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Sparse thalamocortical convergence

Dario L. Ringach

Departments of Psychology and Neurobiology, David Geffen School of Medicine, University of 
California, Los Angeles Los Angeles, CA 90095, USA.

Summary

How many thalamic neurons converge onto a cortical cell? This is an important question 

because the organization of thalamocortical projections can influence the cortical architecture 

[1, 2]. Here we estimate the degree of thalamocortical convergence in primary visual cortex 

by taking advantage of the cortical expansion – neurons within a restricted volume in primary 

visual cortex have overlapping receptive fields driven by a smaller set of inputs from the lateral 

geniculate nucleus [3–5]. Under these conditions, the measurements of cortical receptive fields 

in a population can be used to infer the receptive fields of their geniculate inputs and the 

weights of their projections using non-negative matrix factorization [6]. The analysis reveals 

sparse connectivity [7], where a handful (~2 − 6) of thalamic inputs account for 90% of the total 

synaptic weight to a cortical neuron. Together with previous findings [8] these results paint a 

picture consistent with the idea that convergence of a few inputs partly determine the retinotopy 

and tuning properties of cortical cells [8–13].

eTOC Blurb

Ringach shows that the receptive fields of a population of neurons in primary visual cortex can be 

used to reconstruct their thalamic inputs and the weight of their projections. The analyses reveal 

sparse, thalamocortical connectivity, where a handful of neurons account for a substantial part of 

the cortical response.
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Results and Discussion

We use two-photon, calcium imaging in awake mice to record the responses of neurons in 

primary visual cortex to a small, contrast-reversing 2 × 2 checkerboard presented at different 

locations on a grid covering a large part of the visual field (Figure 1A). An individual 2 

× 2 checker measures 5.6 × 5.6 deg2 which is just under the optimal stimulus size for 

thalamic neurons (cf. Figure 3I in [14]). The average response of neurons to stimulation 

at each location yields the classical receptive field (Figure 1B, top). Individual receptive 

fields can be reasonably fit by anisotropic, two-dimensional Gaussians (Figure 1B, bottom). 

Note that these measurements simply represent the locations on the visual field where visual 

stimulation by a small stimulus leads a neuron to respond – there is no attempt to map ON 

and OFF subregions separately.

Let us assume the receptive fields of the population ri(x, y) i = 1
n  can be expressed 

as a non-negative, linear combination of a smaller set of geniculate receptive fields, 

ri(x, y) ≅ ∑i = 1
m wi, jℎj(x, y) (Figure 2A). Here, ℎk(x, y) k = 1

m  are the receptive fields of 

putative thalamic neurons (m < n), and the synaptic weights between thalamic and cortical 

neurons are non-negative, wi, j ≥ 0. In matrix form, we can write R = W H(W , H ≥ 0)
where R (n × p) are the cortical receptive fields (with p being the number of different grid 

locations), W (n × m) are the synaptic weights, and H(m × p) are the thalamic receptive fields. 

For a given number of geniculate neurons, we can use non-negative matrix factorization [6, 
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15] to estimate both the thalamic receptive fields H and their projections w Note that no 

other constraints other than non-negativity are imposed. In particular, the shape and size of 

the thalamic receptive fields (represented by the matrix H ) are an outcome of the analysis. 

I validated and assessed the robustness of this approach using computer simulations before 

applying it to experimental data (Supplemental Information).

How many geniculate receptive fields are needed to account for the retinotopy of a given 

population? Given an experimental dataset R containing the measured receptive fields, 

we can first examine how the quality of the factorized approximation improves as we 

increase the putative number of geniculate receptive fields, m (Figure 2B). The dependence 

of the mean-squared error (MSE) with the number of geniculate receptive fields falls off 

exponentially (Figure 2B, solid curve). We define the optimal as the smallest number that 

achieves at least a 90% reduction in MSE (Figure 2B, red point – see Figure S1F for a 

robustness analysis of this choice). In this example, m=18 inputs are sufficient to explain the 

structure of n=101 cortical receptive fields. The reconstructed thalamic receptive fields tile a 

compact region of the visual space (Figure 2C–F, left panels). Moreover, the receptive fields 

of individual cortical neurons in the population are well described by the linear combination 

of a small number of geniculate inputs (Figure 2C–F). For each cortical cell, we calculate 

the fraction of the total synaptic input accounted for by the largest k inputs (Figure 3A). The 

effective number of inputs is defined as the smallest number of inputs that contribute at least 

