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�lter out most of the background activity. D: Examples of false discoveries
detected by CNMF-E on in vivo recordings of the CA1 hippocampus. E:
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butions which are (1st row) gradually translated apart or (2nd row) stretched
in orthogonal directions. F: A true (top row) and false (bottom row) footprint
discovery is shown compared with the elliptic comparison (2nd column) and a
Gaussian comparison (3rd column). The elliptic comparison shows a stronger
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2.2 SCOUT: a method for single cell tracking incorporates spatial and temporal
metrics into a probabilistic consensus clustering framework. A: Neuron spa-
tial footprints from three sessions obtained from a 1-photon recording of the
prefrontal cortex with neurons colored by session (rectangle 1-3). Overlaid
results in the fourth rectangle. Cell tracking seeks to identify the same cell
across multiple days. B: Long-term study of neural activity requires compu-
tation of �uorescence traces for identi�ed neurons across sessions (right) from
individual sessions (max projections, left). Approaches include concatenation
(middle track), patch methods (bottom track) and tracking methods (top
track). Concatenation involves global registration of sessions and concatena-
tion (middle step) followed by �uorescence extraction. Patch methods divide
each session into overlapping patches in the spatial domain (orange rectan-
gles, �rst step), which are concatenated, and �uorescence activity extracted for
each neuron (black arrow, second step) followed by merging patches. Tracking
methods extract traces for all neurons in each session (�rst step), followed by
identi�cation of neurons across sessions (second step). C: Temporal correla-
tion involves a link session (orange) between consecutive pairs of recordings.
High quality neurons result in a corresponding neuron in the link session with
matching neural signals used to identify cells across sessions. D: The SCOUT
clustering algorithm groups cells from di�erent sessions into clusters. Boxes
indicate separate clusters, with the color of each circle indicating the session.
The associated numbers indicate the within cluster similarity for the given
cluster. E: Demonstration of the SCOUT algorithm. (1) Several cells (blue)
and their neighbors (green) within session (top left), and between sessions
(top right). Histogram of cell-cell similarity between sessions for a metric
(bottom) with overlaid identi�cation likelihood using several models. (2) A
single cell (blue), and its neighbors (top) within and between sessions with
sample aggregate (across metrics) identi�cation probabilities (bottom). (3) A
sample graph in which nodes indicate neurons, and edges between nodes de-
note identi�cation probability exceeding a minimum threshold (min_ prob).
Colors correspond to sessions. (4) A possible graph clustering. . . . . . . . . 14

3.1 Overview of tested data. Neuron extraction from two sessions from each
dataset, overlaid to visualize the identi�cation of neurons across each session,
as well as the number of recordings and sessions per recording in each dataset.
Gaussian (A), Non-Rigid 1p (B), Non-Rigid 2p (C), and Individual Shift (D)
datasets are simulated, while 1-photon (E) and 2-photon (F) datasets are in
vivo recordings. Simulated datasets exhibit di�erent features and di�culties
for cell identi�cation across sessions, such as noise (particularly in the Non-
Rigid 1p dataset), cell body transformations (Non-Rigid 1p and Non-rigid
2p) and neuron translations (Individual Shift) represent common issues with
in vivo recordings. Similar e�ects can be viewed in the in vivo recording
representations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
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3.2 A cell-shape based spatial constraint improves extraction performance by con-
trolling false discovery detection and improving neural extraction quality. A:
Spatial footprint extraction quality shows improvement using SCOUT over
CNMF-E on a simulated video recording. (1) maximum projection of a 70
pixel x 100 pixel section of a recording, (2) spatial footprint extraction re-
sults of CNMF-E applied to recording, showing multiple false discoveries (3)
spatial footprint extraction results of SCOUT applied to recording, retain-
ing all ground truth neurons with no false discoveries, (4) ground truth spa-
tial footprints. B: False discovery rates across the Gaussian and Non-rigid
datasets, displaying CNMF-E and SCOUT extraction results. (1) The results
for extractions with restricted initialization, (2) results for unrestricted ini-
tialization. PDR (percent detected rates) are shown above. C: ROC curves
at various spatial thresholds and average GINI indices (de�ned as 2 x AUC
-1) as a qualitative measurement of classi�er e�ciency. (1) The results on a
set of 10 random recordings from the Gaussian dataset, (2) a set of 10 record-
ings from the Non-rigid dataset. D: Extracted spatial footprints from sample
recordings in the Gaussian (1) and Non-rigid (2) datasets demonstrate the dif-
ference in false discoveries using SCOUT over CNMF-E. Neuron footprints are
normalized to have maximal unit intensity for comparison purposes. Neurons
are colored by which methods detected each extracted neuron, with SCOUT:
green, CNMF-E: red, Ground Truth: Blue. Detected events include true neu-
rons, blood vessels, and background sources. E: Extracted footprints from
recordings of CA1 layer of the mouse hippocampus, conducted using CNMF-
E (1), and SCOUT (2). (top): The correlation image of the recording, with
circled neurons corresponding to those detected by the extraction algorithm.
(bottom): The extracted spatial footprints detected by the algorithm, normal-
ized to have the same maximum pixel intensity. Spatial footprints extracted
via SCOUT were smoothed during the �nal spatial template application. . . 31
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3.3 Inclusion of temporal metrics is a key step when there is signi�cant shift be-
tween neurons across sessions. A: Scatter plots compare spatial (overlap)
and temporal (SNR, decay, correlation) metrics (x-axis) to the centroid dis-
tance metric (y-axis) for all neuron pairs (identi�ed: blue, non-identi�ed: red,
labeled by ground truth) from two sessions of a recording taken from the In-
dividual Shift dataset. Approximate decision boundaries for each metric are
indicated by the black dashed line. B: Scatter plots compare inter-cluster
metric similarity on a 1-photon in vivo recording consisting of 7 sessions.
Correct identi�cations based on human annotated ground truth cell register.
Incorrect identi�cations are simulated by randomly exchanging a neuron in a
ground truth cluster with a near neighbor (as measured by centroid distance).
Plotted points indicate average similarity (by metric) for both correct (blue)
and incorrect (red, at least one error) clustering results. Approximate decision
boundaries for each metric indicated by the black dashed line. C: Similarity
metrics (as shown in B, C) are aggregated with resulting cell similarities used
for clustering. False positives (FP), true positives (TP), false negatives (FN),
and true negatives (TN) are labeled in red, blue, purple, and green respec-
tively. Results using all metrics (top) and exclusively spatial metrics (bot-
tom), presented for the simulated (left) and in vivo (right) recordings. D: Bar
charts compare SNR and Decay metrics between identi�ed neurons, nearest
neighbors, and average similarity across all neurons, within and between two
sessions of an in vivo 1p recording. (Top) SNR absolute di�erences (y-axis)
after splitting the �rst recording into two sessions (same), and between ses-
sions (between) for identi�ed neurons (closest), nearest neighbors (One NN),
and all neuron pairs (All). (Bottom) Absolute signal decay rate di�erences
within and between sessions. The reduction in value between sessions is due
to the use of post extraction computation decay for the within session data.
Error bars indicate standard error across neurons. E: (Top) Neural traces
associated to a single spike from 3 neurons taken from two sessions of an in
vivo 1-photon recording: (blue) a baseline neuron from the �rst session, (red)
an identi�ed neuron from the second session, (yellow) a non-identi�ed neuron
from the second session. (Bottom) Neural traces from the baseline, identi�ed,
and non-identi�ed neurons along with the noise level after normalization to
unit peak intensity. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
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3.4 Inclusion of temporal similarity metrics improves cell tracking across sessions
on simulated datasets. (Recording Scores) Maximal F1 scores (y-axis) us-
ing all tested cell tracking algorithms. Statistical di�erences compared with
SCOUT (ANOVA, Bonferroni correction) marked with an asterisk. Methods
(x-axis) are SCOUT, spatial (SCOUT using only spatial metrics), cellReg,
and CaImAn. Bars indicate mean +/- standard error. Points correspond to
the highest F1 score associated to each recording in the dataset. (Session
Projection) Max projection of sample individual session from each dataset,
across methods. (Ground Truth) Ground truth neurons available for tracking
through all sessions. Colors indicate neurons tracked by each method. The
number of correctly tracked (ID) and incorrectly tracked with at least one
error (FID) cell register entries labeled below for each method. (Session 1-2)
Tracked and missed neurons superimposed on the max projection of extracted
neurons from sessions 1-2 of a sample recording. A-D: F1 scores, session pro-
jections, ground truth, and identi�ed neurons by method for the Gaussian
(A), Non-Rigid 1p (B), Non-Rigid 2p (C), and Individual Shift (D) datasets.
E: Maximal Jaccard similarity scores (y-axis) from each recording and session
in the simulated datasets (x-axis). Bars indicate mean +/- standard error.
Asterisks indicate statistical di�erences. F: JS divergence (y-axis) of iden-
ti�ed cluster sizes for each method (x-axis) with the ground truth for each
recording in the Non-Rigid 1p dataset using parameters producing highest F1
scores. G: (y-axis) the ratio of neurons tracked through all sessions by each
method to the ground truth number of neurons available for tracking using
parameters producing highest F1 scores. . . . . . . . . . . . . . . . . . . . . 39

3.5 F1 and Jaccard statistics for simulated data. (upper) Average F1 score for
each dataset and method. Bold entries indicate statistically signi�cant im-
provement over cellReg. Italicized entries indicate statistically signi�cant im-
provement over CaImAn. Spatial indicates SCOUT without temporal sim-
ilarity metrics. (lower) Average Jaccard similarity accessing the ability of
each method in identifying neurons for each dataset. Bold entries indicate
statistically signi�cant improvement over cellReg. Italicized entries indicate
statistically signi�cant improvement over CaImAn. . . . . . . . . . . . . . . 40

3.6 Inclusion of temporal metrics boosts cell tracking performance on 1-photon
in vivo data. A-C: (Parameter Scores) F1 scores (y-axis) computed based
on human annotation for in vivo 1-photon datasets obtained from the visual
cortex (A, 7 sessions), prefrontal cortex (B, 7 sessions), and hippocampus
(C, 4 sessions). Violin plots with median values constructed using F1 scores
across parameters after outlier removal and computed using kernel density
estimation. Asterisks indicate statistical di�erences with SCOUT (ANOVA,
Bonferroni). (Session Projection) Maximum projection of the �rst session of
each recording from all datasets. (Session 1-3) Identi�ed neurons from cellReg
and SCOUT overlaid on max projection of the human annotated neurons
tracked through all sessions. . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
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3.7 SCOUT accurately tracks neurons across 2-photon in vivo recordings. A-C:
(Parameter Scores) F1 scores (y-axis) computed based on human annotation
for in vivo 2-photon datasets obtained from the visual cortex (A; VISl, B;
VISrl C; VISp) consisting of three sessions each. Violin plots with medians
constructed using F1 scores across parameters after outlier removal and com-
puted using kernel density estimation. Asterisks indicate statistical di�erences
with SCOUT (ANOVA, Bonferroni). (Session Projection) Max projection of
the �rst session of each recording. (Session 1-3) Identi�ed neurons from cell-
Reg and SCOUT overlaid on max projection of the human annotated neurons
tracked through all sessions for sessions 1-3 of each recording. . . . . . . . . 44

3.8 Testing cell tracking results using place �eld stability. A: Sample place �elds
ordered from left to right (indexed via the �rst session) after normalization
by peak intensity. B: Box plot of JS divergence (y-axis) for each recording
computed for identi�ed neuron pairs by each method in which either one
neuron exceeded the 95th percentile (top), or a hard threshold of 1.3 (bottom).
C: The weighted average (across recordings) of the fraction of identi�ed cell
pairs (y-axis) which exhibit pairwise JS divergence lower than a speci�ed
threshold (x-axis), computed using cell pairs in which one neuron exceeded the
95th percentile (top), or a hard threshold of 1.3 (bottom). D: The weighted
average (across recordings) of the fraction of identi�ed cell pairs (y-axis) which
consisted of either both place cells or both non-place cells for information
percentile thresholds (top) and information score thresholds (bottom). . . . . 46

3.9 SCOUT F1 scores by parameter for each dataset. Heatmaps denote F1 scores
across parameters. Each parameter in the All rows obtained using SCOUT
with all metrics, while the Spatial rows use only spatial metrics. Each box con-
tains vertical parameter changes corresponding to the max_dist parameter,
and horizontal parameter changes, corresponding to the min_prob parame-
ter. The horizontal dimension across boxes corresponds to the chain_prob
parameter. A: SCOUT F1 score averages for the (top to bottom) Gaussian,
Non-Rigid 1p, Non-Rigid 2p, and Individual Shift datasets. B: SCOUT F1
scores for 1-photon recordings labeled as (top to bottom) visual cortex, pre-
frontal cortex, and hippocampus. C: SCOUT F1 score for 2-photon recordings
from the visual cortex labeled as (top to bottom) VISl, VISrl, VISp. Param-
eter ranges discussed in text labeled in red. . . . . . . . . . . . . . . . . . . . 48
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4.1 Longitudinal analysis of hippocampal ensemble activities during contextual
discrimination experiments A: (top) Visualization of the stimulus and control
contexts, as well as the experimental process. Mice are placed in either the
control or stimulus context for either 3 or 5 minutes (depending on context
and experimental phase), then transitioned to a neutral context for twenty
minutes, before being placed in the opposite context for another 3 or 5 min-
utes. (bottom) Visual representation of contextual discrimination procedure.
After habituation (hab.), the mouse receives a single mild footshock in the
stimulus context during two distinct periods (learning and relearning) sepa-
rated by an extinction phase. In the stimulus context, the brief footshock
is administered 3 minutes after being placed in the context. In the control
context, no shock is administered. In panels c and d, freezing levels are mea-
sured for the 3-minute period after introduction to the context, and before
the administration of footshock. B: Max projection image (left) and spatial
footprints of extracted neurons (right) by SCOUT with data collected from
a long-term contextual discrimination experiment for an individual mouse.
For this mouse, 168 neurons were tracked across 38 sessions. C: During ini-
tial phases of training with footshock, mice exhibit behavioral generalization
by increasing freezing in both contexts. After several days of training, mice
exhibit contextual discrimination, which is evidenced by higher proportions
of time freezing in the stimulus context as compared to the control context.
During extinction, freezing decreases in both contexts, but shows a greater
reduction in the stimulus context. Similar qualitative results occur during
relearning (reinstatement) when footshock is applied again speci�cally in the
stimulus context. Data shown is the mean time mice spent freezing in the
�rst 3 minutes after placement in the respective context averaged for six mice
(error bars indicate standard error of the mean). D: Each data point rep-
resents the area-under-curve (AUC) of the extracted neural calcium signals,
averaged over all extracted neurons, for both contexts, for the speci�ed day.
Calculated AUC from the stimulus context does not include the time points
after application of stimulus. Average neural activity indicates signi�cant neu-
ral discrimination between contexts throughout the experiment. This e�ect is
noted in three of the �ve mice. E: Freezing rates for a single mouse in stimulus
(red) and control (blue) contexts, are compared with the mean cell activity
across active neurons in the learning and extinction phases of the experiment
(grey and black, respectively). Note the relative increase of neural activity
during the peak of the acquisition and extinction phases, where changes in
behavioral responses are most prominent. . . . . . . . . . . . . . . . . . . . 55
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4.2 F: (top row) Each plotted point represents the smoothed daily area-under-
curve (AUC) of the calcium signal trace for a single neuron. Here we plot daily
AUC for a subset of neurons that exhibit increased activity during di�erent
stages of the contextual discrimination experiment. This panel demonstrates
context-dependent neural activity changes observed across 3 of the mice (raw
(unsmoothed) daily AUC is plotted in Supplementary Fig. 3B for reference).
The data shows a clearly distinguishable increase in distributed activity with
learning, extinction, and relearning. (bottom row) Raster plots of individual
calcium signals for the corresponding neuron subsets show visually distin-
guishable increases in activity at the corresponding times above. Each row of
the heatmap indicates the signal intensity for a single neuron, throughout the
portion of the experiment indicated at the bottom. Signals were normalized
to have the same maximum intensity for visualization purposes. . . . . . . . 56

xiii



4.3 A machine learning model for position decoding from place cell signal con-
�rms the causes of memory loss in after circuit deactivation. A: For each
timepoint (asterisk) �ring activity is taken from a window around the point,
and used to predict position. B: A diagram of the trisynaptic pathway (with
extensions to the Subiculum and Entorhinal cortex), with major pathways in
black, and the backprojection in red. C: Place �elds of identi�ed place cells,
ordered by location in the control session. Sessions are split based on the
direction of travel. D: The distributions of correlation-peak shift magnitudes
for the place cells in the saline experiment (blue line) and the CNO experi-
ment (red line. There is no signi�cant di�erence between the distribution of
Ctrl vs CNO and the Ctrl1 vs Ctrl2 (p = 0.38, two-sample KS, two-tailed), or
their shu�ed variant (black and grey). E: Recorded CA1 place cells can be
classi�ed into 3 non-overlapping groups termed bit-decrease, bit-increase, and
un-recovered, based on the statistical signi�cance of di�erences in informa-
tion scores between CNO and Ctrl, and between CNO and Pctrl. Statistical
testing employed a jackknife resampling method for each place cell with ap-
propriate corrections for error terms. F: Of the 201 place cells that show
signi�cant di�erences (assigned place cells) from 6 mice, 50% show decreased
information scores in CNO sessions compared to the control and post-control
sessions (bit-decrease group, green bar). A smaller subset (∼ 23%) show in-
creased information scores in CNO compared to the control and post-control
(bit-increase group, red bar). The remaining ones are the un-recovered group
which accounts for ∼ 27% of place cells. Comparing the mean percentages
of each type seen in each mouse, a signi�cant di�erence in the % of place
cells among these three groups is observed (p = 0.002, repeated measures
ANOVA, n = 6 mice). Data are presented as mean ± SE in the bar plot.
G: Comparisons of peak calcium event rates between Ctrl - Pctrl and Ctrl -
CNO in bit decrease (two-tailed, paired t-test, p = 3×10−7, n = 97 cells), bit
increase (two-tailed, paired t-test, p = 0.027, n = 48 cells) and un-recovered
groups (two-tailed, paired t-test, p = 0.20, n = 56 cells), respectively. H:
Quanti�cation of the prediction errors between predicted trajectories and ac-
tual trajectories for decoding accuracy using the trained model based on the
�rst control session. Each line represents the prediction errors of Ctrl, CNO
and Pctrl sessions from one mouse. Signi�cantly higher prediction errors are
observed in CNO sessions compared to those in Ctrl (p = 0.016, two-tailed,
paired t-test) and Pctrl (p = 0.015, two-tailed, paired t-test) sessions. n = 5
mice. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

4.4 I: Decoded position from a sample session using all, place, and non-place cells
(colored) compared with the true x-coordinate (black line). J: R2 coe�cients
for regression using prior cell subsets for each session. Decoding using place
cells shows a statistically signi�cant decoding accuracy recovery in the Pctrl
session (t-test, p < .05). Error bars taken as mean ± standard error across
mice. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
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5.1 Comparison of electrophysiologies for PV+/CCK+ and PV+/CCK- GABAer-
gic inhibitory interneurons in mouse. (A-B,D) Patch-Seq data from adult
mouse visual cortical interneurons made publically available from the Allen
Institute. (C) Cell types were identi�ed via expression of interneuron gene
markers (Sst, Pvalb, Vip, Lamp5, and Sncg) (A, Left). (Pvalb) Pvalb gene
expression, imputed using MAGIC, shows strong localization of Pvalb ex-
pression to the PV subtype (A, middle). (Cck) Cck gene expression, im-
puted using MAGIC, is exhibited in both SNCG and PV interneurons (C,
right). For electrophysiology data are further analyzed through the following
pipeline. Cck expression is imputed using magic, and PV interneurons were
identi�ed as PV+/CCK+ if Cck expression is above the 75th percentile, and
PV+/CCK- if Cck expression is below the 25th percentile. (B) Current clamp
electrophysiological recording from acute brain slices containing visual cortex.
Representative voltage traces for PV+/CCK+, or PV+/CCK- interneurons
in response to current clamp mode-induced depolarizations. The vertical scale
bar is 20mV. The horizontal scale bar is 1 second. (C) Summary violin plot
of the electrophysiological property �after hyperpolarization potential� (AHP)
from PV-/(CCK& Dlx5/6)+ (n=15), PV+/(CCK& Dlx5/6)+ (n=24), and
PV+/(CCK& Dlx5/6)- (n=19) interneurons, pro�led in the Xu lab (produc-
tion and analysis by Dr. Steven Grieco and Dr. Yanjun Sun). The violins show
data with the median line in the middle. The top and bottom of the plots are
the minima and maxima (Kruskal-wallis test: overall p=0.0007. Mann Whit-
ney test: PV+/(CCK& Dlx5/6)+ versus PV+/(CCK& Dlx5/6)-, p=0.0637).
(D) Summary violin plot of AHPs from PV-/CCK+ (n=198), PV+/CCK+
(n=178), and PV+/CCK- (n=169) interneurons from the Allen Institute data
set. The violins show data with the median line in the middle. The top and
bottom of the plots are the minima and maxima. PV+/CCK- interneurons
have signi�cantly larger AHP amplitudes compared to PV+/CCK+ interneu-
rons (One-way ANOVA: overall p< 6.72 e-96. Bonferroni multiple compar-
isons: PV+/CCK+ versus PV+/CCK-, p=1.19 e-6). . . . . . . . . . . . . . 75
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5.2 Comparisons of transcriptomes of PV+/CCK+ and PV+/CCK- GABAer-
gic inhibitory interneurons in mouse. (A) (Samples) Individual sn-RNA-Seq
datasets were processed as follows. Cells exhibiting an extremely high or low
number of features were eliminated. Count matrices were log-normalized and
scaled. Highly variable genes were identi�ed and used as features for PCA
dimensionality reduction. Next, anchors were identi�ed and datasets were in-
tegrated via the Seurat framework. The data was projected to two dimensions
via UMAP for visualization. (Cell Types) The integrated datasets were clus-
tered, and cell types were identi�ed via expression of interneuron gene markers
(Sst, Pvalb, Vip, Lamp5, and Sncg). These are characteristically divided into
the MGE (SST, PV) and CGE (VIP, LAMP5, and SNCG) lineages. (Pvalb)
Pvalb gene expression, imputed using MAGIC, shows strong localization of
Pvalb expression to the PV subtype. (Cck) Cck gene expression, imputed us-
ing MAGIC, is exhibited in both SNCG and PV interneurons. (B) Individual
datasets are further analyzed through the following pipeline. Cck expression is
imputed using MAGIC, and PV interneurons were identi�ed as PV+/CCK+ if
Cck expression is above the 75th percentile, and PV+/CCK- if Cck expression
is below the 25th percentile. Di�erential expression testing between the groups
identi�ed >50 genes di�erentially expressed in at least four datasets. Many
of these genes were associated to di�erences in interneuron communication
(Cck, Nlgn1, Ptprd, Cox6a2, Grid2, Pcdh9). (C) Cck and Cox6a2 expression
(post imputation) are highly correlated in the PV cell type (0.73), but not in
any other interneuron subtype. (D) Gene co-expression analysis via WGCNA
identi�ed several highly coexpressed modules. Genes exhibiting coexpression
less than 0.15 were removed from the visualization. The rest clustered into 6
groupings, including a COX grouping, that was also highly co-expressed with
CCK. (E) Di�erentially expressed genes and genes in the COX/CCK module
were analyzed for their associated ontologies. Overexpressed ontologies in-
cluded Axon/Dendrite, Regulation of Synaptic Transmission, Mitochondrial
ATP synthesis, Electron Transfer, and Mitochondrial respiration. These on-
tologies were associated to mostly non-overlapping gene groupings, possibly
indicating largely independent functional subclusters within the COX/CCK
module. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

