can be esti-
mated as the intersection of these two bearing lines. We designate
bearing crossing task to node A. Node B needs to send its DOA
estimate to node A. We intentionally make the scale of the sys-
tem small for simplicity of illustration. We also intentionally gloss
over the signal processing algorithm details in order to emphasize
the software system architecture.



Fig. 2. Schematic diagram of a simple network of two nodes for
localizing a woodpecker using sound. Each node has four mi-
crophones to capture sound synchronously. DOA pointing to the
woodpecker can be estimated by individual node using acoustic
beamforming. Arrows indicated individual DOA estimates. The
location of the woodpecker can then be estimated as the intersec-
tion of these two bearing lines. If the bearing crossing task is des-
ignated to node A, the node B needs to send its own DOA estimate
to node A.

As shown in Fig. 3, the collaborative processing in the two-
node sensor network is decomposed into a sequence of simpler
processing stages, in which each stage is driven by data or events
from the proceeding stage. On each node, the first stage samples
sound, time-stamps the samples, and buffers them. The second
stage, “Intensity Monitoring”, monitors signal intensity, and gen-
erates an event to the next stage only if a strong signal intensity
indicates that the signal is not just background noise. The third
stage, “Type Recognition”, attempts to identify the captured sound
to determine if it was produced by a woodpecker, and generates an
event only if there is an above-threshold likelihood that the sound
was the call of a woodpecker. The fourth stage, “DOA Estima-
tion”, combines data from multiple channels to determine a bear-
ing estimate towards the woodpecker, and generates an event only
if a valid bearing can be determined.

Valid bearing estimates captured at node B are forwarded over
the network to node A where they are combined in a “Bearing
Crossing” stage to localize the woodpecker. This stage buffers
bearing estimates from many nodes in order to support high vari-
ance in the arrival times of the estimates over the network, and
correlates them using the EmStar time synchronization subsystem.
When a location estimate is determined it is provided through an-
other device interface to a higher-level application.

Without staged filtering of irrelevant events, the system would
be overwhelmed by irrelevant events most of the time, and would
unnecessarily consume scarce CPU and network resources. How-
ever, many stages of our implementation cuts short processing on
signals that are not important to our application. Most of the time,
the raw captured sound is just background noise and will be fil-
tered out by early stages. Low amplitude signals will be filtered by
the Intensity Monitoring stage, while loud signals that are not bird
calls will be filtered by the Type Recognition stage. Incoherent
data that cannot generate a bearing estimate will be filtered by the
DOA Estimation stage, saving both CPU and network resources.
By terminating processing early, we save system resources that
would otherwise be wasted in following stages.

Fig. 3. Block diagram of staged event-driven processing for wood-
pecker localization sensor network as shown in Fig. 2. Grey rect-
angles stand for processing stages. White rectangles indicate de-
vice interfaces. Block arrows represent data or event queues. Sub-
sets of block diagrams physically located on each individual node
are enclosed by dotted rectangles. The dotted block arrow repre-
sents the DOA message passing channel from node B to node A.

In building this application we took advantage of many of the
benefits intrinsic to this platform and framework. The modular de-
sign of our framework enabled us to build and test this system in-
crementally stage by stage. During development, we experienced
many numerical errors such as overflow and underflow. Because
our application was broken into individual stages, the scope of er-
ror tracing was limited and debugging time was greatly reduced.

We also made extensive use of our framework’s capacity for
system reconfigurability. Our implementation of the data acquisi-
tion stage provides two modes: deployment and simulation. The
deployment mode directly captures sound through the sound card
and microphones, while the simulation mode plays back previ-
ously recorded bird calls. To test the system’s other processing
stages in the lab without the sound subsystem, we simply switched
to the simulated data acquisition mode, keeping all other process-
ing stages the same.

We were also able to use this modularity to test our system
using two alternative implementations of the intensity monitoring
stage. One is based on a specified threshold of data sample value,
and the other is based on Constant False Alarm Rate (CFAR) de-
tection of signal power in the frequency bandwidth of woodpecker
sound. The former implementation is much simpler and runs much
faster than the latter. However, the latter differentiates meaningful
sound from background noise much more accurately in terms of
false alarm rate and miss rate. Our framework allows us to easily
switch between these two types of implementation without modi-
fying anything else in the system. This reconfigurability makes it
easier to compare these two approaches for signal intensity moni-
toring under the same condition.