90% of the total synaptic weight. The distribution of the effective number of inputs across 

all n = 425 neurons in our experiments shows that 4.69 ± 2.19 (1SD) geniculate inputs are 

sufficient to account for the retinotopy of the cortical population (Figure 3B).

Discussion

At first sight the result appears in conflict with a more direct estimate of 80 ± 10 thalamic 

inputs into layer 4 neurons [7]. In this previous study, the authors measured the unitary 

EPSC and its integral (the charge contribution) of individual geniculate neurons during 

cortical silencing. To estimate the number of inputs a cell receives they asked how many 

times one would need to resample from the empirical charge-contribution distribution for the 

accumulated values to reach the total charge produced by visual stimulation. This method 

yielded an estimate of 80 ± 10 thalamic inputs, which is an order of magnitude larger than 

obtained in Figure 3B.

Can these data be reconciled? One salient feature of the empirical charge-contribution 

distribution is that most values are rather small and only a handful are large (cf. Figure 6B 

in [7]). When there is a large inequality between the contributions of the inputs, the specific 

way one defines the effective number of inputs can yield disparate results. To demonstrate 

this point, consider a hypothetical example where a cell receives a total of 100 inputs with 

a contribution of 0.1% and a single input contributing the remaining 90% of the charge. 

Applying the resampling method [7] to this case results in an estimate of 127 inputs (the 

reason for the curious overestimate is that the probability of not observing the large input 

after 101 draws is relatively large, ~exp(−1) = 0.37). In contrast, if we ask what is the 

minimum number of inputs that account for 90% of the total charge the answer is, clearly, 

just one. Finally, if we ask how many non-zero inputs the cell receives, irrespective of the 
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magnitude of their contributions, the answer is 101. Thus, different definitions yield wieldy 

different numbers.

The preceding discussion suggests we may be able to reconcile the present estimate of 

thalamic convergence with the one reported previously [7]. To evaluate quantitatively if 

this scenario is feasible, let us assume a symmetric Dirichlet distribution of contributions 

with concentration parameter α = 0.03 and a total number of N = 69 inputs (the Dirichlet 

distribution ensures the sum of all contributions is 100%). For this particular selection 

of values, the minimum number of inputs required to reach 90% of the total is ~4.6 

(Figure 4A) while the resampling method yields ~80 inputs (Figure 4B), thereby offering 

a potential explanation for the observed differences. The distribution of charge contribution 

is the marginal of the Dirichlet distribution, which turns out to be a Beta distribution with 

shape parameters (α, (N−1)α)=(0.03,2.04). As expected, this distribution is sparse – small 

values appear frequently while large values are very rare (Figure 4C). Note that the largest 

contribution observed among the 23 measurements reported by Lien and Scanziani was 6% 

(see Figure 6 in ref [7]). The probability that any one realization from a Beta distribution 

with the above shape parameters will be smaller than this value is p = 0.9456. This means 

that the probability that the maximum of 23 such observations would not exceed 6% is 

p23 ∼ 0.2764. Therefore, there is a reasonable chance that inputs with larger contributions 

exist but were missed in the previous study due to limited sampling. In other words, the 

findings from the two studies can be reconciled assuming a sparse distribution of charge 

contributions and applying the definitions and estimation methods used in each study. Both 

studies reinforce the conclusion that thalamocortical connectivity is sparse and suggest that 

fitting a Beta distribution to synaptic contribution data might provide a better yardstick to 

compare results.