5.3 (F) Gene expression of typical CCK+ or PV+ interneuron function exhib-
ited signi�cant di�erences between PV+ and PV- (SNCG+) groupings, as
would be expected from their disparate lineages. Additionally, Cck, Tac1
and Cox6a2 exhibit large di�erences between PV+/CCK+ and PV+/CCK-
groupings. Data are presented as violin plots. (G) Immunostaining of the
COX6a2 protein (magenta) in CA1 from PV-tdTomato; CCK& Dlx5/6-GFP
(yellow) mouse brain sections (top left, right). COX6a2 staining was robust
in PV+/(CCK& Dlx5/6-GFP) (white) cells (bottom left). COX6a2 was co-
localized with ∼89% of PV+/(CCK& Dlx5/6)+ (white, arrows). Cell with an
asterisk is an example of a PV+ cell that is COX6a2 negative. Quanti�cation
of cell densities in CA1 for COX6a2 immunopositive PV+/(CCK& Dlx5/6)+
cells (bottom right)(N=3 mice). Bars indicate mean ± standard error. . . . . 80
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6.1 Neural network clustering results of simulated clusters. A: (top) Classes iden-
ti�ed by neural network clustering, with associated binary encodings. (bot-
tom) Ground truth clustering results. B: Cluster discrimination in each latent
dimension. Points are labeled either 0 or 1 (as only 2 classes are available)
and de�ne the clustering result. C: Clusters when including the resolution
loss (resolution loss added after 200 epochs) at various parameters. . . . . . 89

6.2 Comparisons of neural network clustering (left) PCA/louvain clustering (mid-
dle) and annotated cell types (right), using 10,000 randomly selected cells from
full set of cells (A) and the excitatory cortical neurons (B). Computation was
performed with 5 latent variables (4 for the excitatory neurons) for clustering,
followed by UMAP of the latent projection for visualization. . . . . . . . . . 91

6.3 scGradient work�ow. A: scGradient is build on three variational autoen-
coders. Gene expression is transformed into latent space via an encoder. B:
Low dimensional outputs are computed and sampled from the Gaussian, Con-
tinuous Bernoulli, and Categorical VAEs, as well as the time component for
the neural ODE, resulting in samples zlat, zprob, and zcat respectively. Pre-
dictions based on the ODE are generated via Euler's method. The predicted
probabilities weight error between latent and ODE prediction variables, as
well as the latent categorical variables. C: Separate decoders are used for the
categorical and Gaussian embeddings, to enable computation of the pushfor-
ward of the ODE derivatives. . . . . . . . . . . . . . . . . . . . . . . . . . . 94

6.4 Detected transcriptomic gradient in excitatory neurons. A: Histogram of
RMSE error between reconstructed gene expression and imputed gene expres-
sion (top) and reconstructed gene expression and raw expression (bottom).
B-E represent data on a UMAP plot. B: Celltype labels for detected clusters
(computed a priori). C: Computed position on [0, 1] gradient time interval for
each cell based on the Neural ODE.D-E: Imputed gene expression for Slc30a3
and Nptxr. F-H: Spatial representation of gradient time and imputed gene
expression for Slc30a3 and Nptxr. . . . . . . . . . . . . . . . . . . . . . . . . 97

6.5 Transcriptional gradients for PV interneurons. A: Time scale for transcrip-
tional gradient 1. B: Imputed Pvalb expression, which exhibits the highest
correlation with gradient 1. C: Time scale for transcriptional gradient 2. D:
Imputed Gria1 expression, which exhibits the highest correlation with gradi-
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ilarity metrics, probabilistic inference, and an adaptive clustering methodology to perform

cell identi�cation across multiple calcium imaging sessions. We then apply SCOUT to study
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tion. Next, we investigate the relationship between �ring activity and transcriptomics in a

single cell type, showing that transcriptional gradients can be associated to subtle variations

in neuronal �ring activity, which then motivates the development of scGradient, a machine

learning algorithm for identifying continuous transcriptional gradients across and within cell

types.
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Chapter 1

Introduction

In many ways, the past decade has been the decade of single-cell analysis, in which optical

imaging methods [1] and RNA sequencing [2] have gone from bulk analysis methods to high

throughput production lines ([3] among many others), enabling virtually any lab to begin

interrogating functional activity and transcriptomics in most biological systems. Beyond

transcriptomics, single-cell analysis of epigenomics [4], spatial transcriptomics [5], and DNA

methylation [6], as well as �multiomics� [7] (simultaneous pro�ling of two or more of these

cellular aspects) have become commonplace. With new data comes new challenges in anal-

ysis. In many ways, data production has outpaced our analysis capabilities. We have only

scratched the surface of the information contained in the data we have already generated.

An enormous amount of energy and funding has been directed towards single-cell production

and analysis of neural data1. This is unsurprising given the brain is the most complex

biological system we have identi�ed and is critical for human functionality. While great

progress has been made in understanding functional processes and mitigating decline and

failure in other organs, the brain de�es characterization through its complexity [10].

1the Allen institute has obtained upwards of $1 billion in funding over the last decade [8], with the
BICCN started in 2017 having publications consisting of nearly the entirety of the October 7, 2021 Nature
publication [9].
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At the single-cell level, neurobiology has focused on four main aspects of the neuron2 [11]:

morphology, connectivity, �ring activity, and gene expression. Neuron morphology involves

study of the physiology of individual neurons. Morphology has enormous impact on the

functional properties of individual neurons, and partially governs neuron connectivity. Un-

like many other cells, neurons make wide ranging connections with other neurons across

large distances. This communication is primarily handled through the axons and dendrites

of the neuron, with axons emitting signals, and dendrites receiving signals. Generally, axons

and dendrites do not make physical contact with other neurons, instead communicating via

neurotransmitters over small gaps (synaptic clefts) between axons and dendrites of commu-

nicating neurons.

Analysis of neuron �ring activity, the primary communication method in the brain, has

seen enormous progress in large scale investigations using calcium imaging technology [12].

Brie�y, neurons (in a resting state) exhibit a negative electrical potential. When dendrites

receive neurotransmitters across the synaptic cleft, ion channels open in the dendrite which

depolarize (or repolarize in the case of inhibitory neurons) the dendrite. This electrical

change is transmitted to the cell body (combining with signals from other dendrites) pro-

ducing depolarization in the soma. If this reaches a critical threshold, an action potential is

produced (a large, sudden depolarization event) which propagates down the axon, which re-

leases neurotransmitters from the terminal button into synaptic clefts. This electromolecular

signaling forms the fundamental basis for neuron communication.

Action potentials are associated with an in�ux of calcium (Ca2+) ions, which can be mea-

sured with genetically encoded calcium indicators (GECIs) such as the GCaMP variants

[1]. Most GCaMP variants respond on slower time scales than those on which action poten-

tials occur, meaning that calcium signaling does not measure precise action potentials, but

instead produces a reliable indicator of how much �ring activity is occurring in each time

2the principal communicatory brain cell
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frame, based on the signal intensity. The Miniscope [13] enables 1-photon Ca2+ imaging

in freely moving mice and can typically image hundreds of neurons simultaneously. This

contrasts with the standard electrophysiological approaches which measure individual action

potentials, but are unable to record large numbers of neurons simultaneously.

At the single-cell level, some of the most dramatic changes in the understanding of neuron

function have been due to advances in transcriptomic pro�ling. Single-nuclei RNA sequenc-

ing3 has enabled systematic analysis of the transcriptome, identifying new cell types and

their developmental origins4.

While clearly both neuron communication and transcriptomics are of critical importance,

single-cell methods for simultaneous interrogation of individual neuron activity, transcrip-

tomics and morphology have not reached high-throughput levels [17], and most experiments

consist of cells on the order of thousands [18].

Computational problems regarding longitudinal studies of �ring activity, and the relations

between neural activity present signi�cant challenges that have yet to be adequately ad-

dressed. My primary contributions have been to develop analysis tools for disparate aspects

of transcriptomics and longitudinal neural activity studies.

In Chapter 2, we begin by focusing on optical recording methods for neural activity, primarily

on the technical challenges for extraction and tracking of neurons across multiple sessions.

We develop SCOUT, a method for tracking neurons across multiple sessions. In Chapter

3, we will discuss results from testing the applications developed in Chapter 2, (Chapters 2

and 3 published in [19]). In Chapter 4, we discuss applications of calcium imaging in a long

term contextual discrimination experiment, and develop a neural network algorithm used to

identify changes in neural activity during experiments (portions published in [20]).

3snRNA-seq is frequently preferred to scRNA-seq due to the di�culty in dissociating neurons, and snRNA-
seq's friendliness to frozen samples, [14], [15]

4perhaps the most well-known being classi�cation of interneurons based on the ganglionic eminences from
which they derive [16]

3



Next, we will discuss the relationship between the transcriptome and neuron �ring activity.

In Chapter 5 we motivate this discussion by analyzing Patch-seq data, which interrogates

�ring activity and gene expression in the same cell. In doing so we identify a gene expression

gradient that strongly correlates with variations in �ring activity (publication under review).

In Chapter 6 we develop a modular neural network framework (scGradient) that enables

probabilistic identi�cation of celltypes, while simultaneously identifying transcriptional gra-

dients among cells. we then posit how this framework can be modi�ed to incorporate spatial

coordinates for analysis of spatial transcriptomics.
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Chapter 2

Improving automated optical recording

extraction and cell tracking via SCOUT

2.1 Calcium imaging recordings

2.1.1 Optical recording extraction

Extracting longitudinal activity from large-scale neuronal ensembles is a fundamental �rst

step to the analysis of neural circuit responses. Ca2+ imaging of population neurons allows

the recording of larger neural ensembles than can be recorded using electrophysiology. In

vivo calcium imaging using microendoscopic lenses enables imaging of previously inaccessible

ensembles of neuronal populations at the single-cell level in freely moving mice as they

perform neural transformations that underlie behavioral responses over both short and long

timescales [21�23]. Microendoscopic in vivo brain imaging via head-mounted �uorescent

miniature microscopes (�miniscopes�) are used widely to study neural circuits in various

brain regions [24�33].
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Optical recordings take the form of grayscale videos (e.g. m x n x T matrices, where [m,n]

is the image resolution in pixels, and T is the number of frames). These videos contain

neuron spatial footprints (a subset of the pixels corresponding to individual neurons) with

pixel intensity correlating to the associated neural activity. Calcium imaging extraction pro-

duces two outputs from each session: a set of spatial footprints (consisting of pixel intensity

values corresponding to each neuron for a given recording session), and the temporal signal

(extracted calcium traces; ∆F/F).

One class of methods for signal extraction involves semi-manual ROI selection. Such methods

include manual ROI selection of individual neuron footprints, and subsequent deconvolution

of the neural trace, as well as methods such as convolutional neural networks (CNNs) which

use a corpus of identi�ed footprints to train a neural network to identify footprints in future

experiments [34], followed by a second step in which temporal �uorescence traces are ex-

tracted based on the proposed footprints. However, such methods become computationally

intractable when considering large cell population and become less accurate when considering

neurons exhibiting strong spatial overlaps between footprints.

Another class of methods involves automated ROI construction, where both �uorescent

traces, and spatial footprints are extracted simultaneously. The simplest such example is

PCA/ICA [35], in which PCA and ICA are successively used to isolate and extract spatial

footprints and calcium activity from optical recordings. These methods rely on linear demix-

ing and can produce signi�cant error when neuron footprints exhibit strong spatial overlaps

[36].

The most recent class of methods uses non-negative matrix factorization. I �rst describe the

basic algorithm and then present some variations on the theme that signi�cantly improve

results for one-photon imaging (which typically exhibits lower signal-to-noise ratios, with

more complex spatiotemporal background).
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Given a recording, let d represent the number of pixels in the �eld of view, T the number

of frames observed, and K, the number of neurons in the �eld of view. Then let Y ∈ RdT

represent the initial calcium �uorescence recording; let A ∈ RdK , the spatial footprints of

the neurons, with each column representing the footprint of a single neuron; let the rows of

C ∈ RKT represent the �uorescent signal of each neuron at each frame. The goal is to �nd

A and C such that ∥Y − AC∥F is minimized, which can be interpreted as determining the

optimal spatial footprints and �uorescence traces to reconstruct the recording.

However, the simplistic model is unable to account for noise (which can be semi-explicitly

modeled), as well as the structure of the �uorescent traces. This motivates the inclusion of

constraints on A and C, as well as inclusion of a constant background term (this model is

called CNMF, constrained non-negative matrix factorization).

The ith row of C is represented as an autoregressive process, where ci (t) =
∑p

j=1 γ
(i)
j ci (t− j)+

si (t), and si (t) represents the number of spikes �red by the i -th neuron in the tth frame,

and S, the matrix of spikes, is constrained to be sparse. The footprint matrix A is also

constrained to be sparse, and the authors introduce background B = b0·1T which models

a constant background for each pixel. At this point, we attempt to minimize the quantity

∥Y − (AC +B)∥F in order to identify spatial footprints A and temporal traces C.

The �nal advancements of this model are the inclusion of a variable �uctuating background

term. In this model, the background is decomposed as B = Bf + Bc where Bc models the

constant baseline background, and Bf models �uctuating background activity. To model

the �uorescent background, the authors assume that background sources (typically due to

blurred and out of focus �uorescence) exhibit a coarser spatial pro�le than neurons. If l is

the typical neuron diameter, Bf for each pixel is implicitly modeled as a linear combination

of the background of nearby pixels excluding those within Euclidean distance l of the pixel.

In practice, this model is overly complicated, and is replaced by the closed form formula

Bf = W ˙(Y − AC −Bc), where W is a matrix of weights in which nearby pixels have weight
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0 (this model is called CNMF-E, CNMF for microendoscopic data).

Initialization for neuron centers uses a greedy algorithm, such that a proposed pixel satis�es

two criteria: a minimum threshold on peak-to-noise ratio (calculated as peak signal strength

divided the standard deviation of the noise), and a su�ciently high temporal local correlation

(implying strong similarities in temporal signal for pixels surrounding the proposed center)

(Figure 2.1 A-C, [37]). Initialization of variables C and B, as well as updates for the

background B and iterative �tting algorithms are discussed in the original paper [38].

2.1.2 Optical recording alignment

In addition to extraction of the optical recordings, there are technical di�culties relating to

both and between session alignment. Regarding within session alignment, animal movement

during recording causes FOV movement on a frame by frame basis throughout individual

recordings. The most common adjustment algorithm used for motion correction is NoRM-

Corre [39], which splits the �eld of view into overlapping spatial patches in each direction,

registers them using a rigid translation to a template (which is sequentially updated), and

then up-samples to create a smooth motion �eld that approximates non-rigid artifacts in a

piecewise rigid manner.

The second alignment issue is alignment between sessions. This process is complicated,

as neurons exhibit periods of inactivity (e.g. they may be inactive in some sessions) and

FOVs may exhibit signi�cant variation between sessions (depending on the setup and the

consistency of the individuals who set up the recordings).
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2.2 SCOUT overview

We now introduce SCOUT (Single-Cell SpatiOtemporal LongitUdinal Tracking) which con-

sists of three components. First, a preprocessing module for alignment and motion correction

of optical recordings, second, an extraction module modi�ed version of CNMF-E that in-

cludes a new spatial �lter based on expected spatial footprint shapes, and third, a cell

tracking module utilizing a novel probabilistic algorithm that incorporates both spatial and

temporal metrics to identify neurons across multiple sessions.

2.3 Preprocessing and session registration

The preprocessing module is built on NoRMCorre, MATLAB, and the fordanic image regis-

tration library. This module motion corrects and semi-automatically aligns sessions. After

motion correction, an initial registration using matlab build in code is checked by the user

(if this registration is �awed, the user may manually select points of similarity between

sessions), followed by non-rigid intensity registration using the optical-�ow algorithm.

2.4 Correcting and �ltering spatial footprints with SCOUT

One major issue for current extraction methods is the prevalence of false discoveries, which

consist of extracted footprints and temporal traces that do not correspond to ground truth

neurons in the recording (Figure 2.1 D). These false discoveries can be caused by back-

ground noise, inaccurate initialization of neuron footprints, or errors in the estimation of
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footprints and corresponding temporal traces. For in vivo recordings, depending on record-

ing quality and initialization parameters, false discovery rates may reach 45% of detected

neurons.

A

D

CB

Figure 2.1: A-B: The local correlation image (B) and peak-to-noise ratios (A) are used as initialization
points for neurons in CNMF-E and SCOUT. Extracted footprints (using SCOUT, C) show strong �delity
to the initialization values, and �lter out most of the background activity. D: Examples of false discoveries
detected by CNMF-E on in vivo recordings of the CA1 hippocampus. E: Examples of Jensen-Shannon
divergence between Gaussian probability distributions which are (1st row) gradually translated apart or
(2nd row) stretched in orthogonal directions. F: A true (top row) and false (bottom row) footprint discovery
is shown compared with the elliptic comparison (2nd column) and a Gaussian comparison (3rd column).
The elliptic comparison shows a stronger di�erentiation between the false and true discovery.

Some approaches have been suggested to address this issue, such as manual false discov-
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ery identi�cation [38], and convolutional neural network classi�cation [40], performed at

intermediate stages of the extraction. However, for experiments involving large numbers

of recordings, manual identi�cation of false discoveries becomes untenable. Convolutional

neural networks have been used to detect false discoveries, but they lack interpretability, and

struggle to generalize to neurons with di�erent footprint pro�les than those in the training

set.

In SCOUT, after each iteration of CNMF-E, an initial pre-processing begins in which pro-

posed spatial footprints are thresholded based on maximum pixel intensity, removing low

intensity (<10% of maximum intensity) pixels. Each footprint is normalized so that the sum

of pixel intensities in each footprint equals 1, allowing us to view each spatial footprint as

a discrete probability distribution. Each footprint is then compared with a baseline distri-

bution, using Jensen-Shannon (JS) divergence as a metric [41]. Subsequently, the footprints

with similarity exceeding the baseline of a speci�ed JS threshold are removed, and the re-

maining footprints are updated either by averaging with the baseline, or by setting the pixel

intensities of all points not in the support of the baseline to 0. Using an iterative process

employed by the CNMF-E, the spatiotemporal traces corresponding to each footprint are

then updated by removing any non-zero intensity levels not in the support of the comparison

footprint, after which the remaining intensity values are rescaled to their original magnitude.

Note that varying the JS threshold changes the sensitivity of the algorithm (Figure 2.1

E), allowing the user to optimize the tradeo� between false discoveries and true positives.

Baseline neurons footprints are sampled from a user determined probability distribution,

with parameters sampled from the proposed distribution.

While the construction of the baseline is customizable, we consider several options for 1-

photon data (Figure 2.1 F). One option is a Gaussian model. Mean and covariance are

sampled from the normalized, thresholded footprint P, and used to construct a comparison

footprint Q. Gaussian models overestimated the rate of decrease in signal intensity when
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moving from the center of the proposed neuron to its boundary. Another is an elliptical

comparison created by calculating the centroid from the footprint P and the rate of signal

strength intensity decrease along the major axis of the footprint. The intensity values of the

footprint are interpolated along the major axis using a fractional polynomial model, and the

fractional polynomial is rotated around the centroid of the footprint, linearly scaled so as to

decrease to the width of the minor axis after a rotation of 90o, to create an elliptical model for

the neurons spatial footprint. This is the method used in the experimental results discussed

in later, as it appeared to show greater di�erentiation between true and false discoveries,

than the Gaussian model.

For 2-photon data, we note that neuronal footprints have characteristic ring shapes which

were modeled using the same Gaussian/polynomial models as for 1-photon data, followed by

removing the regions with intensity greater than 0.5 (on a scale of 0-1), essentially removing

the centers. This aspect of SCOUT is not as relevant as the signal-to-noise ratio (SNR) in

2-photon data is signi�cantly higher than 1-photon data, and comparably fewer false positive

emerge.

2.5 Tracking neurons across multiple sessions with SCOUT

Experiments that require the accurate identi�cation of neurons across multiple recording

sessions have proven di�cult, as cell movement, shifts in �eld of view, and inaccuracies in

the extraction of neural activity from session recordings complicate this task. Most previous

attempts to track the activity of neurons over long term experiments have taken one of

three forms (Figure 2.2 A-B). 1) Initial concatenation of registered recordings followed

by extraction of �uorescence traces and spatial footprints from the concatenated recording

[28]. 2) Concatenation followed by splitting the spatial dimension into overlapping patches.
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Extraction is performed on each patch separately, and neurons are merged across the patches,

giving extracted footprints and neural signals through the full recording [38]. 3) Extraction

of neural signals from each session independently, followed by tracking cells across recordings

via spatial similarities in the extracted neuron footprints [24? ].

Concatenation and patch methods can be resource intensive in terms of both computational

power and time while requiring neuron spatial footprints to remain in constant position over

time. In terms of scalability, cell tracking methods may provide the best option for long-term

neural ensemble analysis, but several factors complicate the cell tracking task.

First, imperfect motion correction or low signal-to-noise ratio can reduce the quality of

neuron extractions leading to false discoveries (neurons identi�ed by extraction algorithms

corresponding to noise or motion artifacts). Second, global registration can lead to varying

centroid distances and overlap between identi�ed neurons across the �eld of view. Third,

variability in neuron position and/or FOV changes can reduce tracking accuracy across

sessions. Finally, some analyses require analysis of neural signals across all sessions, in which

case lowering the detection threshold for neuron extraction may allow for the identi�cation of

lower signal neurons at the cost of an increased false discovery rate (Video S1). These factors

are compounded when experiments take place over extended time periods (>30 sessions).

An ideal cell tracking algorithm should therefore be robust to changes in neuron position,

false discoveries, and missing neurons. To address these issues, spatial metrics alone are

insu�cient.

SCOUT (Single-Cell SpatiOtemporal LongitUdinal Tracking), is a method for tracking in-

dividual neurons across multiple sessions using both spatial and temporal metrics. SCOUT

uses the temporal similarity metrics of SNR (signal-to-noise ratio) and �uorescence decay

rate, as well as a new correlation metric which uses connecting recording segments to ver-

ify the neuron identi�cation (Figure 2.2 C) in addition to standard spatial metrics such

as centroid distance, footprint overlap, and Jensen-Shannon divergence, to improve neuron

13



0.5

0.8 0.9

0.65

0.7

0.8

0.3

3

0.9

4
0.8

0.9

0.65

0.7

0.8

0.9 0.8

Day 1
Day 2
Day 3
Day 1&2
Day 1&3
Day 2&3
Day 1,2&3

0.96

N1

N2
N3 N4

N5
N6

N7

0.79 1
N7 N2

N3

N5 N6
N7

N4 N1

0.83 0.88 1

Shift

0.85 0.96 0.7

N1
N2

N3
N4

N5
N6

N7

Swap

A

B C D

E

Initial Recordings

Connections

Connecting
Locations

Patch

Concatenation

Tracking

Neuron Similarity

Pr
ob

ab
ilit

ie
s 

(%
)

Identification Probabilities

Prob.
0.96
0.56

0.72
0.61

Identifications

1 2

Percentile

GMM

K-means

Figure 2.2: SCOUT: a method for single cell tracking incorporates spatial and temporal metrics into a
probabilistic consensus clustering framework. A: Neuron spatial footprints from three sessions obtained
from a 1-photon recording of the prefrontal cortex with neurons colored by session (rectangle 1-3). Overlaid
results in the fourth rectangle. Cell tracking seeks to identify the same cell across multiple days. B: Long-
term study of neural activity requires computation of �uorescence traces for identi�ed neurons across sessions
(right) from individual sessions (max projections, left). Approaches include concatenation (middle track),
patch methods (bottom track) and tracking methods (top track). Concatenation involves global registration
of sessions and concatenation (middle step) followed by �uorescence extraction. Patch methods divide each
session into overlapping patches in the spatial domain (orange rectangles, �rst step), which are concatenated,
and �uorescence activity extracted for each neuron (black arrow, second step) followed by merging patches.
Tracking methods extract traces for all neurons in each session (�rst step), followed by identi�cation of
neurons across sessions (second step). C: Temporal correlation involves a link session (orange) between
consecutive pairs of recordings. High quality neurons result in a corresponding neuron in the link session
with matching neural signals used to identify cells across sessions. D: The SCOUT clustering algorithm
groups cells from di�erent sessions into clusters. Boxes indicate separate clusters, with the color of each
circle indicating the session. The associated numbers indicate the within cluster similarity for the given
cluster. E: Demonstration of the SCOUT algorithm. (1) Several cells (blue) and their neighbors (green)
within session (top left), and between sessions (top right). Histogram of cell-cell similarity between sessions
for a metric (bottom) with overlaid identi�cation likelihood using several models. (2) A single cell (blue),
and its neighbors (top) within and between sessions with sample aggregate (across metrics) identi�cation
probabilities (bottom). (3) A sample graph in which nodes indicate neurons, and edges between nodes denote
identi�cation probability exceeding a minimum threshold (min_ prob). Colors correspond to sessions. (4)
A possible graph clustering.
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identi�cation between sessions. SCOUT also provides the option of allowing the user to

de�ne additional metrics according to their use case. SCOUT then uses a combination of

probabilistic models, a novel clustering algorithm, and consensus clustering to perform cell

tracking over multiple sessions (Figure 2.2 D-E). This combination of features makes

SCOUT unique among cell tracking methods.

