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Abstract

Black Holes and Bubbles:

A phenomenological, formal, and numerical exploration

by

Evan Frangipane

This thesis is a compilation of my work on the phenomenology and formal theory of

black holes and numerical work on bubble dynamics. The first project is a novel search

for primordial black holes (PBHs) with the Nancy Grace Roman Space Telescope. The

next project is a study on the mystery of black hole evaporation in an explicitly defined

spacetime. The final project is a numerical simulation of bubble dynamics in general

relativity.
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Chapter 1

Introduction

Research in black hole physics is a broad and rich discipline. During my

years as a graduate student, I worked on a variety of aspects of the field, including

phenomenology, formal theory, and numerical simulation. This thesis is a compilation

of my work toward the understanding of black holes. This paper is divided into two

parts with Part I on my work directly on black hole physics, and Part II on my work

toward the goal of simulating black hole production via vacuum bubbles.

In Chapter 2, I will introduce a phenomenological study of primordial black

holes. In Chapter 3, I will consider the black hole information paradox. In Chapter 4, I

will explore a numerical simulation of Coleman DeLuccia bubbles to create black holes

in an asymptotically FLRW spacetime. In Chapter 5, I will tie the parts together and

conclude.
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Part I

Black Holes
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Chapter 2

Primordial Black Holes

2.1 Introduction

The nature of dark matter remains one of the most pressing open questions in

fundamental physics. While multiple lines of compelling evidence indicate its existence,

its microphysical nature remains unknown (for a recent review and up to date refer-

ences see e.g. Chapter 27 of Ref. [273]). Many models have been proposed to explain

this additional matter content, with many such models introducing new fundamental

particles with suppressed interaction cross-sections to populate the dark sector [273].

However, dark matter may instead be macroscopic and potentially possess large interac-

tion cross-sections, escaping detection due to its low number density. Primordial black

holes (PBHs) are a well-motivated candidate for such a macroscopic dark matter model

[55, 56, 58, 126]. There are a wide variety of mechanisms that result in the formation of

PBHs, from the collapse of overdensities sourced by inflation [58, 129] to phase transi-
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tions [161] and topological defect collapse [71] in the early universe (see the discussion in

Sec. 2.3.1 below). PBHs may form over a wide range of masses, from as low as asteroid

masses up to thousands of solar masses and beyond.

The Earth-mass range, ∼ 10−6M⊙, is of particular interest, as observations of

excess short-duration microlensing events have been suggested to constitute a first hint

of a population of PBHs at terrestrial masses [214]. However, there is another possible

candidate to explain these events: free-floating planets (FFPs). These are planets that

have been ejected from their parent star system by dynamical interactions during the

chaotic early phases of system formation. Such FFPs are expected to dramatically

outnumber bound exoplanets at sub-terrestrial masses [254, 257], constituting a large

potential background for surveys seeking to observe PBHs at Earth masses and below.

Previously, constraints on the PBH abundance have been placed in regions of

parameter space for which the expected contribution from FFPs is negligible. However,

with the upcoming launch of the Nancy Grace Roman Space Telescope, this will change:

over the course of its Galactic Bulge Time Domain Survey (GBTDS) [107], Roman is

expected to observe hundreds of free-floating planets at roughly Mars mass and above

[157]. This unprecedented sensitivity will also provide the opportunity to search for

PBHs in new regions of parameter space. In these regions, FFPs constitute an irre-

ducible background that must be taken into account in order to constrain or claim the

discovery of PBHs.

FFPs and PBHs cannot generally be discriminated on an event-by-event basis,

as their light curves are degenerate for identical masses. However, FFPs and PBHs are

4



expected to arise from different underlying mass distributions, permitting a statistical

means of discrimination. In this chapter, we present a method by which a subpopulation

of PBHs can be detected amidst a background of FFPs. We find that even in the

presence of FFPs, Roman will be sensitive to PBHs at abundances well below existing

constraints. In particular, Roman will be able to conclusively determine the nature of

the Earth-mass “hint” of a PBH population claimed by [214].

The remainder of the Chapter is organized as follows. In Sec. 2.2, we dis-

cuss microlensing surveys and describe the observables associated with microlensing

lightcurves. In Sec. 2.3, we review mechanisms for PBH/FFP formation and provide a

fiducial mass function for the abundance of each population. In Sec. 2.4, we describe the

implementation of our analysis framework and the associated statistical methodology

for estimating Roman sensitivity. In Sec. 2.5, we present our results and discuss their

implications before concluding in Sec. 2.6.

2.2 Microlensing

Gravitational lensing is a powerful technique to observe non-luminous massive

objects at astronomical distances. Light rays passing in the vicinity of a massive object

are bent by the gravitational field of the object, causing the light from background stars

(“sources”) to be distorted by massive objects (“lenses”) that lie along the line of sight.

For high mass lenses, this effect produces multiple images of the source; for low mass

lenses, the images cannot be individually resolved and instead contribute to an overall

5



apparent magnification of the source. This effect is known as microlensing [219].

The duration and magnification of the source are determined by the mass of

lens M , the distance to the lens and source, dL and dS , the relative proper motion of

the source and the lens µrel, the impact parameter u, the angular diameter of the source

θS , and the effective angular diameter of the lens θE . This final quantity is also known

as the “Einstein angle” and is given by

θE =

√
4GM(1 − dL/dS)

c2dL
. (2.1)

When θS ≪ θE , the angular extent of the source is negligible. This “point-

source regime” is typical for large lens masses and distant sources, and the associated

event duration is given by the time it takes for the source to cross the Einstein radius

of the lens. This “Einstein crossing time” is defined as

tE =
θE
µrel

. (2.2)

In the point-source regime, the apparent magnification is given by [211]

Aps(u) =
u2 + 2

u
√
u2 + 4

, (2.3)

where u ≡ u(t) is the impact parameter as a function of time. This yields a characteristic

light curve consisting of a narrow peak.

When θS ≳ θE , however, the point-source approximation breaks down. In

6



this finite-source regime, the light curve saturates at a lower maximum magnification

and the event duration is no longer set by tE , but rather by the time for the lens to

cross the finite angular extent of the source, a timescale of ∼ 2θS/µrel. Similarly, the

magnification in this regime no longer diverges as u → 0 and is instead given by an

integral over the source disk, specified in polar coordinates (r, ϕ) as [192, 256, 272]

Afinite(u, ρ) ≡ 1

πρ2

∫ ρ

0
dr

∫ 2π

0
dϕ r Aps

(√
r2 + u2 − 2ur cos(ϕ)

)
, (2.4)

where ρ ≡ θS/θE and the origin has been chosen such that the lens center is located

at a distance u from the origin along ϕ = 0. The maximum impact parameter that

produces a detectable event is defined implicitly via the relation Afinite(uT, ρ) = AT ,

where the minimum detectable magnification, AT , is set by the photometric sensitivity

of the microlensing survey, and uT is the maximal impact parameter that results in a

magnification of at least AT . uT defines the phase space for the expected event rate

calculation (see Sec. 2.4.1) and can be calculated for a given dL, dS , and θS following

the procedure given in [256].

For most events, the fundamental observable that can be measured from the

light curve is the duration. We define this as the time over which the magnification is

above detection threshold (A > AT or equivalently u < uT ):

tdur = 2
√
u2T − u2min

θE
µrel

, (2.5)
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where umin is the impact parameter at the point of closest approach. Assuming perfect

photometry, uT ≈ ρ in the extreme finite-source regime and ≈ 1 in the point-source

regime; hence, for a trajectory that passes through the midplane of the source, tdur

approaches the expected ∼ 2θS/µrel in the finite-source limit and ∼ 2tE in the point-

source regime.

Though finite-source effects reduce the peak magnification, which can reduce

detectability, they introduce characteristic features in the light-curve that permit a mea-

surement of θE . Coupled with a measurement of the lens distance, an estimate of the

lens mass can be made. However, the extraction of θE is a challenge for many events,

especially those that do not conform to simple single-lens models. Additionally, for low

masses and short event durations, estimating dL requires a simultaneous observation by

another telescope in order to provide a parallax measurement, which is often unavail-

able. As such, the only observable quantity that can be robustly measured for most

microlensing events is the event duration, tdur, and is therefore the quantity we choose

to employ to discriminate amongst various subpopulations of lenses in Sec. 2.4.

2.3 Microlensing Targets

In this section, we discuss two primary targets for microlensing surveys in the

terrestrial mass range and connect them to existing observations.
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2.3.1 Primordial black holes

Black holes not originating from the collapse of massive stars are generically

termed “primordial” black holes and appear in many extensions of the Standard Model.

Most formation mechanisms rely upon the growth of large density fluctuations in the

early universe that ultimately collapse. These may be seeded by features in the infla-

tionary potential [21, 59, 101, 110, 138, 149, 277] or by other physical processes, such as

the collapse of inhomogeneities during the matter-dominated era triggered by a sudden

pressure reduction [47, 151, 161], collapse of cosmic string loops [127, 137, 150], bubble

collisions [71, 172], a scalar condensate collapsing to Q-balls before decay [67–70], or

domain walls [77, 109, 180, 235]. (See, e.g., [55, 56] for recent reviews.)

If the overdensities are seeded by inflationary features, the resulting PBH

masses are related to the redshift of formation since PBHs acquire a mass of order

the total energy within a Hubble volume at the time of collapse. The resulting mass

distribution is often well-described by a log-normal distribution, which is a generic pre-

diction for PBHs forming from smooth, symmetric peaks in the power spectrum of

density fluctuations in the early universe [84]. Numerical and analytical evidence for

this functional form was provided in [121] and [158], see also the recent Ref. [166]. For

this reason, in the following, we will consider a fiducial PBH mass function of the form

f(M,σ,Mc) =
fPBH(√
2π

)
σM

exp

(
− log2 (M/Mc)

2σ2

)
, (2.6)
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normalized such that

fPBH =
ΩPBH

ΩDM
=

∫
dMf(M,σ,Mc) (2.7)

where here ΩPBH and ΩDM are the fractional energy density of PBHs and of all dark

matter, respectively. Here Mc is the mean value of M and σ is the standard deviation

of the logarithmic mass.

