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Abstract
This study presents a method to address the issue of burdensome computations in water resources optimization based on a 
hybrid algorithm derived from the firefly algorithm (FA) and the K-nearest neighbor (KNN) algorithm, herein named the 
FA-KNN algorithm. The FA-KNN algorithm introduced in this work is tested with three standard test problems (the Ackley, 
Rosenbrock, and Sphere problems), and with a reservoir operation problem that minimizes the relative agricultural water-
supply deficit under baseline and climate-change conditions. The efficiency indexes of the reservoir system are calculated to 
evaluate the performance of the FA-KNN algorithm and its accuracy. The results demonstrate the operational policy obtained 
with the FA-KNN algorithm has better performance in terms of computational burden than the FA’s. This work’s findings 
establish the FA-KNN hybrid algorithm reduces the computational time by 60% with acceptable accuracy compared with 
the FA algorithm. The findings indicate a reduction in run-time of 99.5, 94, and 92% for solving the Ackley, Rosenbrock, and 
Sphere test problems achieved with the FA-KNN algorithm while maintaining a high level of accuracy when contrasted with 
solutions derived from both deterministic methodologies and the FA approach. The volumetric reliability and flexibility in the 
reservoir problem calculated under the baseline conditions outperformed those obtained with the climate change conditions 
by 10 and 3.5%, respectively. Moreover, a notable discrepancy emerged in terms of the main simulator's invocation frequency 
between the FA-KNN and FA methods (the former exhibited a mere 0.3 ratio compared to the latter). The application of the 
FA-KNN approach yielded a reduction exceeding 60% in run-time for the reservoir problem.

1 Introduction

Johari et al. (2013) evaluated applications of the FA in opti-
mization problems. The results of the evaluation show that 
the FA algorithm performs better than other meta-heuristic 
algorithms. Chou and Ngo (2017) proposed a modified 

firefly algorithm (MFA) algorithm to optimize the design 
of multidimensional structures and improve optimization 
capabilities by improving the search process and setting 
the attractiveness parameter. The results showed the supe-
riority of MFA algorithm compared to FA and its higher 
convergence speed. Garousi-Nejad et al. (2016b) applied 
the firefly algorithm (FA) to optimal operation of reservoirs 
with the purpose of irrigation water supply and hydropower 
production. Their results demonstrated the superior perfor-
mance of the FA compared to the genetic algorithm (GA) in 
terms of the convergence rate to global optima. Azizipour 
et al. (2016) applied the invasive weed optimization (IWO) 
algorithm to the optimal operation of hydropower reser-
voir systems. The results were compared with the results 
obtained with particle swarm optimization (PSO) and the 
GA. Their results established the IWO was more efficient 
and effective than PSO and the GA. SaberChenari et al. 
(2016) adopted the PSO for solving the operation of the 
multipurpose Mahabad reservoir in northwestern Iran. 
Hossain et al. (2018) applied and compared the artificial 
bee colony (ABC) algorithm, PSO, the GA, and neural 
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network-based stochastic dynamic programming (SDP) 
in solving for optimal operation of the Aswan reservoir 
in Egypt. Their results indicated the water release policy 
calculated with the ABC algorithm outperformed the com-
parison algorithms. Garousi-Nejad et al. (2016a) reported 
a modified firefly algorithm (MFA) and applied it to solve 
reservoir operation problems. Three well-known bench-
mark multireservoir operation problems were optimized 
for energy production. The results of the MFA were com-
pared with LP, differential dynamic programming (DDP), 
and discrete DDP (DDDP), the GA, the multi-colony ant 
algorithm (MCAA), the honey-bee mating optimization 
(HBMO) algorithm, the water cycle algorithm (WCA), the 
bat algorithm (BA), and the biogeography-based optimi-
zation (BBO) algorithm. The MFA was found to be more 
effective than alternative optimization methods. Ahmadi-
anfar et al. (2017) extracted the optimal policies of hydro-
power multi-reservoir systems employing the enhanced dif-
ferential evolution (EDE) algorithm. Azizipour and Afshar 
(2018) presented a novel hybrid GA and cellular automata 
(CA) method for solving reliability-based reservoir opera-
tion problems. The proposed method was implemented to 
calculate monthly water supply and hydropower genera-
tion at the Dez reservoir in Iran. Their results showed the 
proposed method was more accurate and efficient than the 
GA. Ahani et al. (2018) applied four common data-driven 
modeling techniques including multiple linear regression, 
KNN, artificial neural networks (ANN), and adaptive neuro-
fuzzy inference systems to runoff forecasting. Their results 
indicated the selected KNN model yielded the best per-
formance. Yaseen et al. (2018) introduced and applied the 
hybrid approach artificial fish swarm algorithm (AFSA) and 
applied the particle swarm optimization algorithm (PSOA) 
to optimize the Karun-4 reservoir operation for energy gen-
eration and minimizing downstream water shortages. Their 
results indicated the hybrid algorithm (HA) performed with 
higher reliability, lower vulnerability, and higher resiliency 
compared with the AFSA and the PSOA. Also, the HA was 
top ranked according to multi criteria decision making. Kar-
ami et al. (2018) introduced an improved version of the krill 
algorithm (KA) for reservoir operation. The KA converged 
faster to the near-optimal solution than PSO and the GA. 
The improved KA could meet 97% of irrigation demands 
and produced the lowest value of the vulnerability index 
among GA, PSO, and the simple KA. The average solution 
of the improved KA was closer to the global solution than 
those produced by the alternative optimization methods. 
Samadi-koucheksaraee et al. (2019) introduced the gradi-
ent evolution (GE) algorithm as an efficient solution for 
water resource management. Fang et al. (2021) proposed 
new optimization algorithms based on the accelerated gra-
dient-based (AGBO) for multi-reservoir system. Ashofteh 

et al. (2021) developed and applied a bi-objective genetic 
programming (BO-GP) algorithm to optimize the operat-
ing rules of the Aidoghmoush reservoir (in Iran). Their 
results indicated a successful performance of the BO-GP 
algorithm in minimizing vulnerability and maximizing 
reliability of water supply. Hu et al. (2019) proposed an 
improved cloud adaptive quantum-inspired binary social 
spider optimization algorithm for short-term hydropower 
generation scheduling of three Gorges hydropower station. 
The results demonstrated the effectiveness of the proposed 
algorithm. Ahmadianfar et al. (2022) extracted the non-
linear operating rules of multi-reservoir systems using the 
self-adaptive teaching learning-based algorithm with dif-
ferential evolution (SATLDE). Samadi-koucheksaraee et al. 
(2022) emphasized the significance of meta-heuristic and 
evolutionary algorithms in various engineering domains. 
Shirvani-Hosseini et al. (2022) applied data mining meth-
ods to modeling in water science. Ahmadianfar et al. (2023) 
calculated optimal operating rule curves for hydropower 
multi-reservoir systems by influential flower pollination 
algorithm (IFPA).