In total, SCOUT cell tracking consists of four steps: 1) cell-cell identi�cation probability

computation for session pairs, 2) creation of cell-cell similarity matrices, 3) clustering of the

cell identi�cation matrices and consensus clustering of the resulting cell identi�cations, 4)

creation of a cell register de�ning indices of identi�ed cells between sessions and associated

neural signals. As input, SCOUT accepts the spatial footprints and temporal traces of the

neurons in each session (as well as some computed statistics of the temporal traces) and

returns a cell register, a num_neurons x num_sessions matrix consisting of all neurons

tracked between sessions. Some entries may be empty.

2.5.1 Spatial similarity measures for calculating neuron similarity

across sessions

Currently, three methods for spatial similarity are included with SCOUT: centroid distance,

spatial overlap, and Jensen-Shannon divergence. Centroids of neuron spatial footprints are

calculated using the usual formulae x =
∑

i,j xiaij , y =
∑

i,j yjaij , where i,j range across the

number of pixels in the �eld of view, in the horizontal and vertical directions respectively,

and aij is the footprint intensity at the ith horizontal pixel, and the jth vertical pixel. Cen-

troid distance between to footprints is calculated as the Euclidean distance between their

centroids. Spatial overlap between footprints a, b is calculated as a·b
||a||2||b||2

, where a and

b, are binarized column vectors representing whether each footprint has positive pixel in-
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tensity. Jensen-Shannon divergence between two (normalized) footprints P,Q, is calculated

as 1
2
(DKL(P ||M) + DKL(Q ||M)), where M = 1

2
(P + Q), and DKL is the Kullback-Liebler

divergence: DKL(P ||Q)=E(log[dP/dQ ]), where dP/dQ is the radon-nikodym derivative of

P with respect to Q.

2.5.2 Temporal similarity measures for calculating neuron similar-

ity across sessions

SCOUT has implemented temporal similarities based on signal-to-noise ratio

SNR = V ar(Signal)/V ar(Noise),

and the �uorescence trace decay rate for each neuron. Signal decay rate is computed au-

tomatically in CNMF-E, by �tting exponential models (among other options) to the neural

signal. We have provided a similar algorithm for computing signal decay rate directly from

the raw neural signal to ensure SCOUT works with other pipelines. This algorithm identi-

�es peak locations, normalizes the signal height at each peak, and �ts an exponential decay

function to the average signal. This function can fail if fewer than three peaks were detected

for a given neuron.

For SNR, similarity between neurons is calculated as |(log (SNR1)− log (SNR2))| where

SNRi is the signal-to-noise ratio for neuron i (taking the logarithm produces a more central-

ized distribution of values). Signal decay similarity is calculated as |(dec1 − dec2)|, where

deci is the signal decay rate for neuron i.
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2.5.3 Calculation of temporal correlation similarity metric across

sessions

Given two preprocessed optical recording sessions S 1 and S 2, we construct a connecting

recording S c by concatenating the last n frames of the �rst recording with the �rst n frames

of the second, where n is some number less than the minimum number of frames in S 1 and

S 2. Next, we extract spatial and �uorescence traces from S 1, S 2, and S c.

Given N 1, a neuron from S 1, and N 2, a neuron from S2, we start by setting a maximal

distance threshold m, which de�nes neighboring neurons. If the distance between the cen-

troids N 1 and N 2 exceeds m, N 1 and N 2 are not considered neighbors. Only neighboring

neurons can be identi�ed as the same between sessions. We eliminate from our calculations

any neuron in the connecting session exhibiting neural activity in frames overlapping only

one of the sessions, as such neurons will not allow comparison between sessions.

For temporal correlation similarity, a similarity score is obtained for each neighboring neuron

pair (N 1 and N 2) in the two recording sessions, by ranging over the full set of neighboring

neurons (N c) in the connecting recording (i.e. across the set of N c coming from S c such that

N 1 is a neighbor to N c, and N c is a neighbor to N 2). The choice N c that maximizes the

average of the correlation between N 1 and N c, and N c and N 2, is considered the connect-

ing neuron, and the correlation similarity between N 1 and N 2 is the mean of the maximal

correlation across choice of connecting neuron N c (Figure 2.2 C).

2.5.4 Assigning pairwise identi�cation probabilities with SCOUT

To assign probability scores between sessions for a given metric, we detail two approaches.

First, we can simply assign the percentile as the probability score for each metric. If the
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distance between N 1 and N 2 for a given a metric, is less than p% of distances between all

possible neighbor pairs, then p is the percentile assigned to the pairing. This method has

several drawbacks. First, it is sensitive to the choice of maximum distance parameter. If the

parameter governing the maximum distance between neighbors is increased, the probability

assigned to any neighboring pair will increase. Second, when few neuron pairs exist, similarity

metric values can accumulate near 0, so that even relatively small metric values can be

associated to low probabilities.

Another paradigm is to assume that for each metric, the distances between neighboring pairs

come from a mixture of distributions: a distribution of distances corresponding the neurons

that should be identi�ed between sessions, and a set of neighbors that are distinct [42].

Before �tting the mixture of distributions, a probability density function is constructed, by

applying kernel density estimation to the normalized histogram of distances, using re�ected

boundaries near theoretical maximum and minimum values (such as 0 or 1 for correlation

metrics). Next, we construct a model consisting of the weighted sum of two probability

distribution functions, which is then �t to the approximated pdf, using nonlinear regression

(Matlab nlin�t, [43]).

Given a mixture model consisting of a weight w, a model for identi�ed neurons between

sessions, f, and a model for unidenti�ed neurons between sessions, g, the mixture model

approximates the probability distribution function h, obtained via kernel density estimation

from the initial distribution of distances, as h (x) = wf (x)+(1− w) g (x) . Given a proposed

distance x, the probability that x is sampled from the distribution with pdf f, is given by

wf (x)
wf (x)+(1−w)g(x)

, using Bayes theorem. We have primarily used Gaussian mixture models.

We can also apply soft K-means clustering [44], an adaptation of K-means in which data

points are assigned identi�cation probabilities for each cluster, and a �fuzzi�er� is introduced

to govern the spread of identi�cations probabilities, adjusting the crispness of the clusters.

Similarly to mixture models, this algorithm separates similarities into identi�ed and non-
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identi�ed categories, with associated probabilities. This algorithm frequently identi�ed the

most neurons, but with a higher false discovery rate. This is the default algorithm for

SCOUT.

Generally, little di�erence is seen between results with soft K-means and mixture models,

except for recordings with only two sessions, for which Gaussian mixture models typically

exhibit stronger results. GMM distribution �tting is typically slower than K-means and

produces a sharper decision boundary. We recommend using K-means except in the case

where the recording consists of only two sessions.

2.5.5 Clustering algorithm

After computation of temporal metric similarity for all neuron pairs in each pair of sessions,

we assign identi�cation probabilities for each metric using a probabilistic model (i.e., soft K-

means, GMM). To combine the metric identi�cation probabilities into a single identi�cation

probability, we use a weight vector (a 1 x n vector where n is the number of metrics, such

that the sum of entries is 1) which governs the emphasis each metric receives. Multiplying

this weight vector by the associated identi�cation probabilities for each vector and summing

the result results in a single identi�cation probability for each pair of cells in each pair of

sessions. These probabilities are placed in a similarity matrix of size n_cells x n_cells,

where n_cells is the total number of neurons extracted across all sessions and entries are

the identi�cation probabilities between cell pairs. Cells in the same session are assigned a

low similarity (-10,000) to prevent clusters from containing more than one neuron from the

same session.

This similarity matrix is decomposed into connected components, and each component is

clustered according to the following algorithm. Clusters are initialized by placing the least
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similar neurons in separate clusters. Remaining neurons are added to each cluster based

on which addition decreases average cluster inter-neuron similarity the least. If no option

is available that keeps the average cluster similarity above the user provided chain_prob

threshold, a new cluster is created. The process continues until all neurons are assigned a

cluster. Similarities between neurons in the same session are set to some high magnitude

negative number, to prevent assignment to the same cluster.

At each iteration, we calculate the total increase in average similarity between cluster mem-

bers (over all clusters) gained by assigning each neuron to a new cluster (a switch) (Figure

2.2 D-E). We also calculate the total increase in average similarity between cluster mem-

bers derived by swapping the cluster assignments of each pair of neurons (a swap). The

operation that maximizes the similarity increase is chosen, and the algorithm continues until

a maximum number of iterations is reached, or no further gains can be made by these op-

erations. Finally, the minimal average cluster similarity (across clusters) is compared with

the chain_prob threshold. If the cluster similarity falls beneath this value, a new cluster is

created and populated with the least similar neuron in the lowest scoring cluster (ranked by

average within cluster similarity), and the process repeats until convergence.

To correct the propensity toward the creation of medium sized clusters (and thus against

tracking neurons through all sessions), we add a bias term to the switch and swap scores

as follows. First, a switch that increases the maximal cluster size of the clusters involved

is rewarded with the addition of a constant bias term, while the reverse is penalized by

the subtraction of the bias term. A swap is penalized via subtraction of a bias term if the

swap causes the cluster with the larger size to decrease its average identi�cation probability,

and vice versa if the cluster with the larger size were to increase the average identi�cation

probability. Swaps and shifts that decrease the size of a cluster with inter-neuron similarity

exceeding the chain_prob threshold are ignored. By placing a limit on the number of times

any individual neuron can be swapped or shifted between groups, the algorithm converges
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in most instances, and usually within a few iterations (< 25).

Discrepancies between clustering results due to initial clustering assignments, as well as the

problematic usage of a single weight variable for aggregating identi�cation probabilities mo-

tivates a consensus clustering framework. We generate random perturbations of the weight

vector by adding a random value produced by from an N(0,0.12) distribution (0.12 is ¾ the

individual weight if all metrics are used). Weight values below zero are set to zero, and the

vector is renormalized. In the implementation, 29 perturbations are generated (resulting in

30 vectors), which are then used to create similarity matrices which are clustered via the

previously described algorithm, but using the connected components de�ned by the initial

weight vector.

Next, we construct a consensus matrix for each component of size n_cells x n_cells, where

n_cells is the number of cells in the component, and the entry is the percentage of instances

in which the associated cell pair were placed in the same cluster. This consensus matrix is

then clustered using the same algorithm described above to produce the �nal cell register.
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Chapter 3

Testing SCOUT on simulated and in

vivo data

We now test both the spatial �lter and tracking aspects of SCOUT on both simulated and

in vivo data. We begin by detailing the experimental data, after which we present the

associated results. Finally, we test our cell tracking algorithm on hippocampal data and use

place �eld consistency as an additional veri�cation of cell tracking quality.

3.1 Simulated Data

For all simulated datasets, neuron footprints were simulated as 2−dimensional Gaussian

probability distributions, with diagonal covariance matrices. Spatial footprint width was be-

tween 20 and 25 pixels. Spikes were simulated from a Bernoulli distribution with probability

of spiking per timebin 0.01, and then convolved with a temporal kernel g(t) = exp(−t/τ d) −

exp(−t/τ r), with fall time τ d = 6 timebins, and rise time τ r = 1 timebins. Local background
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spatial footprints were simulated as 2-D Gaussians, but with larger covariance entries than

for the neuron spatial footprint. Blood vessel spatial footprints were simulated using a cubic

function, which was convolved with a 2-D Gaussian (Gaussian width: 3 pixels). A random

walk model was used to simulate temporal �uctuations of local background and blood ves-

sels. 23 background sources were used throughout all simulated experiments, except for the

Individual Shift dataset, in which no background sources were present.

Four sets of recordings were simulated for testing purposes (Figure, 3.1 A-D). The Gaus-

sian dataset consisted of 11 recordings with 2000-10000 frames each, with a 256 x 256-pixel

FOV. Each recording was simulated using 50-200 neurons. The Non-Rigid 1-photon dataset

consisted of 39 footprint recordings consisting of four sessions of 2000 frames each. Each

simulated spatial footprint was transformed with a di�erent individual non-rigid transfor-

mation in each session. This transformation was primarily in place, with little translational

e�ect (< 2 pixels). The Non-Rigid 2-photon dataset consisted of a copy of the Non-Rigid

1p dataset, in which Gaussian noise was replaced with salt and pepper noise, to portray

2-photon conditions more closely. Spatial footprints were converted into characteristic ring

shapes via the following transformation. Pixel intensity values were scaled to lie in the [0,1]

interval. All pixels with intensity higher than 0.5 were then replaced by the same intensity

subtracted from one. The Individual Shift dataset consisted of 29 recordings consisting of

two 3000 frame sessions, with a 100 x 100-pixel FOV. Each recording was simulated using

50-100 neurons. The individual spatial footprints were shifted independently by between 5

and 7 pixels (�30-40% neuron width) in the second session.
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Figure 3.1: Overview of tested data. Neuron extraction from two sessions from each dataset, overlaid to
visualize the identi�cation of neurons across each session, as well as the number of recordings and sessions
per recording in each dataset. Gaussian (A), Non-Rigid 1p (B), Non-Rigid 2p (C), and Individual Shift
(D) datasets are simulated, while 1-photon (E) and 2-photon (F) datasets are in vivo recordings. Simu-
lated datasets exhibit di�erent features and di�culties for cell identi�cation across sessions, such as noise
(particularly in the Non-Rigid 1p dataset), cell body transformations (Non-Rigid 1p and Non-rigid 2p) and
neuron translations (Individual Shift) represent common issues with in vivo recordings. Similar e�ects can
be viewed in the in vivo recording representations.

3.2 In vivo recordings

1-photon recordings: surgical preparation

Mice were housed under a controlled environment with temperature maintained at 21 -

23 oC and humidity at 40% - 70%. Mice had free access to water and diet except water

restriction during linear track test. The age was 8-10 months at the time of test, both sexes
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were included since we didn't observe di�erence of behavior and calcium activity between

male and female mice. All the experimental protocols were approved by the IACUC of the

University of California, Irvine.

Surgery was performed as described previously [28]. Brie�y, AAV1-CaMKIIa-GCaMP6f-

WPRE-SV40 was purchased from Addgene. Mice were anesthetized with 1.5% - 2% iso�u-

rane and placed on a stereotaxtic instrument (Stoelting). Virus was injected into dorsal

CA1 (AP -1.94, L 1.4, DV -1.38 mm, relative to bregma) of the right hemisphere using a

glass micropipette. The diameter of the pipette tip was 20 - 30 um. The virus titer was 1 x

1013 GC/ml and injection volume was 0.3 µl. Mice were treated with carprofen (3 mg/kg)

as analgesia for 3 days after surgery.

A GRIN lens was implanted two weeks after virus injection. Mice were anesthetized with

iso�urane, and carprofen and dexamethasone (2 mg/kg) were administered. A 2-mm-

diameter cranial window was drilled over recording FOV. Then dura was removed with

ultra�ne forceps, and cortical tissue above the target area was carefully aspirated using a

29-G blunt needle connected to vacuum, until the vertical striations of corpus callosum ap-

peared. Sterile saline was applied during aspirating. After bleeding was completely ceased,

a GRIN lens (1.8 mm diameter, 4.3 mm length, 0.25 PITCH, Edmund Optics) was lowered

to contact the corpus callosum (depth -1.55 mm) and secured with superglue and dental

cement. The skull and lens were covered with Kwik-Sil silicone elastomer (WPI), and mice

were allowed to recover for 2-3 weeks.

Mice were anesthetized again, Kwik-Sil was removed and a miniscope (UCLA) mounted onto

a baseplate was placed on the GRIN lens to search the imaging area. After cells being in

focus, the baseplate was attached on the skull with dental cement, miniscope was removed

and a plastic cap was placed on the baseplate to prevent dust.
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1-photon recordings from Visual Cortex, Prefrontal Cortex, and Hippocampus

Separate individual recordings were taken from the visual cortex, prefrontal cortex, and

hippocampus (Figure, 3.1 D). The visual cortex recording was subject to the following

protocol (Grieco et al., 2020). An initial pair of baseline sessions were taken on consecutive

days. After baseline collection on the second day, the animal received a ketamine wash

treatment followed by a second recording session. Day 3 consisted of a baseline recording

session, followed by NRG1 wash and a second recording session. A single recording session

was taken on days 4 and 5. The 7 individual sessions consisted of 4,000-9,000 frames. All

tested animals were male.

The prefrontal cortex recording was subject to the following protocol [45]. An initial pair of

baseline recordings were taken on consecutive days. After baseline collection on the second

day, the animal received a ketamine wash treatment followed by a second recording session.

Further recordings were taken 2hr, 24hr, 48hr and 72hr after ketamine treatment. The 7

individual sessions consisted of 4,000-9,000 frames.

The hippocampus recording was subject to the following protocol [28]. Two baseline control

recordings taken on consecutive days, were followed on the following day by treatment with

CNO (clozapine-N-oxide) and a third session. A post control session was taken after 4 days.

Sessions consisted of 7,000-9,000 frames.

Recordings were obtained from and used with permission of the Xu lab (https://sites.uci.edu/xulab/).

Recordings previously published in [28, 45, 46].

26



1-photon hippocampal recordings from contextual discrimination experiment

We randomly selected three sessions from three separate mice undergoing a long term con-

textual fear discrimination experiment for spatial �lter testing. Mice were surgically treated

as in the previous protocol. Experimental conditions did not appear to contribute unusual

variations to spatial �lter quality.

1-photon hippocampus recordings for place �eld stability

The hippocampal region of the brain exhibits so called �place cells,� neurons which are crit-

ical for the formation of spatial memory and the encoding of spatial position. Individually,

these cells encode spatial information in a very simple way. Each place cell has a corre-

sponding �place �eld,� an environmental region (typically on the order of centimeters) in

which the neuron preferentially �res, analogous to the receptive �elds in the visual cortex.

The information encoded in these place �elds is then aggregated into a spatial map than

enables encoding of location in memory. Critically, these place cells are highly consistent

across time, maintaining stability over months or longer. This means these cells can be used

as an objective measure for cell tracking quality.

A total of 3 mice were water restricted until their bodyweight reached 85% - 90% of the

initial weight, then they were trained to run back and forth on a 1-meter-long linear track

to obtain 10-20 µl of water reward on either end of the track. After 5 days of training,

miniscope was tethered and mice were trained for another 5 days. The testing consisted of

two trials at 30 min apart each day and was repeated for 3 days. On the �rst day, the linear

track was placed in the initial orientation of training. On the second day, the track remained

the initial orientation in the �rst trial and rotated for 90 degrees in the second trial. On

the third day, the orientation was 90-degree rotated in the �rst trial and back to the initial
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orientation in the second trial. Mice were tested for 30 laps in each trial, usually �nishing in

10-15 min. Calcium activity of CA1 neurons was recorded by miniscope, and mouse behavior

was recorded by a Logitech webcam simultaneously. The linear track was cleaned with 70%

ethanol before each recording. Place �eld consistency analysis was computed on recordings

taken only with the initial orientation, resulting in four sessions.

Information Score Computation and Place Cell Identi�cation

The method for identifying place cells is based on a previous study (Sun et al 2019). For each

neuron, peak activity locations of neuron activity (neuron.S) were identi�ed, and associated

peak intensities were computed. As CNMF-E can produce a signi�cant number of outlying

peak intensity values, low outliers were removed by setting a threshold of (0.5)*median(peak

intensity), and peak intensities exceeding a threshold equal to three median absolute devia-

tions from the median peak intensity (the MATLAB default) were set to this upper bound.

Finally, the output was smoothed using a Gaussian kernel (width 0.5).

Next, we identi�ed time points where the mouse was within 10% of the distance from ei-

ther end of the linear track, or when mouse speed was lower than an estimated movement

threshold, and the corresponding neural signal was removed from the analysis. Finally, we

divided the interior region (i.e. the middle 80% of the track) into 20 bins (horizontal axis

only) and computed the ratio of the neural signal measured in each bin to the amount of

time the mouse spends in each bin to produce the place �eld.

For each neuron, the mutual information between position and neural activity (information

score) was computed as
∑

piλilog2 (λi), where pi denotes the probability of the animal being

in each bin, and λi denotes the ratio of the probability of �ring while in the bin to the mean

probability of �ring. The sum is taken across all bins.
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Information percentiles were computed for each neuron by recomputing the information

score after randomly shifting the position by at least 3 seconds a total of 500 times. The

information percentile was then assigned as the percentile of the non-translated information

score in the distribution of translated information scores.

2-photon recordings

2-photon recordings were obtained from the Allen Brain Observatory AWS archive ([47],(Figure,

3.1 F). Recordings consisted of three sessions. Recordings were temporally downsampled

by a factor of 2, and the �rst 5,000 frames of each session were used for testing.

Experiments consisted of showing head �xed mice separate visual protocols on three separate

days. Protocols consisted of drifting gratings, static gratings, sparse noise, natural scenes

and natural movies. See Allen brain observatory documentation for additional information

(https://help.brain-map.org/display/observatory/Documentation).

Allen Brain Atlas access information. VISl: Experiment ID 564425775, Genotype: Emx1-

IRES-Cre/wt; Camk2a-tTA/wt; Ai93(TITL-GCaMP6f)/wt. VISrl: Experiment ID 660510591,

Genotype: Cux2-CreERT2/wt; Camk2a-tTA/wt; Ai93(TITL-GCaMPf)/wt VISp: Experi-

ment ID 642651896, Genotype: Rorb-IRES2-Cre/wt; Camk2a-tTA/wt; Ai93(TITL-GCaMP6f)/wt.
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3.3 SCOUT spatial �lter

3.3.1 SCOUT spatial �lter on simulated data

We tested the individual recording extraction portion of SCOUT on the Gaussian and Non-

Rigid 1p datasets (the Non-Rigid 2p dataset exhibited high extraction quality with both

methods, and the individual shift dataset has spatial pro�les inconsistent with typical as-

sumptions, due to signi�cant spatial movement between sessions). We examined two extrac-

tion conditions for each dataset, one with restricted initializations, in which the threshold for

neuron initialization was set su�ciently high to exclude most spurious initialization points

(which can exist either due to random �uctuations in background noise, or incomplete sub-

traction of discovered neurons during the initialization procedure), and the other in which

thresholds for neuron initialization were low. Neuron initialization is primarily based on

local correlation and signal intensity (Figure 2.1 A-C). Extractions with unrestricted ini-

tializations had many false discoveries, which allows us to demonstrate the robustness of

SCOUT. We term these extractions as restricted and unrestricted through the remainder of

this section.

We performed 6 extractions on the Gaussian and Non-Rigid 1p dataset, for each initialization

condition (restricted, unrestricted), 5 extractions in which we varied JS divergence thresholds

for the spatial constraints (JS constraint values [0.03, 0.06, 0.09, 0.12, 0.15]), and a CNMF-

E extraction. We found little signi�cant increase in the number of detected neurons for

thresholds exceeding 0.09, and a sharp drop o� in detected neurons for thresholds lower than

0.06, so we report statistics from the extractions with these two parameters (see Figure 3.2

A-D).