PBHs are a compelling candidate for dark matter and have been searched for

across a wide range of masses. In the mass range of ≈ 10−11M⊙− 10M⊙, gravitational

lensing sets some of the strongest observational constraints on their abundance [10, 11,

51, 122, 159, 214, 275, 276] limiting the fractional energy density to fPBH ≈ 10−1−10−2.

At terrestrial masses, the strongest limits are set by observations made by the Optical

Gravitational Lensing Experiment (OGLE) [214]. However, this survey also revealed

an anomalous excess of six short-duration events consistent with a population of Earth-

mass PBHs at f ≈ 10−2. To date, the nature of these observations has not been resolved.

As we will show in Sec. 2.5, upcoming observations by the Nancy Grace Roman Space

Telescope will be able to establish whether a population of PBHs truly exists at these

masses or whether these events were more likely caused by, e.g., free-floating planets.

2.3.2 Free-floating planets

The term “free-floating planets” is often used to describe two different classes

of astrophysical objects. At masses near and above that of Jupiter, FFPs may form in
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situ as the core of a failed star [199]. At lower masses, FFPs are expected to primarily

form within young planetary systems before being ejected by dynamical processes onto

unbound orbits. There is a wide variety of processes that can result in the ejection of a

protoplanetary object, including stripping by nearby stars, gravitational scattering off

of planetesimals, and interactions with an inner binary star system [94, 187, 232]. Both

simulations and observations suggest that FFPs may dramatically outnumber bound

planets at masses ≲ M⊕ [204, 254, 257]. FFPs are therefore an exciting observational

target for existing and upcoming microlensing surveys.

Ejection processes typically yield a distribution of FFPs that are well-described

by a power law [204]. Here we adopt the form

dN

d log10(M)
= N

( M

Mnorm

)−p
(2.8)

where N is the total number of FFPs per star at mass M scaled by a normalization

mass Mnorm. Throughout the rest of the chapter, we take all logarithms to be base 10

and Mnorm = M⊕ unless otherwise noted.

At present, observational measurements of the FFP population do not place

strong constraints on the values of N and p. Existing microlensing surveys have observed

tens of FFPs, with only three events permitting a mass estimate placing the lens in the

terrestrial range.1 Based off these data, combined with the results from simulations

of ejection [83, 106, 201] and observations of bound systems [174, 245, 254], the best

1The associated events are OGLE-2012-BLG-1323 [207], OGLE-2016-BLG-1928 [209], and MOA-9y-
5919 [170].
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estimates for p and N are of order p ≈ 1 and N ≈ 10 with an uncertainty spanning

p ≈ 0.66 − 1.33 and N ≈ 2 − 20 [118, 204, 257]. We choose to adopt p = 1 and N = 10

as our fiducial parameters and marginalize over the uncertainty on their values when

computing our sensitivity (see Sec. 2.4.2).

2.4 Detecting PBHs with Roman

In this section, we describe our statistical methodology for detecting a subpop-

ulation of PBH lenses within a background of FFPs. The key point is that though PBH

and FFP events cannot be discriminated on an event-by-event basis, the two populations

can be distinguished by the statistical distribution of their event durations, tdur (Eq.

2.5). This distribution is predominantly controlled by the underlying mass function of

the lensing population, which differs significantly between FFPs and PBHs (see Secs.

2.3.1 and 2.3.2). Additionally, the tdur distribution is influenced by the distribution of

lens distances and transverse velocities, both of which differ between FFPs and PBHs

as well (see Sec. 2.4.1). As a result, the observed distribution of tdur provides a robust

means of identifying multiple populations of lenses within a set of microlensing events.2

While existing observations have not yet yielded a sufficient number of detec-

tions at terrestrial masses to resolve the underlying distribution of tdur, this will change

in the coming years. The Galactic Bulge Time Domain Survey (GBTDS), one of three

primary surveys to be conducted by the upcoming Nancy Grace Roman Space Telescope

2An alternate strategy, as suggested by Niikura et al. [214], would be to observe along different lines
of sight, as FFPs and PBHs are expected to follow different spatial distributions. As this would require
an additional dedicated survey, we leave the study of this topic to future work.
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(set to launch in 2027), will observe seven fields tiling 2 square degrees of the Galactic

bulge with a cadence of 15 minutes during six 72-day observing seasons [107]. This

survey strategy has been designed specifically to meet core science requirements for the

mission, including measuring the abundance of free-floating planets to within 25%. As

such, the GBTDS is expected to yield hundreds of FFP microlensing events at Mars

mass and above [157], providing the opportunity for distribution-level analyses.

In the following two subsections, we will describe our methodology for deter-

mining Roman’s sensitivity to discriminating a PBH subpopulation from a background

FFP population using the observed distribution of tdur values. This is done in two

steps. First, in Sec. 2.4.1, we compute the event rate for both of these populations

given Roman’s fiducial survey parameters to determine the tdur distribution for both

populations. Then, in Sec. 2.4.2, we perform a 2-Sample Anderson-Darling test to de-

termine the statistical significance at which a combined FFP and PBH tdur distribution

differs from a FFP distribution without PBHs.

2.4.1 Event rate estimation

The key input to our statistical methodology is the distribution of event dura-

tions, tdur. In order to compute this, we integrate over the differential event rate given

by [27, 213]

dΓ

dM ddL dtdur dumin
=

2√
u2T − u2min

v4T
v2c

exp
[
− v2T
v2c

]ρM
M

f(M)ε(tdur), (2.9)
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where f(M) is the probability distribution of lens masses (Eq. 2.6 or Eq. 2.8 for PBHs

and FFPs, respectively), ρM is the mass density of the lens population, ε(tdur) is the

detection efficiency, and vT , the transverse velocity, is given by

vT = 2θEdL

√
u2T − u2min/tdur. (2.10)

We set uT , the maximum impact parameter that produces a detectable event, according

to the procedure discussed in Sec. 2.2, adopting AT = 1.34 as our fiducial threshold

magnification. This choice likely underestimates Roman’s sensitivity, but is in keeping

with the literature [157] (see also App. 2.A). The event rate, Γ, is then evaluated as

Γ = 2

∫ Mmax

Mmin

dM

∫ ds

0
ddL

∫ uT

0
dumin

∫ tmax

tmin

dtdur

1√
u2T − u2min

v4T
v2c

exp
[
− v2T
v2c

]ρM
M

f(M)ε(tdur), (2.11)

which we calculate using LensCalcPy,3 a package to semi-analytically calculate mi-

crolensing observables. We take tmin to be 15 min and tmax to be 6 × 72 days, corre-

sponding to the proposed cadence and observational duration of the Roman GBTDS.

By performing the integral and multiplying the resulting rate by the GBTDS obser-

vational duration, we compute the expected total number of events that Roman will

detect, denoted NFFP and NPBH for FFPs and PBHs, respectively.

3https://github.com/NolanSmyth/LensCalcPy
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In computing the event rate, we must specify the velocity and spatial distri-

butions of the lenses. We assume that the FFP density tracks the stellar distribution of

the galaxy, for which we adopt the exponential Koshimoto parametric model described

in [169]. We take the PBH mass distribution to be a Navarro-Frenk-White profile given

by

ρM =
ρ0

( r
rs

)(1 + r
rs

)2
, (2.12)

where ρ0 = 4.88 × 106 M⊙ kpc−3 and rs = 21.5 kpc [167]. While the relative source-

lens velocity depends in general on the positions of both source and lens, we take

vc = 220 km/s for PBHs and vc = 200 km/s for FFPs. The former is a typical value for a

virialized DM halo [167], and the latter is approximately the average transverse velocity

in the stellar disk (see e.g. [214] for a more complete description). As the majority of

sources are in the Galactic Bulge, finite-source effects imply that the low-mass lenses

we consider must be sufficiently far from the source in order to be detectable, making

this simplification appropriate for the scope of this work. Ultimately, our results are

fairly insensitive to changes in these choices of parameters, as the dominant uncertainty

in our analysis arises from the normalization of the FFP mass function (see Sec. 2.5).

However, we have compared our yields to those computed by [157], which employ a

different Galactic model and mass function, and find O(1) agreement (see App. 2.A).

For the mass function of PBHs, we assume a log-normal distribution (Eq. 2.6),

while for FFPs, we adopt a power-law (Eq. 2.8) truncated at Mmin = 10−13M⊙ and

Mmax = 0.1M⊙ for computational purposes. These cutoffs have been chosen to lie well
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outside the mass range of Roman’s sensitivity (≈ 10−8M⊙ − 10−3M⊙) and we have

verified numerically that they do not have an effect on the results.

The resulting yields for PBHs and FFPs are shown in Figs. 2.1 and 2.2. Fig.

2.1 shows the number of PBH events Roman is expected to see during its proposed

observational duration as a function of MPBH for fPBH = 1. The various curves cor-

respond to different widths of the log-normal distribution, σ. Note that a fPBH = 1

abundance has already been ruled out by other microlensing surveys, hence the yields in

unconstrained parameter space are necessarily smaller than the values in Fig. 2.1. We

see that in unconstrained parameter space (f ≲ 10−2), Roman is expected to observe

up to ≈ 104 PBH events.4

Fig. 2.2 shows the number of FFP events Roman is expected to see during

its proposed observational duration as a function of p, the power-law index of the FFP

mass distribution. The various curves correspond to various normalizations of the power

law, with N = 10 the fiducial value. The yield is only weakly-dependent on p, with our

fiducial distribution yielding ≈ 400 events for a broad range of p.