Complex optimization problems are commonly not solv-
able with classic methods, such as linear programming 
(LP), and are beset by burdensome computations, which 
in many instances fail to converge to optimal solutions. 
Meta-heuristic and evolutionary algorithms (MHEAs) were 
introduced to tackle these otherwise intractable optimization 
problems (see, e.g., Bozorg-Haddad et al. 2017). Experience 
has shown MHEAs have performed well in solving complex 
water resources problems.

Many hydrologic problems are beset by computational 
burden and dimensionality. This means the complexity of 
the problem is compounded by the computational burden 
and the amount of storage space needed to solve it. Several 
researchers have evaluated methods to overcome the com-
plexities of hydrological models. For example, Kou et al. 
(2008) examined a new hybrid three-dimensional compu-
tational solution for groundwater solute transport in a lay-
ered aquifer. The three-dimensional solute transport was 
reduced to a hybrid three-dimensional model by combining 
the two-dimensional computations and the one-dimensional 
analytical solutions. The resultant hybrid three-dimensional 
method was capable of large computational time steps 
coarse spatial grids and was thus suitable for simulating 
solute transport in large-scale sites of layered aquifers. 
This method was verified by analytical solutions as well 
as by the numerical model MT3D. Schoups et al. (2008) 
compared three model complexity control methods, and 
their results indicated that simulation of water flow using 
non-physically-based models achieved better calibration. 
Jato-Espino et al. (2017) presented a simulation–optimiza-
tion method to model urban catchment located in Espoo 
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(southern Finland) under non-stationary extreme rainfall 
events under climate change conditions. The results showed 
their approach achieved suitable calibration and prediction 
of extreme precipitation. Shokri et al. (2018) applied the 
patient rule induction method (PRIM) to detect hydrologic 
model behavioral parameters and quantify uncertainty, and 
reduced the size of the decision space applying PRIM.

The criteria for choosing water resources models have 
relied on evaluating their technical traits, data requirements, 
and system complexity (Arkesteijn and Pande 2013). Höge 
et al. (2018) examined the role of model complexity in 
choosing a model among several ones that are often used in 
water resources, and reported a classification procedure for 
the correct interpretation of complexity and model choice. 
Li and Yue (2018) proposed an inverse method to calibrate 
the spatially and temporally varying Root Density Distribu-
tion Function (RDDF) in unsaturated water flow modeling. 
Model calibration was formulated as an optimization prob-
lem in the framework of the Tikhonov regularization theory 
to overcome complexity, adding constraints to the objective 
function. Arkesteijn and Pande (2013) examined the com-
plexity of hydrologic models and the effect of uncertainty 
on predictions. The latter authors presented an algorithm 
for assessing the complexity of hydrological models, and 
demonstrated that hydrological model complexity has a 
geometric interpretation in terms of the model’s output 
space. Hong et al. (2003) accelerated the convergence of 
evolutionary algorithms (EAs) by means of multi-layer 
artificial neural networks (ANNs). The proposed method 
was verified by a numerical example. Shokri et al. (2013) 
proposed a method based on ANNs to reduce the number 
of simulations required by EAs. The performance of the 
proposed method was examined by integrating it with the 
non-dominated sorting genetic algorithm (NSGAII) in 
multi-objective problems. Their results demonstrated that 
use of the NSGAII-ANN hybrid algorithm reduced the 
required time for optimization up to 50 times compared 
with the standard NSGAII. Pseudo models are employed 
in the statistical approximation and uncertainty analyses of 
time-consuming and complex models. The pseudo models 
apply emulators that yield solutions close to those obtained 
with the implementation of the main model simulators. 
Moreno-Rodenas et al. (2018) implemented an emulator as 
a substitute for the main model for hydro-dynamic simula-
tions under the influence of precipitation and parametric 
scenarios. Chong et al. (2021) reported a thorough review 
of optimization application problems (OAPs) in engineering 
and scientific fields, such as economic dispatch, structural 
design, and water resources. Lai et al. (2022a) provided a 
comprehensive review of reservoir operation optimization, 
highlighting its benefits in terms of efficient energy pro-
duction, flood prevention, cost reduction, and addressing 

water scarcity. Almubaidin et al. (2022) reviewed reservoir 
operation optimization focusing on the intricacies posed by 
non-linearities, complex constraints, and multiple variables. 
They examined various metaheuristic algorithms (MHAs) 
for minimizing water deficits and aiding decision-making 
in reservoir operation. Lai et al. (2022b) reported a study 
focused on the KLang Gate Dam (KGD) and its operation 
under changing climate scenarios using sim-heuristic tech-
niques. The latter authors explored the impact of climate 
change on reservoir water resources by considering an 
ensemble of general circulation models (GCMs) from the 
CMIP5 dataset.

The FA was introduced by Yang (2008). Many stud-
ies have proved the high efficiency of the FA algorithm 
and improved the algorithm, as demonstrated by Yang 
(2008, 2010, 2011), Hassanzadeh et al. (2011), Yan et al. 
(2012), Nandy et al. (2012), Afnizanfaizal et al. (2012), 
Silva et al. (2013), Garousi-Nejad et al. (2016a, b), among 
others. Many simulation–optimization processes used to 
solve complex problems involve a heavy computational 
burden. Orabona et al. (2010) introduced the online inde-
pendent support vector machine (SVM). The SVM method 
has been widely applied in various fields because of its 
high computational efficiency. However, SVM cannot 
solve online classification problems effectively due to the 
involved computational burden of this process (Wang et al 
2013). The standard SVM and most of the modified SVMs 
are in essence batch learning. Such SVMs cannot process 
large-scale data effectively because they are costly in terms 
of memory and computing effort. Under some conditions 
support vectors (SVs) are generated, which generally means 
a long testing time. The training of traditional SVM is time 
and storage-space consuming because the SVM train-
ing usually is posed as a quadratic programming problem 
(Zheng et al 2013).

Some water resource management problems involving 
slow simulator models and long-term studies such as climate 
change studies are beset by long run time in the optimiza-
tion process. This work overcomes the time complexity of 
models and improves the run-time in a dynamic and online 
simulation–optimization process by developing the hybrid 
firefly K-nearest neighbor algorithm (FA-KNN).