Although the present findings can be reconciled with prior data, it is worth mentioning 

experimental factors that could bias our estimates towards lower numbers. First, the selected 

spatial and temporal parameters of the stimuli is expected to drive most thalamic neurons, 

including sustained ON/OFF and transient OFF classes, but to a lesser degree, directionally 

selective neurons (as the stimulus has no net motion) and very few of the so-called “slow” 

or “contrast suppressed” neurons [14]. Thus, it is possible that the stimulus fails to engage 

all different cell thalamic classes equally. If multiple cell classes converge onto single 

cortical neurons, this can cause an underestimate of the actual number of inputs. Note this 

a limitation of the stimulus and not the technique. Second, ON and OFF-center thalamic 

inputs with largely overlapping receptive fields could potentially be lumped into a single 

receptive field in the present analysis. This can be avoided by separately measuring ON and 

OFF responses and independently estimating ON and OFF inputs. Third, as the stimuli are 

small, it is possible that weak, sub-threshold inputs are not detectable in our measurements 

[16, 17]. The present estimates should be interpreted with these limitations in mind. Note 

that alternative, anatomical approaches to the question, such as single-cell viral tracing of the 

inputs of layer 4 cells to label all its thalamic inputs can yield important connectivity data, 

but do not yet allow us to estimate the strength of synaptic connections, which is necessary 

to compute the effective number of inputs. The number of cells labeled in such a way only 

provides a weak, upper bound on the number of inputs.
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These findings indicate that, at least when it comes to explaining the structure of population 

receptive fields, the estimated thalamocortical connectivity is sparse in the sense that a 

handful of inputs contribute a large fraction of the response [18] – a result we modeled 

mathematically and showed to be consistent with prior data [7]. In the mouse, we further 

know that the similarity in tuning for orientation and spatial frequency between a pair of 

neurons increases as the overlap between their receptive fields increases [8]. Altogether, 

these results paint a picture consistent with the notion that the selection of a small number of 

inputs by a cortical cell determines, at least in part, both its retinotopy and tuning [9, 11, 12].

STAR Methods

Lead contact

Further information and requests for resources and reagents should be directed to the Lead 

Contact, Dario Ringach (dario@ucla.edu)

Materials availability

This study did not generate new unique reagents.

Data and Code Availability

The dataset for this study, including raw kernels and their Gaussian fits, has been deposited 

at https://figshare.com/articles/dataset/Sparse_Thalamocortical_Convergence/13864970

Experimental Model and Subject Details

All procedures were approved by UCLA’s Office of Animal Research Oversight (the 

Institutional Animal Care and Use Committee) and were in accord with guidelines set by 

the US National Institutes of Health. A total of 5 mice, both male (3) and female (2), aged 

P35–56, were used. In two mice we collected data from two separate populations, yielding 

a total of seven experimental datasets. All these animals were from a TRE-GCaMP6s line 

G6s2 (Jackson Lab), where GCaMP6s is regulated by the tetracycline-responsive regulatory 

element (tetO). Mice were housed in groups of 2–3, in reversed light cycle.

Method Details

Surgery—Carprofen and buprenorphine analgesia were administered pre-operatively. Mice 

were then anesthetized with isoflurane (4–5% induction; 1.5–2% surgery). Core body 

temperature was maintained at 37.5C using a feedback heating system. Eyes were coated 

with a thin layer of ophthalmic ointment to prevent desiccation. Anesthetized mice were 

mounted in a stereotaxic apparatus. Blunt ear bars were placed in the external auditory 

meatus to immobilize the head. A portion of the scalp overlying the two hemispheres of 

the cortex (approximately 8mm by 6mm) was then removed to expose the underlying skull. 

After the skull is exposed, it was dried and covered by a thin layer of Vetbond. After the 

Vetbond dries (15 min) it provides a stable and solid surface to affix an aluminum bracket 

(a head holder) with dental acrylic. The bracket is then affixed to the skull and the margins 

sealed with Vetbond and dental acrylic to prevent infections.
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Imaging and eye movements—We began imaging sessions 5–7 days after surgery. We 

used a resonant, two-photon microscope (Neurolabware, Los Angeles, CA) controlled by 

Scanbox acquisition software and electronics (Scanbox, Los Angeles, CA). The light source 

was a Coherent Chameleon Ultra II laser (Coherent Inc, Santa Clara, CA) running at 920nm. 