2.4.2 Subpopulation identification

Our statistical analysis relies upon discriminating between tdur distributions

sourced by either purely FFPs or a combination of FFPs and PBHs. We will define

the true distributions from which a particular set of detected events are sampled as

4We note that though distinguishing FFPs from PBHs requires a statistical characterization when the
observed yields of each are comparable, there are regions of parameter space in which PBH observations
would well exceed the expected FFP yield, hence an identification of this population would be much
simpler. Interestingly, this includes the parameter space in which PBHs explain the short-duration
OGLE events, making their interpretation as FFPs more challenging.
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T FFP
dur and T FFP+PBH

dur . These distributions depend on a complex combination of sev-

eral input parameters, including the power-law index of FFPs (p), the central mass of

the PBH distribution (MPBH), and the overall number of observed FFPs and PBHs

(NFFP and NPBH). As such, they cannot be computed in a closed analytic form. We

therefore choose to employ a test that discriminates based purely on empirical distri-

bution functions without relying on an underlying analytic background model. The

two-sample Anderson-Darling (AD) test is an effective choice for this situation5, as it

is non-parameteric, hence requires no model input, and outperforms the Komolgorov-

Smirnov test in the amount of data required for significance, see [89].

The AD test computes the significance at which two test distributions are

sampled from the same underlying distribution. Given two distributions of size m, n

sampled from the true distributions T FFP
dur and T FFP+PBH

dur , we construct two empirical

distribution functions, denoted T FFP
dur,m and T FFP+PBH

dur,n , respectively. In the context of

our analysis, m = NFFP and n = NFFP+NPBH, where NFFP and NPBH are calculated as

described in the previous subsection. In terms of these empirical distribution functions,

the AD test statistic can be written as [242]:

A2
mn =

mn

N

∫ ∞

−∞

(T FFP
dur,m − T FFP+PBH

dur,n )2

KN (1 −KN )
dKN (2.13)

5In practice, Roman will likely perform a Bayesian analysis to estimate the parameters controlling
the lens distribution, which will be more sensitive than the methodology we employ here. However, the
AD test provides a robust, if conservative, estimate of Roman’s sensitivity.
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where

KN =
1

N
(mT FFP

dur,m + nT FFP+PBH
dur,n ) (2.14)

and N ≡ m + n. Note that by performing this test, we do not necessarily learn the

PBH mass or abundance; merely that the distributions are separable.

To determine the sensitivity, we fix N , p, MPBH, and σ and allow r ≡ NPBH/NFFP

to vary. We set our limit at the value of r such that the AD test rejects the null hy-

pothesis (i.e. both distributions are sampled from a pure FFP distribution) at 95%

confidence. Representative examples of distributions that are distinguishable and in-

distinguishable by the AD test are displayed in Figs. 2.3 and 2.4, respectively. In Fig.

2.3, the PBH distribution peaks at tdur values well above the majority of FFPs, hence is

readily distinguishable. In Fig. 2.4, despite having the same number of observed FFPs

and PBHs as in Fig. 2.3, the two peaks overlap and the PBH population cannot be

discriminated from background.

The weakness of this test is that in the low-statistics regime, two distributions

may appear to have been drawn from different underlying distributions purely due to

random fluctuations. In order to mitigate this effect, we perform our analysis 10 times

and take the mean of the results, which we have verified numerically is sufficient for

suppressing statistical fluctuation throughout our parameter space.

The analysis described above solely sets a limit on r, the ratio of observed PBH

yield to FFP yield. In order to connect this to a physical density, we must calculate

these yields. To do so, we employ LensCalcPy and produce two reference yield curves.
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The first is the expected yield of observable PBHs as a function of MPBH for fPBH = 1,

which we denote Nf=1
PBH(MPBH) and appears in Fig. 2.1. The second is the expected

yield of observable FFPs for N = 10 as a function of p, which we denote NN=10
FFP (p) and

appears in Fig. 2.2. The fPBH corresponding to a particular r is therefore simply given

by fPBH(MPBH, p) = r × [NN=10
FFP (p)/Nf=1

PBH(MPBH)].

Our results depend implicitly on N and p, the true values of which are un-

known. Existing observations suggest possible values in the range p ≈ 0.66 − 1.33 and

N ≈ 2−20 [117, 157, 204, 257]. We therefore choose to marginalize over this uncertainty

by determining, for a given MPBH and σ, the p ∈ [0.66, 1.33] for which our analysis is

weakest and adopting the corresponding fPBH as our limit. To capture the uncertainty

on N , we choose to display three results: our fiducial results (N = 10), as well as results

in which N has been taken to be larger/smaller than our fiducial value by an order of

magnitude. This likely dramatically overestimates the uncertainty on this parameter

given current constraints. However, by adopting this range, we encapsulate both the

intrinsic uncertainty on its value as well as the uncertainty induced by our Galactic

model (see App. 2.A).

2.5 Results

We display our ultimate sensitivity curves in Fig. 2.5. Existing constraints are

shown in gray [160]. Additionally, we have included a dotted region (“OGLE hint”)

corresponding to the parameter space in which the short-timescale events observed by
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OGLE can be explained by a population of PBHs [214]. The solid curves correspond

to a fiducial FFP normalization of N = 10 and varying width of the log-normal PBH

distribution, while the dashed and dot-dashed curves correspond to N = 1 and 100,

respectively for a monochromatic PBH mass distribution. As described in Sec. 2.4.2,

these extreme values of N likely significantly overestimate the uncertainty on the FFP

distribution, however, as can be seen in Fig. 2.5, even these variations only induce

changes to the sensitivity at the sub-magnitude level. Note that the largest number

density of FFPs corresponds to the weakest sensitivity, as a larger FFP yield requires

a correspondingly larger PBH yield to achieve the same significance of discrimination.

All curves displayed have been marginalized over p via the methodology described in

2.4.2.

Roman’s sensitivity to identifying a subpopulation of PBHs peaks at fPBH ∼

10−4 in the mass range MPBH ≈ 10−8M⊙−10−6M⊙. Both the location of this peak and

the corresponding value of fPBH can be understood simply. Since the number density of

PBHs scales as 1/MPBH for fixed fPBH, the location of peak sensitivity corresponds to

the lowest possible mass before finite-source effects reduce detectability. As discussed

in Sec. 2.2, finite-source effects become relevant when θS ≈ θE , a condition that can be

rewritten in terms of mass to yield [80]

Mfinite ≈
θ2Sc

2dL

4G(1 − dL
dS

)

(dL
dS

)
. (2.15)

Assuming the source to have a radius comparable to that of the Sun and taking dS =
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8.5 kpc and dL = 7.0 kpc as typical distances for lensing events in the Galactic Bulge,

one finds Mfinite ≈ 10−6M⊙, which corresponds with the mass at which the sensitivity

peaks in Fig. 2.5.

Similarly, fPBH can be estimated at this peak. We find that at terrestrial

masses, a PBH yield of roughly 10% NFFP is sufficient to identify the PBH subpop-

ulation. Figs. 2.1 and 2.2 show that Roman’s expected yield for FFPs and PBHs (at

N = 10 and fPBH = 1) are O(1000) and O(106), respectively. We therefore see imme-

diately that NPBH ≈ 10%NFFP corresponds to fPBH ∼ 10−4, which matches onto the

maximal sensitivity shown in Fig. 2.5.

In the region of peak sensitivity, we find that sensitivity weakens with increas-

ing width of the log-normal PBH distribution. This is not due to the fact that broader

PBH distributions appear more akin to the FFP power law, but rather because broad-

ening the PBH distribution pushes PBHs outside the observable window and lowers the

overall yield of observable PBH events. This can be seen in Fig. 2.1, where broadening

the distribution causes a monotonic decrease in the number of detected events in the

region of peak sensitivity.6 For a fixed number of PBHs required for discrimination, this

reduced detection rate must be compensated for by an increase in fPBH.

The small decrease in sensitivity at MPBH ≈ 10−7M⊙ is due to the peak of

the PBH tdur distribution coinciding with the peak of the FFP tdur distribution, as can

be seen in Fig. 2.4. At slightly higher and lower MPBH, the two distributions peak

at slightly different tdur, improving sensitivity. However, this effect is small, as the

6Note that well outside this region, the opposite effect can actually improve sensitivity marginally
for broad distributions by pushing events into the observable window.
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sensitivity is predominantly governed by the PBH yield, which decreases rapidly at

masses much above 10−6M⊙ and below 10−8M⊙.

In summary, our results show that even under conservative assumptions about

Roman’s detection threshold (Sec. 2.4.1) and the underlying background of FFPs (Sec

2.4.2), the Galactic Bulge Time Domain Survey will be highly sensitive to detecting a

population of PBHs in new regions of parameter space. Excitingly, these regions include

the parameter space in which existing short-timescale events have been suggested to

hint at a subpopulation of PBHs at terrestrial masses [214]. Roman is therefore poised

not only to make the first precise measurements of the FFP mass distribution, but to

possibly uncover a subpopulation of PBHs lying within it as well.

2.6 Discussion

The launch of the Nancy Grace Roman Space Telescope will open a new win-

dow into low-mass astrophysical bodies. Though its Galactic Bulge Time Domain Sur-

vey targets bound and unbound exoplanets, we have shown that it will have unprece-

dented sensitivity to physics beyond the Standard Model as well. In particular, it will

probe the fraction of dark matter composed of primordial black holes at abundances

as low as fPBH ≈ 10−4 at PBH masses of roughly 10−6M⊙, with a sensitivity that

decreases as ≈ M
1/3
PBH towards higher masses. Its region of sensitivity extends up to

three orders of magnitude below existing constraints. This region fully encompasses the

parameter space in which an excess of short-duration microlensing events observed by
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OGLE have been suggested to hint at a population of PBHs [214]. Therefore, Roman

will conclusively determine the nature of these events, whether it be rogue worlds or

our first glimpse of what lies on the dark side of the universe.

2.A Comparison of Estimated Yields

In this Appendix, we compare the fiducial FFP yield calculated in our anal-

ysis to that of [157]. The authors of [157] calculate their expected FFP yield for the

Roman GBTDS using the code Gravitational microlensing Using Large Lensed Sources

(GULLS) [226]. GULLS draws explicit sources and lenses from a Bescançon galactic

model (version 1106 [95]) and simulates individual microlensing events by generating

realistic photometry using synthetic images. This approach is significantly different

from the semi-analytic approach we employ in our work. LensCalcPy, the code used to

compute our FFP yields, is designed to provide simple estimates of lensing event rates,

not to model individual events or generate associated photometry. However, its speed

and flexibility makes it well-suited to population-level studies with large numbers of

events.