The FA-KNN algorithm is herein introduced to accelerate 
the solution of complex problems. The FA-KNN algorithm 
features two operators known as “oblivion” and “sampling” 
that render it comparatively efficient in solving complex 
problems. The FA-KNN is tested, and its performance evalu-
ated with the Ackley, Rosenbrock, Sphere standard test prob-
lems and with a water resources problem that minimizes the 
relative deficit in supplying water demand under baseline 
and climate-change conditions by the Gharanghu reservoir 
in East Azerbaijan, Iran. The FA and KNN algorithms are 
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described next, followed by a description of the methodol-
ogy herein employed leading to the hybrid FA-KNN algo-
rithm and a discussion of its properties. In addition, this 
work evaluates the application of the FA-KNN algorithm 
with a water resource management problem.

2  Methodology

The firefly algorithm is inspired by the behavior of fireflies 
(Yang 2008). The FA rests on three assumptions: (1) the fire-
flies are mono-sexual and sexuality does not affect inter-fire-
fly attraction; (2) the degree of attractiveness between any 
two fireflies is governed by their brightness and is inversely 
related to their separation distance; and (3) the brightness of 
a firefly is determined by its objective function. The param-
eters used in the algorithm, including the light absorption 
coefficient ( � ), the initial value of the absorption coefficient 
( �

0
 ), and the random parameter ( � ) are specified according 

to the range given by Yang (2008).
An initial population of fireflies is created in the FA. 

Each firefly moves towards a more attractive firefly. Light 
intensity (representing the value of the objective function) 
is proportional to the inverse of the square of the distance 
from fireflies:

in which, I0 = light intensity at the source and I = light inten-
sity at a distance r from the light source.

Equation (1) has a singularity at r = 0. To this singularity 
another equation has been defined for light intensity:

in which, � = light absorption coefficient.
Equation (3) is obtained for light intensity using a trun-

cated Taylor series in Eq. (2):

Similarly, the equation of firefly attractiveness is defined 
as follows:

in which, �
0
 = the initial magnitude of attractiveness, � = 

attractiveness at a distance r; m is a coefficient whose value 
ranges between zero and two.

The attractiveness approaches a constant value as the m 
coefficient tends to zero, in which case the light source acts 
as a surface light source (with infinite surface area). If m 

(1)I =
I
0

r2

(2)I = I
0
e−�⋅r

2

(3)I ≈
I
0

1 + � ⋅ r2

(4)� = �
0
e−�⋅r

m

≈
�
0

1 + � ⋅ rm

equals one, the light source acts as a linear light source that 
is proportional to the inverse of the distance. If m equals two, 
it acts as a point light source that corresponds to the inverse 
of the square of the distance.

When firefly i moves towards firefly j (provided Ii < Ij ), 
the new position of firefly i (newXi) is calculated with the 
following equation:

in which Xi and Xj denote the current positions of i-th and 
j-th fireflies, respectively. These positions are 3-dimensional 
vectors.

Fireflies randomly move towards more attractive fireflies, 
and their path is not always straight; therefore, there is ran-
domness in the way fireflies move towards the more attrac-
tive firefly. This is captured with Eq. (6):

in which ��i = a random vector. During the optimization 
search αεi αεi is adjusted to assure convergence to a solution. 
The process of optimizing, correcting the position of fire-
flies, and moving towards a more attractive firefly continues 
until the stopping criterion is met.

Figure 1 shows the flowchart of the optimization process 
for the firefly algorithm. The convergence speed of the FA 
is increased in this work by hybridizing it with the KNN 
algorithm. The KNN is a relatively simple, yet, very effec-
tive tool in data mining and machine learning. In fact, the 
KNN algorithm does not learn; rather, it remembers data 
that are used for classification and regression problems. Fig-
ure 2 provides a generic graphic comparison of the FA-KNN 
algorithm (Fig. 2(a)) and of the FA (Fig. 2(b)). It is seen in 
Fig. 2 that when using the FA algorithm alone (Fig. 2(b)), 
all simulations are performed by the main simulator. On 
the other hand, the FA-KNN algorithm (Fig. 2(a)) adds the 
“decision” section to the algorithm that chooses between the 
main or hybrid simulators based on predetermined condi-
tions that increase the efficiency and accuracy of the algo-
rithm, whose run time is decreased by reducing the number 
of main simulator calls.

The “main simulator” is the part of the model that is 
directly involved in calculating the value of the objective 
function. In other words, the parameters in the objective 
function formula are calculated by the main simulator. This 
simulator is a set of equations and codes or hydrological 
model simulation software that are interfaced with MAT-
LAB to participate in the optimization process.

The execution time in the simulation process is optimized 
by the main simulator. This study applies a hybrid simula-
tor to reduce the model’s execution time. The “hybrid simu-
lator” has features that are described in detail in the rest of 
the article (including the use of KNN, the forgetting index, 

(5)newXi = Xi + �(Xj − Xi)

(6)newXi = Xi + �(Xj − Xi) + ��i
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and the sampling index), which reduces the number of calls 
to the main simulator and the computational burden in the 
optimization.

2.1  The FA‑KNN hybrid algorithm

A set of solutions simulated with the main FA is stored in 
a database called the information archive. The KNN meas-
ures proximity using standard Euclidean distances between 
input data (randomly generated possible solutions) and the 
data in the information archive. FA-KNN solutions are calcu-
lated with the weighted averaging (distance-weighted KNN) 
method. Figure 3 illustrates the flowchart of the FA-KNN 
algorithm proposed in this work. The initial population of 

fireflies (possible solutions) is randomly generated within the 
range of the decision variables. This constitutes the input 
data. A database named the information archive stores the 
values of the decision variables and the values of the cor-
responding objective function. The first step of the FA-KNN 
calls the FA (original), and its results are saved in the infor-
mation archive. The next step modifies the initial population 
and creates a new population of fireflies. This step calculates 
the Euclidean distances between the data in the archive and 
the FA-KNN solutions in the input data. The ID of the nearest 
neighbors is calculated by the knnsearch function defined in 
MATLAB. An Euclidean distance equal to zero means the 
solution is already in the input data. Therefore, the value of 
the objective function [F(x)] corresponding to the decision 

Fig. 1  Flowchart of the firefly 
algorithm (FA)

Fig. 2  Simplified flowcharts of 
a the proposed method and b 
the classic method

(a) (b)

New

problem

TheFA-KNN

algorithm

Hybrid

simulator

Solution

FA

Main

simulator

Decision section

TheFAalgorithm

FA

Main

simulator

Solution

New

problem
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variable is already stored in the archive. An Euclidean dis-
tance equal to less than a threshold value (that is sufficiently 
small relative to the decision variables) means the value of 
the objective function related to this decision variable is 
reported using the K-nearest solutions to the present solution. 
The FA is called, and its solution is added to the information 
archive whenever the Euclidean distance exceeds the thresh-
old. All the data in the information archive are obtained with 
the FA. Data obtained with the FA-KNN algorithm are not 
entered in the archive. The threshold value is small enough 
to yield accurate results; yet, it must not be too small to avoid 
excessive computational time by the FA-KNN.