Larger thresholds may be required on in vivo data, particularly in cell tracking applications,

as false positives have a smaller e�ect on the result. Results are reported in the form mean

30



Figure 3.2: A cell-shape based spatial constraint improves extraction performance by controlling false dis-
covery detection and improving neural extraction quality. A: Spatial footprint extraction quality shows
improvement using SCOUT over CNMF-E on a simulated video recording. (1) maximum projection of a
70 pixel x 100 pixel section of a recording, (2) spatial footprint extraction results of CNMF-E applied to
recording, showing multiple false discoveries (3) spatial footprint extraction results of SCOUT applied to
recording, retaining all ground truth neurons with no false discoveries, (4) ground truth spatial footprints.
B: False discovery rates across the Gaussian and Non-rigid datasets, displaying CNMF-E and SCOUT ex-
traction results. (1) The results for extractions with restricted initialization, (2) results for unrestricted
initialization. PDR (percent detected rates) are shown above. C: ROC curves at various spatial thresholds
and average GINI indices (de�ned as 2 x AUC -1) as a qualitative measurement of classi�er e�ciency. (1)
The results on a set of 10 random recordings from the Gaussian dataset, (2) a set of 10 recordings from
the Non-rigid dataset. D: Extracted spatial footprints from sample recordings in the Gaussian (1) and
Non-rigid (2) datasets demonstrate the di�erence in false discoveries using SCOUT over CNMF-E. Neuron
footprints are normalized to have maximal unit intensity for comparison purposes. Neurons are colored by
which methods detected each extracted neuron, with SCOUT: green, CNMF-E: red, Ground Truth: Blue.
Detected events include true neurons, blood vessels, and background sources. E: Extracted footprints from
recordings of CA1 layer of the mouse hippocampus, conducted using CNMF-E (1), and SCOUT (2). (top):
The correlation image of the recording, with circled neurons corresponding to those detected by the extrac-
tion algorithm. (bottom): The extracted spatial footprints detected by the algorithm, normalized to have
the same maximum pixel intensity. Spatial footprints extracted via SCOUT were smoothed during the �nal
spatial template application.
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±standard error. Statistical tests were two sided, and Welch's paired t-test and one-way

ANOVA was used where stated.

Pearson correlation was calculated between extracted �uorescence traces and ground truth

neurons. An extracted neuron was labeled as a false discovery if the maximum correlation

value between its �uorescence trace and any ground truth neuron was smaller than 0.8. A

ground truth neuron was counted as detected if the maximum correlation between its trace

and that of an extracted neuron was at least 0.8. Statistical results were similar for higher

thresholds.

For each dataset and initialization condition, we computed the false discovery rate (FDR),

de�ned as the percentage of false discoveries out of the detected neurons, and percent de-

tected rate (PDR), de�ned as the percentage of ground truth neurons detected in a simulated

recording for the extractions given by CNMF-E, SCOUT (JS: 0.06), and SCOUT (JS: 0.09).

Statistics were calculated based on PDR and FDR calculated on each recording in each

dataset. Results are reported in the form mean ±standard error. Statistical tests were two

sided, and Welch's paired t-test and one-way ANOVA were used where stated.

Applying one-way ANOVA to the results from each dataset and initialization condition

separately, we identi�ed signi�cant di�erence of average FDR using CNMF-E, and SCOUT

with constraints 0.06 and 0.09 (p < 7.4 x 10-18, taken over all datasets and initialization

conditions). Pairwise comparisons between CNMF-E and SCOUT showed SCOUT detected

fewer false discoveries on average at both constraint levels across all datasets and conditions

(t-test p < 1.3 x 10-7). Average FDR exceeded 40% on the unrestricted extractions, and 16%

on restricted extractions, across datasets. SCOUT reduced the number of false discoveries by

at least half, and up to 85%, while retaining the percent detected rate within 1-2 percentage

points of CNMF-E. Total reported average PDR generally exceeded 97%, depending on

the dataset, initialization, and extraction method. As expected, more false negatives were

assigned by SCOUT in the Non-rigid dataset, requiring a higher JS threshold (0.09) to retain
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at least 97% of true neurons (see Figure 3.2 B).

To further investigate the e�cacy of SCOUT as a classi�er, we considered 10 recordings

randomly taken from each dataset and condition, and constructed receiver operating charac-

teristic curves, by applying the spatial constraint after neuron initialization (Fig. 2C). The

resulting average GINI coe�cients, de�ned as 2 x AUC - 1 (where AUC represents area under

the ROC curve), were 0.75 ± 0.04 and 0.63 ± 0.04 for Gaussian and Non-rigid data sets,

respectively, with the restricted extraction. Average GINI coe�cients with the unrestricted

extraction were higher, with the respective coe�cients being 0.87 ± 0.02 and 0.82 ± 0.02 for

Gaussian and Non-rigid data sets. These quantitative metrics demonstrate that SCOUT is

a robust classi�er across di�erent datasets (Figure 3.2 C).

3.3.2 SCOUT spatial �lter on in vivo data

After verifying the e�ectiveness of SCOUT on simulated data, we continue to examine the

e�ects of introducing spatial constraints to neuron extraction in experimental in vivo record-

ings from hippocampal CA1, obtained from three separate mice from the contextual discrim-

ination experiment. Each recording consisted of approximately 7000 frames each and was

extracted using both CNMF-E and SCOUT. While ground truth data was not available for

these recordings, we developed a set of three criteria for classifying neurons as true discov-

eries. First, the spatial footprint was examined visually. Neurons with abnormal footprints

were removed from consideration. Next, the �uorescence trace corresponding to each neuron

was examined for irregularities, such as traces with non-zero baselines, or traces that exhib-

ited localized activity that may be attributable to recording noise, or poor extraction quality.

Finally, the remaining neurons were plotted on the correlation image (which shows local cor-

relation between neighboring pixels, Figure 3.2 E (1,2) top subpanels), and neurons that

appear to encompass spatially distinct regions of the correlation image were removed as false
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discoveries. Across all three recordings, an average of 24.3 ± 2.3% of neurons discovered

by CNMF-E, were classi�ed as false discoveries, while 9.0 ±2.1% of neurons discovered by

SCOUT were classi�ed as false discoveries (Figure 3.2 E).

We also tested SCOUT on three additional recordings from the visual cortex, the hippocam-

pal CA1, and the prefrontal cortex, consisting 4000-8000 frames each. CNMF-E detected

an average of 15% more neurons than SCOUT after false discovery removal. The number of

detected true discoveries was, on average, larger with SCOUT than with CNMF-E. In these

additional datasets, we found an average of 24.4 ± 7.9% of neurons detected by CNMF-E

were classi�ed as false discoveries, while 8.1 ± 0.7% of neurons detected by SCOUT were

classi�ed as false discoveries.

3.4 E�cacy of temporal metrics for cell tracking

We �rst show that the temporal metrics SNR, decay rate and temporal correlation are

consistent across and within sessions and provide additional discriminatory features useful

for identifying neurons across sessions (Figure 3.3 A-C). To demonstrate within session

consistency, we split the �rst session of in vivo recording sessions in half longitudinally and

compute SNR and decay rate metrics on the resulting sessions. For each neuron in the �rst

half, we compute the absolute di�erence of the decay rate and SNR for the same neuron

in the second half, and the nearest non-identi�ed neuron in the second half as comparison

(Figure 3.3 D-E).

Ratios of the median di�erence between the same and nearest neighbor neurons are signif-

icantly lower than 1.0 (p = 2.9 x 10-33 ,1.5 x 10-4, 1.2 x 10-10, VC, PFC, Hipp., Wilcoxon

rank sum test), as are median SNR di�erence ratios (p = 2.3 x 10-24, 6.9 x10-4, 4.8 x 10-3).

Both SNR and �uorescence decay exhibit slightly higher ratios on 2-photon data, though

34



SN
R

 A
bs

. D
iff

.

0.3 0.65 1

0 0.015 0.03Decay

0 0.5 1

8

16

8

16

8

16

0

8

16

0

0

0 2 4SNR

0 0.5

0 0

0

8

16

8

16

8

16

0
0.4 0.7 1 0.4 0.7

1

8

16

0

4 8 12

8

16

0
0.4 0.80 1.2

2
0

2

2

0.85 1

0.85 1

TN
FP

FN
TP

Simulated

Simulated

In Vivo

In Vivo

0

0.01

0.02

D
ec

ay
 A

bs
. D

iff
.

Same Between

Same 
Between 

A B

DC E

0 20 40 60 80 100 120 140
0

0.5

1

1000 3000 5000 7000 9000

0

1

2

3

Frames

Frames

N
or

m
al

iz
ed

 In
te

ns
ity

N
or

m
al

iz
ed

 In
te

ns
ity

F1: 0.70

C
en

tro
id

 D
is

ta
nc

e

C
en

tro
id

 D
is

ta
nc

e

C
en

tro
id

 D
is

ta
nc

e

C
en

tro
id

 D
is

ta
nc

e

C
en

tro
id

 D
is

ta
nc

e

C
en

tro
id

 D
is

ta
nc

e

C
en

tro
id

 D
is

ta
nc

e

C
en

tro
id

 D
is

ta
nc

e

C
en

tro
id

 D
is

ta
nc

e

C
en

tro
id

 D
is

ta
nc

e

C
en

tro
id

 D
is

ta
nc

e

C
en

tro
id

 D
is

ta
nc

e

Spatial Overlap Spatial Overlap

Spatial Overlap Spatial Overlap

Spatial Overlap Spatial OverlapCorrelation

Decay SNR

Correlation

Decay SNR

 

Same  Cluster
Diff.  Cluster

0

0.6

1.2

* *
* *

* *

* *

1

Same  Cluster
Diff.  Cluster

Spatial + Temporal
Metrics

Spatial + Temporal
Metrics

0

8

16

Spatial MetricsSpatial Metrics

TN
FP

FN
TP

F1: 0.82

F1: 0.40 F1: 0.47

1

0 0.5
0

1

Closest
One NN
All

base
matched
unmatched

Figure 3.3: Inclusion of temporal metrics is a key step when there is signi�cant shift between neurons across
sessions. A: Scatter plots compare spatial (overlap) and temporal (SNR, decay, correlation) metrics (x-axis)
to the centroid distance metric (y-axis) for all neuron pairs (identi�ed: blue, non-identi�ed: red, labeled by
ground truth) from two sessions of a recording taken from the Individual Shift dataset. Approximate decision
boundaries for each metric are indicated by the black dashed line. B: Scatter plots compare inter-cluster
metric similarity on a 1-photon in vivo recording consisting of 7 sessions. Correct identi�cations based on
human annotated ground truth cell register. Incorrect identi�cations are simulated by randomly exchanging
a neuron in a ground truth cluster with a near neighbor (as measured by centroid distance). Plotted points
indicate average similarity (by metric) for both correct (blue) and incorrect (red, at least one error) clustering
results. Approximate decision boundaries for each metric indicated by the black dashed line. C: Similarity
metrics (as shown in B, C) are aggregated with resulting cell similarities used for clustering. False positives
(FP), true positives (TP), false negatives (FN), and true negatives (TN) are labeled in red, blue, purple, and
green respectively. Results using all metrics (top) and exclusively spatial metrics (bottom), presented for
the simulated (left) and in vivo (right) recordings. D: Bar charts compare SNR and Decay metrics between
identi�ed neurons, nearest neighbors, and average similarity across all neurons, within and between two
sessions of an in vivo 1p recording. (Top) SNR absolute di�erences (y-axis) after splitting the �rst recording
into two sessions (same), and between sessions (between) for identi�ed neurons (closest), nearest neighbors
(One NN), and all neuron pairs (All). (Bottom) Absolute signal decay rate di�erences within and between
sessions. The reduction in value between sessions is due to the use of post extraction computation decay for
the within session data. Error bars indicate standard error across neurons. E: (Top) Neural traces associated
to a single spike from 3 neurons taken from two sessions of an in vivo 1-photon recording: (blue) a baseline
neuron from the �rst session, (red) an identi�ed neuron from the second session, (yellow) a non-identi�ed
neuron from the second session. (Bottom) Neural traces from the baseline, identi�ed, and non-identi�ed
neurons along with the noise level after normalization to unit peak intensity.
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this e�ect is primarily due to a single recording (decay: p = 0.02, 0.04, 0.04, SNR: p = 1.4

x 10-7, 4.7 x 10-2, 7.4 x10-10, VISl, VISrl, VISp). Ratios ranged from 0.5-0.65 (i.e. 50-65% of

the di�erence of non-identi�ed nearest neighbors), indicating much lower di�erences between

SNR and decay rate of the same neuron compared with its neighbors.

Next, we compute similarity of temporal metrics (including correlation metric) between neu-

rons in the �rst session (unsplit) and the second session of in vivo recordings, to demonstrate

that temporal metrics discriminate between identi�ed and non-identi�ed neurons between

sessions. This context adds complications, as some neurons may not correspond to identi�ed

pairs in the other session, and the ground truth is unknown. We assume that the most simi-

lar (based on the current temporal metric) neurons with overlap exceeding 0.9 are identi�ed,

which are compared with the nearest neighbor below this threshold. Neurons in the �rst

session with no other spatial footprints within 4 pixels in the second session are excluded

from the analysis.

On 1-photon data, median absolute di�erence in decay rates is signi�cantly lower (p = 4.1

x 10-9, 8.8 x 10-5, 2.4 x 10-5, VC, PFC, Hipp., Wilcoxon rank sum test), as are di�erences

in SNR (p = 6.3 x 10-8, 2.5 x 10-4, 3.1 x 10-6), with similar results on 2-photon recordings

(p = 0.006, 0.006, 6.3 x 10-9 , VISl, VISrl, VISp). One result did not show signi�cant SNR

di�erentiation (p = 0.98, 0.03, 0.01). Average correlation metric values on both 1-photon

data (p = 2.2 x10-22, 2.2 x 10-8, 2.8 x 10-9) and 2-photon data (p = 7.2 x 10-5, 1.1 x 10-3, 6.8

x 10-12) show higher median temporal correlation for identi�ed vs non-identi�ed neurons.

Ratios of median temporal metric di�erence are higher between sessions (i.e. more di�er-

ence between sessions than within sessions), with di�erences between 60-75% those of nearest

neighbors for SNR and decay, and with correlation �1.5x higher between identi�ed neurons

and nearest neighbors. This implies that the median pair of identi�ed neurons have signi�-

cantly more similar temporal pro�les than nearest neighbors which motivates the inclusion

of temporal metrics in SCOUT.
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3.5 Testing SCOUT on simulated multi-session record-

ings

On simulated recordings we �rst consider only neurons identi�ed through all sessions as these

are the most easily interpreted in downstream analysis. Cell tracking quality is de�ned using

the F1 metric 2PDR(1−FDR)
(1−FDR+PDR)

, which takes values between 0 and 1 (1 being the highest quality).

Here PDR (percent discovery rate), is de�ned as the percentage of available neurons tracked

by a method, and FDR (false discovery rate), is de�ned as the percentage of tracked neurons

containing at least one false identi�cation. Next, we consider tracking quality for all sets

of identi�ed neurons using the Jaccard similarity metric (computed as |A∩B| / ∨ A∪B∨?,

where A and B represent sets of identi�ed neurons). This analysis includes all clusters of

identi�ed neurons. For testing purposes, we use neuron footprint centroid distance, spatial

overlap, and Jensen-Shannon divergence (spatial metrics), and SNR, �uorescence decay rate,

and correlation (temporal metrics).

We test SCOUT (with and without temporal metrics), cellReg and CaImAn multiple times

on each dataset with varying parameters (max_dist, min_prob, chain_prob for SCOUT,

see Figure A.1 and A.2 for cellReg and CaImAn parameters). Here we present results

from parameters maximizing the F1 score across each tested method. Statistical results are

computed using ANOVA and post hoc Bonferroni correction (Bonferroni 1936) for multiple

comparisons. Quantitative results are presented as mean +/- standard error, where each

datapoint corresponds to a single recording in the dataset.

We identify signi�cant F1 score di�erences on the Gaussian, Non-Rigid 1p and Individual

Shift datasets (Gaussian: p = 3.06 x 10-12, F = 40.77; Non-Rigid 1p: p = 1.87 x 10-16,

F = 32.92; Individual Shift: p = 3.35 x 10-19, F = 45.14; ANOVA). Pairwise comparisons

show a statistically higher average F1 score between SCOUT and CaImAn on the Gaussian
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dataset (Figure 3.4 A, Figure A.1 A-C), a higher average F1 score between SCOUT

and both cellReg and CaImAn on the Non-Rigid 1p dataset (Figure 3.4 B, Figure A.1

D-F), no signi�cant di�erences on the Non-Rigid 2p dataset (Figure 3.4 C, Figure A.2

A-C), and a higher F1 score for SCOUT than both cellReg and CaImAn on the Individual

Shift dataset (Figure 3.4 D, Figure A.2 D-F), (CaImAn comparisons p < 1.16 x

10-11, cellReg comparisons p < 2.6 x 10-17). Additionally, SCOUT with temporal metrics

outperforms SCOUT without temporal metrics on both the Non-Rigid 1p dataset, and the

Individual Shift dataset (p < 3.5 x10-9).

In summary, SCOUT exhibits high quality cell tracking performance when compared with

methods such as cellReg and CaImAn, particularly on the Non-Rigid 1p and Individual Shift

datasets (Figure 3.5 , Figure A.1 and A.2). Comparisons of SCOUT with and without

temporal metrics show that inclusion of temporal metrics in the analysis results in higher

average F1 scores.

We next compute Jaccard similarity on the same data. This method identi�es signi�cant

di�erences in mean tracking quality on all datasets except for the Non-Rigid 2p dataset

(Gaussian: p = 2.1 x 10-15, F = 127.8; Non-Rigid 1p: p = 1.64 x10-15, F = 46.6; Individual

Shift: p = 7.8 x 10-13, F = 39.6; ANOVA, Figure 3.4 E). Post hoc Bonferroni tests show

SCOUT exhibits higher Jaccard similarity than CaImAn on the Gaussian dataset (p = 2.2

x 10-14), higher Jaccard similarity than both CaImAn and cellReg on the Non-Rigid 1p

dataset (p < 1.4 x 10-11), and higher Jaccard similarity than both cellReg and CaImAn on

the Individual Shift dataset (p < 4.8 x 10-9). These results correspond with F1 score results

and show that SCOUT exhibits higher cell tracking quality across all proposed clusters, not

just neurons tracked across all sessions (Figure 3.5).

To identify possible biases toward large cluster sizes with SCOUT, we compute the Jensen-

Shannon divergence between projected cluster distributions and ground truth cluster dis-

tributions for each method on the Non-Rigid 1p dataset (the dataset exhibiting the largest
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Figure 3.4: Inclusion of temporal similarity metrics improves cell tracking across sessions on simulated
datasets. (Recording Scores) Maximal F1 scores (y-axis) using all tested cell tracking algorithms. Statistical
di�erences compared with SCOUT (ANOVA, Bonferroni correction) marked with an asterisk. Methods (x-
axis) are SCOUT, spatial (SCOUT using only spatial metrics), cellReg, and CaImAn. Bars indicate mean
+/- standard error. Points correspond to the highest F1 score associated to each recording in the dataset.
(Session Projection) Max projection of sample individual session from each dataset, across methods. (Ground
Truth) Ground truth neurons available for tracking through all sessions. Colors indicate neurons tracked by
each method. The number of correctly tracked (ID) and incorrectly tracked with at least one error (FID)
cell register entries labeled below for each method. (Session 1-2) Tracked and missed neurons superimposed
on the max projection of extracted neurons from sessions 1-2 of a sample recording. A-D: F1 scores, session
projections, ground truth, and identi�ed neurons by method for the Gaussian (A), Non-Rigid 1p (B), Non-
Rigid 2p (C), and Individual Shift (D) datasets. E: Maximal Jaccard similarity scores (y-axis) from each
recording and session in the simulated datasets (x-axis). Bars indicate mean +/- standard error. Asterisks
indicate statistical di�erences. F: JS divergence (y-axis) of identi�ed cluster sizes for each method (x-axis)
with the ground truth for each recording in the Non-Rigid 1p dataset using parameters producing highest
F1 scores. G: (y-axis) the ratio of neurons tracked through all sessions by each method to the ground truth
number of neurons available for tracking using parameters producing highest F1 scores.
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 1 

 Gaussian Non-Rigid 1p Non-Rigid 2p Ind. Shift 

SCOUT 0.986 +/- 0.005   0.970 +/- 0.003 0.956 +/- 0.005 0.707 +/- 0.013 

spatial 0.967 +/- 0.007  0.929 +/- 0.005 0.949 +/- 0.005 0.526 +/- 0.010 

cellReg 0.964 +/- 0.007  0.916 +/- 0.005  0.938 +/- 0.006 0.500 +/- 0.016 

CaImAn 0.876 +/- .0131  0.924 +/- 0.004  0.953 +/- 0.006  0.547 +/- 0.015  

 1 

 Gaussian Non-Rigid 1p Non-Rigid 2p Ind. Shift 

SCOUT 0.97 +/- 0.004  0.93 +/- 0.002  0.93 +/-0.006  0.78 +/- 0.011  

cellReg 0.97 +/- 0.005 0.90 +/- 0.003  0.92 +/- 0.006 0.68 +/- 0.008  

CaImAn 0.88 +/- 0.006  0.90 +/- 0.003 0.93  +/- 0.007 0.68 +/- 0.007 

A

B

Figure 3.5: F1 and Jaccard statistics for simulated data. (upper) Average F1 score for each dataset and
method. Bold entries indicate statistically signi�cant improvement over cellReg. Italicized entries indicate
statistically signi�cant improvement over CaImAn. Spatial indicates SCOUT without temporal similarity
metrics. (lower) Average Jaccard similarity accessing the ability of each method in identifying neurons
for each dataset. Bold entries indicate statistically signi�cant improvement over cellReg. Italicized entries
indicate statistically signi�cant improvement over CaImAn.

di�erence with more than two sessions per recording), using the parameters giving the best

average F1 score for each method (Figure 3.4 F). ANOVA shows signi�cant di�erences

between average JS divergence across methods (p = 4.5 x 10-9, F = 22.9), with post hoc

comparisons exhibiting lower average JS divergence for SCOUT compared with CaImAn (p

< 2.5 x 10-9; JS: SCOUT: 0.051 +/- 0.003, cellReg: 0.057 +/- 0.003, CaImAn: 0.083 +/-

0.005). Computing the ratio of neurons tracked through all sessions for each method to the

ground truth, which demonstrates comparable results for all methods when considering the

statistic |(1− ratio)|(Figure 3.4 G).

We next compute Jaccard similarity, JS distribution similarity and percentage of tracked

neurons after removing 30% of neurons from each session (and the associated ground truth
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cell register), to determine whether signi�cantly reducing the available neurons per session

a�ected cell tracking quality. This analysis shows SCOUT exhibits signi�cantly higher sim-

ilarity with the ground truth distribution compared with cellReg and CaImAn (ANOVA: F

= 22.8, p = 4.9 x10-9, pairwise comparisons p < 0.03), while exhibiting lower over-detection

rates of neurons through all sessions when compared with cellReg (ANOVA: F = 5.9, p

= 3.6 x10-3, pairwise comparisons p = 0.020, statistic abs(1-ratio)) (Figure A.3 A-C).

This implies that inferred tracking registers produced by SCOUT exhibit close similarity to

ground truth distribution on similar scales with other methods, while also being robust to

neuron deletion.

Next, we repeatedly perform cell tracking with SCOUT using the spatial metrics and a single

temporal metric on the Non-Rigid 1p and Individual Shift datasets, as these datasets exhibit

signi�cant variation upon inclusion of temporal metrics. On the Non-Rigid 1p dataset,

inclusion of each individual additional temporal metric results in higher average F1 scores,

with similar results on the Individual Shift dataset, except for the SNR metric, which is

expected as no background noise is simulated in this dataset (Figure A.1 D-F, A.2

D-F). Combining temporal metrics increases the average F1 score in most instances.