While our approach and that of [157] differ significantly in implementation,

we find that they produce very similar ultimate FFP yields. In order to see this, we

compare to Table 2 of [157], where the authors have displayed their fiducial FFP yield

for a log-uniform mass distribution ( dN
d logM = 1 dex−1) as a function of FFP mass.

Performing the equivalent analysis with LensCalcPy and adopting the normalization of
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1 dex−1 results in the yields shown in Table 2.1. We see that at masses > M⊕, our yields

differ from those of [157] by less than a factor of two. At lower masses, the discrepancy

between the approaches grows, reaching a value of ≈ 6 at the lowest observable masses.

Table 2.1: FFP yield comparison for Log-Uniform Mass distribution

Mass (M⊕) Johnson et al. [157] This work

0.01 0.31 0.05

0.1 4.49 1.75

1 22.1 19.0

10 87.1 72.6

100 313 234

1000 1025 744

10,000 3300 2370

We see that our results tend to underestimate the total FFP yield compared to

GULLS, particularly for low-mass objects. A primary source of this discrepancy stems

from differences between the definition of maximum detectable impact parameter in the

two analyses, which we compare in Fig. 2.6. In [157], umin is drawn uniformly from

[0,max(1, 2ρ)] when generating an event. This effectively sets

uT =


1 ρ < 0.5 (point-source regime)

2ρ ρ > 0.5 (finite-source regime)

(2.16)

resulting in the orange curve shown in Fig. 2.6. As described in Sec. 2.4.1, in our

analysis, we instead determine the maximal impact parameter by solving the implicit

equation Afinite(uT , ρ) = AT . This yields the blue curve in Fig. 2.6. We choose to adopt

AT = 1.34 as our fiducial threshold throughout our analysis. This agrees with [157] in

the point-source regime, however in the finite-source regime (which is most relevant for
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low-mass objects), their approach yields generically larger values of uT than ours, as

can be seen in Fig. 2.6. Thus, their effective threshold magnification is < 1.34, resulting

in the increased yields at low masses seen in Table 2.1. While we have chosen to use

AT = 1.34 throughout our analysis, this is likely an underestimate of Roman’s ultimate

detection threshold, which has been suggested to reach values of ≲ 1% increases in flux

for sufficiently bright sources [157]. We therefore note that depending on the photo-

metric sensitivity achieved by Roman, our current yield predictions may underestimate

the number of detected FFP events. This uncertainty is, however, encapsulated by the

range of normalizations in the mass functions considered and thus in the curves shown

in Figure 2.5.
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Figure 2.1: The total number of PBH microlensing events detectable by Roman for
fPBH = 1 as a function of MPBH. The different curves correspond to different widths of
the PBH mass distribution (see Sec. 2.3.1).
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Figure 2.2: The total number of FFP microlensing events detectable by Roman as a
function of p. The fiducial normalization N = 10 is shown as a solid blue line, with
N = 1 and 100 shown as dashed and dash-dotted curves, respectively.
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N = 10, p = 1.0. The associated observable yields at this point in parameter space are
NFFP = 389, NPBH = 8% NFFP.
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Chapter 3

Black Hole Information

3.1 Introduction

Whether information is preserved or lost during black hole evaporation has now

remained an unresolved question for several decades [9, 12–17, 19, 23, 24, 30, 34, 42, 46,

48, 53, 61–63, 99, 100, 108, 112–116, 123–125, 130–135, 142–145, 162, 171, 182, 185, 188–

191, 197, 198, 216, 220–224, 227–229, 234, 236, 241, 251, 253, 255, 258, 259, 263, 270,

278]. At the center of this issue is the principle of unitarity.

The precise statement of this principle depends on how a system is described.

At the level of semiclassical gravity, there must be unitary evolution between the state

of quantum fields on a family of Cauchy surfaces Σu foliating some classical domain

of dependence.1 At the level of quantum gravity, there must be unitary evolution

1This form of unitarity holds by definition within a semiclassical theory, but is undefined when
quantum gravity is not well described by a semiclassical approximation (e.g. due to correlations between
matter and geometry). A semiclassical approximation is often used within standard discussions of black
hole evaporation.
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between states in some underlying Hilbert space Hqm from which spacetime and gravity

may emerge. These statements are core principles of the quantum description of an

information-preserving system, and we will assume them both to hold.

These core statements are not, however, the forms of “unitarity” usually in-

voked in relation to black hole information loss and the related firewall paradox. More

commonly one asks:

• Is there a unitary scattering matrix from past to future null infinity?

• Is the Hawking radiation in a pure state when evaporation ends?

• Does the entropy of Hawking radiation decrease at late times during evaporation?

We call these the questions of “long term,” “evaporation time,” and “Page time” uni-

tarity, respectively; they will be made precise later.

Each of these questions is traditionally framed, by definition, in the context

of semiclassical gravity—that is, in terms of quantum fields on a classical background.

One reason they are difficult to resolve is that, since black hole physics involves strong

quantum gravity effects, it is not clear what background spacetime (if any) can be used

to model the process.

Lacking a known semiclassical solution, assumptions about a background space-

time generally come in the form of Fig. 3.1. This diagram depicts a global causal struc-

ture and is useful for many purposes. Yet it is also problematic, in that it does not

represent any particular physical model of the formation/evaporation process. For this

reason it is difficult to make concrete statements about the geometry, and diagrams of

33



r
=

0 J
+

J
−r

=
0

r = 0

Σ−

Σ+

E

Figure 3.1: A Penrose diagram often associated with the process of black hole formation
and evaporation.

this type are free to reflect biases of the artist.

In this article we will consider basic aspects of the black hole information prob-

lem, focusing on analyzing the various forms of “unitarity,” in the context of a particular

background model for an evaporating black hole. While not an exact semiclassical solu-

tion, this model is at least a concretely defined metric that is likely similar to one (see

Sec. 3.3 for further discussion). Our hope is that framing these basic issues within a

concretely defined context will help clarify their essential aspects, and provide a clearer
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grounds to confirm or refute assumptions and results about the evaporation process.

Much of the content of the article is review presented in a somewhat pedagog-

ical manner. This is intentional. Our view is that subtle differences in understanding

about foundational assumptions of the theory can propagate misunderstanding about

the information issue, and therefore that we should clarify the framework being used. In

this direction we make a particular effort to be clear about what Hilbert spaces define

the quantum theory, what decompositions of the total Hilbert space are used when, and

precisely what is meant by “entropy of the black hole” in various circumstances.

In the course of reviewing the basic issues in this context, we draw some

conclusions that are not yet as widely accepted in the literature as we think they should

be. We will argue that even assuming the fundamental notions of semiclassical and

quantum gravitational unitarity do both hold, the more common notions of long term,

evaporation time, and Page time unitarity can nonetheless fail. And while long term

unitarity may be restored by appealing to regular (nonsingular) black hole models, the

latter two cannot. These failures are sometimes said to represent “information loss,”

but they in no way violate the underlying principles of unitarity.

An essential aspect of our arguments is the distinction between the semiclassi-

cal2 Hilbert space H(Σu) and an underlying quantum gravitational Hilbert space Hqm.

In particular we argue that the Page curve arises in the quantum gravitational Hilbert

space, but not necessarily in the semiclassical one. In Sec. 3.7 we consider further how

2By “semiclassical Hilbert space” throughout the chapter, we really mean the Hilbert space of quan-
tum field theory on the classical background M (of Sec. 3.3), which resembles but is not a solution of
semiclassical gravity. The word semiclassical in this context denotes the space of quantum fields on a
background metric, distinguishing this space from a truly quantum gravitational one.
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these two levels of description are related, comparing our results to some recent results

based on holography [13, 14, 224] and arguing that they are mutually compatible.

We are not the first to conclude that long term, evaporation time, and Page

time “unitarity” can all be violated in a unitary theory, even if this conclusion has yet

to be widely accepted in the literature. And discussions akin to ours have appeared

before in various places [19, 100, 145, 234, 253, 263, 270]. The primary novelty of this

work is its meticulous framing and detailed presentation in a new, explicitly defined,

background. Given the persistent controversy surrounding these topics, we hope this

can be a useful step towards consensus.

3.2 Quantum framework

3.2.1 Hilbert space of a partial Cauchy surface

The Hilbert space of a quantum field theory in curved spacetime is generally

defined (taking Birrell and Davies [35] as a canonical reference) as a Fock space of

mode solutions to the free part of the classical field equation [35, 36, 81, 111]. Here we

will extend the standard formalism straightforwardly to consider partial (as opposed to

global) Cauchy surfaces.

The basic approach is as follows. To each (orthonormal, positive frequency)

complete set of classical modes ξk on (the domain of dependence of) a hypersurface Σ

is associated a Fock space Hξ(Σ) on which the quantum field theory can be defined.

Given any two sets of modes ξ, ξ′, complete on hypersurfaces Σ, Σ′ respectively, we say
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the Hilbert spaces

Hξ(Σ) ∼ Hξ′(Σ
′) (3.1)

are physically equivalent whenever the domains of dependence D(Σ) = D(Σ′) are equal.

The space

H(Σ) (3.2)

is then defined as the equivalence class of all Hξ(Σ). One expects unitary transforma-

tions between semiclassical Hilbert spaces only when they are physically equivalent.

The requirement that a set of modes defining the Hilbert space be complete

is essential. For instance, the set of outgoing Hawking modes is not complete on any

relevant Cauchy surface, and must be embedded within a larger set of modes when

analyzing the final state.

Some parts of this construction (e.g. continuous tensor product below) are

only mathematically well-defined after a UV or IR cutoff is included. We assume such

cutoffs can be applied where necessary.