An “oblivion” index is added to increase the speed of 
the FA-KNN algorithm whereby the algorithm “forgets” (or 
ignores) some of the main data in the archive, and these data 
are deleted from the archive. The oblivion index removes the 
initial values from the archive to reduce the number of algo-
rithmic comparisons thus increasing the convergence speed 
of the algorithm. In addition, when a database size reaches a 
specified size, a random sample with smaller size is selected 
from the archive. This process is named “sampling” in this 
paper. The sampling is performed using the “randperm” 
command. This reduces the number of comparisons carried 
out by the KNN without introducing virtually any error in 
the algorithmic results. The newly added “oblivio” operator 
causes the algorithm to forget some of the original data in 
the archive and removes these data from the archive. As the 
model convergences through consecutive iterations, it is no 
longer necessary to compare the input data with the origi-
nal data in the archive because they are probably far from 

optimal. The oblivion index causes the model to remove 
the initial values from the archive when it is converging, 
thus reducing the number of comparisons and increasing the 
speed of the algorithm.

2.2  Evaluation of the FA‑KNN algorithm

The FA-KNN algorithm was herein tested with three stand-
ard problems: the Ackley, Rosenbrock, and Sphere prob-
lems, and the results were compared with the FA’s. Table 1 
lists the characteristics of the test problems. The global 
optimal values of the test problems’ objective functions are 
equal to zero, which are compared with those of the FA 
and the FA-KNN algorithm. The optimal value of a real-
world optimization problem was obtained with the LINGO 
12 software.

The initial solutions (initial populations of fireflies) are 
randomly generated. Therefore, each run of the algorithm 
produces a set of optimized decision variables and cor-
responding objective function value. The FA-KNN algo-
rithm was run several times, and the optimal solutions were 
expressed as an average of the solutions obtained in the runs. 
This work implemented five independent runs. Test prob-
lems were solved in sets of runs listed in Table 2, in which 
the test problems were classified into groups and sets accord-
ing to the solver chosen (the FA or the FA-KNN) and the 
algorithmic parameters implemented in each case.

The test problems were classified into groups I and II. 
The thresholds (i.e., stopping criteria) of groups I and II are 
respectively equal to 0.1 and 0.2. Each group has features 

Start

Generate the initial

population

Useا the original simulator and

create an archive of information

Improve the population of

fireflies

Calculate the distance

index

Call of the FA

algorithm

Add results to the archive

ا
Use the FA-KNN hybrid

algorithm to report the value of

the objective function

Is the solution

available in the

archive?

Report the value of the objective

function corresponding to that
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Fig. 3  Flowchart of the FA-KNN algorithm
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problems classified as A, B, C, D. Each problem in set A is 
solved by the FA algorithm. The same problem in set B is 
solved using the FA-KNN algorithm and with the stopping 
criterion equal to that of set A. In fact, all the parameters, 
including the number of iterations, the population of the 
fireflies, and other algorithm parameters, are the same for 
the sets A and B. The only difference is that set A uses the 
main simulator and set B uses the hybrid simulator. The sets 
C and D are exactly the same as set A and are solved with 
the FA, except that in set C the number of main simulator 
calls is equal to the average of the number of main simula-
tor calls in five iterations of set B, and in set D, the number 
of main simulator calls is equal to the maximum number of 
main simulator calls in five iterations of set B. This is done 
by adjusting the population of the fireflies and the maximum 
number of iterations. The new data are compared to the data 

in the data bank, in which case the smaller the threshold, 
the greater the density around the new data; in this instance, 
the hybrid simulator is run by the algorithm. Otherwise, the 
main simulator runs. Therefore, the smaller the threshold, 
the higher the accuracy of the model and the longer the run 
time compared with that arising when a larger threshold is 
applied.

2.3  The reservoir operation problem

Gharanghu Dam is located 26 km southwest of the city of 
Hashtrood in East Azerbaijan Province, Iran (Fig. 4). It 
provides agricultural water and drinking water. The length 
of the Gharanghu River is 120 km and its average annual 
discharge is 149 ×  106  m3, and the area of the river basin 
equals 3590  km2.The dam is built with compacted earth 

Table 1  Characteristics of the test functions

erehpSkcorbnesoRyelkcA

The Ackley function is one of the 

most widely used mathematical 

functions to evaluate the 

performance of algorithms that are 

applicable to multiple dimensions 

(several variables). The Ackley 

function consists of linear, 

exponential, and cosine functions, 

and the objective is to minimize it; 

its minimum is equal to f=0 at 

point (0, 0, 0, …0). The Ackley 

function has abundant local 

optimal, and its global minimum is 

found in the center of the curve. 

The Rosenbrock function, also 

known as the Valley Function, and 

the Banana Function, is a single-

peak function of the minimization. 

The absolute optimum of the 

Rosenbrock function is shaped 

inside a long valley, and its value 

is equal to f = 0 at point (1, 1, 1, 

…, 1). This test function is useful 

for assessing the performance of 

the optimization algorithms. 

The Sphere function is a 

continuous, strongly convex, 

and single-peak (Unimodal), 

and multivariate function (i.e., 

has multiple decision variables) 

and therefore, almost all 

optimization algorithms  find 

an absolute optimal solution for 

it. The Sphere function is a 

quadratic equation.  
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Table 2  Characteristics of the 
test functions’ optimization sets

Problem Groups 
and sets

Algorithm Thresh-
old value

Stopping criterion 
(number of itera-
tions)