Finally, we run speed tests (24 core, 128 GB pc, 2.2 Ghz processor) by duplicating simulated

data sessions to produce recordings with up to 30 sessions. We compare SCOUT, cellReg

and CaImAn on 50 simulated recordings. Both cellReg and SCOUT exhibit quadratic time

increase in the number of sessions (Figure A.3 D), compared with linear time increase

for CaImAn. However, the quadratic coe�cient for SCOUT is lower than for cellReg, and

SCOUT signi�cantly outperforms cellReg in terms of runtime, while maintaining comparable

results with CaImAn for recordings of length up to 20 sessions.

Using both F1 and Jaccard metrics, SCOUT scores higher than alternative methods on

the Non-Rigid 1p and Individual Shift datasets. Jensen-Shannon divergence shows that the

distribution of identi�ed neuron cluster sizes is signi�cantly closer to the ground truth using
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inferred cell registers from SCOUT, while the percentage of neurons tracked through all

sessions is largest with SCOUT. Inclusion of temporal metrics increases average F1 score,

and shows SCOUT typically runs faster than cellReg, with comparable speed to CaImAn

for recordings of length up to 20 sessions.

3.6 SCOUT successfully tracks cells on in vivo multi-

session recordings

We evaluate SCOUT on in vivo 1-photon recordings (Figure 3.1 E) taken from the visual

cortex, prefrontal cortex, and hippocampus of mice consisting of 4-7 sessions (4,000 � 9,000

frames each) from each region, compared with annotated cell registers.

On the visual cortex dataset, optimal parameters (among those tested) give F1 scores of

0.736 and 0.590, tested on SCOUT with and without temporal metrics, respectively. This

resolves to PDR of 78.0% and 61.0% and FDR of 30.3% and 42.9% (Figure 3.6 A, Figure

A.4 A). On the prefrontal cortex dataset, optimal parameters give F1 scores of 0.701 and

0.468, with PDR 71.1% and 47.4% and FDR 30.8% and 53.9% (Figure 3.6 B, Figure

A.4 B). On the hippocampus dataset, optimal parameters give F1 scores of 0.481 and 0.367

with PDR of 58.5% and 35.4% and FDR of 59.2% and 62.0% respectively (Figure 3.6

C, Figure A.4 C). Average F1 scores and PDR with SCOUT (0.639 +/- 0.080, 69.2%

respectively) exceed those of cellReg (0.431 +/- 0.107, 48.9%) and CaImAn (0.368 +/- 0.123,

34,0%), and individually exceed both methods on all 1-photon datasets.

The three 2-photon recordings (Figure 3.1 F) consist of three sessions, one taken from the

VISl (Figure 3.7 A, Figure A.5 A), the VISrl (Figure 3.7 B, Figure A.5 B) and

the VISp (Figure 3.7 C, Figure A.5 C). Optimal parameters give average F1 scores and
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Figure 3.6: Inclusion of temporal metrics boosts cell tracking performance on 1-photon in vivo data. A-C:
(Parameter Scores) F1 scores (y-axis) computed based on human annotation for in vivo 1-photon datasets
obtained from the visual cortex (A, 7 sessions), prefrontal cortex (B, 7 sessions), and hippocampus (C,
4 sessions). Violin plots with median values constructed using F1 scores across parameters after outlier
removal and computed using kernel density estimation. Asterisks indicate statistical di�erences with SCOUT
(ANOVA, Bonferroni). (Session Projection) Maximum projection of the �rst session of each recording from
all datasets. (Session 1-3) Identi�ed neurons from cellReg and SCOUT overlaid on max projection of the
human annotated neurons tracked through all sessions.

PDR for SCOUT (0.875 +/- 0.025, 91.1% with temporal metrics, 0.862 +/- 0.024, 89.5%

without temporal metrics), cellReg (0.816 +/- 0.038, 85.2%), and CaImAn (0.803 +/- 0.04,

78.0%).

Together, SCOUT exhibits F1 scores ≈ 50% higher than cellReg and CaImAn on 1-photon

data, while median place �eld consistency for neurons identi�ed exclusively by SCOUT is

comparable to consistency of neurons identi�ed by both methods on the three additional

hippocampus datasets, and signi�cantly lower than the consistency between random pairs

of neurons. While the di�erence is smaller, SCOUT also produces top ranked F1 scores on

the 2-photon dataset.
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Figure 3.7: SCOUT accurately tracks neurons across 2-photon in vivo recordings. A-C: (Parameter Scores)
F1 scores (y-axis) computed based on human annotation for in vivo 2-photon datasets obtained from the
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3.7 Testing performance via place cell stability analysis

We test SCOUT and cellReg on three additional 1-photon recordings of the hippocampus to

verify cell tracking results via place �eld stability. These recordings consist of four sessions

with 10,795 frames each (at 30 hz), taken as mice run on a 1-meter linear track. Sessions

are extracted via CNMF-E, and both SCOUT and cellReg are used to compute cell registers

for each recording set, using the best average parameters on the 1-photon data from the

previous analysis. For each neuron in each session, information scores and place �elds are

computed, and information percentiles are computed via random shu�ing of the position
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vector.

To reduce noise, we remove all register entries consisting of neurons identi�ed in only two

sessions and analyze results for all identi�ed cell pairs (e.g. a cell tracked through four

sessions produces 6 identi�ed cell pairs). We place identi�ed cell pairs in three categories:

cell pairs identi�ed by both methods, cell pairs identi�ed by SCOUT, and cell pairs identi�ed

by cellReg. This results in an average of 558 +/- 208 pairs identi�ed by both methods, 327

+/- 182 pairs identi�ed exclusively by cellReg, and 122 +/- 48 pairs identi�ed exclusively by

SCOUT. The high variance is due primarily to fewer extracted neurons in the third recording.

For each cell pair, we compute statistics for average JS divergence between place �elds, per-

centage of identi�ed cells with JS divergence below assignment threshold (i.e. consistent

place �elds), and the percentage of identi�ed neurons in which either place cells are matched

with place cells, or non-place cells are matched with non-place cells. We analyze results

at a variety of information percentiles (range [0.95,0.99]) and information score thresholds

(range [0.5,1.5]). For each threshold, we restrict analysis to only neuron pairs in which at

least one member exhibits information percentile or information score exceeding the spec-

i�ed thresholds. Prior to analysis, we verify for each recording the average JS divergence

rate for identi�ed cells by both SCOUT and cellReg is signi�cantly lower than the average

between random cell pairs (p < 2.6 x 10-9, two-sample t-test) implying a signi�cant number

of identi�ed neuron pairs exhibit place �eld stability across sessions (Figure 3.8 A).

Computing statistics for average JS divergence between place �elds, percentiles exceeding

0.95 and information score thresholds in range [0.8, 1.5] result in statistically lower JS di-

vergence between SCOUT exclusively identi�ed place �elds compared with those identi�ed

exclusively by cellReg (min p = 0.0079, max p = 0.0488, Linear Mixed E�ects model with

�xed cell tracking method grouped by recording, Figure 3.8 B). This range of values

matches a previous study [48] that suggests a percentile threshold of 0.95-0.99 of place cells,

while experimentation showed that neurons with information score threshold exceeding 1.0
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Figure 3.8: Testing cell tracking results using place �eld stability. A: Sample place �elds ordered from left
to right (indexed via the �rst session) after normalization by peak intensity. B: Box plot of JS divergence
(y-axis) for each recording computed for identi�ed neuron pairs by each method in which either one neuron
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recordings) of the fraction of identi�ed cell pairs (y-axis) which exhibit pairwise JS divergence lower than
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(top), or a hard threshold of 1.3 (bottom). D: The weighted average (across recordings) of the fraction of
identi�ed cell pairs (y-axis) which consisted of either both place cells or both non-place cells for information
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showed strong spatially localized �ring activity.

Setting a threshold of 0.95 for percentile and 1.3 for info score threshold, we compute the

percentage of identi�ed neurons with JS divergence below an acceptance threshold (range

[0.025,.1]) for neuron pairs containing place cells, a range that typically implies strong place

�eld overlap. For percentile and information score thresholds, SCOUT exhibits a larger

fraction of identi�ed neurons below the acceptance threshold across the entire range when

compared with cellReg (Average Di�erence, Percentile: 0.086 +/- 0.065, Threshold: 0.098
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+/- 0.06, mean +/- std. error, Figure 3.8 C). Similarly, the fraction of SCOUT identi�ed

pairs is more likely than those identi�ed by cellReg to identify place cells with place cells (and

non-place cells with non-place cells) across sessions (Average Di�erence across datasets and

thresholds, Percentile: 0.150 +/- 0.106, percentile threshold range = [0.95,0.99], Threshold:

0.068 +/- 0.070, information score threshold range=[0.5,1.5], mean +/- std. error, Figure

3.8 D), though the threshold result is biased by the third recording.

In summary, neuron pairs identi�ed exclusively by SCOUT exhibit higher average place �eld

similarity, while also exhibiting a larger fraction of pairs with highly similar place �elds.

Additionally, SCOUT identi�ed pairs are more likely to lie within the same categorization

of either place cells or non-place cells. While at the speci�ed thresholds, SCOUT identi�ed

fewer neurons than cellReg, the average JS divergence for SCOUT pairs identi�ed by SCOUT

is lower than cell pairs identi�ed by both methods (in two out of three recordings), while the

opposite is true for cellReg (Figure 3.8 B). This indicates the signi�cant possibility of a

higher false identi�cation rate for cellReg as is seen in the previous 1-photon datasets.

3.8 E�ects of parameter selection on cell tracking results

Computing mean normalized standard deviation of F1 scores on 1-photon in vivo datasets

(after outlier removal) gives (0.067 +/- 0.0072, 0.066 +/- 0.0087, 0.090 +/- .0144; mean +/-

std. error), for SCOUT, cellReg, and CaImAn respectively. Computing mean normalized

standard deviation on the 2-photon datasets gives (0.041 +/- 0.0098, 0.032 +/- 0.012, 0.12

+/- 0.11) for SCOUT cellReg, and CaImAn respectively. This suggests comparable parame-

ter stability between SCOUT and cellReg, with somewhat higher variability using CaImAn.

Computing the percentage of SCOUT parameters producing higher F1 scores than the max-

imum produced by CaImAn and cellReg on each dataset gives an average of 99.1 +/- 0.9%
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on the 1-photon dataset, and an average of 48.7 +/- 20% On the 2-photon datasets.
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Figure 3.9: SCOUT F1 scores by parameter for each dataset. Heatmaps denote F1 scores across parameters.
Each parameter in the All rows obtained using SCOUT with all metrics, while the Spatial rows use only
spatial metrics. Each box contains vertical parameter changes corresponding to the max_dist parameter, and
horizontal parameter changes, corresponding to the min_prob parameter. The horizontal dimension across
boxes corresponds to the chain_prob parameter. A: SCOUT F1 score averages for the (top to bottom)
Gaussian, Non-Rigid 1p, Non-Rigid 2p, and Individual Shift datasets. B: SCOUT F1 scores for 1-photon
recordings labeled as (top to bottom) visual cortex, prefrontal cortex, and hippocampus. C: SCOUT F1
score for 2-photon recordings from the visual cortex labeled as (top to bottom) VISl, VISrl, VISp. Parameter
ranges discussed in text labeled in red.

We compute the ratio of F1 score to maximum F1 score for each method and dataset across

all parameters. Higher values indicate results closer to the optimum. Averaging across

datasets, we �nd that SCOUT (median 0.921) exhibited signi�cantly higher ratios than

cellReg (median 0.851) and CaImAn (median 0.852) (p < 1.2 x 10-5, Wilcoxon rank sum

test), implying SCOUT produces highly consistent results across parameters when averaging

across datasets. Only 11% of cellReg parameters, and 0% of CaImAn parameters produce

F1 ratios exceeding the median SCOUT value. We also identify a parameter range (labeled

on Figure 3.9 A-C) that consistently produces strong results (average 0.950 +/- .0014 F1

ratio to optimal). These parameters emphasize a low threshold for individual identi�cation

of neurons across sessions (min_prob, range 0.55-0.75), combined with a high threshold for

the acceptance of identi�ed clusters (chain_prob, 0.75).

48



In summary, SCOUT exhibits comparable or higher parameter stability compared with other

methods, while consistently returning top F1 scores. On the 1-photon recordings, virtually

every tested parameter choice produces higher F1 scores than competing methods, while

nearly 50% of 2-photon results also outperformed the topline CaImAn and cellReg F1 scores.

Finally, averaging results across all datasets, the median F1 score (across parameter choices)

exceeds 90% of the maximum, and we identify a parameter range on which average F1 scores

consistently exceed 95% the maximum.

3.9 Conclusions

SCOUT introduces a spatial �lter that signi�cantly decreases the false discovery rate of neu-

rons in 1-photon recordings over CNMF-E. This enables automated extraction of high quality

neurons even in low SNR environments, which is critical when performing experiments that

can generate hundreds of recordings.

The cell tracking module of SCOUT exhibits robust performance on all the tested datasets,

generally exceeding the performance of commonly used methods such as cellReg and CaImAn

in simulated situations involving signi�cant spatial/morphology shifts or high noise levels,

and in vivo recordings in general. SCOUT retains strong performance even in the presence

of confounding variables such as non-rigid spatial shifts and poor signal extraction quality

by incorporating temporal metrics, a novel clustering algorithm, and consensus clustering.

While SCOUT was initially motivated for use with 1-photon recordings, we also introduce

a possible extension of the spatial �lter for two photon data, and demonstrate robust cell

tracking performance on 2-photon recordings, though the inclusion of temporal metrics here

does not signi�cantly improve results on the tested data. The signi�cant di�erences between

1-photon and 2-photon results are due to the stronger signal quality in 2-photon data, which
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may reduce the discriminatory power of some temporal metrics such as SNR in this context.

SCOUT exhibits strong performance even on recording sessions impacted by experimental

conditions. Application of ketamine, NRG1, or CNO as is present in the 1-photon datasets

produces signi�cant impact on the signal intensity of individual neural signals [28, 46], but

inclusion of temporal metrics still signi�cantly improves overall cell tracking results results.

Testing SCOUT on 1-photon hippocampal recordings, we have analyzed cell tracking output

using place �eld stability as measured by three separate metrics for which SCOUT produces

strong performance. Neuron pairs identi�ed exclusively by SCOUT exhibit lower JS diver-

gence between place �elds, a higher average percentage of SCOUT identi�ed neuron pairs

exhibited consistent place �elds, and a higher average percentage of SCOUT identi�ed neu-

ron pairs are of the same type (place cell to place cell or non-place cell to non-place cell)

when compared with cellReg.

SCOUT quickly identi�es neurons across multiple sessions, with cell tracking taking less than

10 minutes for cell tracking across up to 30 sessions (depending on the number of neurons).

Increasing the number of sessions or neurons per session can signi�cantly increase the run-

time, which can be addressed using a combination concatenation-cell tracking methodology,

or by thresholding the neuron footprints to reduce spatial overlap, thereby decreasing the

component size when clustering.

In conclusion, SCOUT shows strong extraction and cell tracking performance on both sim-

ulated and in vivo datasets. We have shown that inclusion of a spatial �lter signi�cantly

lowers false discovery rates, while inclusion of temporal metrics when identifying cells across

sessions signi�cantly increases the quality of cell tracking. We have also shown that the

cell tracking module of SCOUT exhibits strong parameter consistency across a relatively

large parameter range across all datasets. We foresee that the new concepts and techniques

used in SCOUT will improve capabilities for long term cell tracking related experiments,
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particularly in complex situations where SCOUT retains strong performance compared with

alternative methods.
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Chapter 4

Chapter 4: SCOUT applications

We now present several applications which utilize SCOUT. This chapter is divided into two

sections. First, we consider analysis of several long term contextual discrimination recording

sets for which SCOUT was able to track neurons, but cellReg was not. Then, we develop a

machine learning algorithm used to quantify the e�ects of experimental variation on neuron

�ring.

4.1 Contextual Discrimination Experimental Overview

We consider a contextual fear discrimination experiment1 [49] in which mice are trained to

discriminate between a context (visually distinguishable region) in which shock is applied,

and a control context. This experiment proceeds through the standard stages of habituation

(no shock in either context), learning (no shock in control context), extinction (no shock in

either context), and relearning (no shock in control context).

1Project envisioned by Dr. Xiangmin Xu and Dr. John Guzowski. Primary data production by Dr.
Steven Grieco
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As the hippocampal CA1 is integral for the creation of integration of short and long term

memories, 1-photon recordings were taken from the hippocampi of freely moving mice

throughout the course of the experiment. A previous study in rats have indicated that

distinct orthogonal neuron ensembles activate in the separate contexts after learning, and

that this is integral to memory processing, as inducing in�ammation in the CA1 reduces

orthogonalization and decreases discrimination between contexts [50].

Mice were trained to di�erentiate between two similar, but visually distinct, square open

�eld environments; miniscope imaging of hippocampal CA1 excitatory neurons was simul-

taneously conducted in behaving mice during the tasks (Figure 4.1 A-B). Mice were

habituated for a 12-14 day period (with recordings taken in the �nal 3-5 days), in which

they were allowed to freely explore each environmental context daily. At the end of this

habituation phase, context discrimination training started by introducing a mild foot-shock

stimulus in the stimulus context but not in the control context, which continued for 12-14

days. Mice learned to freeze as a contextual discrimination response in anticipation of the

stimulus (Figure 4.1 C). Subsequently, a 12-14 day extinction phase in which no shock

was applied led to reduction in discrimination and freezing behavior. We then reinstated

the stimulus to study neural response during reacquisition of the discrimination behavioral

response, for 12-14 days.

Each day, individual mice were initially introduced to a random context (either control

context or stimulus context), followed by 20 minutes in a neutral context, after which the

mice were introduced to the remaining context. Recordings were taken in both contexts.

Mice spent 3 minutes in the control context, and 5 minutes in the stimulus context. The

recordings from the stimulus context were split into a 3-minute baseline recording, and a

2-minute stimulus recording, in which a 1s 0.25-0.5 footshock was applied, 30 seconds into

the stimulus recording. During the habituation and extinction phases, no stimulus was

delivered. Freezing and neural responses in the stimulus context were analyzed from the
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3-minute baseline recordings. Cages were thoroughly cleaned between sessions involving

di�erent mice. Mouse freezing behavior, as evidenced by a lack of movement except that

necessary for respiration, was manually measured o�ine from video recordings of the session2.

4.2 Longitudinal analysis of contextual discrimination as-

sociated ensemble neuronal dynamics

Using SCOUT, we obtain improved population cell tracking (when compared with cellReg)

of behavior-associated hippocampal neural ensemble dynamics at single-cell resolution for

longitudinal analysis. Neurons were tracked through recordings from control and stimulus

(both pre- and post-shock) recordings . In total, we tracked an average of 135 ± 21 neurons

extracted per mouse across 5 mice, throughout the contextual discrimination experiment that

lasted approximately two months, with between 36 and 44 recording sessions. Comparatively,

cellReg detected an average of 77 ± 10 neurons, not including two mice for which cellReg

returned no tracked neurons.

Context-dependent neural activity at the global level (calculated as the average area-under-

curve (AUC) value across all neurons for each recording session) was exhibited in three of the

mice (Figure 4.1 D-E, (Figure 4.2 F). Two mice exhibited higher daily average neural

activity in the stimulus context (not including footshock), compared to the control context,

and one mouse exhibited increased daily average neural activity in the control context. For

these mice, activity was higher in their preferred context 75.6 ± 4.3% of the time, a signi�cant

deviation from the average (p = .02, Welch's t-test). For the remaining experimental mice,

average neural activity did not show signi�cant preference for either context.

We identi�ed novel neural ensembles that exhibited a sustained (over 3-5 days) increase

2work by Rachel Crary
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Figure 4.1: Longitudinal analysis of hippocampal ensemble activities during contextual discrimination ex-
periments A: (top) Visualization of the stimulus and control contexts, as well as the experimental process.
Mice are placed in either the control or stimulus context for either 3 or 5 minutes (depending on context and
experimental phase), then transitioned to a neutral context for twenty minutes, before being placed in the
opposite context for another 3 or 5 minutes. (bottom) Visual representation of contextual discrimination
procedure. After habituation (hab.), the mouse receives a single mild footshock in the stimulus context
during two distinct periods (learning and relearning) separated by an extinction phase. In the stimulus
context, the brief footshock is administered 3 minutes after being placed in the context. In the control
context, no shock is administered. In panels c and d, freezing levels are measured for the 3-minute period
after introduction to the context, and before the administration of footshock. B: Max projection image (left)
and spatial footprints of extracted neurons (right) by SCOUT with data collected from a long-term contex-
tual discrimination experiment for an individual mouse. For this mouse, 168 neurons were tracked across
38 sessions. C: During initial phases of training with footshock, mice exhibit behavioral generalization by
increasing freezing in both contexts. After several days of training, mice exhibit contextual discrimination,
which is evidenced by higher proportions of time freezing in the stimulus context as compared to the control
context. During extinction, freezing decreases in both contexts, but shows a greater reduction in the stim-
ulus context. Similar qualitative results occur during relearning (reinstatement) when footshock is applied
again speci�cally in the stimulus context. Data shown is the mean time mice spent freezing in the �rst 3
minutes after placement in the respective context averaged for six mice (error bars indicate standard error
of the mean). D: Each data point represents the area-under-curve (AUC) of the extracted neural calcium
signals, averaged over all extracted neurons, for both contexts, for the speci�ed day. Calculated AUC from
the stimulus context does not include the time points after application of stimulus. Average neural activity
indicates signi�cant neural discrimination between contexts throughout the experiment. This e�ect is noted
in three of the �ve mice. E: Freezing rates for a single mouse in stimulus (red) and control (blue) contexts,
are compared with the mean cell activity across active neurons in the learning and extinction phases of the
experiment (grey and black, respectively). Note the relative increase of neural activity during the peak of
the acquisition and extinction phases, where changes in behavioral responses are most prominent.
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Figure 4.2: F: (top row) Each plotted point represents the smoothed daily area-under-curve (AUC) of the
calcium signal trace for a single neuron. Here we plot daily AUC for a subset of neurons that exhibit increased
activity during di�erent stages of the contextual discrimination experiment. This panel demonstrates context-
dependent neural activity changes observed across 3 of the mice (raw (unsmoothed) daily AUC is plotted
in Supplementary Fig. 3B for reference). The data shows a clearly distinguishable increase in distributed
activity with learning, extinction, and relearning. (bottom row) Raster plots of individual calcium signals
for the corresponding neuron subsets show visually distinguishable increases in activity at the corresponding
times above. Each row of the heatmap indicates the signal intensity for a single neuron, throughout the
portion of the experiment indicated at the bottom. Signals were normalized to have the same maximum
intensity for visualization purposes.

in activity followed by return to a baseline level. Across the three mice exhibiting global

context preference, 32 ± 5.5% of all neurons exhibited stimulus-context dependent response

changes in at least one context through the course of the experiment. At the learning

stage, 16.7 ± 5.4% of the cells exhibited increased activity in either the stimulus context

(prior to footshock) or control context within 1-5 days of imposition of shock, descending to

baseline levels before the next phase of the experiment (Figure 4.2 F, left, top and bottom

panels), with 13.2 ± 1.6% and 8.9 ± 2.3% exhibiting increased activity in the extinction and

relearning phases (Figure 4.2 F, middle and right), starting 1-5 days after experimental

phase change, respectively.

During learning, 7.7 ± 4.0% of neurons exhibit increased activity (in at least one context)
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exhibit increased activity in both contexts, while only 4.8 ± 2.6 of neurons exhibiting in-

creased activity during extinction exhibit increased activity in both contexts. A proportion

of active neurons during extinction (<10%) exhibit increased activity across contexts or

across learning phases.