3.2.2 Hilbert space details

The Hilbert space construction outlined above is a simple formalization of

(sometimes implicitly used) standard methods. Nonetheless, we elaborate the details

here for maximal clarity. For concreteness, consider the matter action

S = 1
2

∫
d4x

√
|g| ∂µϕ ∂µϕ (3.3)
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defining a free real massless scalar field.

Consider a spatial hypersurface Σ in spacetime, which is a Cauchy surface for

its domain of dependence D(Σ) (which may or may not be the entire spacetime).

Let ξk denote an orthonormal complete set of positive frequency modes3 on

Σ. To each mode are associated creation and annihilation operators a†k and ak with

canonical commutation relations [ak, a
†
k] = 1.

The Hilbert space Hξk of each mode is generated from a vacuum state |0k⟩

(defined by ak|0k⟩ = 0) by the creation operators. Explicitly, for the bosonic field,4

Hξk = span ({|nk⟩, nk ∈ N}) (3.4)

where |nk⟩ ∝ (a†k)n|0k⟩. This basis obeys Nk|nk⟩ = nk|nk⟩ for the number operator

Nk = a†kak.

Denote by Hξ(Σ) the total Hilbert space of the modes ξ on Σ, defined as the

tensor product over modes

Hξ(Σ) = ⊗k Hξk . (3.5)

A basis for this space can be written |nk1nk2 . . .⟩ (if the modes have a discrete index),

3By “a complete set of orthonormal positive frequency modes on Σ” we mean: a set ξk of complex-
valued solutions to the classical field equation such that φ =

∑
k

(
ck ξk + dk ξ

∗
k

)
is a classical solution

matching arbitrary complex Cauchy data on Σ, where ck and dk are complex coefficients, and such
that (ξk′ , ξk) = δk′k and (ξk′ , ξ∗k) = 0 in the inner product induced by the equations of motion (i.e. the
Klein-Gordon norm). The inner product is linear in the first argument and obeys (φ1, φ2) = (φ2, φ1)

∗ =
−(φ∗

2, φ
∗
1). One way to find a suitable set of modes is to require ω > 0 relative to some timelike Killing

vector field, if one exists. More broadly these conditions have little to do with frequency, but rather
relate the classical symplectic to the quantum structure. See [18, 35, 81].

4For a fermionic field one uses canonical anticommutation relations, resulting in Hξk =
span ({|0k⟩, |1k⟩}), a two-level system at each mode (in contrast to the bosonic case of a harmonic
oscillator at each mode).
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which can also be translated to an equivalent Fock state notation. In the product space,

the canonical commutation laws extend to [a†k′ , a
†
k] = [ak′ , ak] = 0 and [ak′ , a

†
k] = δk′k.

The quantum operator ϕ at each point then acts on this Hilbert space as

ϕ =
∑
k

(
ak ξk + a†k ξ

∗
k

)
, (3.6)

defining the quantum theory. Bogoliubov transformations derive from requiring (3.6)

be equal in two sets of modes. The orthonormal positive frequency condition ensures

commutators are preserved in the transformation. The above statements translate to

the case of a continuous index by standard methods [35].

Consider now a partial Cauchy surface ΣAB = ΣA ∪ ΣB that is the union of

two disjoint subsurfaces. Choose a set of modes ξAB = ξA ⊕ ξB (here ⊕ is merely a

suggestive notation for the union of two sets of modes) where ξA is a set of modes on

ΣAB with Cauchy data equal to zero everywhere on ΣB (and likewise for ξB). Given

such a set of modes, it follows from (3.5) immediately that

HξA⊕ξB (ΣAB) = HξA ⊗HξB . (3.7)

But as ξA alone forms a complete set of modes on ΣA, there is a natural identification

of HξA with HξA(ΣA), and likewise for B. Thus we can write, in the sense of (3.1–3.2),

that

H(ΣAB) = H(ΣA) ⊗H(ΣB). (3.8)
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So even in the mode construction, Hilbert space may be built up as the tensor product

of local subsystems.5

3.3 (Semi-)Classical framework

Ideally one would study the information problem in a classical spacetime back-

ground that is an exact solution (Gµν = 8π⟨Tµν⟩ren) of semiclassical gravity with some

quantum matter fields.6 But due to the difficulty of incorporating the Hawking radiation

backreaction, such a solution is not available.

Nonetheless, one can obtain approximations to such a solution using facts

known from partial semiclassical calculations. For concreteness we continue to work

with the massless scalar field (3.3), although the exact fields considered should not be

essential to the picture.

We therefore define a spacetime M (described below), which is one such ap-

proximation, to serve as a classical background for quantum fields in an approximately

semiclassical context.

While the global causal structure of M is the same as of Fig. 3.1, the bene-

fit of using an explicit model is that one may make definite statements about internal

5One complete set of orthonormal positive-frequency modes on Σ is given by a set hx′(x) = fx′(x)+
igx′(x), labelled by x′ ∈ Σ, where fx′ and gx′ are classical solutions with δ-function initial data at
x′ in the field value and time-derivative respectively. (These are propagators of the homogeneous field
equation, related to Wightman functions [35].) Then for x ∈ Σ, in terms of these modes, ϕ(x) = a†x+ax.
These modes give meaning to the expression H(Σ) = ⊗x∈ΣHx, a fully local decomposition of the Hilbert
space. One can decompose H(ΣA ∪ ΣB) = H(ΣA)⊗H(ΣB) in the same way—this is the construction
usually implicitly or explicitly used in calculations of local von Neumann entropy.

6⟨Tµν⟩ren is a renormalized expectation value ⟨ψ|Tµν |ψ⟩ of the stress tensor for the matter fields in
whatever quantum state |ψ⟩ the fields are in. Gµν is the usual classical Einstein tensor.
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structure—in particular clarifying the status of the apparent and event horizons, the

energy flux due to Hawking radiation, and the Schwarzschild mass at each spacetime

point, within the model. These details allow one to construct a physically meaningful

foliation in which to discuss the evaporation process, and provide additional intuition

about how quantum calculations may be interpreted within the classical background.

Equally importantly, the use of a concrete model precludes one from introducing po-

tentially biased or self-contradictory assumptions about a background spacetime. So

while M is by no means assumed to exactly represent the spacetime structure of an

evaporating black hole, it provides an explicit representation that is likely more useful

than the vague model used implicitly in figures like Fig. 3.1.

3.3.1 The spacetime M

To avoid a full technical treatment, we formally define M as follows: let M

be the spacetime defined by Sec. VI of [241] but with l = 0 (Schwarzschild interior).

Presently we will give a more useful description.

The structure of M is depicted in Fig. 3.2. Locally the metric has the Schwarzschild

form7

ds2 = −
(

1 − 2m(u,v)
r(u,v)

)
du dv + r(u, v)2 dΩ2 (3.9)

with a Schwarzschild mass m(u, v) varying as a function of some null coordinates. The

7The most conceptually simple representation of the metric is the local form (3.9), but there is no
global coordinate system with this metric. For this reason we cannot simply write down m(u, v) in a
closed form. One can, however, parameterize future and past null infinity by continuous parameters
that are locally u, v. The full metric is discussed in [241].
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mass is a piecewise constant function forming an arbitrarily good stepwise approxima-

tion to some continuous dynamics. This leads to a shell (δ-function) approximation to

a smooth Gµν .

The mass function m(u, v) is then chosen as follows (but see the caveat in

Footnote 7):

• Formation occurs by collapse of a sequence of spherical shells, approximating a

continuous accretion dynamics m∞(v) as viewed from past null infinity. The total

mass is m∞(v → ∞) = M .

• Shells of outgoing radiation are emitted from (a Planck length outside of)8 the

apparent horizon, approximating a continuous evaporation dynamics m∞(u) as

measured by an observer receiving the radiation at future null infinity. Corre-

sponding shells of ingoing negative mass radiation fall in from (a Planck length

outside of) the apparent horizon and are absorbed by the singularity. This model

roughly approximates the DFU (Davies, Fulling, and Unruh [74]) stress tensor for

black hole evaporation.

• The Schwarzschild mass changes across shells as dictated by standard junction

conditions and the DTR (Dray–’t Hooft–Redmount [25, 86, 233]) relation.

This is in essence a discretized version of the model studied first by Hiscock [139].

Note two subtle points about this spacetime. First, it is the apparent horizon,

8Self-consistency of the classical model does not allow emission to originate either inside of or further
away from the apparent horizon at r = 2m, see [241]. For this reason radiation must be emitted from
near the apparent, and not the event, horizon.
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and not the event horizon, which lies at r = 2m. The apparent horizon is spacelike

during accretion and timelike during evaporation. Second, shells emitted from the

horizon arise from an approximation to the DFU [74] stress tensor. They are not chosen

to directly model Hawking pairs. In particular, the Hawking modes behind the event

horizon propagate parallel to it (as illustrated later), while the negative energy flux

modelled by shells is directed transversely into the horizons.

3.3.2 Globally hyperbolic subdomains

M is not globally hyperbolic.9 As depicted in Fig. 3.3, early and late spatial

slices have unequal domains of dependence.

An initial state describing collapsing matter on an early slice like Σ− can be

propagated throughout the domain of dependence D(Σ−). Since this region contains

the entire process of black hole formation and evaporation (up to the final moments),

it is sufficient to focus on this region for much of the discussion of information loss. In

particular the evaporation time and Page time unitarity questions depend only on this

region.

3.3.3 Foliation Σu of D(Σ−)

Consider the domain of dependence D(Σ−) in Fig. 3.3. This region is globally

hyperbolic, and therefore can be foliated by a family of surfaces Σu (each a Cauchy

surface for D(Σ−)) as depicted in Fig. 3.4. This region contains the entire process of

9See [241] for discussion of why no spacetime with the general structure of Fig. 3.1 is globally
hyperbolic.

43



formation and evaporation, including all the Hawking radiation.

A surface Sext (the “exterior surface of the collapsing matter/black hole”)

separates M into “in” and “out” regions. This surface is defined to coincide with the

outermost accreting shell until it intersects the apparent horizon, after which it coincides

with the outer part of the apparent horizon. Each

Σu = Σin
u ∪ Σout

u (3.10)

decomposes into “in” and “out” surfaces accordingly.