Similarly, we can easily test multiple implementations of the
type recognition stage and the DOA estimation stage. Our current
implementation of the type recognition stage is based on cross-
correlation of the measured spectrogram and the reference spec-
trogram [7]. Our current DOA estimation implementation is based
on approximate maximum likelihood (AML) beamforming algo-



rithm [15, 16]. Implementation based on other algorithms can be
chosen for the system to adapt to variations of the signal charac-
teristics, the system resources, and the application requirements.

5. DISCUSSION

This section reviews the traditional embedded system for signal
processing and the recent work on programming collaborative pro-
cessing in sensor networks.

Research on embedded system for signal processing and con-
trol has a long history. Over the years, many powerful frame-
works and tools have been invented for specification, modeling,
simulation, verification, and code generation of signal processing
embedded system. For example, several variants of the dataflow
model [12, 13, 14] with formal mathematical properties have been
proposed. Thus important questions about the system behavior can
often be answered, e.g. whether the computation executes in finite
memory and finite time. Another example is MathWorks Simulink
product family [17] that enables designers to apply streamlined
model based design in a graphical, interactive environment. The
design starts from a system-level mathematical model and then is
tested and verified with simulation. Implementation code can be
generated automatically. Yet another example is Ptolemy system-
level design tool [18, 19, 20] that seamlessly supports multiple
computational models using actor-oriented design. There are also
many specially designed high-level programming languages to sim-
plify digital signal processing. Examples include Disiple [21],
DSP/C [22], DSPL [23], Gabriel [24], and GOSPL [25]. These
languages use compiler techniques to target specific hardware ar-
chitecture or to realize real-time scheduling. Limited space does
not allow us to describe other important work in the traditional
embedded system field.

There are many significant differences between the traditional
embedded system for signal processing and our work on collab-
orative processing in sensor networks. First the traditional design
methodologies and tools often utilize specially designed platforms.
Our Emstar based staged event-driven programming paradigm tar-
gets general purpose micro-server class platforms running open-
source Linux. Second the traditional design methodologies often
have formal mathematical properties. They can be used to analyze
system behavior based on system mathematical model without im-
plementation. Our staged event-driven programming frame work
is only meant for fast prototyping and testing collaborative pro-
cessing applications in a distributed systems. Most importantly,
the traditional embedded system design supports real-time com-
putation scheduling while our programming framework does not
support hard realtime applications. Process scheduling in Linux on
Stargate has a coarse scheduling granularity of 10ms. Scheduling
delay can also be nondeterministic. In addition, message passing
has nondeterministic delay, especially when message has to cross
individual nodes through network using contention based media
access control (MAC) such as 802.11.

Although our staged event-driven programming framework pro-
vides best-effort service without a realtime guarantee, it is a very
good fit for fast prototyping and testing collaborative processing
applications in sensor networks. First we use time-stamping and
buffering of data to overcome the difficulties of nondeterminis-
tic delays. Time-stamping and buffering of data enable post-facto
processing of data that removes negative effects of coarse schedul-
ing granularity and nondeterministic delay largely. Second our
programming framework does not add more to the constraints im-

posed by contention based MACs on sensor networks. Using con-
tention based MACs, it is inherently not possible to guarantee mes-
sage delivery within a certain deadline. As a result, collaborative
processing applications in such sensor networks cannot impose re-
altime deadlines. In addition, the general-purpose hardware and
open-source Linux used in our testbed are more accessible to the
sensor network research community than specially designed hard-
ware and commercial system software.

Although active work on programming in sensor networks ex-
ists, it has not provided adequate programming support to develop
collaborative processing applications. TinyGALS is a globally
asynchronous and locally synchronous model for event-driven em-
bedded systems [26]. Its code generation tools have been imple-
mented for Berkeley motes [27]. Unfortunately, the current gen-
eration of motes do not have sufficient system resources to sup-
port coherent processing of multi-channel, high-rate signals such
as acoustic beamforming. An information directed approach is
proposed to coordinate collaborative signal and information pro-
cessing tasks in sensor networks [28]. However, it has not yet
touched upon the programming issues in sensor networks. DFuse
is a framework for distributed data fusion in sensor networks [29].
Its API enables an fusion application to be specified as a course-
grained dataflow graph. It emphasizes the dynamic assignment of
aggregation roles to sensors at run time for energy efficiency. Vi-
sual Sense is a modeling and simulation framework for wireless
sensor networks [30]. Built on top of Ptolemy II [18, 19, 20], it
supports the actor-oriented computing model. However, it does
not provide the software environment to ease the implementation
of collaborative processing applications.