4.3 Evidence for Localization of Cell Response after In-

troduction or Removal of Stimulus

Activity for each neuron (in each session) is computed via AUC (area under curve), which is

the sum of the �uorescence trace (C) normalized by the length of the session. An initial K-

means clustering applied to daily neural activity implied the existence of a sustained activity

increase occurring within 1-5 days of the initiation of the learning, extinction, and relearning

phases in a signi�cant subset of neurons, in both contexts, for nearly all mice. In order to test

this theory, and demonstrate that directly after introduction and removal of stimulus were the

only three probable stages in the learning process where a signi�cant, sustained increase in

activity occurs among a large subset of extracted neurons, we created a comparison template

of length 11 days, with behavior similar to the detected behavior (namely increase in activity

over four days, followed by 3 days holding steady, followed by decrease in activity). The

number of neurons exhibiting similar activity patterns (based on a correlation of 0.65 with

the template) starting at each day of the trial was counted, and signi�cantly more neurons

followed this activity pattern within two days of the imposition or removal of stimulus, than

the average at other time periods in the experiment, indicating that the responses were

stimulus dependent. Modifying the template in terms of activity rate increase and sustained

activity intensity did not signi�cantly alter the results, though decreasing the template length

resulted in the detection of additional neurons with characteristic activity starting at each

day, diluting the uniqueness of the e�ect.
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4.4 Neural network models for place �eld decoding

We now review the fundamental arti�cial neural network model, some variations, and de-

scribe the motivation and application of neural networks for place �eld decoding.

4.4.1 Biological motivation

Arti�cial neural networks were (as the name implies) originally motivated by the unfolding

understanding of biological neuron communication [51]. Initially, the fundamental operating

principle was �neurons that wire together, �re together,� [52] that is correlated activation

of pre- and post-synaptic neurons strengthens the connection, making activation of the pre-

synaptic neuron more likely to trigger an action potential in the post-synaptic neuron.

This motivates the construction of the arti�cial neural network, a graphical mathematical

model composed of nodes (referred to elsewhere as neurons, we retain nodes temporarily to

distinguish between arti�cal and biological neurons) and weights. The nodes are organized

in layers, and each node performs a non-linear transformation of a unique weighted aggregate

of information passed from the previous layer. A fundamental di�erence between arti�cial

neural network and the biological analog is the sequential nature of the ANN. That is,

information is passed layer by layer through the ANN. Even adding recurrent connections

merely results in a discretization of a biological network. Attempts to circumvent this issue

such as the spiking neural network [53] have not proven popular due to issues with training

and interpretation.

The �nal biological motivation for the ANN is the concept of the activation function. Recall

that neurons exhibit a non-linear behavior in activation. When a neuron receives su�cient

excitatory input to exceed a threshold (unique to the neuron), the neuron rapidly depolarizes

producing an action potential that propagates down the axon facilitating further communi-
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cation. However, in this instance, nature betrays us. While the necessity for a non-linear

activation function is obvious (otherwise neural networks are just linear functions), the orig-

inal non-linearities designed to mimic action potential (perceptron, sigmoid) have proven

inferior to alternatives such as the ReLU (Recti�ed Linear Unit) [54], a function that re-

turns zero if the input is negative, and the identity if the input is positive. Of course, much

research has gone into developing new and improved non-linearities (leaky-ReLU, ELU [55]

among others), but the ReLU is still commonly used today.

From this background we may now de�ne the arti�cial neural network. This model consists of

sequential layers of nodes, and associated weights. Each node is given as a linear combination

of values (plus a bias term) outputted from the previous layer, followed by application of the

activation function. Explicitly, for layer j let x denote the output of the previous layer, σj

denote an activation function, Wj an n×m matrix, where n is the number of nodes in the

previous layer, and m the number of nodes in the current layer, and bj a constant vector of

length m. The output of this layer is given by σ(Wjx + bj), where σ acts elementwise on

the output vector.

The �nal core concept of the ANN is the loss function. This is a scalar valued function

computes the di�erence between the true output y and the ground truth output ŷ. De�ning

this loss function as L(y, ŷ), L should take a minimum value (typically zero) when y = ŷ.

Generally, the loss function should be di�erentiable (almost everywhere), which enables us

to compute derivatives ∂L
∂θ

for all parameters θ in the network (primarily weights and biases).

This enables parameter training via gradient descent [56] or variants thereon (momentum,

ADAM [57]).

One addition to the model is regularization. Neural networks have a high model capacity,

and can su�er from over�tting the training data (e.g. the model becomes sensitive to small

variations in training that are speci�c to the training set, preventing generalization). This

can be mitigated via regularization. Common regularization techniques include weight pe-
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nalization (penalizes high magnitude weights [58]), dropout (replaces a subset of inputs at

each layer by zeros, which reduces dependence on individual inputs [59]), and batch nor-

malization (a method which z-scores the inputs to each layer followed by a learned a�ne

transformation before application of the activation function [60]).

4.4.2 Why neural networks?

Why use neural networks? First, neural networks have high capacity. Second, neural net-

works have become increasingly cheap and easy to train. Third, neural networks are extraor-

dinarly modular.

Neural networks with just a single hidden layer are capable of approximating any Borel mea-

surable function from one �nite dimensional space to another, as long as there are su�cient

nodes available3 [61]. Thus, neural networks form an easily constructible and trainable class

of universal approximators.

Both forward and backward operations (required for training) are extraordinarily cheap,

consisting entirely of matrix multiplication, addition, and nearly trivial activation functions.

The advent of GPUs, designed for graphical processing, provided an ideal hardware for

the parallel computations required for neural network training. Thus, training models with

millions of parameters became feasible. The success of deep learning (neural networks with

large numbers of hidden layers) in image classi�cation and other �elds made the technique

both pro�table and popular.

Finally, neural networks are extremely modular. In many instances, it is possible to directly

encode additional information or desired features into the model either through its archi-

tecture or through the loss function. Convolutional neural networks (inspired by analysis

3In practice, single layer neural networks tend to over�t, and the number of required neurons may be
exponentially larger than required for deep networks.
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of animal visual circuits [62]) are essentially an architectural modi�cation of the traditional

ANN incorporating shared weights for individual image regions. Small modi�cations of the

loss function and architecture can turn a neural network into a generative model [63]. This

modularity is critical to quickly developing models which incorporate biological or practical

features.

4.4.3 Neural network model for place cell decoding

Recall that place cells �re preferentially when an animal is in a certain region (the place

�eld). Therefore, it is possible to decode an animals location from the neural signals of place

cells. Previous methods have utilized Bayesian probabilistic models [64], but here we develop

a neural network model for position decoding (a similar method was developed concurrently

[65]).

Given data in the form nneurons × ntimepoints consisting of spike trains for each neuron (in

practice, the deconvolved spikes si(t) in the CNMF-E model), we �rst split the data into

train and test sets. As our data is provided as a time series, the test set must consist

of a continuous segment of time points. Generating a random index, we select a window

consisting 10 − 20% of the total length of the spike trains immediately following the index

as the test set. The train set consists of the remaining data, excluding a 5 second window

around the test set to ensure train and test sets are independent.

Next, we infer spiking probabilities from the given spike trains, as the neural network model

requires continuous data for training. We tested multiple methods for inferring probabilities,

including Gaussian �lters, moving windows, and exponential approximations . The training

set is then normalized (e.g. z-scored) and the parameters saved for application to the test

set.
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We next construct modi�ed train/test sets by selecting a window around each time point

and utilizing all timepoints within that window as input to the neural network (Figure

4.3 A). In e�ect, this creates input matrices of size (2win_length+ 1)nneurons × train− α,

where win_length is the window length, train are the lengths of the train indices (replace

train with test for testing) respectively, and α indicates the amount of data for which a time

window is not available. Finally, we train the model to identify position based on the given

spike trains, using the mean absolute error loss function (L(y, ŷ) = 1
N

∑
|yj − ŷj|).

4.4.4 Model caveats and extensions

In practice, place cells are not exclusively or perpetually activated by location. Therefore,

position decoding is muddled when animals exhibit complicated behaviors. Non-moving

animals, engaging in grooming or feeding activities, do not always generate characteristic

place cell behavior, which can interfere in model training and interpretation. We follow the

standard practice of removing neural signal data when the mouse is receiving water rewards

(e.g. at the ends of the track), and subset the remaining data based on thresholding velocity

[25]. Additionally, as our experiment was run on a linear track, only one coordinate was

predicted as output of the model.

The model itself can be modi�ed for various ends. Among other aspects, we have considered

decoding position using a one sided window so as to infer position based only on previously

seen data. We have considered variants of the model such as convolutional neural networks,

a model which provides additional structure by utilizing shared weights (in this case for the

�rst layer). This equates to utilizing a shared aggregation/activation acting on the individual

windows of data for each neuron, followed by passing the data to a standard ANN. We also

implemented a recurrent neural network (RNN) which is more suitable for time series learning

as it incorporates a recurrent state computed based on the previous data in the time series,
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which is combined with the current input to decode position.

We also implement methods for sensitivity analysis. In general, place cells do not uniquely

encode position and have overlapping place �elds. Therefore, only a small subset of neurons

are required for position decoding. We considered gradient based sensitivity, which utilizes

the average gradient ∂y
∂xi

magnitude to determine the importance of each input value to the

overall result. Due to the complexity of the neural network, such analyses can prove inaccu-

rate, so we also implemented a leave one out strategy, in which the model is consecutively

trained with a subset of neurons missing to determine the importance of each input. Going

one step further, after training at each stage, we remove the least important neuron (e.g.

the neuron whose removal caused the smallest reduction in accuracy) until the accuracy was

reduced by a certain factor, thus identifying a minimum subset of neurons to predict position

throughout the track (an average of 40-50 neurons was required to maintain an R2 coe�cient

of determination [66] at 93% of the maximum.)

4.5 Applications of the model to neural circuit modeling

4.5.1 Trisynaptic circuit

In addition to the place cell structure, the hippocampus also exhibits a clearly de�ned neural

circuit. In other words, the various structures of the hippocampus can be viewed as nodes

in a directed graph, in which edges indicate one-way communication. The primary neural

circuit in the hippocampus is called the trisynaptic pathway [67], which begins with the

entorhinal cortex signaling to the dentate gyrus, which signals to the CA3 hippocampal

region, then to the CA1 region, at which point signal is passed through the subiculum, and

back to the cortex (Figure 4.3 B). While the trisynaptic pathway is typically viewed as
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a unidirectional circuit, this is explicitly a high level view, and non-canonical connections

(such as the CA3 recurrent connections [68]) signi�cantly in�uence the functionality of the

circuit.

Because the base level structure for spatial memory encoding is so simple, and because the

hippocampus displays a well-de�ned neural circuit, place cells have been a preferred cell type

for experimentation involving spatial learning and memory.

Recent studies have identi�ed a signi�cant non-canonical back projection of signal from the

subiculum to the CA1 [69]. The functional role of this communication pathway is largely

unexplored. We �rst apply monosynaptic rabies tracing to verify the existence of the subic-

ula back projection. The direct path from the visual cortex to CA1-projecting SUB neurons

and their output to the CA1 and perirhinal cortex strongly suggest that one of the roles

for this circuitry may be to provide critical information necessary for conjunctive object�

place representations in the hippocampus and the perirhinal cortex. To test this, we used

DREADD (designer receptors exclusively activated by designer drugs [70])-mediated inacti-

vation of CA1-projecting excitatory SUB neurons to determine whether they are necessary

for object-location learning behavior. This enabled us to selectively inhibit back projecting

neurons in the subiculum via admission of Clozapine N-oxide (CNO). At this point, we per-

formed 1-photon calcium imaging of the CA1 neurons, pre, mid, and post CNO treatment,

while freely moving mice sought water rewards at the end of a 1-meter linear track. Our

primary question is whether deactivation of the subicular neurons caused a fundamental re-

arrangement in the way the track location was encoded in the brain, and whether this e�ect

(if present) was permanent.

64



4.5.2 Neural network identi�es functional variations due to altered

neural circuits

We consider and experiment consisting of three segments, a control (Ctrl) segment (2 ses-

sions), a CNO segment (1 session) in which the subiculum back projection is deactivated via

DREADDs, and a Post-control (Pctrl) segment (2 sessions) recorded 7-10 days after CNO

administration. A single Control and Post-control session are selected for most computa-

tions. Neurons are recorded from the hippocampal CA1 in each individual session, followed

by tracking through all sessions, for the purpose of identifying individual signaling variations

consequent to CNO adminstration.

Preliminary analysis4 identi�es the place cells, place �elds, and the correlation of place �elds

between control and CNO/Post-control sessions, based on the place cells identi�ed in the con-

trol sessions (Figure 4.3 C). Both Ctrl vs CNO and Ctrl vs Pctrl show similarly low place

�eld variation (with expected higher variation when position is randomly shu�ed) (Figure

4.3 D), indicating that little to no remapping of place �elds occurs after deactivation of

backprojecting neurons.

We compute the information content5 of each neuron, and compute z-scores via random-

ization of positiona, and select a threshold for place cell identi�cation (1.96). We consider

information score di�erences between Ctrl and CNO sessions, and Ctrl and Pctrl sessions.

This divides the neurons into 4 groups, Bit Decrease, Bit Increase, Un-recovered and Un-

assigned (Figure 4.3 E), based on the pairwise comparisons between sessions (Bit Increase

neurons exhibit higher information content in the CNO session compared with Ctrl and Pc-

trl, Bit Decrease shows the opposite e�ect, Un-recovered do not exhibit consistent Ctrl and

Pctrl behavior, Un-assigned did not show signi�cant changes between sessions).

4The following two paragraphs as well as Figure 4.1 C-G produced primarily by co-author Dr. Suoqin
Jin

5computed in bits/sec, this is the same metric used previously to de�ne place cells
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Approximately 50% of neurons show decreased information content in the CNO session (e.g.

Bit decrease) compared with ∼ 23% Bit Increase, and 27% unrecovered (Figure 4.3 F).

This indicates the majority of neurons are less sensitive to location after deactivation of

the backprojection. This rate remapping is evidenced in the peak calcium signal intensities

between sessions among Bit Decrease and Bit Increase neurons, which show signi�cantly

lower peak intensities of the Bit Decrease neurons in the CNO session compared with the

Ctrl/Pctrl (Figure 4.3 G).

To con�rm results and identify commonality between timepoints with low position encod-

ing signal, we train the neural network model (standard ANN, trained separately using all

neurons and de�ned place cells) on the control session, and test how consistently position

can be decoded in the CNO and Pctrl sessions. Results show low prediction error in the

Ctrl (training set), with signi�cantly higher error on the CNO, followed by position decoding

recovery in the Pctrl session, which was evidenced in the n = 5 mice considered (Figure 4.3

H). When restricting to place cells (and to a lesser extent all neurons), this characteristic

recovery of decoding accuracy is present in the R2 coe�cient of determination. Typical vari-

ance in position decoding occurred in the middle of the linear track. Fewer neurons encode

position in the middle of the track, and those that do show less consistency between sessions

(Figure 4.4 I-J).

Examining the speci�c time points for which decoding gives poor results in the CNO session

(by setting a threshold of 10 centimeters), we �nd that these time points exhibited lower

overall signal (when aggregated across neurons), compared with time points of high accuracy

(t-test, p < .05). This indicates that rate remapping of the required neurons for spatial

decoding directly e�ects spatial position recognition for these speci�c time points (as opposed

to the aggregate computed in Bit Decrease/Increase neurons).
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Figure 4.3: A machine learning model for position decoding from place cell signal con�rms the causes of
memory loss in after circuit deactivation. A: For each timepoint (asterisk) �ring activity is taken from a
window around the point, and used to predict position. B: A diagram of the trisynaptic pathway (with
extensions to the Subiculum and Entorhinal cortex), with major pathways in black, and the backprojection
in red. C: Place �elds of identi�ed place cells, ordered by location in the control session. Sessions are split
based on the direction of travel. D: The distributions of correlation-peak shift magnitudes for the place cells
in the saline experiment (blue line) and the CNO experiment (red line. There is no signi�cant di�erence
between the distribution of Ctrl vs CNO and the Ctrl1 vs Ctrl2 (p = 0.38, two-sample KS, two-tailed), or
their shu�ed variant (black and grey). E: Recorded CA1 place cells can be classi�ed into 3 non-overlapping
groups termed bit-decrease, bit-increase, and un-recovered, based on the statistical signi�cance of di�erences
in information scores between CNO and Ctrl, and between CNO and Pctrl. Statistical testing employed a
jackknife resampling method for each place cell with appropriate corrections for error terms. F: Of the 201
place cells that show signi�cant di�erences (assigned place cells) from 6mice, 50% show decreased information
scores in CNO sessions compared to the control and post-control sessions (bit-decrease group, green bar). A
smaller subset (∼ 23%) show increased information scores in CNO compared to the control and post-control
(bit-increase group, red bar). The remaining ones are the un-recovered group which accounts for ∼ 27% of
place cells. Comparing the mean percentages of each type seen in each mouse, a signi�cant di�erence in the
% of place cells among these three groups is observed (p = 0.002, repeated measures ANOVA, n = 6 mice).
Data are presented as mean ± SE in the bar plot. G: Comparisons of peak calcium event rates between Ctrl -
Pctrl and Ctrl - CNO in bit decrease (two-tailed, paired t-test, p = 3×10−7, n = 97 cells), bit increase (two-
tailed, paired t-test, p = 0.027, n = 48 cells) and un-recovered groups (two-tailed, paired t-test, p = 0.20,
n = 56 cells), respectively. H: Quanti�cation of the prediction errors between predicted trajectories and
actual trajectories for decoding accuracy using the trained model based on the �rst control session. Each
line represents the prediction errors of Ctrl, CNO and Pctrl sessions from one mouse. Signi�cantly higher
prediction errors are observed in CNO sessions compared to those in Ctrl (p = 0.016, two-tailed, paired
t-test) and Pctrl (p = 0.015, two-tailed, paired t-test) sessions. n = 5 mice.
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Figure 4.4: I: Decoded position from a sample session using all, place, and non-place cells (colored) compared
with the true x-coordinate (black line). J: R2 coe�cients for regression using prior cell subsets for each
session. Decoding using place cells shows a statistically signi�cant decoding accuracy recovery in the Pctrl
session (t-test, p < .05). Error bars taken as mean ± standard error across mice.

68



Chapter 5

Neuron function and the transcriptome:

5.1 Transcriptomics overview

The transcriptome is the set of all RNA transcripts, both coding and non-coding, in an

individual cell or cell population, though this is sometimes restricted to mRNA1 [71]. Unlike

the genome, the transcriptome changes dynamically on short time scales, allowing the cell

to manufacture proteins required for speci�c tasks or to adapt to changing conditions.

The proteome (the range of proteins present in a cell) is constructed from the transcriptome

as mRNA is translated into proteins. The composition of the transcriptome over the cell's

lifespan determines the functionality and activity of the cell. In neurons, synthesized proteins

determine all aspects of neuron communication. AMPA and NMDA receptors dyanmically

in�uences synaptic strength [72], with other proteins playing critical roles in neurotransmitter

reuptake, among other critical processes.

The transcriptome and the proteome are only moderately correlated (r = 0.482, [73]), mean-

ing that analysis of the transcriptome only accounts for the portion of protein products

1Ribonucleic acid which carries the instructions for protein synthesis
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present in the cell. However, the transcriptome is much easier to sample and sequence, with

next-gen sequencing enabling pro�ling of the full transcriptome across tens or hundreds of

thousands of cells at low cost [71].

Therefore, we turn our interest to the e�ect of the transcriptome on neuron �ring activity.

5.2 Pro�ling of activity and transcriptome

Patch-seq [17] involves sequential electrophysiological experimentation, transcriptome se-

quencing, and morphology reconstruction of the same neuron. This allows direct analysis of

the correlation between transcriptome and �ring pattern.

Electrophysiological experimentation on neurons utilizes patch clamps [74] to stimulate volt-

age di�erences across the cell membrane, allowing analysis of spiking behavior (Figure 5.1

A-B). A variety of statistics can then be computed from the elicited �ring trains, including

resting membrane potential, threshold potential (minimum voltage to induce �ring), action

potential width and amplitude, after polarization and after hyperpolarization (AHP).

Morphology is harder to quantify numerically, as the result is essentially a physical recon-

struction of the tested neuron. This notwithstanding, features such as axon length and soma

width show signi�cant variation between celltypes, and can be used when quanti�cation is

required.
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5.3 The role and function of interneurons

GABAergic2 inhibitory interneurons comprise∼ 10−20% of all neurons in the brain, and con-

tribute to the regulation of synaptic transmission, network oscillations and neural plasticity

[75�77]. The diversity of interneurons is crucial to brain function, as their dysfunction results

in psychiatric disorders such as schizophrenia [78]. Interneuron types are distinguished by

neurochemical marker expression, morphology, intrinsic electrophysiological properties, and

functional roles for behavior. Parsing how these characteristics impact functions according

to interneuron type has been di�cult due to lack of molecular tools [79, 80]. While di�erent

interneuron types were �rst identi�ed morphologically by Cajal over 100 years ago, genetic

labeling and manipulation using transgenic mice now allows for further identi�cation of

types and further analysis of their functions [81�85]. Protein and peptidergic neurochemical

markers including parvalbumin (PV), calretinin (CR), somatostatin (SOM), vasointensti-

nal peptide (VIP), neuropeptide Y (NPY), cholecystokinin (CCK), enable identi�cation of

interneurons based on their transcriptomic pro�le.

There are important species di�erences in the chemical peptidergic signatures of inhibitory

neuron subtypes. In contrast to the rat, mouse interneurons co-express SST and CR, and

this dual peptidergic expression gives rise to unique morphological and electrophysiological

properties [86]. Co-expression of di�erent peptidergic neurochemical markers appears to

extend the functional repertoire of interneurons.

Cholecystokinin (CCK) was initially characterized as a gastrointestinal peptide and was sub-

sequently determined to be one of the most abundant neuropeptides in the central nervous

system (CNS) [87]. It is synthesized as a preprohormone of 115 amino acids that can be

enzymatically cleaved into multiple isoforms. The most abundant isoform in the CNS is

the sulfated octapeptide CCK-8S which is expressed at high levels in the hippocampus,

2The remaining portions of this chapter are co-authored with Dr. Steven Grieco
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amygdala, septum and hypothalamus [88]. CCK is present at high levels in interneurons,

but is not exclusively expressed in inhibitory interneurons as it is also expressed in excita-

tory pyramidal cells [89, 90]. Further evidence suggests that CCK-expressing interneurons

(CCK+) are heterogenous, as expression of CCK is relatively promiscuous [91]. The func-

tional consequence of this is not yet understood.

In order to determine how CCK expression extends the functional properties of interneurons,

we began by studying CCK co-expression in calcium binding protein parvalbumin (PV)-

expressing (PV+) interneurons. PV+ interneurons exhibit fast �ring rates, distinct intrinsic

electrical and synaptic properties, and control the precise timing of network oscillations.

They are strongly implicated in schizophrenia and a host of other psychiatric and neurological

diseases [92]. Recent studies show that PV+ cells express CCK at the mRNA level, but this

has not been validated further with any depth [93�97].

We show that CCK expression in interneurons is correlated with electrophysiological di�er-

ences in activity among PV+ neurons, and that CCK expression varies continuously across

PV+ interneurons (e.g. on a transcriptional gradient), and that neurons at both ends of the

spectrum exhibit statistically di�erent electrophyisological characteristics.