Each Σu is labelled by the time u at future null infinity when it intersects Sext.

(One extrapolates the intersection to infinity along radial null curves.) By convention

let u = 0 denote the time when the outermost shell crosses the apparent horizon. The

end of evaporation occurs some finite time U later. Thus u ∈ (−∞, U) foliates the entire

domain. Let ΣU denote some Σu arbitrarily close to u = U .

3.3.4 Hilbert space, modes, and states

As in Sec. 3.2, Hilbert spaces are defined as Fock spaces of classical modes.

As is standard (see e.g. [115, 131, 132]), we work in terms of modes describing classical

wavepackets. Each set of modes ξ we define is implicitly taken to represent a set ξijlm

describing wavepackets centered at time ti and frequency fj with temporal width scale σ

(times and frequencies being relative to a relevant coordinate system), and with angular

harmonic component Ylm. To obtain standard pair creation of Hawking modes requires
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appropriately coordinating wavepacket spectra across sets of modes. This can be done

for static black holes [131, 132] and we assume something analogous can be done here.

Several relevant sets of modes are depicted in Fig. 3.5.

The modes ξ− are orthonormal positive frequency ingoing wavepackets with

respect to asymptotically flat coordinates at past null infinity. These provide a complete

set on all Σu and define H(Σu).

The relevant quantum state10 on H(Σu) is usually taken to be an initial vacuum

state |0−⟩ ≡ |0⟩ξ− . However we can just as well allow for the more general state (splitting

ξ− into sets of wavepackets before, during, and after the presence of collapsing shells)

|ψ⟩ = |0⟩ξ−before ⊗ |ψ⟩ξ−collapse ⊗ |0⟩ξ−after
(3.11)

to include a description of the collapsing matter. Particle creation in excited states such

as this is closely related to that in vacuum [52].

The modes ξ+ and ξeh (Fig. 3.5) will also be relevant. ξ+ are purely outgoing

positive frequency wavepackets relative to asymptotically flat coordinates at future null

infinity, with zero Cauchy data at the event horizon. ξeh have purely ingoing Cauchy

data at the event horizon, with zero Cauchy data at future null infinity. ξeh modes can

be formed into “wavepackets” with a particular correspondence to those in ξ+ (at least

in the quasistatic approximation [132]).

To analyze particle creation by the metric, one performs a Bogoliubov trans-

10We are in the Heisenberg picture where the state |ψ⟩ is fixed. Time dependence arises both in
operators, and when the state is described in terms of a time-dependent mode decomposition.
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formation from the modes ξ− defining |ψ⟩ to some other complete set of orthonormal

positive-frequency modes. Technically EH ∪J + is not a Cauchy surface for D(Σu) due

to causal curves propagating from Σu to the singular point at the endpoint of evapora-

tion. But (as discussed in Sec. 3.3.7), as is commonly done, let us ignore this technicality

and assert that ξeh ⊕ ξ+ forms a complete set of modes on Σu that can be used for this

purpose.

In analogy with the standard Hawking calculation [131, 132], one expects

that in terms of ξeh ⊕ ξ+, the state |ψ⟩ contains entangled pairs of ingoing (in ξeh) and

outgoing (in ξ+) Hawking modes.

3.3.5 “In” and “Out” Hilbert spaces

To define a decomposition

H(Σu) = H(Σin
u ) ⊗H(Σout

u ) (3.12)

into time-dependent in and out Hilbert spaces requires a set of modes ηu = ηinu ⊕ ηoutu ,

where each mode only has support in the relevant subregion (see Sec. 3.2).

The usual way to construct this set is from modes with Cauchy data localized

at each point (see Footnote 5). However the same can be achieved using wavepackets

from infinity, cut off to have support only in the relevant region. This method makes

the local and global Hilbert space constructions more similar.

Thus define modes ηu as follows (see Fig. 3.6). From complete sets of oscil-
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lating modes with limited support (the support is a function of u as illustrated in the

figure) at past and future null infinity, construct sets of orthonormal positive frequency

wavepackets η−in(u), η−out(u), and η+out(u). Then

ηinu ≡ η−in(u),

ηoutu ≡ η−out(u) ⊕ η+out(u),

(3.13)

are complete on Σin
u , Σout

u respectively (cf. Fig. 3.6 and Eq. (3.8)). This suffices to

define (3.12).

The η modes can be taken to be similar to the ξ modes except near the bound-

aries where support is cut off, where η modes are non-analytic.

3.3.6 Apparent vs. event horizon

One may be tempted to use the event horizon, rather than the apparent hori-

zon, to define the horizon area and in and out regions. In addition to the fact that

the apparent horizon (at r = 2m) has local properties while the event horizon is global,

there are a few reasons not to do so.

First, as the event horizon lies entirely at u = U , there is no meaningful way

to relate times at future infinity (i.e. for an observer receiving Hawking radiation) to

areas on the event horizon. And second, if Σout
u were defined by the event horizon, the

“out” region would contain all the Hawking radiation at all times. We will not consider

this possibility further.
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3.3.7 Pathology at future null infinity

We have taken the Hawking modes to be a subset of the complete set ξeh⊕ ξ+

(Fig. 3.5), implicitly assuming that EH∪J + is a Cauchy surface for D(Σu) in M. This

choice of modes is motivated by the requirement that late time modes be regular for

observers at J + (future null infinity). Its validity is usually justified by analogy with

the standard Hawking calculation (for a static black hole formed by collapse) where

EH ∪ J + is a global Cauchy surface.

We must emphasize, however, that EH∪J + is not a Cauchy surface for D(Σu)

in M (nor for M globally), due to curves terminating at the open singular point at the

end of evaporation. Therefore ξeh ⊕ ξ+ is technically not a valid complete set of modes

on D(Σu). Despite this pathology, we proceed as if it were valid, in order to connect to

existing parts of the literature. Modified versions of the arguments below can be made

to apply to a more correct mode decomposition, but we will not do so here.11

Not only is EH ∪ J + not technically a Cauchy surface, it fails badly at being

one. If one tries to “fill in” the open singular point at the endpoint of evaporation (e.g.

by regularizing the singularity), the surface fails to remain achronal. If one tries to

deform it to avoid the singular point, the same occurs. And it is not the limit of any set

of rigorous Cauchy surfaces. This pathology may be more than a benign technicality;

for instance it shows that M (and likely all its close relatives) is a counterexample to

the “PS Assumption” of [189].

11It would be more correct to regard Hawking modes in M as part of a complete set defined on Σ′

in Fig. 3.5. Technically Σ′ is also not a Cauchy surface for D(Σu), but as the limit of a set of Cauchy
surfaces it is admissible. Modes on Σ′ are genuinely different from ξeh ⊕ ξ+, since each mode will have
support in only a limited subset of J+, and thus be nonanalytic on J+ as a whole.
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In Sec. 3.4 we will discuss how “long term unitarity” violation is inherent to

the spacetime structure of M. The pathology at future null infinity discussed above

is another, more subtle, manifestation of the same effect. In order to obtain a non-

pathological J +, one can regularize the singularity as in Fig. 3.7. Then ξ+ alone are

a complete set of modes. In that case ξeh ⊕ ξ+ double-counts event horizon modes, as

EH ∪ J + is not achronal.

3.3.8 Unitarity questions

The principle of unitarity in a semiclassical context implies unitary evolution

between the state of quantum fields on set Σu of Cauchy surfaces.12 This principle holds

absolutely within the present semiclassical framework.

However, several different forms of “unitarity,” arising on different time scales,

are often considered relevant to discussions of black hole information loss. Assuming an

initial pure state |ψ⟩ on Σ− (Fig. 3.3), we say that evaporation is

• Long term unitary if there is a pure state on surfaces like Σ+ (Fig. 3.3).

• Evaporation time unitary if Hawking radiation is in a pure state at the end of

evaporation.

• Page time unitary if the entropy of Hawking radiation is decreasing with S ≤ A/4

12Given the Hilbert space construction above, this notion is almost trivial: the (Heisenberg) state |ψ⟩
is fixed, while a choice of modes ξ complete on Σu, used to define the Hilbert space basis, may vary with
time. Unitarity then merely states that a unitary transformation relates valid complete bases. If one
transforms to a Schrodinger wavefunctional picture (say through the local modes of Footnote 5), this
reduces to a standard statement of unitary evolution of states. This also ensures Heisenberg operators
like (3.6) evolve unitarily in a time dependent mode basis.
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at late times.

In the following two sections we make these ideas mathematically precise, considering

each in turn, and argue that none of them is expected to hold in M at the semiclassical

level. Moreover, regularizing the singularity in M can restore the possiblility of long

term unitarity, but not evaporation time or Page time unitarity.

One can frame these statements in terms of either the Hilbert space of Hawking

modes, or in terms the Hilbert space of the out region. We first consider the former,

then return to the latter in Sec. 3.6.

3.4 Long term unitarity

The “long term” unitarity question is the following: Is there necessarily a

unitary evolution from quantum states on Σ− to quantum states on Σ+ in Fig. 3.3?13

3.4.1 In M

If physics is accurately described by semiclassical gravity on a background

spacetime like M, the answer is clear: there is no reason to expect long term unitarity.

The domains of dependence D(Σ−) ̸= D(Σ+) are unequal, and therefore, as discussed

in Sec. 3.2, the Hilbert spaces

H(Σ−) ̸= H(Σ+) (3.14)

13This deals with the state of semiclassical matter fields. A separate question is whether evaporation
can be described by a unitary S matrix in quantum gravity, e.g. in a path integral approach. These
are not equivalent, in part because correlations may arise between the matter and geometry, but also
because one might sum over geometries where the initial and final surfaces have different domains of
dependence.

50



are physically inequivalent. Unitary evolution is not expected between physically in-

equivalent Hilbert spaces. Likewise, one does not expect invertible evolution of classical

fields between surfaces with unequal domains of dependence.

It must be emphasized that there is no guarantee that black hole evaporation

is accurately described by semiclassical gravity on a background spacetime like M.