The simple example of a woodpecker localization system demon-
strates the strengths of the staged event-driven programming frame-
work. Many other previously proposed collaborative processing
systems can also benefit from this programming framework for
ease of implementation, enhanced utilization of system resources,
and reconfigurability. For example, the collaborative energy-based
localization scheme proposed by Sheng and Yu [31] can be natu-
rally implemented using this programming framework. Another
example is the collaborative classification scheme proposed by
D’Costa and Sayeed [32]. Depending on correlation in measure-
ments, either data fusion or decision fusion is used for classifica-
tion in this scheme. Our programming framework naturally intro-
duces reconfigurability for the above classification scheme.

6. CONCLUSION AND FUTURE WORK

In this paper, we have described a platform for prototyping col-
laborative acoustic signal processing applications on micro-server
platforms running Linux. We have also presented an example of
collaborative signal processing application built using this plat-
form. First, we have realized synchronized acoustic data acqui-
sition on the Stargate platform within the Emstar software envi-
ronment. Second, we have implemented a dataflow-like staged
event-driven programming model in Emstar that simplifies the de-
velopment of collaborative processing applications. The model
also enables run-time system reconfigurability by allowing users
to swap out alternative implementations of individual stages, or to
reconfigure the dataflow at run time. In addition, the model im-
proves system resource utilization by filtering out irrelevant events
as early as possible.

We plan to continue development of this system to support nu-
merous collaborative signal processing applications at CENS. As



we develop new applications, we will profile the system to dis-
cover bottlenecks and to determine which optimizations to make
first. Some optimizations and future directions include:

• Develop an efficient shared-memory mode for our sensor
device pattern.

• Apply realtime Linux features such as fine-grained schedul-
ing, time interval and priority based scheduling.

• Automate the selection of stage output queue sizes, to min-
imize memory usage.

• Offload computation-intensive processing stages to exter-
nal processors while retaining the same staged event-driven
programming paradigm.

7. REFERENCES

[1] S. Kumar, D. Shepherd, and F. Zhao, “Collaborative signal
and information processing in microsensor networks,”IEEE
Signal Proc. Mag., vol. 19, no. 2, pp. 13–14, March 2002.

[2] K. Yao, D. Estrin, and Y.H. Hu, “Sepcial issue on sensor net-
works,” EURASIP JASP: Special Issue on Sensor Networks,
vol. 2003, no. 4, pp. 319–320, March 2003.

[3] EmStar: Software for Wireless Sensor Networks,
“http://cvs.cens.ucla.edu/emstar/,” 2004.

[4] L. Girod, J. Elson, A. Cerpa, T. Stathopolous, N. Ra-
manathan, and D. Estrin, “Emstar: a software environment
for developing and deploying wireless sensor networks,”
in Proc. USENIX’04 Annual Tech. Conf., General Track,
Boston, June 2004, pp. 283–296.

[5] Platform X with Stargate,
“http://platformx.sourceforge.net/links/resource.html,”
2004.

[6] H. Wang, L. Yip, D. Maniezzo, J. C. Chen, R. E. Hudson,
J. Elson, and K. Yao, “A wireless time-synchronized cots
sensor platform, part ii: applications to beamforming,” in
Proc. IEEE CAS Workshop on Wireless Communication and
Networking, Pasadena, CA, USA, September 2002.

[7] H. Wang, J. Elson, L. Girod, D. Estrin, and K. Yao, “Tar-
get classification and localization in habitat monitoring,” in
Proc. ICASSP, Hong Kong, China, April 2003.

[8] Diggigram VXpocket 440 PCMCIA Sound Card,
“http://www.digigram.com/products,” 2004.

[9] M53 Microphone: Low Noise Low
Distortion Measurement Microphone,
“http://www.linearx.com/products/microphones
/m53/m531.htm,” 2004.

[10] The Advanced Linux Sound Architecture (ALSA),
“http://www.alsa-project.org/,” 2004.

[11] G. Estrin and R. Turn, “Automatic assignment of computa-
tions in a variable structure computer system,”IEEE Trans-
actions on Electronic Computers, vol. 12, no. 6, pp. 755–773,
December 1963.