5.4 Single-cell data and analysis pipeline

We �rst analyze raw sn/sc-RNA-seq from publicly available datasets. A total of �ve datasets

were analyzed, consisting of two scRNA-seq (10x v3 and SMART-Seq) sample sets covering

the isocortex and hippocampal formation, and three snRNA-seq (1 10x v2, 2 10x v3) samples

taken from the primary motor cortex of the adult mouse [93]. Individual datasets were

analyzed via the same pipeline on the Seurat platform [98]. This pipeline consists of log-

normalization, �ltering of cells with outlying numbers of features, identi�cation of variable
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genes, scaling, and PCA dimensionality reduction [99]. Interneurons were identi�ed based on

GAD1 and GAD2 expression, as well as provided taxonomy from stated publications. This

resulted in 21,991 cells from the Allen SMART-seq dataset (labeled 2019Allen), 96,323 cells

from the Allen 10x dataset (labeled 2020Allen), 10,944 cells from the BICCN 10x v2 dataset

(labeled 2021AIBS_v2), 6,817 from the �rst BICCN 10x v3 dataset (labeled 2021AIBS_v3),

and 18,093 cells from the second BICCN 10x v3 dataset (labeled 2021BROAD_v3). Of these,

a total of 28,951 were labeled as PV interneurons, and 7,053 were labeled as SNCG. Datasets

were integrated via Harmony [100]. Results corroborated previous experiments showing

interneuron cell types were shared across brain regions, motivating combined analysis across

regions [93]. Dropout gene reads were imputed via MAGIC [101]. Correlation analysis was

performed via the WGCNA [102]. Gene ontology analysis was performed via the topGO R

package [103].

The transcriptomic results of Patch-seq samples consisting of interneurons from the visual

cortex was analyzed via the same pipeline seen above [94]. Data consisted of 4,270 cells

(after quality control) of which 724 were labeled as PV interneurons, and 250 as SNCG in-

terneurons. Analysis of the electrophysiology of the associated cells began with identi�cation

of the rheobase threshold, and identi�cation of cell latency and average �ring rate at 30-40

mV above the rheobase threshold (depending on data availability). Statistical results were

computed using the Wilcoxon rank sum test. PV+/CCK+ and PV+/CCK- were identi�ed

as the PV interneurons showing CCK expression in the top (bottom) 25% of PV cells after

magic imputation.
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5.5 E�ects of transcriptional variation on function

5.5.1 Linkage between electrophysiological and transcriptional char-

acteristics of PV/CCK interneurons

We characterized the electrophysiological properties of PV-/CCK+ (e.g. SNCG), PV+/CCK+

and PV+/CCK- cells from the Patch-seq data made publically available from the Allen Insti-

tute [94]. This data set consists of 4,270 cortical GABAergic interneurons from adult mouse

visual cortex. From this data set we �rst con�rmed interneuron identity based on GAD1 and

GAD2 expression, as well as taxonomy. Identi�ed cell types of interest are PV+, CCK+,

and SNCG+. From our analysis of 4,270 cortical GABAergic interneurons, we identi�ed

724 neurons as PV+ interneurons, and 250 cells were identi�ed as SNCG+ (Figure 5.1

A). Based on dimensionality reduction data, CCK+ cells show clear overlap in the UMAP

region for PV+ interneurons and most CCK+ cells are found in the SNCG+ UMAP region

(Figure 5.1 A). We then characterized PV+/CCK+ and PV+/CCK- interneurons by

identifying the PV interneurons showing CCK expression in the top or bottom 25% of PV+

cells after Markov A�nity-based Graph Imputation of Cells (MAGIC). Visual inspection of

single spike features elicited by depolarizing current pulses reveals di�erences between these

operationally de�ned PV+/CCK+ and PV+/CCK- interneurons, particularly with regards

to AHP amplitudes (Figure 5.1 B). Similar to results from previous recordings, the mean

�ring rates and amplitudes do not signi�cantly di�er between PV+/CCK+ (n = 178) and

PV+/CCK- (n= 169) interneurons. We then quantitatively analyzed peak AHP values in

this data-mined set comparing PV+/CCK+ and PV+/CCK- interneurons and �nd that

the magnitude of the AHP in PV+/CCK- interneurons is signi�cantly larger than that of

PV+/CCK+ interneurons as their peak values are signi�cantly more negative than those

of PV+/CCK+ cells (Figure 5.1 C-D). Together these results show that there are elec-

trophysiological features that distinguish between PV+ interneurons that strongly express
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CCK versus those that do not.
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Figure 5.1: Comparison of electrophysiologies for PV+/CCK+ and PV+/CCK- GABAergic inhibitory in-
terneurons in mouse. (A-B,D) Patch-Seq data from adult mouse visual cortical interneurons made publically
available from the Allen Institute. (C) Cell types were identi�ed via expression of interneuron gene markers
(Sst, Pvalb, Vip, Lamp5, and Sncg) (A, Left). (Pvalb) Pvalb gene expression, imputed using MAGIC, shows
strong localization of Pvalb expression to the PV subtype (A, middle). (Cck) Cck gene expression, imputed
using MAGIC, is exhibited in both SNCG and PV interneurons (C, right). For electrophysiology data are
further analyzed through the following pipeline. Cck expression is imputed using magic, and PV interneu-
rons were identi�ed as PV+/CCK+ if Cck expression is above the 75th percentile, and PV+/CCK- if Cck
expression is below the 25th percentile. (B) Current clamp electrophysiological recording from acute brain
slices containing visual cortex. Representative voltage traces for PV+/CCK+, or PV+/CCK- interneurons
in response to current clamp mode-induced depolarizations. The vertical scale bar is 20mV. The horizontal
scale bar is 1 second. (C) Summary violin plot of the electrophysiological property �after hyperpolarization
potential� (AHP) from PV-/(CCK& Dlx5/6)+ (n=15), PV+/(CCK& Dlx5/6)+ (n=24), and PV+/(CCK&
Dlx5/6)- (n=19) interneurons, pro�led in the Xu lab (production and analysis by Dr. Steven Grieco and Dr.
Yanjun Sun). The violins show data with the median line in the middle. The top and bottom of the plots
are the minima and maxima (Kruskal-wallis test: overall p=0.0007. Mann Whitney test: PV+/(CCK&
Dlx5/6)+ versus PV+/(CCK& Dlx5/6)-, p=0.0637). (D) Summary violin plot of AHPs from PV-/CCK+
(n=198), PV+/CCK+ (n=178), and PV+/CCK- (n=169) interneurons from the Allen Institute data set.
The violins show data with the median line in the middle. The top and bottom of the plots are the minima
and maxima. PV+/CCK- interneurons have signi�cantly larger AHP amplitudes compared to PV+/CCK+
interneurons (One-way ANOVA: overall p< 6.72 e-96. Bonferroni multiple comparisons: PV+/CCK+ versus
PV+/CCK-, p=1.19 e-6).
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5.5.2 Transcriptomic characterization of PV+/CCK+ inhibitory

interneurons

We characterized the transcriptomic properties of PV+/CCK+ and PV+/CCK- interneu-

rons by mining published data from the Allen Institute for Brain Science and the recent

article bundle (published in Nature) from NIH's Brain Research through Advancing Innova-

tive Neurotechnologies (BRAIN) Initiative Cell Census Network (BICCN) [9, 93]. A total of

�ve datasets were analyzed, consisting of two sc-RNA-Seq (10x v3 and SMART-Seq) sample

sets covering the isocortex and hippocampal formation, and three sn-RNA-Seq (one 10x v2,

two 10x v3) samples taken from the primary motor cortex of mouse (Figure 5.2 A). From

these data sets, interneurons were identi�ed based on GAD1 and GAD2 expression, as well as

the provided taxonomy from the stated publications. Identi�ed cell types are SST+, PV+,

VIP+, SNCG+, and LAMP5+. From this analysis a total of 28,951 neurons were identi�ed

as PV+ interneurons, and 7,053 cells were identi�ed as SNCG+ (Figure 5.2 A). CCK+

cells show clear overlap in the UMAP region for PV+ interneurons, and again, most CCK+

cells are found in the SNCG+ UMAP region (Figure 5.2 A).

We then characterized PV+/CCK+ and PV+/CCK- interneurons by identifying the PV

interneurons showing CCK expression in the top or bottom 25% of PV+ cells determined

by MAGIC. There is a preponderance of agreement across data sets. The most-well cor-

roborated genes are found to be systematically up- or down-regulated in PV+/CCK+ in-

terneurons as compared to PV+/CCK- interneurons in all 5 data sets (Figure 5.2 B).

Notably the Cox6a2 gene is robustly up-regulated in PV+/CCK+ interneurons. In PV+

interneurons, there is a positive and highly signi�cant correlation between increased CCK

expression and increased Cox6a2 expression. This correlation with Cox6a2 expression is

not present in SST+, VIP+, SNCG+ or LAMP5+ cells (Figure 5.2 C). We then per-

formed gene co-expression analysis and identi�ed several highly co-expressed modules with

PV+ interneurons. A major module includes cytochrome oxidase genes, that are also highly
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co-expressed with CCK (Figure 5.2 D). We then analyzed di�erentially expressed genes

in the COX/CCK module for their associated ontologies; overexpressed ontologies include

�Axon/Dendrite�, �Regulation of Synaptic Transmission�, �Mitochondrial ATP synthesis�,

�Electron Transfer�, and �Mitochondrial respiration� (Figure 5.2 E).

To better understand how the transcriptomes of PV+/CCK+ and PV+/CCK- relate to

known attributes of either PV+, CCK+, or SNCG+ interneurons, we analyzed the gene ex-

pression levels of individual genes associated with PV+, CCK+ and/or SNCG+ interneurons.

Synuclein Gamma (SNCG) is expressed in CCK+ interneurons in which CCK expression does

not overlap heavily with other peptidergic markers based on transcriptomic analysis [91]. Our

transcriptomic analysis con�rms that PV expression is high in PV+ cells, CCK expression

is high in CCK+ cells, and SNCG expression is high in SNCG+ cells. Further, SNCG is

not expressed strongly in PV+/CCK+ or PV+/CCK- cells. CCK is expressed strongly in

SNCG+ cells as well as in PV+/CCK+ cells. Expression of Synuclein Alpha (SNCA) also

is strongly con�ned to SNCG+ cells, but PV+/CCK+ cells appear to show more expression

than PV+/CCK- cells. Cannabinoid Receptor 1 (CNR1) expression, which is often associ-

ated with CCK+ cells, mirrors SNCA expression; CNR1 is strongly expressed in SNCG+

cells [104�106], but PV+/CCK+ cells seem to show more expression than PV+/CCK- cells.

The alpha-1A subunit of the P/Q-type voltage-gated calcium channel (CACNA1A) is associ-

ated with PV+ interneurons, and the alpha-1B subunit of the N-type voltage-gated calcium

channel (CACN1B) is more associated with CCK+ interneurons. Both PV+/CCK+ and

PV+/CCK- cells express CACNA1A strongly, whereas SNCG+ cells do not. SNCG+ cells

express CACNA1B strongly, and both PV+/CCK+ and PV+/CCK- express CACNA1B to

a much lesser extent. Similarly, the gene expression patterns of the presynaptic calcium sen-

sor synaptotagmin 2 (SYT2), is associated with PV+ interneurons [107]. Both PV+/CCK+

and PV+/CCK- cells express SYT2 strongly, while SNCG+ cells do not. Both PV+/CCK+

and PV+/CCK- cells express TAC1, a marker of PV+ basket cells, while SNCG+ cells

do not [93, 94, 97, 108]. PV+/CCK+ express COX6a2 very strongly, whereas PV+/CCK-
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cells do not. Overall, these transcriptomic results show that PV+/CCK+ and PV+/CCK-

interneurons have distinct molecular phenotypes (Figure 5.3 F).

Since we �nd in PV+ interneurons that there is a positive and highly signi�cant correla-

tion between increased CCK expression and increased COX6a2 expression, we focused on

the COX6a2 protein. Upon searching the literature, we found that Cox6a2, which is an

ADP-sensitive isoform of Cox6a [109, 110], was described previously as being highly re-

stricted to PV+ interneurons [111]. It was postulated that the high energy demands of

fast-spiking PV+ interneurons requires distinctive machinery in the mitochondrial oxida-

tive phosphorylation pathway, thus necessitating Cox6a2 expression as part of complex IV

(which also integrates cytochrome c oxidase) [112]. Previous studies determined that PV+

interneurons account for ∼60% of all Cox6a2+ cells in the brain [111]. Guided by our tran-

scriptomic �ndings and these published results, we tested the hypothesis that the CCK+

subset of PV+ interneurons also strongly express COX6a2. Using COX6a2 immunostaining

in the CA1 region of brain sections from our PV-TdTomato: CCK& Dlx5/6-GFP mouse,

we �nd that most PV+/CCK+ cells are COX6a2+ (n= 168 cells; ∼89% positive), but most

PV+/CCK- cells are not COX6a2+ (n= 109 cells; ∼14% positive) (Figure 5.2 G). This

immunostaining result agrees well with our transcriptomic �ndings that CCK expression by

PV cells correlates strongly with increased Cox6a2 expression (Figure 5.2 C). We also

�nd that PV+ interneurons account for ∼70% of all Cox6a2+ cells. Together these results

show that PV+/CCK+ interneurons express COX6a2, whereas PV+/CCK- cells do not,

and that PV+/CCK+ interneurons have unique molecular pro�les that can contribute their

functional importance.
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Figure 5.2: Comparisons of transcriptomes of PV+/CCK+ and PV+/CCK- GABAergic inhibitory interneu-
rons in mouse. (A) (Samples) Individual sn-RNA-Seq datasets were processed as follows. Cells exhibiting
an extremely high or low number of features were eliminated. Count matrices were log-normalized and
scaled. Highly variable genes were identi�ed and used as features for PCA dimensionality reduction. Next,
anchors were identi�ed and datasets were integrated via the Seurat framework. The data was projected
to two dimensions via UMAP for visualization. (Cell Types) The integrated datasets were clustered, and
cell types were identi�ed via expression of interneuron gene markers (Sst, Pvalb, Vip, Lamp5, and Sncg).
These are characteristically divided into the MGE (SST, PV) and CGE (VIP, LAMP5, and SNCG) lineages.
(Pvalb) Pvalb gene expression, imputed using MAGIC, shows strong localization of Pvalb expression to
the PV subtype. (Cck) Cck gene expression, imputed using MAGIC, is exhibited in both SNCG and PV
interneurons. (B) Individual datasets are further analyzed through the following pipeline. Cck expression
is imputed using MAGIC, and PV interneurons were identi�ed as PV+/CCK+ if Cck expression is above
the 75th percentile, and PV+/CCK- if Cck expression is below the 25th percentile. Di�erential expression
testing between the groups identi�ed >50 genes di�erentially expressed in at least four datasets. Many of
these genes were associated to di�erences in interneuron communication (Cck, Nlgn1, Ptprd, Cox6a2, Grid2,
Pcdh9). (C) Cck and Cox6a2 expression (post imputation) are highly correlated in the PV cell type (0.73),
but not in any other interneuron subtype. (D) Gene co-expression analysis via WGCNA identi�ed several
highly coexpressed modules. Genes exhibiting coexpression less than 0.15 were removed from the visual-
ization. The rest clustered into 6 groupings, including a COX grouping, that was also highly co-expressed
with CCK. (E) Di�erentially expressed genes and genes in the COX/CCK module were analyzed for their
associated ontologies. Overexpressed ontologies included Axon/Dendrite, Regulation of Synaptic Trans-
mission, Mitochondrial ATP synthesis, Electron Transfer, and Mitochondrial respiration. These ontologies
were associated to mostly non-overlapping gene groupings, possibly indicating largely independent functional
subclusters within the COX/CCK module.
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Figure 5.3: (F) Gene expression of typical CCK+ or PV+ interneuron function exhibited signi�cant dif-
ferences between PV+ and PV- (SNCG+) groupings, as would be expected from their disparate lineages.
Additionally, Cck, Tac1 and Cox6a2 exhibit large di�erences between PV+/CCK+ and PV+/CCK- group-
ings. Data are presented as violin plots. (G) Immunostaining of the COX6a2 protein (magenta) in CA1 from
PV-tdTomato; CCK& Dlx5/6-GFP (yellow) mouse brain sections (top left, right). COX6a2 staining was
robust in PV+/(CCK& Dlx5/6-GFP) (white) cells (bottom left). COX6a2 was co-localized with ∼89% of
PV+/(CCK& Dlx5/6)+ (white, arrows). Cell with an asterisk is an example of a PV+ cell that is COX6a2
negative. Quanti�cation of cell densities in CA1 for COX6a2 immunopositive PV+/(CCK& Dlx5/6)+ cells
(bottom right)(N=3 mice). Bars indicate mean ± standard error.

5.5.3 Discussion

In this section we motivate the interest in transcriptional gradients by showing that: 1) the

transcriptome and the electrophysiology of neurons are strongly connected. 2) subtle di�er-

ences in the transcriptome within the same cell type manifest in distinct electrophysiological

characteristics. While these characteristics are not as pronounced as those between cell types

(e.g. PV+ vs PV-/CCK+, which have completely separate cell lineages), they are measur-

able, and are likely critical to varying neuron functionality. 3) Transcriptome gradients are

composed of multiple correlated genes with varying functionality.

This motivates the creation of a method for agnostic detection of transcriptional gradients,

which can then be tested for subtle functional/morphological variations.
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Chapter 6

Machine learning models for

transcriptional gradient detection

6.1 Variational Autoencoders

Autoencoders are a speci�c type of neural network model, consisting of a paired encoder and

decoder [113]. The encoder transforms the input data into a (typically) lower dimensional

space, while the decoder transforms the encoded data back to the original dimensionality.

In theory, the encoder and decoder are treated as general functions, but in practice, these

are typically arti�cial neural networks. The encoder and decoder are taken (or trained) such

that the loss between input and output (reconstruction loss) is minimized, hence they are a

form of unsupervised network1.

Autoencoders perform two unique functions. First, they encode high dimensional data into a

low dimensional latent space. These latent dimensional variables represent information con-

tained in the high dimensional input, but avoid the curse of dimensionality. As the decoder

1they require no labels
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only has input from the latent variables, training the autoencoder forces the latent dimen-

sional space to represent the essential di�erences between input points. Thus in scRNA-seq

analysis, the latent dimension representation can be used for clustering [114]. Decoders at-

tempt to represent the input, however passing the data through the low dimensional space

results in a bottleneck which removes extraneous information and noise. Thus autoencoders

can be used to denoise high dimensional data [115].

We can modify the formulation as follows in order to construct an autoencoder based gen-

erative model (a variational autoencoder, VAE [116]) as follows.

Given input x let P (x) denote the probability distribution of the input space. The goal is

to model P using a parameterized distribution pθ, which will relate the input space and a

latent representation. Denote pθ(x, z), a joint distribution of input variables x and latent

variables z. Marginalizing z gives

pθ(x) =

∫
z

pθ(x, z)dz (6.1)

=

∫
z

pθ(x|z)pθ(z)dz. (6.2)

The end goal is to maximize pθ(x) with respect to parameters θ.

Typically, computation of pθ(x) is intractable, thus we cannot generally compute the poste-

rior pθ(z|x). We introduce a new distribution qϕ(z|x) to approximate the posterior.

Following the variational inference paradigm, the goal is to identify parameters θ, ϕ (which

are now neural network parameters) we consider the quantity

DKL(qϕ(z|x)||pθ(z|x)).
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By de�nition

DKL(qϕ(z|x)||pθ(z|x)) =
∫
z

qϕ(z|x) log(
qϕ(z|x)
pθ(z|x)

)dz

=

∫
z

qϕ(z|x) log(
qϕ(z|x)pθ(x)
pθ(z|x)pθ(z)

)dz

= log(pθ(x)) +DKL(qϕ(z|x)||pθ(z))− Ez∼qϕ(z|x)(log(pθ(x|z))).

Solving for log(pθ(x)), we get

log(pθ(x)) = DKL(qϕ(z|x)||pθ(z|x))−DKL(qϕ(z|x)||pθ(z)) + Ez∼qϕ(z|x)(log(pθ(x|z)))

≥ −DKL(qϕ(z|x)||pθ(z)) + Ez∼qϕ(z|x)(log(pθ(x|z))).

We thus minimize the tractable quantity DKL(qϕ(z|x)||pθ(z))−Ez∼qϕ(z|x)(log(pθ(x|z))) (the

negative of the evidence based lower bound, ELBO).

We now specify formulations for the required distributions. For the Gaussian VAE, we set

pθ(z) ∼ N (0, I)

pθ(x|z) ∼ N (f(z), cI)

qϕ(z|x) ∼ N (g(x), h(x)),

for some functions f, g, h, parameterizable by variables θ, ϕ.

Substituting into the ELBO, our goal is to �nd

argmin
ϕ,θ

DKL(N (g(x), h(x))||N (0, I)) + Ez∼qϕ(
∥x− f(z)∥2

2c
). (6.3)

Interpreting f, g, h as neural networks, the �rst term can be interpreted as a form of reg-
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ularization, while the second is (up to a constant factor) the reconstruction error, with an

intermediate sampling step in the latent space.

Applying backpropagation, the gradient must be passed through the expectation term. But

this term appears in the expectation itself. Therefore, we use the reparamaterization trick

as follows. Instead of sampling z directly from N (g(x), h(x)), we reparameterize the distri-

bution by sampling ϵ ∼ N (0, 1), and setting z = h(x)ϵ + g(x) enables backpropagation of

gradients through the sampling.

6.1.1 Gumbel-Softmax VAE

As seen earlier, the standard variational autoencoder utilizes Gaussian probability distri-

butions in the latent space to model qϕ(z|x). However, this model is only applicable to

continuous data. Many applications are dependent on a discrete latent encodings.

Recall the standard Gumbel distribution

f(z) =∝ exp(−e−z), (6.4)

from which a sample can be computed via

g = − log(− log(u)), (6.5)

where u is sampled from U(0, 1). The Gumbel distribution satis�es the following theorem.

Let X a discrete random variable with P (X = k) ∝ αk, and {Gk} an independent and

identically distributed sequence of standard Gumbel variables. Then X = argmaxk(logαk+

Gk), that is, the Gumbel distribution provides a recipe for sampling from the categorical

distribution.
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For the Gumbel VAE ([117], [118]), de�ne pθ(z) as distributed from the categorical distribu-

tion consisting of K categories, with 1/K probability for selection (e.g. each category has

the same selection probability). Then de�ne

q(zi|x) = Cat(K, πi
k),

where i ≤ d indexes the latent variable.

Of course, One can sample from the above distribution (assuming known πk
i ) using the

Gumbel technique. But the argmax is not di�erentiable. Therefore, we use the softmax as

a continuous approximation, such that sampling takes the form

zik =
exp((log(πi

k) +Gi
k))/τ)∑k

j=1 exp((log(π
i
j) +Gi

j)/τ)
, (6.6)

a sample from the Gumbel-SoftMax (or Concrete) distribution (density omitted, see [117]).

The quantities {Gi
k}i≤d,k≤K are sampled i.i.d. from the standard Gumbel distribution.

Finally, we de�ne the encoder g : Rn → RK×d, where n is the dimension of the input space,

K the number of categories, and d the number of latent variables. This encoder de�nes

the log probabilities log(πk
i ) as functions of the input x, taking the place of the g and h

distributions in the previous characterization. The model can then be trained in the same

fashion as the standard VAE.

The parameter τ (called the temperature) is of critical importance, as it de�nes the "sharp-

ness" of the argmax approximation. In the limit as τ → 0, the softmax converges the argmax,

while as τ → ∞, the softmax converges to the uniform distribution. For low values of τ ,

the gradients become very steep (approaching in�nity in the limit), and have high variance.

The typical approach is to start with a relatively large value of τ , and slowly decrease the

value as training progresses (and the step size decreases). The parameter τ is typically lower
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bounded during training, and during testing the argmax may be used directly, as gradient

backpropagation through the model is not required.

6.1.2 Continuous Bernoulli VAE

The Continuous Bernoulli distribution takes support in the [0, 1] interval and is based on a

single parameter λ. The probability distribution function takes the form

p(x|λ) ∝ λx(1− λ)x.

The constant of proportionality is easily computed via standard calculus, but we note that

it has a singularity at λ = 1/2, requiring approximation via Taylor series near 1/2.