The objective was an x16 water immersion lens (Nikon, 0.8NA, 3mm working distance). 

The microscope frame rate was 15.6Hz (512 lines with a resonant mirror at 8kHz). A camera 

synchronized to the frame rate of the microscope imaged the eye and pupil during data 

collection. These data were subsequently analyzed to determine the center and size of the 

pupil within the image plane. The distribution of eye movements was computed, yielding 

a mode and scatter that was larger along the horizontal axis. Our analyses yielded similar 

results whether performed on the entire dataset or by based on data segments where the eye 

position was within 1SD of the mode.

Visual stimulation—We used a Samsung CHG90 monitor positioned 30 cm in front 

of the animal. The screen was calibrated using a Spectrascan PR-655 spectro-radiometer 

(Jadak, Syracuse, NY), and the result used to generate the appropriate gamma corrections 

for the red, green and blue components via a GeForce RTX 2080 Ti graphics card. 

Visual stimuli were generated by a Processing sketch using OpenGL shaders (see http://

processing.org). Stimuli were presented only on the right visual hemifield, which covered 

100° × 55°, as recordings took place from the monocular zone of primary visual cortex on 

the left hemisphere. Two by two checkerboards, switching contrast every 100 msec, were 

presented for 0.5 sec at a random location on an 18 × 10 grid. Stimulus onset asynchrony 

was 1 sec. Stimulus locations were randomized in blocks and we presented a total of 6 

blocks. Transistor-transistor logic (TTL) pulses generated by the stimulus computer signaled 

the onset of stimulation at each location and were sampled by the microscope and time-

stamped with the frame and line number that being scanned at that time.

Visual stimulation—We used a Samsung CHG90 monitor positioned 30 cm in front 

of the animal. The screen was calibrated using a Spectrascan PR-655 spectro-radiometer 

(Jadak, Syracuse, NY), and the result used to generate the appropriate gamma corrections 

for the red, green and blue components via a GeForce RTX 2080 Ti graphics card. 

Visual stimuli were generated by a Processing sketch using OpenGL shaders (see http://

processing.org). Stimuli were presented only on the right visual hemifield, which covered 

100° × 55°, as recordings took place from the monocular zone of primary visual cortex on 

the left hemisphere. Two by two checkerboards, switching contrast every 100 msec, were 

presented for 0.5 sec at a random location on an 18 × 10 grid. Stimulus onset asynchrony 

was 1 sec. Stimulus locations were randomized in blocks and we presented a total of 6 

blocks. Transistor-transistor logic (TTL) pulses generated by the stimulus computer signaled 

the onset of stimulation at each location and were sampled by the microscope and time-

stamped with the frame and line number that being scanned at that time.

Data and Robustness Analysis—We used Matlab to compute the non-negative matrix 

factorization using the alternating least-squares algorithm. To analyze the robustness of the 

method, we simulated an input consisting of LGN receptive fields with centers located on 

the vertices of a noisy hexagonal grid (Figure S1A). Average grid spacing was 2σ, where σ
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is the width of the Gaussian defining the LGN receptive fields. We then simulated cortical 

neuron sampling from inputs near the center of the grid. For each neuron, we centered its 

receptive field at x0, y0  where both variables are distributed uniformly U(−1.5,1.5). This 

introduces scatter in the receptive field centers. We randomly oriented an ellipse at the center 

location with a minor axis of 1.2 and a major axis equal to 1.5+U(0,2). This introduced 

variability in the axes of elongation and the aspect ratio of the receptive fields. The cortical 

cell then sampled from all the LGN cells with centers within the interior of the ellipse 

with a synaptic weight that decayed exponentially from x0, y0  and with a space constant 

equal to 3. The level sets of some of the receptive fields generated by this procedure are 

shown in Figure S1A. For each cell, we computed the number of inputs as the minimum 

number required to account for 90% of the total synaptic input. The mean squared error fell 

exponentially initially and it increases when the model is overfit (Figure S1B). Non-negative 

matrix factorization for an optimal selection of m =12 yielded LGN receptive fields with 

centers that aligned with those simulated (Figure S1C). The confusion matrix shows that 

over 90% of the time the number of inputs were recovered exactly (Figure S1D). The 

distribution of the effective number of inputs was nearly identical to the simulated one 

(Figure S1E). Importantly, the performance of the algorithm is robust to the selection of the 

number of receptive fields in the geniculate (Figure S1F). There is a substantial range of 

values over which the bias is near zero and the standard deviation of the estimates is low. 