Description

Ackley I A FA - 200 Populations = 15
Number of decision variables = 2�

0
= 1

� = 0.1

� = 0.01
B FA-KNN 0.1 200
C FA - -
D FA - -

II B FA-KNN 0.2 200
C FA - -
D FA - -

Rosenbrock I A FA - 200 Populations = 10
Number of decision variables = 2�

0
= 1

� = 0.01

� = 0.01B FA-KNN 0.1 200
C FA - -
D FA - -

II B FA-KNN 0.2 200
C FA - -
D FA - -

Sphere I A FA - 200 Populations = 10
Number of decision variables = 2�
0
= 2

� = 0.2

� = 1B FA-KNN 0.1 200
C FA - -
D FA - -

II B FA-KNN 0.2 200
C FA - -
D FA - -

Fig. 4  Location of the study area
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featuring a clay core with a crown length of 450 m and a 
height of 47 m. The normal volume of the reservoir equals 
165 ×  106  m3, and its active volume equal to 135 ×  106  m3 
with a dead volume equal to 17 ×  106  m3 (Golfam et al. 
2019). The reservoir serves 14,500 ha of cultivated land. 
The objective function of the reservoir operation problem 
under the baseline and climate-change conditions minimizes 
the sum of squares of the relative water-supply deficiency 
during 30 years of operation. Existing meteorological sta-
tions have data for 1971–2000. This was the baseline period. 
The period 2040–2069 constitutes the future period under 
climate-change conditions. Climate projections (rainfall and 
surface air temperature) were performed with the HadCM3 
(Gordon et al. 2000) model under the A2 emission scenario 
(envisions the most critical greenhouse gases emission sce-
nario). Projected surface temperature and rainfall under cli-
mate change scenarios are presented in Fig. 5(a). Climate 
projections were input to the streamflow simulation model 
[IHACRES (Identification of unit hydrographs and compo-
nent flows from rainfall, evapotranspiration and streamflow)] 
(Littlewood et al. 1997) and the crop-water demand model 
[Cropwat (crop water requirement)] (Clarke et al. 2000) to 
create future hydrologic and agricultural water use projec-
tions in the study area. Figure 5(b) shows the streamflow and 
water demand for the baseline and climate-change periods. 
The results indicate a 25% reduction in reservoir inflow and 

a 20% increase in water demand over the future 30 years rel-
ative to the baseline. The climate projections were made by 
Ashofteh et al. (2017) in association with a multi-objective 
reservoir operation study that assessed system performance 
under climate-change conditions.

The objective function of reservoir operation and the con-
straints of the problem minimize the sum of the squared nor-
malized water supply deficits:

The reservoir continuity equation:

Evaporative loss:

Reservoir lake surface area as function of reservoir storage:

Constraints on reservoir storage:

Constraints on release:

(7)Minimizef =
∑T

t=1
(
De(t) − Re(t)

Demax

)

2

(8)S(t + 1) = S(t) + Q(t) − Re(t) − Loss(t) − Sp((t)

(9)Loss(t) = A(t) ⋅ Ev(t)

(10)A(t) = g[S(t)]

(11)Smin ≤ S(t) ≤ Smax

Fig. 5  a Projected tempera-
ture and rainfall under climate 
change scenarios. b Reservoir 
inflow and water demand under 
baseline and climate-change 
conditions
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in which the time index t = 1, 2, …, T; De(t) = downstream 
water demand during operating period t;Re(t) Re(t) = water 
release from the reservoir during operating period t;Demax 
Demax = maximum water demand during operating period; 
S(t) = reservoir storage at the beginning of period t + 1; S(t) 
S(t) = reservoir storage at the beginning of period t,Q(t) Q(t) 
= river inflow to the reservoir during period t;Loss(t) Loss(t) 
= water loss from the reservoir during period t;Sp(t) Sp(t) 
= reservoir spill during period t;A(t) A(t) = lake surface 
area of reservoir at the start of period t, which is a func-
tion of storage S(t) S(t) ; Ev(t) Ev(t) = evaporation depth 
during period t; T = total number of operation periods; and 
t = period counter.

The performance or efficiency indexes of reservoir 
operation are the reliability, vulnerability, and resiliency. 
Reliability is defined as the probability that failure does 
not occur during the operating period (Hashimoto et al. 
1982). The reliability is investigated in two ways, one for 
the volume of water supply (volumetric reliability, VR) 
and one for the number of successful supply periods (NR, 
numeric reliability ranges between 0 and 1).

(12)0 ≤ Re(t) ≤ De(t)

(13)VR =

∑T

t=1
Re(t)

∑T

t=1
De(t)

× 100

(17)FL = (1 − V) × Res × (VRorNR) × 100FL = (1 − V) × Res × (VRorNR) × 100

The vulnerability (V ranges between 0 and 1) measures the 
magnitude of system water-supply deficit (Hashimoto et al. 
1982), and is defined as follows:

Deficit (t) = water deficit in period t is equal to the water 
demand in period t minus the reservoir release in period t or 
equals zero if the water demand is less than the reservoir release 
in period t. The resiliency equals the probability that the system 
returns to the desired state after a failure (Hashimoto et al. 1982). 
Herein, the resiliency (Res ranges between 0 and 1) denotes the 
number of times the system has changed from a failure state to a 
satisfactory state over the total number of times the system fails 
written as follows (Ashofteh et al. 2017):

The flexibility index (FL) is a general criterion for 
expressing system conditions combining the three pre-
ceding indexes (Loucks 1997). The flexibility index is an 
effective benchmark for determining the overall perfor-
mance of a water resources system:

(14)
NR =

∑T

t=1

�
Re(t) ≥ De(t)

otherwise = 0

T
× 100

(15)V =
1

T

∑T

t=1

Def icit(t)

De(t)
× 100

(16)Res =

∑T

t=1
(De(t + 1) = 0��De(t) > 0)
∑T

t=1
N(De(t) > 0)

× 100

3  Results and discussion

Table 3 lists the run times (T1) required to obtain the opti-
mization results for the test functions: Ackley, Rosenbrock, 
and Sphere. The optimizations were carried out in a high-
performance computer (HPC) with an Intel (R) Xeon (R) 
CPU E5-2860 v4 @ 2.00 GHz 2.00 GHz (2processors) and 
16 GB RAM. It is seen in Table 3 the optimization time for 
the Ackley, Rosenbrock, and Sphere test problems is shorter 
by implementing the FA-KNN compared with the FA solu-
tions. T1 in Table 3 denotes the time required to simulate the 
main simulator once. The simulation times invested to solve 
the test problems were negligible. In the three problems, 
the run times seen in the first row for T1 = 0 represent the 
real times required to optimize the test functions. These sets 
optimized by the FA (sets A, C, and D) are often close to 
zero. On the other hand, for sets B-I and B-II, the run times 
are longer. The run times are required by KNN in the FA-
KNN algorithm. For example, it took 9 min and 46 s for the 
Ackley function in the B-I, and 9 min and 1 s for the B-II. It 

is seen in Table 3 that the time required for one simulation by 
the main simulator was increased artificially by 0.5, 1, 3, 12, 
60, and 300 s. The results show that with an increase of 0.5 s 
of simulation time in the main simulator, the FA-KNN per-
formed much better than the FA. In addition, concerning sets 
BI and B-II, the optimization of the set B-II takes less time 
than the set BI because the threshold value of the former is 
smaller than that of the latter, and stricter conditions prevail 
when executing the model. Table 3 lists the optimization 
times for the Ackley, Rosenbrock, and Sphere test problems 
implementing the FA-KNN, which decreased by 95.5, 94, 
and 92%, respectively, compared to the non-hybrid optimiza-
tion. The time reduction values for the Ackley, Rosenbrock, 
and Sphere problems were calculated by averaging the 
reduction time achieved with the B-I and B-II models (which 
had the best accuracy among the group-sets studied with 
FA-KNN) compared to the A model. The execution time for 
each of the models B-I and B-II were subtracted from the 
execution time of model A, and the result was divided by 
the execution time of model A. This ratio was expressed as 
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a percentage. This was done for all the B-I and B-II results, 
which were then averaged. The averages are listed in Table 3.