[12] G. Kahn, “The semantics of a simple language for parallel
programming,” Information Processing74: Proceedings of
IFIP Congress, pp. 471–475, August 1974.

[13] E.A. Lee and D.G. Messerschmitt, “Synchronous data flow,”
Proc. of IEEE, vol. 75, no. 9, pp. 1235–1245, Sept. 1987.

[14] M. Engels, G. Bilsen, R. Lauwereins, and J. Peperstraete,
“Cyclo-static dataflow,” inAsilomar Conf. Sig. Sys. and
Comp., Pacific Grove, California, Oct. 1994.

[15] J. Chen, L. Yip, J. Elson, H. Wang, D. Maniezzo, R. Hudson,
K. Yao, and D. Estrin, “Coherent acoustic array process-
ing and localization on wireless sensor networks,”Proc. the
IEEE, vol. 91, no. 8, pp. 1154–1162, August 2003.

[16] P. Bergamo, S. Asgari, H. Wang, D. Maniezzo, L. Yip, R.E.
Hudson, K. Yao, and D. Estrin, “Collaborative sensor net-
working towards real-time acoustical beamforming in free-
space and limited reverberance.,”IEEE Trans. Mob. Com-
put., vol. 3, no. 3, pp. 211–224, 2004.

[17] The MathWorks Products, “http://www.mathworks.com,”
2004.

[18] E.A. Lee, “Overview of the ptolemy project,” Technical Re-
port UCB/ERL M03/25, University of California, Berkeley,
2003.

[19] E.A. Lee, Embedded Software, vol. 56, chapter Advances in
Computers, Academic Press, London, 2002.

[20] E.A. Lee and S. Neuendorffer,Actor-oriented Models for
Codesign, chapter Formal Methods and Models for System
Design, Kluwer, 2004.

[21] J.E. Peters and S.M. Dunn, “A compiler that easily retargets
high level language programs for different signal processing
architectures,” inProc. ICASSP, May 1989, pp. 1103–1106.

[22] K. Leary and W. Waddington, “Dsp/c: a standard high level
language for dsp and numeric processing,” inProc. ICASSP,
Apr. 1990, pp. 1065–1068.

[23] A. Schwarte and H. Hanselmann, “The programming lan-
guage dspl,” inProc. PCIM’90, 1990.

[24] E.A. Lee, E. Goei, J. Bier, and S. Bhattacharya, “A design
tool for hardware and software for multiprocessor dsp sys-
tems,” inProc. ISCAS’89, 1989.

[25] C.D. Covington, G. Carter, and D. Summers, “Graphic ori-
ented signal processing language - gospl,” inProc. ICASSP,
1987, pp. 1879 – 1882.

[26] E. Cheong, J. Liebman, J. Liu, and F. Zhao, “Tinygals: a
programming model for event-driven embedded systems,” in
Proc. SAC’03, Melbourne, FL, March 2003, pp. 698–704.

[27] J. Hill, R. Szewczyk, A. Woo, S. Hollar, D.E. Culler, and
K. Pister, “System architecture directions for network sen-
sors,” inProc. ASPLOS’00, Cambridge, MA, Nov. 2000.

[28] F. Zhao, J. Shin, and J Reich, “Collaborative signal and infor-
mation processing: an information-directed approach,”Proc.
IEEE, vol. 91, no. 8, pp. 1199–1209, August 2003.

[29] R. Kumar, M. Wolenetz, B. Agarwalla, J. Shin P. Hutto,
A. Paul, and U. Ramachandran, “Dfuse: a framework for
distributed data fusion,” inProc. SenSys’03, Los Angeles,
CA, Nov. 2003, pp. 114–125.

[30] P. Baldwin, S. Kohli, E.A. Lee, X. Liu, and Y. Zhao, “Model-
ing of sensor nets in ptolemy ii,” inProc. IPSN’04, Berkeley,
California, USA, April 2004, pp. 359–368.

[31] X. Sheng and Y.H. Hu, “Energy based acoustic source local-
ization.,” in Proc. IPSN, 2003, pp. 285–300.

[32] A D’Costa and A M. Sayeed, “Collaborative signal pro-
cessing for distributed classification in sensor networks.,” in
Proc. IPSN, 2003, pp. 193–208.