However, if one gives up the assumption that something like M is correct—for example

by demanding Σ− and Σ+ have a unitary relation—one must also give up on using

the spacetime diagram for M to analyze the problem. (Or at least, provide some

other justification for using such a diagram.) On occasion in the literature, studies will

implicitly argue that the semiclassical description is incomplete or incorrect, yet at the

same time continue making essential use of diagrams based on semiclassical spacetimes

like M or Fig. 3.1. The self-consistency of such arguments must be called into question.

3.4.2 With a regularized singularity

Models like M have long term unitarity violation “baked into” their structure.

One way to circumvent this issue is to replace M with a globally hyperbolic spacetime

obtained by regularizing the r = 0 singularity.

One example of a regularized nonsingular background (based on a Hayward

model [136, 241]) is depicted in Fig. 3.7. Models of this type are useful in that they

include—rather than relegating to a singularity—a region of extreme density/curvature

where quantum gravitational effects are important and known physics may fail.14 For

14Regular models also introduce other issues associated with the inner horizon and exposed core [241].
Note however that the future surface of the dense region, which appears large due to conformal trans-
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the same reason, semiclassical statements about such models must be taken with a

grain of salt. The quantum gravity region may be thought of as a core that sources the

gravitational field after collapse has completed.

The regularized model Fig. 3.7 does predict, at the semiclassical level, that

long term unitary holds. The mechanism is uncertain, however, as semiclassical initial

data would propagate through the quantum gravity region.

Unlike the long term issue, the evaporation time and Page time unitarity ques-

tions are framed entirely within the foliation Σu of the early region (blue outline) in

Fig. 3.7. In this region the geometry is effectively identical to the singular case [241].

The discussion of evaporation time and Page time issues is therefore unaffected by

regularizing the singularity. However entropy at infinity may then be purified after

evaporation ends in such models.

3.5 Evaporation time and Page time unitarity

This section discusses the “evaporation time” unitarity issue, which relates to

the von Neumann entropy of Hawking modes at the end of evaporation, and the “Page

time” information issue, which tracks the time dependence of this entropy throughout

the evaporation process.

Arguments for a firewall usually assume that unitarity implies the von Neu-

mann entropy of Hawking modes must follow a Page curve. We will argue that this is

formations in the diagram, is actually Planckian in size—not so different from the naked singularity in
M—and that the inner horizon is hidden within the dense quantum gravity region.
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not the case: in the manifestly unitary semiclassical theory of fields on M, one should

not expect a Page curve for the entropy of Hawking modes.

There is an important distinction here: a Page curve should be expected to

arise in quantum gravitational descriptions—in particular, we do not disagree with

recent holographic derivations [13, 14, 224] of the Page curve. But a Page curve in

the underlying quantum gravity theory does not imply a Page curve for semiclassical

Hawking modes—and it is the entropy of semiclassical modes whose Page curve implies

a firewall. The connection to quantum gravity is explored further in Sec. 3.7.

3.5.1 Entropy of Hawking modes

Of interest here is the von Neumann entropy of Hawking modes as a function

of time. We denote this entropy Srad(u), a function of time u at future null infinity, and

define it as follows.

The modes labelled ξradu in Fig. 3.8 are the “Hawking modes up to time u.”

These are a subset of the wavepacket modes ξ+ in Fig. 3.5, specifically, the subset with

wavepackets centered before time u. The “Hilbert space of Hawking radiation at time

u” is the Hilbert space of these modes,

Hrad
u ≡ Hξradu

. (3.15)

This Hilbert space can be written as the tensor product of Hilbert spaces describing

wavepacket modes, defined at each time u′, over times u′ < u. Note that Hrad
u is
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distinct from the Hilbert space of the out region H(Σout
u ), which will be discussed in

Sec. 3.6.

The modes ξradu are a subset of ξ+ and therefore of the full set ξeh ⊕ ξ+

(cf. Sec. 3.3.4). In this way the Hawking radiation Hilbert space Hrad
u is a subspace

of the full semiclassical Hilbert space H(Σu). Since the global state |ψ⟩ in H(Σu) is

pure, the reduced state in Hrad
u will generically be mixed, with density matrix ρradu .

The entropy of Hawking modes at time u is then

Srad(u) ≡ S(ρradu ), (3.16)

the von Neumann entropy in the Hawking radiation subspace of the semiclassical Hilbert

space of fields.

3.5.2 Evaporation time unitarity

“Evaporation time unitary” holds if

Srad(U) = 0, (3.17)

in other words, if the Hawking modes are in a pure state at the time U when evaporation

completes. This form of unitarity is assumed in, e.g., the well known “AMPS” firewall

paper [15].

Taken as an assumption in its own right, this would simply not be a correct ap-

plication of the general principle of unitarity to semiclassical fields in the spacetime M.
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One expects unitary evolution between the total Hilbert spaces H(Σu). It is clear that

H(Σu) ̸= Hrad
U , (3.18)

because the outgoing Hawking modes do not form a complete set of modes on Σu, and

Hrad
U is only a subspace of H(Σu). That is, the full Hilbert space consists of more than

just the outgoing Hawking modes, even at the end of evaporation. (As a subset of the

complete set ξeh⊕ ξ+, the outgoing Hawking modes (ξradU ) are missing both the ingoing

Hawking modes (ξeh) and the postevaporation outgoing subset of ξ+.) Therefore there

is no a priori reason to think the Hawking radiation state ρradU should be pure.15

Nonetheless, it could still be reasonable to justify the evaporation time uni-

tarity condition based on the time evolution of Srad(u). If Page time unitarity were to

hold, then so would evaporation time unitarity. Whether this holds is discussed next.

3.5.3 Page time unitarity

The “Page time” unitarity issue involves the time-dependence of Srad(u) in

relation to the semiclassical horizon area in the foliation Σu (Fig. 3.4).

In this foliation A(u), defined as the area of the (outer) apparent horizon on

Σu, starts at A(0) ∝M2 and decreases to A(U) = 0 when evaporation completes.

15Given this failure one might suggest an alternate condition Srad(∞) = 0 would hold. But this
reduces to the question of long term unitarity discussed earlier, as ξ+ are a complete set of modes on
Σ+.
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Page time unitarity will be said to hold if

Srad(u) ≤ A(u)/4 (3.19)

at all times.

When Page time unitarity holds, it is usually argued that Srad(u) first increases

according to Hawking’s prediction of thermal emission, until a time (the “Page time”)

when it would surpass A(u)/4, after which it decreases according to Srad(u) = A(u)/4.

Then Srad(u) is said to follow the “Page curve” [223].

3.5.3.1 Argument in favor

The total Hilbert space H consists of “the black hole plus the Hawking radia-

tion,” so decomposes as

H = Hbh
u ⊗Hrad

u , (3.20)

with reduced densities ρbhu and ρradu in the subsystems. The total system is in a pure

state, so

S(ρbhu ) = S(ρradu ). (3.21)

But the thermodynamic (Bekenstein-Hawking) entropy of the black hole is Sth(u) =

A(u)/4. Since thermodynamic entropy is a coarse-grained entropy of the black hole (see
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e.g. [13, 125, 223, 228, 240, 265, 266]), it follows that16

S(ρbhu ) ≤ A(u)/4. (3.22)

Thus Srad(u) ≤ A(u)/4.

3.5.3.2 The problematic assumption

The problematic assumption in the preceding argument is the decomposition

H = Hbh
u ⊗Hrad

u , (3.23)

where neither Hbh
u nor ρbhu were given a concrete definition. There are various ways to

interpret this statement, depending whether one treats it as a semiclassical or quantum

gravitational equation. Each gives a different meaning to “the entropy of the black

hole.” But none provides a strong justification for

Srad(u) ≤ A(u)/4, (3.24)

if Srad(u) is the von Neumann entropy of semiclassical Hawking modes.

One key point is that the bound S(ρbhu ) ≤ A(u)/4 derived from coarse-graining

is likely to be valid only if ρbhu represents a full quantum gravitational state—applying

this bound in the semiclassical theory requires justifying an identification between “the

16An alternate justification, that log dimHbh
u = A(u)/4, is sometimes assumed to the same effect.
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Hilbert space of the black hole” and some space of semiclassical modes.

We analyze the possible interpretations, and their implications, in the following

subsections 3.5.3.3–3.5.3.5.

3.5.3.3 Purely semiclassical interpretation

If one works purely within the semiclassical framework, then (3.23) reads

H(Σu) = Hχu ⊗Hrad
u , (3.25)

where Hbh
u = Hχu is the Hilbert space of “all the modes except the Hawking modes”

(that is, of χu where χu ⊕ ξradu is some complete set of modes on Σu).

In this case Hbh
u is the Hilbert space of modes ξeh ⊕ ξradu , where ξradu is the

complement in ξ+ of ξradu (cf. Figs. 3.5, 3.8). This is not the Hilbert space of any

relevant partial Cauchy surface, and in particular it is not H(Σin
u ). Moreover, there

is no clear relationship between the modes defining Hbh
u and the horizon area A(u).

Indeed, there is no meaningful sense in which the so-called Hbh
u is “the Hilbert space of

the black hole.” There is no justification for S(ρχu) ≤ A(u)/4, and no reason for Page

time unitarity to hold.

Moreover, Bogoliubov transformations from the modes ξ− to ξeh ⊕ ξ+ in M

could in principle be directly evaluated, giving a direct calculation of Srad(u) under uni-

tary semiclassical evolution. It is unlikely, both in analogy with the standard Hawking

calculation, and due to the presence of ξ− modes straddling the event horizon, that this
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could lead to a pure state Srad(U) = 0 at the end of evaporation.

3.5.3.4 Partially semiclassical interpretation

Suppose one interprets Hrad
u as the semiclassical Hilbert space of Hawking

modes, but interprets Hbh
u as some quantum gravitational “full description” of the

black hole (let us denote quantum gravitational Hilbert spaces with a tilde, in this case

Hbh
u = H̃bh

u ). Now there is a fair justification for S(ρ̃bhu ) ≤ A(u)/4. But another part of

the argument breaks down.