These three test problems are known to have global 
optima equal to zero. Table 4 lists the difference between 
the calculated optimal objective function and the global 
optimum for each problem. Table 4 indicates the final 
values of the objective function are closer to the global 
optima by implementing the FA-KNN compared with 
the FA.

Figure 6 displays the maximum, average, and minimum 
number of the FA iterations in five runs for several sets of 
the three test problems. The number of the FA iterations of 
set A-I was much larger than the other sets. Results indicate 

that the number of iterations decreases when the FA-KNN 
algorithm is implemented.

Figure 7 shows the run time and the difference between 
the objective function and global optima for all problem sets. 
The results in Fig. 7 establish shorter run times and bet-
ter accuracy when implementing the FA-KNN. It is seen in 
Fig. 7 that the set A (solved by FA) exhibits the longest time, 
and the sets C and D have the shortest times among the sets. 
The sets A, B-I, and B-II achieved the highest precision and 
the smallest difference with the absolute optima, and these 
three sets’ results are very close to each other in terms of 
computational time and accuracy. In solving the Ackley test 
problem. the accuracy of the set B is higher than set A’s. 

Table 3  Run time required for optimizations. See Table 2 for the designation of runs

Ackley
T1
(secs)

A-I
(hrs:mins:secs)

B-I
(hrs:mins:secs)

C-I
(hrs:mins:secs)

D-I
(hrs:mins:secs)

B-II
(hrs:mins:secs)

C-II
(hrs:mins:secs)

D-II
(hrs:mins:secs)

0 00:00:02 00:09:46 00:00:00 00:00:00 00:09:01 00:00:00 00:00:00
0.5 05:26:04 00:24:59 00:15:13 00:15:15 00:24:13 00:15:12 00:15:15
1 10:52:05 00:40:12 00:30:26 00:30:30 00:30:24 00:30:24 00:30:29
3 32:36:09 01:41:04 01:39:18 01:31:30 01:40:13 01:31:12 01:31:27
12 130:24:36 06:14:58 06:05:12 06:06:00 06:13:49 06:04:48 06:05:48
60 652:03:00 30:35:46 30:26:00 30:30:00 30:33:01 30:24:00 30:29:00
300 3260:15:00 153:40:46 152:10:00 152:30:00 152:09:01 152:00:00 152:25:00
Rosenbrock
T1
(secs)

A-I
(hrs:mins:secs)

B-I
(hrs:mins:secs)

C-I
(hrs:mins:secs)

D-I
(hrs:mins:secs)

B-II
(hrs:mins:secs)

C-II
(hrs:mins:secs)

D-II
(hrs:mins:secs)

0 00:00:03 00:03:35 00:00:00 00:00:00 00:02:29 00:00:00 00:00:00
0.5 01:43:50 00:09:42 00:06:07 00:06:08 00:08:35 00:06:06 00:06:07
1 03:27:33 00:15:49 00:18:21 00:18:24 00:14:41 00:18:18 00:18:22
3 10:22:48 00:40:17 00:36:42 00:36:48 00:39:05 00:36:36 00:36:45
12 41:31:03 02:30:23 02:26:48 02:27:12 02:28:53 02:26:24 02:27:00
60 207:35:00 12:17:00 12:14:00 12:16:00 12:14:29 12:12:00 12:15:00
300 1037:55:03 61:13:35 61:10:00 61:20:00 61:02:29 61:00:00 61:15:00
Sphere
T1
(secs)

A-I
(hrs:mins:secs)

B-I
(hrs:mins:secs)

C-I
(hrs:mins:secs)

D-I
(hrs:mins:secs)

B-II
(hrs:mins:secs)

C-II
(hrs:mins:secs)

D-II
(hrs:mins:secs)

0 00:00:03 00:10:31 00:00:00 00:00:00 00:08:56 00:00:00 00:00:00
0.5 02:26:34 00:21:11 00:10:40 00:10:41 00:19:34 00:10:38 00:10:40
1 04:53:04 00:31:51 00:21:20 00:21:22 00:30:13 00:21:17 00:21:20
3 14:39:06 01:14:31 01:04:00 01:04:06 01:12:47 01:03:51 01:04:00
12 58:36:15 04:26:31 04:16:00 04:16:24 04:24:20 04:15:24 04:16:00
60 293:01:03 21:30:31 21:20:00 21:22:00 21:25:56 21:17:00 21:20:00
300 1465:05:03 106:50:31 106:40:00 106:50:00 106:33:56 106:25:00 106:40:00

Table 4  The difference between 
calculated objective functions 
and global optima for test 
problems. See Table 2 for the 
designation of runs

Problem A-I B-I C-I D-I B-II C-II D-II
Ackley 0.0000265 0.00000578 0.013 0.000735 0.0000258 0.063 0.000884
Rosenbrock 0.039 0.0566 0.065 0.057 0.0567 0.058 0.061
Sphere 6.62E-10 7.14E-10 1.04E-07 5.87E-08 7.52E-10 1.75E-07 9.76E-08
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Generally, the set C has the lowest accuracy among the sets 
under consideration. Therefore, by considering the factors 
of time and accuracy, the results show better performance 
of the two sets B-I and B-II.

Figure 8 depicts the convergence history of the sets B-I 
and B-II in comparison with the set A-I for the test func-
tions. Generally, the FA-KNN converges faster to the solu-
tion than the FA. Figure 8 shows the convergence curve of 

the two sets B-I and B-II in comparison with the set A for all 
three test functions. Figure 8 shows the convergence curve 
of the two sets B-I and B-II are approximately similar to set 
A. In Fig. 8(a), the convergence number for the two sets B 
is less than that of the set A, and in the other two figures is 
larger. In all the figures, it is seen that the degree of over-
lap at the beginning of the diagram increases, and it shows 
that the algorithm is searching the entire solution space. The 

(a)

(b)

(c)

Fig. 6  The maximum, average, and minimum number of the number of calls of the main simulator corresponding to sets A-I, BI, B-II, CI, C-II, 
DI, and D-II for the a Ackley, b Rosenbrock, and c Sphere functions
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set B-I approaches the optimal solution more rapidly in the 
initial iterations relative to the other two sets. Also, the end 
range of the graph is limited to small numbers, and the range 
of variation is very small, showing that the firefly population 
is well modified and approaches the optimal solution. In 
addition, the set B-I converges more quickly and performs 
better than the set B-II.