When λ = 1/2, the Continuous Bernoulli distribution simpli�es to the uniform distribution

on [0, 1]. For values greater than 1/2, samples collected from the distribution have higher

probability of being larger than 1/2, and vice versa for λ < 1/2, which is useful for encoding

and interpreting probabilities. Samples can be computed using the inverse CDF method,

enabling the reparameterization trick.

The Continuous Bernoulli VAE [119] model is now constructed by specifying the approximate

posterior and prior distributions

qϕ(z|x) = CB(z, σ(g(x)))

pθ(mathbfz) = CB(z|1
2
) = U(0, 1),

where σ denotes the sigmoid function, and g is an encoding neural network.

86



6.2 Neural network for probabilistic clustering

6.2.1 Model development

In the context of scRNA-seq analysis, dimensionality reduction and clustering form the most

important preprocessing steps [120]. Clustering in this context identi�es transcriptomic cell

types based on the variation of gene expression between cells. Even though many attempts

have been made to incorporate clustering into neural network models [121], the �eld generally

relies on sequential dimensionality reduction based on PCA and UMAP (or tSNE), with

clustering via community detection methods at the PCA stage [98]. This processing work�ow

is fast, reliable and interpretable, aspects which most machine learning models lack.

Most deep clustering algorithms require speci�cation of the number of clusters a priori [121],

which is virtually always an unknown. Community detection algorithms minimize an objec-

tive based on within/between cluster similarity, based on a resolution parameter that controls

the number of clusters the data is divided into (this is similar to other density/community

based algorithms such as DBSCAN [122] and Louvain [123]).

Here we present a neural network model for combined dimensionality reduction and prob-

abilistic clustering. This model does not require speci�cation of the number of clusters a

priori, instead de�ning cluster granularity based on the dimensionality of the latent space.

In the standard Gumbel-softmax VAE, specify the number of categories for each latent

variable to be two. This requires the following two functions

fencode : Rn → Rd×2

fdecode : Rd×2 → Rn,

where fencode predicts log cluster probabilities, and fdecode reconstructs the input after sam-
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pling in the latent dimensional space.

As the parameter τ → 0, this assigns each input one of two categories for the individual

latent dimensions. We can therefore view this as a binary encoding of each point. We

interpret each possible binary value as a cluster. Therefore, the number of possible clusters

grows exponentially with the number of latent variables encoded in the model, which limits

the required size of the latent dimensional space.

In practice, not every possible encoding has points assigned, and as is typical in the commu-

nity detection algorithms, we assign outliers (e.g. clusters with few members) to the nearest

cluster (in L1 space).

We also develop an additional loss term that acts as a resolution parameter, limiting the

number of clusters identi�ed. This is de�ned as

Lres = λ mean((exp(
0 : d− 1)

γ
− 1) · vk)

vk = meani{πi
k}.

This loss function penalizes the distance between cluster probabilities and zero, producing

an individual value for each latent variable. This is then scaled by an exponential term

that penalizes probability variation as the index increases. The parameters λ, γ govern the

weight penalty attached to each latent variable. This loss incentivizes a small |πi
k|, with the

incentive increasing with the index of the latent variable. In practice, the model is pretrained

without this loss, and the latent variables are sorted so that those exhibiting the smallest

variation are multiplied by the largest scale factor.

One bene�t of this model is that the encoding explicitly de�nes clusters, but the outputs

(for non-zero τ) are log probabilities. That is, this technique produces a soft-clustering.

This re�ects the biological reality, as in many instances, cells do not belong to distinct
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clusters, instead existing on gradient trajectories. While this is most commonly associated

with pseudotime analyses, many fully developed cells exist on transcriptional gradients,

particularly in the brain.

6.2.2 Clustering single-cell spatial transcriptomics data

We �rst test the model on a set of simulated clusters (sklearn.datasets.make_blobs, data

sampled from several 2D Gaussians). We verify that the model accurately classi�es the

clusters, and that lowering the resolution results in a reduced number of clusters (Figure

6.1).

Figure 6.1: Neural network clustering results of simulated clusters. A: (top) Classes identi�ed by neural
network clustering, with associated binary encodings. (bottom) Ground truth clustering results. B: Cluster
discrimination in each latent dimension. Points are labeled either 0 or 1 (as only 2 classes are available) and
de�ne the clustering result. C: Clusters when including the resolution loss (resolution loss added after 200
epochs) at various parameters.

We verify neural network clustering on a spatial transcriptomic (MERFISH) dataset with

annotated celltype assignments2, and compare it to the raw Louvain algorithm clusters via
2MERFISH spatial transcriptomics of whole coronal section produced by Dr. Zhiqun Tan, a member of
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NMI/ARI (Normalized Mutual Information, Adjusted Rand Index). This dataset consists of

10,000 cells (after subsetting), with gene expression for 300 genes. We have labeled celltypes

based on the cluster gene markers in the original PCA/louvain clustering, followed by an

additional round of subclustering and cell type labeling. Labeling was based on the Allen

scRNA-seq atlas [124]. We initially characterize cells into major cell groupings (e.g. Cortical

Excitatory, Microglia, Astrocytes), which we compare with the neural network clustering

results. This method detects and di�erentiates most major cell groups. ARI and NMI

between neural network clustering and the denoted celltypes was 0.71 and 0.82 respectively

(Figure 6.2).

Next, we subcluster the excitatory cortical neurons. This subset of cells is the most di�cult

to di�erentiate and label. ARI and NMI between labeled and neural network as 0.48 and 0.65

respectively, showing a signi�cant reduction over the high level clustering (Figure 6.2 B).

This is expected as cluster consistency decreases with cluster resolution, particularly when

relatively few genes are pro�led. The neural network model di�erentiates the L5 PT, L6b,

and L5/L6 NP subgroups. It also identi�es the hippocampal excitatory neurons, though

the di�erentiation between CA1/CA3 is unclear (this is true both transcriptomically and

spatially, as no absolute boundary between these celltypes exists. Both neural network and

PCA/louvain clustering showed di�culty di�erentiating the IT subclusters across the cortical

layers (indeed the original clustering utilized visual inspection of spatial location to identify

the appropriate layers).

the Xu lab, using the Vizgen MERSCOPE
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Figure 6.2: Comparisons of neural network clustering (left) PCA/louvain clustering (middle) and annotated
cell types (right), using 10,000 randomly selected cells from full set of cells (A) and the excitatory cortical
neurons (B). Computation was performed with 5 latent variables (4 for the excitatory neurons) for clustering,
followed by UMAP of the latent projection for visualization.

6.3 scGradient: a neural network model for transcrip-

tional gradient detection

6.3.1 Building on a combination of VAEs

Transcriptional gradients are 1-dimensional manifolds on which gene expression varies con-

tinuously [16]. This is similar to the concept of pseudotime [125]. However, pseudotime

carries an inherent developmental connotation (e.g. cells develop along pseudotime trajec-

tories), and the associated genes of interest vary in pseudotime. Pseudotime utilizes the

idea that cells develop at di�erent rates, which enables inference of developmental processes

from a single sample [126]. However, neurons are generally at the end of their developmen-

tal trajectories, as neurogenesis in adults occurs in only a few regions [127]. Additionally,

neurons can lie on multiple transcriptional gradients simultaneously, while developming cells

typically lie on a single inferred pseudotime trajectory. General transcriptional gradients
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occur in adult animals. For example, there are signi�cant transcriptional gradients in the

cortex [128], which vary spatially according to cortical depth.

We develop scGradient, a machine learning model for the detection of transcriptional gra-

dients. This model is capable of detecting multiple uncorrelated gradients simultaneously,

while also the also predicting the location of each cell on the detected gradients, as well as

the probability that a cell lies on the given gradient.

Inspired by previous work utilizing VAE models used for pseudotime inference [129], we

build scGradient on top of three variational autoencoders (Figure 6.3 A-C). First, the

categorical VAE described earlier, which describes the cell types present in the data. Second,

a Gaussian VAE (e.g. based on Gaussian priors as described originally) which represents a

continual latent encoding in a low dimensional space. Third, a Continuous Bernoulli VAE

with an N -dimensional latent variable for encoding probabilities (each dimension of the CB

latent variable encodes the probabilities that a given cell lies on the speci�ed gradient).

In addition to probability, category, and continuous latent variables, scGradient also predicts

the gradient time (t ∈ [0, 1]N) for each cell. This represents a cell's location on each inferred

gradient. We utilize a neural ordinary di�erential equation to relate the continuous latent

embedding and gradient time. This is an ODE of the form

dz

dt
= fANN(t

i, z),

where fANN is constrained to be a neural network, and z is the latent variable encoding. The

weights of the neural ode can be trained using the adjoint method [130], allowing the neural

ode to be learned during training. Learning occurs by computing the loss between latent

variables and their ODE predictions. The latent zpred embedding is concatenated with the

ODE predictions prior to decoding.
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We de�ne a separate f i
ANN for all 1 ≤ i ≤ N . This enables detection of multiple gradients

simultaneously. There is some question as to whether using a common continuous latent

embedding for all ODEs is acceptable, and we have considered models with separate Gaussian

VAEs for each Neural ODE, though this signi�cantly increases the number of parameters.

We initially constrained the Neural ODEs to be constant in the continuous latent space (e.g.

dz
dt

= const), for some learnable constant const to improve computational speed. However,

a constant derivative in the latent space does not transform to a constant derivative in

transcriptome space. Therefore, we de�ne dx
dt

= const, where x denotes (normalized) gene

expression. We then compute dz
dt

via the chain rule. We utilize Euler's method for solving

the ODEs [131], and the standard adjoint method for learning Neural ODE weights, which

enables inference of the associated constants in expression space.

As no initial point for the ODE is generally present, we sample a point based on the proba-

bilities that each cell is on the given gradient, and predict backwards and forwards in time

based on the sampled point and the predicted time values.

Finally, we construct the following combined loss function.

L = α1D
cat
KL(pcat(z|x), Cat(K, 1/K)) + α2D

lat
KL(plat(z|x),N (0, I))

+ α3D
prob
KL (pprob(z|x),Unif(0, 1)) + α4||x− x̂cat||22

+ α5||x− x̂lat||22 + α6(pprob(z|x)⊙ σ(||zlat − zpred||22)

+ (1− pprob(z|x))⊙ (1− σ(||zlat − zpred||22)))

+ α7mean(max(0, 1− pprob(x)(x), (dim 1)))

+ α8(max(0, 1−mean(max
k

pencode(x), (dim 2)))) + α9corrcoef(t)

+ α10meani(rep(p
i
prob)⊙ pairwiseL1(pcat)).
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Figure 6.3: scGradient work�ow. A: scGradient is build on three variational autoencoders. Gene expression
is transformed into latent space via an encoder. B: Low dimensional outputs are computed and sampled from
the Gaussian, Continuous Bernoulli, and Categorical VAEs, as well as the time component for the neural
ODE, resulting in samples zlat, zprob, and zcat respectively. Predictions based on the ODE are generated
via Euler's method. The predicted probabilities weight error between latent and ODE prediction variables,
as well as the latent categorical variables. C: Separate decoders are used for the categorical and Gaussian
embeddings, to enable computation of the pushforward of the ODE derivatives.
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The �rst three elements of the loss function are the standard KL regularization for each

of the three VAEs (the subscripts cat, lat, and prob correspond to the categorical Gumbel-

softmax, Gaussian and Continuous Bernoulli predictions). The next two terms correspond to

reconstruction error for the Gumbel-softmax and Gaussian VAEs (the probabilities are not

reconstructed to predict gene expression). The next term weights the error between the latent

variables (z) and the ODE predictions. High probabilities should be matched with low error,

and low probabilities with high error. We apply the sigmoid function σ to the ODE error to

map to [0, 1]. As setting the weights pencode to zero and the error to one minimizes this term,

we include two counterbalances (mean(max(0, 1 − pprob(x)(x), (dim 1))),mean(max(0, 1 −

maxk pencode(x), (dim 2)))) where the dimension indicates which dimension to take the max-

imum. These counterbalances ensure at least one cell is assigned to each gradient, and that

each cell is assigned to at least one gradient. Penalizing the correlation between time points,

prompts discovery of independent transcriptional gradients. The �nal term penalizes tran-

scriptional gradients across too many cell types. The rep function repeats the probability

vector (for a given ODE, indicated by the superscript) to create a square matrix, which

is multiplied by the pairwise L1 distance between categorical embeddings. Therefore, high

probabilities for cells with low L1 distance between the categorical embeddings are encour-

aged.

Determining appropriate weights αj is largely a matter of trial and error. Typically, recon-

struction error gets higher weight than KL error (to ensure model �exibility). The coun-

terbalancing error terms for probability are weighted highly, as is the error term relating

probability and ODE prediction accuracy.

Interpreting the results involves two factors. First, the amount of error between the decoded

latent variables and gene expression (imputed using MAGIC), and the magnitude of the

learned constant ODE term for the associated gene. From this we can determine which

genes are exhibiting the largest variation along the gradient trajectory.
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6.3.2 Detecting gradients in spatial transcriptomics data

We �rst apply scGradient to detect transcriptional gradients on the subset of excitatory

neurons of the spatial transcriptomics dataset used for clustering3 Subsetting to 3,000 cells,

we pretrain the model for clustering for 500 epochs, and then train the neural ODEs for 300

iterations. A total of 3 dimensions were used for clustering, 5 for the latent representation,

and 4 corresponding to the ODEs (e.g. we can detect a maximum of 4 distinct transcriptional

gradients).

On this dataset, only one transcriptional gradient was detected. The correlation between

(gradient) time points for the separate ODEs was over 0.99 for each pairwise comparison.

Neural ODEs were de�ned as dz
dt

= const, and the average variance of the learned constants

across dimensions was 0.003.

We �rst compute the pairwise RMSE error between the reconstructions (e.g. reconstructed

to PCA space by the neural network and then transformed via low rank PCA approxima-

tion back to the original count space) with the raw counts, and with imputed counts (via

MAGIC). This results in pairwise RMSEs of 0.657±0.226, 0.144±0.137 and 0.625±0.208, for

reconstruction vs raw, reconstruction vs imputed, and raw vs imputed respectively (Figure

6.4 A). Thus reconstruction error was signi�cantly closer to the imputed result than the

raw data (p = 2.5× 10−140) implying that scGradient denoises the raw transcripts.

we next compute the pushforward of the derivative (of the �rst ODE, since they all represent

the same gradient), to obtain the approximate variation of counts with respect to gradient

time. we identify genes of interest using the following formula

abs(mean(deriv)),

3Results were computed using the initial method where dz
dt = const. Both methods identi�ed a similar

subset of neurons on the excitatory dataset including Slc30a3 and Nptxr. Inferred transcriptional gradients
were computed via pushforward of dz

dt
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where deriv is the pushforward of the derivative (for a single gene). Taking the top 11 ranked

genes (identi�ed via a threshold of 2 for the average derivative), we compute the average R2

(coe�cient of determination) based on a linear model, between the reconstructed data and

the impute gene expression. This yields 0.35 ± 0.17. The score used to identify genes was

correlated with R2 (correlation coe�cient 0.57).
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Figure 6.4: Detected transcriptomic gradient in excitatory neurons. A: Histogram of RMSE error between
reconstructed gene expression and imputed gene expression (top) and reconstructed gene expression and
raw expression (bottom). B-E represent data on a UMAP plot. B: Celltype labels for detected clusters
(computed a priori). C: Computed position on [0, 1] gradient time interval for each cell based on the Neural
ODE. D-E: Imputed gene expression for Slc30a3 and Nptxr. F-H: Spatial representation of gradient time
and imputed gene expression for Slc30a3 and Nptxr.

In this case, the transcriptional gradient (Figure 6.4 B-E) detected corresponds to a well

known gradient corresponding to cortical depth [128], with the largest variation within the

IT (Intratelencephalic Neurons, Figure 6.4 F-H). Among the top ranked genes, Nptx2

and Nptxr are associated with regulating excitatory synapse formation [132],[133]. Slc30a3
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is associated with Zinc capture in the synaptic vesicle, Wfs1 regulates calcium intake [134],

required for neural signalling, and Syngap1 regulates post-synaptic currents [135]. Lamp5

relates to synaptic plasticity in cortical excitatory neurons [136]. The remaining detected

genes exhibited low R2 coe�cients. These detected genes are integral in neuronal signaling,

allowing us to hypothesize that variation along this transcriptional gradient is associated

with variations in neuron signaling, particularly across the cortex. We also note that several

of the detected genes play signi�cant roles in IT subtypes speci�cally, which project across

the cortex. Nptxr in particular has been linked to mirror movements, a disorder causing

contralateral identical movements.

We apply a similar analysis with the PV (Parvalbumin expressing) interneurons in the same

spatial dataset. This dataset involved 842 cells. We identi�ed two primary transcriptional

gradients across the set, utilizing four ODEs. Reconstruction error compared with MAGIC

imputed gene expression was again low (0.065± 0.056) compared with raw gene expression

(0.321 ± 0.116). We identify a total of 13 genes associated with the �rst transcriptional

gradient, and 14 genes associated with the second, based on the same criteria and thresholds

used previously.

MeanR2 coe�cient is 0.271±0.194 for the �rst gradient and .107±0.098, indicating somewhat

lower �delity between the proposed gradients and imputed gene expression, particularly for

the second gradient (the maximum R2 values were 0.639 and 0.378, for �rst and second

gradient respectively). The top genes exhibiting greatest R2 coe�cient were Pvalb and Gria1

for the �rst and second gradient respectively. Unfortunately, no genes in the Cox or Rpl/Rps

families were pro�led in this spatial transcriptomics dataset, preventing a full comparison

with the results in Chapter 5. However Pvalb was highly correlated (0.456 after imputation)

with Cox6a2, providing evidence that we have uncovered the previously detected gradient.

The genes primarily identi�ed with the �rst transcriptional gradient (Pvalb, Rph3a, Figure

6.5 A-B) play roles in calcium binding in interneurons [137], [138]. The genes identi�ed
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Figure 6.5: Transcriptional gradients for PV interneurons. A: Time scale for transcriptional gradient 1.
B: Imputed Pvalb expression, which exhibits the highest correlation with gradient 1. C: Time scale for
transcriptional gradient 2. D: Imputed Gria1 expression, which exhibits the highest correlation with gradient
1.

with the second transcriptional gradient (Adgra1, Gria1, Figure 6.5 C-D) are associated

with neuronal signaling in excitatory neurons [139].

6.3.3 Current and future steps

At this point, the fundamental method for detecting transcriptional gradients is developed

and validated. However, several issues remain.

The computed gradient time and probabilities exhibit some problematic aspects. Even af-

ter penalizing correlation between gradient time components for separate ODEs, there is a

strong tendency for each ODE to learn the same gradient. We are currently addressing this

issue by including separate latent embeddings for each ODE, however the result may be also

be biological (e.g. there may be only one or two transcriptional gradient in the associated

cell types). The computed probabilities also have a strong tendency toward assigning all

cells to each gradient as cells with zero expression of genes strongly associated to the tran-
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scriptional gradient exhibit strong probability scores. This is mathematically acceptable but

needs to be adjusted to improve interpretation (e.g. by requiring some latent expression for

inclusion within the gradient). Additionally, Neural ODEs require long training times. We

are currently applying a downsampling approach to speed up training time.

While some technical issues remain, scGradient has successfully identi�ed a known tran-

scriptional gradient in the excitatory neurons, and several gradients, including the gradient

identi�ed in Chapter 5, in the Pvalb inhibitory neuron cell type. We will next apply this

method to additional datasets and cell types for validation purposes, followed by exploration

of novel gradients identi�ed in additional cell types.
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Figure A.1: Comparison of F1, PDR and FDR scores on the Gaussian and Non-Rigid 1p datasets. A-E:
Each heatmap depicts a di�erent metric for determining cell tracking quality: PDR the percentage of tracked
neurons through all recordings of those present in each recording; FDR the percentage of tracked neurons

containing at least one identi�cation error; F1 Score de�ned as F1 = 2×PDR×(1−FDR)
(1−FDR+PDR) . Parameters are

labeled in A(D) and extend to B-C(E-F). Parameters for SCOUT include max_dist (labeled Dist), min_
prob (labeled min), and chain_prob (labeled chain). The vertical change in each box corresponds to which
metrics were used in the computation (spatial only, correlation, SNR, decay, or all metrics), the horizontal
change in each box corresponds to variation in the min_prob parameter. Vertical change across boxes
corresponds to variation in the max_dist parameter, and horizontal changes across boxes correspond to the
chain_prob parameter. CaImAn and cellReg have a common maximum centroid distance (Dist) parameter,
as well as threshold parameters (Prob, Thresh) governing acceptance levels for tracked cells. Results for
Gaussian dataset on left (A-C), results for Non-Rigid 1p dataset on right (D-F).
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Figure A.2: Comparison of F1, PDR, and FDR scores on the Non-Rigid 2p and Individual Shift datasets. A-
C: F1 scores (A), PDR (B), and FDR (C) for SCOUT, cellReg, and CaImAn across a variety of parameters
for the Non-Rigid 1p dataset. Parameter labels (A) extend to B-C. D-F: F1 scores (D), PDR (E), and
FDR (F) for SCOUT, cellReg, and CaImAn across a variety of parameters for the Non-Rigid 1p dataset.
Parameter labels (D) extend to E-F. Results for the Non-Rigid 2p dataset on the left (A-C), results for the
Individual Shift dataset on the right (D-F).
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Figure A.3: Supplemental statistical comparisons of methods, Related to Figure 3. A: Maximal Jaccard
similarity (y-axis) on modi�ed versions of the simulated datasets (x-axis), in which 30% of neurons were
removed from analysis prior to cell tracking. Statistical results denote pairwise comparison with SCOUT
and are labeled with black asterisks (ANOVA, Bonferroni multiple comparisons). B: JS divergence (y-axis)
between cluster size distributions of inferred cell registers for each method (x-axis), on the Non-Rigid 1p
dataset after removal of 30% of neurons, based on parameters producing highest F1 scores. C: Full tracking
ratios (y-axis, the percentage of available neurons tracked through all sessions) on the modi�ed Non-Rigid
1p dataset based on parameters producing highest F1 scores. D: Algorithm runtime comparison between
SCOUT, cellReg and CaImAn. Testing was performed on the Non-Rigid 1p dataset. We performed 50
tests in the following manner: 1) a random recording was identi�ed; 2) recording sessions were duplicated
to construct up to 30 sessions; 3) SCOUT, cellReg and CaImAn were run with global session registration
disabled, and without the JS metric (SCOUT only) to provide the most unbiased results. Tests were run
with 24 cores on a 2.2 Ghz CPU. Results are shown based on the seconds required to complete cell tracking
(y-axis), and the total number of neurons (left) or sessions (right) in the recording. SCOUT and cellReg
results were �t with a quadratic curve, and CaImAn with a linear curve.
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Figure A.4: SCOUT cell tracking performance on 1-photon in vivo recordings. A: F1 scores (top), PDR
(middle), and FDR (bottom) for SCOUT, cellReg, and CaImAn across a variety of parameters (labeled top),
for the visual cortex recording. B: F1 scores (top), PDR (middle), and FDR (bottom) for SCOUT, cellReg,
and CaImAn across a variety of parameters (labeled top) for the prefrontal cortex recording. Multiple cellReg
parameters resulted in errors, the associated F1 and PDR were set to 0, and FDR to 1. C: F1 scores (top),
PDR (middle), and FDR (bottom) for SCOUT, cellReg, and CaImAn across a variety of parameters (labeled
top) for the hippocampus recording.
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Figure A.5: SCOUT cell tracking performance on the 2-photon in vivo recordings. A: F1 scores (top), PDR
(middle), and FDR (bottom) for SCOUT, cellReg, and CaImAn across a variety of parameters (labeled
top) for the VISi recording. B: F1 scores (top), PDR (middle), and FDR (bottom) for SCOUT, cellReg,
and CaImAn across a variety of parameters (labeled top) for the VISrl recording. C: F1 scores (top), PDR
(middle), and FDR (bottom) for SCOUT, cellReg, and CaImAn across a variety of parameters (labeled top)
for the VISp recording.
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