Here, we define bias as the mean of ni − ni, where ni is the estimated number of inputs to a 

cell and ni is the actual, simulated value; the precision is defined as the standard deviation of 

ni − ni. The shaded are in Figure S1F shows that over a reasonable range of values the bias 

and the standard deviation are low. Thus, the estimates appear robust to the selection of m.

Quantification and Statistical Analysis—The experiments were conducted in a total 

of 5 mice yielding a pooled dataset of n = 425 cells (Figure 3B). We use standard deviation 

(SD) as a measure of dispersion of the estimated number of inputs, while also showing the 

entire distribution of values (Figure 3B). Figure 2B shows an estimate of the number of 

neurons in the LGN required to explain the population receptive fields of n = 101 cells in a 

single experiment. Such data were fit with an exponential function A + Bexp( − Cm) using the 

‘fit’ function in Matlab. Non-negative matrix factorization was computed using the ‘nnmf’ 

function in Matlab. The experimental design did not involve assigning subjects to different 

groups and evaluating the outcome of different conditions. Thus, no statistical comparison 

between groups was needed.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

• Population receptive fields in V1 are used to reconstruct inputs from the LGN.

• Estimated connectivity shows sparse thalamocortical convergence.

• A handful of inputs account for a large fraction of the cortical responses.

• Clarifies the notion of “effective number of inputs”.
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Figure 1. Measuring population receptive fields in mouse primary visual cortex.
A. The stimulus consists of flickering 2×2 checkerboards on a 10 by 18 grid covering 100 

by 55 deg of the contralateral hemifield. The average response to stimulation each location 

is represented as an image depicting the receptive fields of the neurons. B. Examples of four 

(raw) receptive fields (top) and their Gaussian fits (bottom) from neurons in mouse V1.
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Figure 2. Modeling population receptive fields by non-negative matrix factorization.
A. We model the population of V1 receptive fields as a non-negative, linear combination of 

LGN inputs. Shaded areas represent the receptive fields of putative LGN neurons. B. The 

mean-squared error of the non-negative factorization falls off with the number of putative 

LGN inputs. In this experiment, a total of 101 receptive fields could be explained with only 

18 inputs (red point). C-F. Examples of the reconstruction of V1 receptive fields from the 

linear combination of LGN inputs from the same population as in B. In each case, the left 

panels show the 1σ level-sets of the LGN receptive fields estimated by the factorization. 

The color code indicates the fraction of the total synaptic weight of their projections to a 

cortical cell. The right panels show the measured receptive fields along with its factorized 

representation. See also Figure S1.
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Figure 3. Sparse connectivity of thalamocortical projections.
A. Fraction of total synaptic weight explained by the largest k inputs. Blue curves represent 

individual cells. The red curve is the average behavior across population. For each cell, the 

effective number of inputs is defined as the minimum number required to exceed 90% of 

the total input (dashed horizontal line). For reference, note that if cells had inputs with equal 

contributions the result would be the red, dashed line. B. Distribution of the effective number 

of total inputs across all neurons in all the experiments. See also Figure S1.
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Figure 4. A statistical model reconciles different estimates of the number of inputs.
By assuming a specific multivariate Dirichlet distribution of contributions we can 

simultaneously match the minimum number of inputs required to explain 90% of the 

response in the present study (A) and the number of inputs estimated by resampling (B) 

as done by Lien and Scanziani [7]. The distribution of contributions under such a model is 

a Beta distribution (C) (the marginal of the Dirichlet distribution) where small values are 

frequent, while large values are rare.
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