The reservoir problem was solved under baseline and 
climate-change conditions with five problem sets. Table 5 
lists the problem sets evaluated and the characteristics of 
each problem set.

The FA-KNN accuracy was evaluated with the root mean 
square error (RMSE). Tables 6 and 7 list the performance 
of the system under baseline and climate-change conditions 
for all five sets examined. In general, the volumetric reli-
ability under the baseline conditions was about 10% higher 
than under climate-change conditions, and the vulnerability 
was about 10% less under baseline conditions than under 
climate-change condition. The flexibility of the system under 
the baseline conditions is about 3.5% higher than under cli-
mate-change conditions. In addition, the number of calls 
to the main simulator in the FA-KNN algorithm was much 
lower than with the FA (about 0.3 times that of the FA). The 
number of iterations is equal for of the FA and FA-KNN. 

Among the sets under baseline conditions, the set CBS-I 
has a superior performance with higher flexibility, while 
under climate-change condition, the sets Sc-II and CBSs-II 
have better volumetric and numeric flexibly than other sets, 
respectively.

Figure 9 depicts the run time and error in the objective 
function for the problem sets under baseline and climate-
change conditions. The shortest optimization time belongs 
to the sets solved by FA-KNN. The problem sets solved 
by FA-KNN have a greater error than the solutions set 
obtained with the FA due to the use of the hybrid simula-
tor and the interpolation between the solutions in the data-
base. Figure 10(a) and (b) depict the maximum, average, 
and minimum convergence histories of the five independent 
runes for the CsA set (case study A) under baseline and 
climate-change conditions, respectively. Figure 10(c) and 
(d) display the convergence history for the mean of five runs 
under climate-change and baseline conditions, respectively. 
These graphs establish favorable convergence speed of the 
FA-KNN compared with the FA.

Figure 11 presents a comparison between the obtained 
releases from the five problem sets examined and the water 
demand under baseline and climate-change conditions. The 
water deficiency under climate-change exceeds that under 

(a)

(b) (c)

Fig. 7  The difference between the objective function and the global optima versus time for the a Ackley, b Rosenbrock, and c Sphere functions
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baseline conditions, rendering the system more vulnerable 
in the future period.

The results for the problem set CsB-I displayed in Figs. 12 
and 13 compare the reservoir capacity, volume of spill, and 
volume of water deficit with the maximum and minimum 
reservoir capacity, reservoir inflow, water release, and water 
demand volume under baseline and climate-change condi-
tions, respectively. Figure 12 establishes the deficit of water 
supply increases under climate-change relative to the base-
line conditions, and the deficit grows over time. Figure 13 
indicates reservoir storage under climate-change decreases 
relative to baseline condition, the storage peaks are close to 
the maximum volume of the reservoir, and the volume and 
number reservoir spills under in climate-change conditions 
are smaller than under baseline conditions.

4  Discussion

The FA-KNN algorithm is simpler than support vector 
machine (SVM) and does not require training as the SVM 
does. It also bypasses the need for learning, which is advan-
tageous. The FA-KNN algorithm updates its database in 
real time and dynamically, which increases the accuracy of 
the algorithm, while SVM must cope with online learning. 
The SVM is not appropriate as a classification technique for 
online learning because of storage space and computational 
requirements.

The accuracy of the solutions and the speed of the algo-
rithm presented in this paper can be adjusted by the user, and 
this is done by trial and error. The authors attempted calcu-
lating highly accurate solutions by considering thresholds 
that are very small relative to the magnitudes of the decision 
variables. The accuracy of the results and the execution time 
are reduced with larger thresholds or lower k. Thus, although 
the accuracy of the results obtained with the FA-KNN algo-
rithm is lower than the accuracy of the results obtained 
with the FA (as shown in Fig. 9), the execution time is also Fig. 8  The convergence curve for sets A-I, B-I, and B-II for a 

Ackley,(b Rosenbrock, and c Sphere functions

Table 5  Characteristics of the reservoir problem’s optimization sets

Problem Set Algorithm K Threshold Stopping criterion (num-
ber of iterations)

Description

(Case study A)
CsA

- FA - - 2000 Population = 10
Number of decision variables = 360�

0
= 2

� = 10

� = 0.01
(Case study B)
CsB

I
II

FA-KNN 5 0.8
0.4

2000

(Case study C)
CsC

I
II

FA-KNN 3 0.8
0.4

2000
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significantly reduced. The performance of the FA-KNN 
algorithm must consider run time and accuracy criteria so 
that the user can select the appropriate threshold value based 
on specific preferences using trial and error. This paper’s 
objective is to provide an algorithm that overcomes the com-
putational burden of time-consuming algorithms, thus its 
focus on execution time and accuracy. Climate change stud-
ies commonly involve long simulation periods, which excise 
costly computational burden.

It is seen in Fig. 11 that the baseline and climate change 
periods feature deficits in water supply, which may be due 
to reduced inflow to the reservoir in the final years of the 
baseline and climate change periods. Water demand under 
climate change conditions would be higher than under base-
line conditions, and reservoir inflow would be reduced under 
climate change conditions compared to baseline conditions. 

This means that full supply of the water demand would not 
occur in most years of the climate change period.

It is seen in Fig. 12(a) the reservoir is in a better con-
dition under the baseline conditions than under climate 
change conditions, and the deficit in downstream water 
demand from month 330th onwards (from year 27 onwards) 
exceeds than 10 ×  106  m3, compared to prior supply short-
age between 0 and5 ×  106  m3. This may be due to the fact 
that as one approaches the final years of the baseline period 
(especially the last 3 years), the reservoir inflow decreases. 
The maximum inflow under baseline in the 30-year period 
is 135.37 ×  106  m3. Figure 12(b) shows that under climate 
change, the inflow to the reservoir is reduced, and the down-
stream water demand increases compared to the baseline 
conditions. The amount of inflow in the 30-year climate 
change period under study varies from 0.03 to 104.6 ×  106 

Table 6  Performance indexes, run time, and number of FA-KNN iterations associated with problem sets corresponding to baseline conditions

Problem Set Volume 
reliability 
(%)

Number 
reliability 
(%)

Vulnerability (%) Resiliency (%) Flexibility (%) Run time (sec-
onds)

The number of calls 
to main simulator

Volume Number

(Case study A)
CsA

- 88.46 26.94 12 15.20 11.9 3.62 57,814.002 115,446

(Case study B)
CsB

I 86.88 27.78 12 15.77 12 3.8 20,904.702 38,679
II 87.31 26.94 12.11 14.83 11.37 3.51 23,281.002 43,405

(Case study C)
CsC

I 87.02 26.67 12.17 15.15 11.58 3.54 20,487.498 38,108
II 87.40 27.50 12 15.32 11.75 3.69 22,823.202 42,811

Table 7  Performance indexes, run time, and number of FA-KNN calls associated with problem sets corresponding to climate-change conditions

Problem Set Volume 
reliability 
(%)

Number 
reliability 
(%)

Vulnerability (%) Resiliency (%) Flexibility (%) Run time (sec-
onds)

The number of 
calls to the main 
simulatorVolume Number

(Case study A)
CsA

- 70.04 26.94 21.29 14.83 8.17 3.14 59,604.4 119,031

(Case study B)
CsB

I 69.62 26.94 21.10 15.21 8.35 3.233 22,271.16 42,067
II 69.68 27.50 21.163 14.94 8.20 3.239 25,072.86 47,663

(Case study C)
CsC

I 69.68 27.22 21.161 15.27 8.38 3.27 22,267.38 41,819
II 70.06 26.67 20.92 15.15 8.39 3.19 24,407.58 46,127

Fig. 9  Comparison of the run 
time and error associated with 
sets CsA, CsB-I, CsB-II, CsC-I, 
and CsC-II corresponding to 
(a) baseline conditions and (b) 
climate-change conditions
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Fig. 10  The convergence history for a and c baseline condition, b and d climate-change conditions. (a and b represent the CsA, c and d repre-
sent all sets)

Fig. 11  Comparison between 
the water releases and the water 
demand corresponding to a 
the baseline and b the climate-
change conditions for all sets

(a)

(b)
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 m3). The deficit in water supply increases under climate 
change compared to the baseline conditions, and the amount 
of the deficit increases with the passage of time.

Figure 13 shows the reservoir volume fluctuates between 
its maximum (165 ×  106  m3) and the minimum (17 ×  106  m3) 
volumes. It is seen in Fig. 13 that 30 peaks (corresponding to 

30 years) are observed, most of which (23 years) are close to 
the maximum reservoir capacity under baseline conditions, 
and the reservoir storage volume is generally larger than dur-
ing the climate change period. The storage volume in the reser-
voir decreases during the climate change period, and there are 
only 13 years when the peaks approach the maximum reservoir 

Fig. 12  Comparison of the 
water release and (water 
demand, water deficit, reservoir 
inflow) for the CsB-I set under 
a baseline and b climate-change 
conditions

Fig. 13  Comparison of the stor-
age and reservoir spill obtained 
for the CsB-I set showing the 
maximum and minimum capac-
ity of the reservoir under a the 
baseline and b climate-change 
conditions
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volume. The amount of spill and the number of overflows from 
the reservoir under climate change conditions are less than 
under the baseline condition. In the last years of the 30-year 
climate change period, due to the decrease in reservoir inflow, 
the storage volume of the reservoir decreases. The overflow 
volume for the baseline period ranged from zero to 120.71 ×  106 
 m3) and for the climate change period, it ranged from zero to 
89.36 ×  106  m3).

5  Concluding remarks

This research proposed an approach to reduce run-time in 
simulation–optimization methods. The presented approach 
is not limited to the use of a specific optimization algorithm. 
The literature review showed the FA had a good performance 
compared to other meta-heuristic algorithms. For this reason, 
this paper’s linked the developed operators of the optimization 
algorithms with FA. This paper approach can be linked with all 
other optimization algorithms to increase their speed of conver-
gence to the solution in problems that feature time and compu-
tational complexity. The approach presented in this paper is not 
limited to use with the FA. Any meta-heuristic algorithm can 
be improved with this approach to solve optimization problems 
beset by computational complexity. Possibly, areas of applica-
tion for this paper’s method are linking water quality simulation 
with optimization, or solving optimization problems using Big 
Data under climate change conditions.

This study evaluated the convergence speed, accuracy, and 
applicability of the proposed FA-KNN algorithm with three 
standard problems (Ackley, Rosenbrock, and Sphere) and a 
reservoir operation problem. Results from the test problems 
established very high accuracy, and reductions equal to 95.5, 
94, and 92% of the FN-KNN’s run-time compared to the FA’s 
for the Ackley, Rosenbrock, and Sphere problems, respectively.

The run time of the FA-KNN method in solving the reservoir 
operation problem was reduced by more than 60% relative to 
the FA’s. In general, the system’s volumetric reliability is higher 
and the vulnerability lower under baseline conditions than under 
climate-change conditions, respectively. The flexibility of the 
system is about 3.5% higher under baseline conditions than 
under climate-change conditions. Calculation of the efficiency 
indexes of the model proved that the release policy obtained 
with the proposed FA-KNN had better performance than with 
the FA method. The reservoir problem under baseline condi-
tions featured RMSE of the FA algorithm equal to 0.6 ×  106  m3, 
and the largest error among the sets solved with FA-KNN is 
equal to 0.92 ×  106  m3. Under climate change conditions, the 
error of the FA equals 1.64 ×  106  m3; the largest error of the 
FA-KNN is equal to 2.23 ×  106  m3. This work’s results show 
the FA-KNN hybrid algorithm can solve complex optimization 
problems beset by a large computational burden. Algorithmic 
speed, the bypassing of model training, faster convergence, high 

accuracy, and reduced optimization time are the strengths of the 
proposed algorithm. It is suggested that future research consider 
the uncertainty in projections of climate change and its effects 
on reservoir operation. Limitations of presented methodology 
are as follows:

(1) Problem complexity: the FA-KNN algorithm demon-
strated improved execution speed and acceptable accu-
racy for the problems we evaluated. Nevertheless, it is 
possible that the algorithm’s performance could differ 
when applied to more complex problems, or to problems 
with other characteristics;
(2) Data availability: the assumptions, model simplifica-
tions, and data input used in the reservoir problem may 
not be applicable to other problems;
(3) Climate change scenarios: potential limitations related 
to climate change scenarios and the role of uncertainty 
related to climate change predictions could affect the 
robustness of the results obtained for future periods;
(4) Future research: the FA-KNN algorithm performs bet-
ter than the FA algorithm in terms of speed and accuracy, 
although comparisons with other algorithms and other opti-
mizations problems would be worthwhile in future investi-
gations.
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