There are two cases, depending whether or not one claims that the quantum

gravitational Hilbert space H̃bh
u is equivalent to a semiclassical Hilbert space of modes.

If one does not make such an identification, then there is no guarantee that

the Hilbert spaces H̃bh
u ⊗Hrad

u and H(Σu) are equivalent. If one starts with a pure state

|ψ⟩ in H(Σu), as is typically done, there is no reason for a state in H to be pure—if

such a state is even defined.

More reasonably, one may claim (perhaps through holography) that the quan-

tum gravitational Hilbert space H̃bh
u is equivalent to the Hilbert space of some semiclas-

sical modes χbh
u . These must be part of a complete set χbh

u ⊕ χother
u ⊕ ξradu , so that

H(Σu) = H̃bh
u ⊗Hχother

u
⊗Hrad

u (3.26)

with H̃bh
u = Hχbh

u
. We have allowed for the presence of some modes χother

u that are part

of neither the radiation nor the black hole (these could include, for example, outgoing
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modes after evaporation ends, but we leave them unspecified as they depend on the

choice of χbh
u ).

If one assumes these χother
u are totally uncorrelated from the rest of the system

(schematically, that |ψ⟩ = |ψ⟩bh,rad ⊗ |ψ⟩other) then, by adapting the earlier argument,

there is a strong justification for Srad(u) ≤ A(u)/4 and Page time unitarity holds.

If one wants to make this claim they should lay out clearly what the modes

χbh
u and χother

u are, explain in precisely what sense H̃bh
u = Hχbh

u
, and explain why χother

u

are uncorrelated from the rest of the system.

Lacking a clear and explicit case for this identification, applying the entropy

bound A(u)/4 to a subset of the semiclassical modes is insufficiently justified.

Nonetheless, the idea that the quantum gravitational Hilbert space H̃bh
u can

be identified with a space of semiclassical modes is not unreasonable. Later we will

return to identifications of this type motivated by holography. In those cases, however,

the conclusion Srad(u) ≤ A(u)/4 still does not necessarily follow. This is because—in

the language of this section—either there is no decomposition χbh
u ⊕ χother

u ⊕ ξradu (as

would also be the case if one naively identified the quantum gravitational space with

the semiclassical in region), or because χother
u are not uncorrelated from the rest of the

system.
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3.5.3.5 Fully quantum gravitational interpretation

If one interprets both pieces of the decomposition as quantum gravitational

Hilbert spaces then (3.23) reads

H̃ = H̃bh
u ⊗ H̃rad

u . (3.27)

This is the case when the black hole Hilbert space is described through AdS/CFT.

In this case there is justification for S(ρ̃radu ) ≤ A(u)/4. However, now it is not

clear that the quantum gravitational space H̃rad
u relates to the space of semiclassical

Hawking modes Hrad
u . In other words, with this interpretation, S(ρ̃radu ) ̸= Srad(u).

So while the Page curve likely arises in quantum gravity, that may not imply the

same for the semiclassical modes. Understanding that correspondence requires further

investigating the relationship of the semiclassical and quantum gravitational Hilbert

spaces, which will be considered in Sec. 3.7.

3.5.3.6 Summary

Naively decomposing H(Σu) = Hbh
u ⊗Hrad

u leads to the conclusion Srad(u) ≤

A(u)/4, implying that Srad(u) follows a Page curve. But closer inspection reveals that

if Srad(u) is meant to be the von Neumann entropy of semiclassical Hawking modes,

then in any interpretation either the decomposition itself is invalid, or the conclusion

does not follow from it. Thus the claim that Srad(u) follows a Page curve is weak,

and other curves for the semiclassical Srad(u), including the traditional Hawking curve,
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may be consistent with unitarity. On the other hand, entropies describing quantum

gravitational degrees of freedom may still follow a Page curve, as discussed later.

3.6 Entropy of the “In/Out” regions

In the previous section, questions of unitarity were framed in terms of Srad(u),

the von Neumann entropy of Hawking modes at future infinity. That entropy is distinct

from, though sometimes conflated with, the von Neumann entropy

Sout(u) ≡ S(ρoutu ) (3.28)

of fields in the out region. Here ρoutu is the reduced density matrix on Σout
u (Fig. 3.4).

Each is defined in terms of a different mode decomposition: Srad(u) in terms of ξeh⊕ξ+

(Fig. 3.5), and Sout(u) in terms of ηinu ⊕ ηoutu (Fig. 3.6).

These entropies, Srad(u) and Sout(u), have vastly different character, as can be

seen in the simple Minkowski space example of Fig. 3.9. In that example, Srad(u) begins

at zero, increases as entangled modes arrive at infinity, then is purified back to zero by

the later radiation. Meanwhile, Sout(u) is infinite at all times, with a UV-divergent

leading order (“vacuum”) contribution proportional to the area of its boundary [50,

140, 250].

Despite this basic difference, these entropies may be related. There exist in
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the literature a number of plausible arguments [13, 140, 223] (see also [60]) that

Sout(u) ≈ Svac(u) + Srad(u), (3.29)

or equivalently, that Sren
out(u) ≈ Srad(u) after renormalizing by subtracting out the vac-

uum term.17

Such arguments are generally based on the idea that, if one partner in a pair

of Hawking modes has significant support only in the out region, that mode contributes

its entropy to the out region. As u → U more outgoing Hawking partners emerge into

the out region causing an evolution of Sout(u). This scenario is depicted in Fig. 3.10.

One can make an analogous argument in the Minkowski space example of Fig. 3.9.18

Now we return to the question of Page/evaporation time unitarity, and its

relation to the firewall problem, this time in the context of Sout(u).

3.6.1 Page time unitarity again

Suppose one identifies the quantum gravitational black hole Hilbert space with

the semiclassical Hilbert space of modes behind the horizon, H̃bh
u = H(Σin

u ). Then, since

von Neumann entropy is not greater than thermodynamic (coarse-grained) entropy, one

would expect S(ρinu ) ≤ A(u)/4. Since the total bipartite state is pure, this also implies

Sout(u) ≤ A(u)/4, suggesting that Sout(u) would follow a Page curve. If this were true it

17If one displaces the in/out boundary surface outward to a line of constant radius outside the
horizon, as done for instance in [13], this renormalization should amount to subtracting a divergent
constant (proportional to the constant area of the boundary).

18In that example the argument would suggest that Sout(u) = Svac(u) + 1 bits for u1 < u < u2, and
Sout(u) = Svac(u) otherwise. Note that this cannot be exactly true as the entangled modes each have
finite width.
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would imply a product state |ψ⟩in⊗|ψ⟩out at the end of evaporation, and thus a firewall

at the late time apparent horizon.

As with the discussions in Sec. 3.5, the identification H̃bh
u = H(Σin

u ) must

be called into question, and requires a more concrete justification. Naively applying

holographic principles may suggest this identification, but more detailed studies based

on entanglement wedge reconstruction suggest a different one (see Sec. 3.7).

The bound S(ρinu ) ≤ A(u)/4 also cannot be directly justified through a Bousso

bound [41] (or Bekenstein bound [29]), since the only converging lightsheet from a point

on the apparent horizon terminates at the spacelike singularity. This was pointed out

earlier by Rovelli [234].

Moreover, S(ρinu ) is formally infinite, so the thermodynamic bound must be

applied either after a UV cutoff, or after renormalizing by subtracting the vacuum term.

In the first case the bound seems to be a statement mainly about the dominant vacuum

term, and not about the entropy of Hawking radiation. Moreover, the fact that the

Page curve begins at zero seems to preclude it from including the vacuum entropy. In

the second case, it is not clear why the coarse-grained bound on von Neumann entropy

should still be relevant after renormalization.

In this light, evaporation time and Page time unitarity can be expected for

neither Sout(u) nor Srad(u), barring some improved justification.
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3.7 Connection to holographic quantum gravity

Throughout earlier sections, the question was raised of what correspondence

exists between semiclassical Hilbert spaces and underlying quantum gravitational ones.

Recent holographic studies [12–14, 224] (based on the AdS/CFT correspondence [186])

suggest a solution.

Given a quantum “boundary” theory on Hqm = Hqm
bh ⊗Hqm

out whose semiclas-

sical “bulk” dual is a forming and evaporating black hole, the boundary Hilbert spaces

Hqm
bh and Hqm

out each determine an entanglement wedge in the bulk. These entanglement

wedges are illustrated (based on the calculations of [13, 14]), during evaporation after

the Page time, in Fig. 3.11.

In this context one may calculate boundary von Neumann entropies S(ρqmbh )

and S(ρqmout), and show that they are equal and follow a Page curve [13, 14, 224]. These

boundary entropies are related to bulk entropy in their entanglement wedge through a

quantum extremal surface (quantum Ryu-Takayanagi) prescription [85, 87, 146, 237].

In particular,

S(ρqmout) = Sbulk(Σqm
out) + Aqes

4 , (3.30)

where Sbulk(Σqm
out) is the von Neumann entropy of bulk fields on any surface Σqm

out that

is a Cauchy surface for the entanglement wedge of Hqm
out. (That is, on a Cauchy surface

for just the blue region in Fig. 3.11, including both the exterior region and island. The

intersection of the black line with both parts of the blue region is one such surface.)

Aqes is the area (in Planck units) of the appropriate quantum extremal surface.
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Thus the boundary entropies, which follow the Page curve, do dictate the

semiclassical entropy in certain regions—but these regions are not the ones usually

naively identified as in and out. That is, S(ρqmout) does follow the Page curve, but the

entropy Sout(u) in the bulk out region need not.19

In particular, these studies suggest that, after the Page time, the bulk fields

in each entanglement wedge (Fig. 3.11) have negligible von Neumann entropy (after

subtracting a vacuum term) to leading order. This is consistent with a semiclassical

Hawking curve in the bulk out region, arising from entanglement between the out region

and the island.

Moreover, as depicted in Fig. 18 of [13], after evaporation ends the entangle-

ment wedge of Hqm
out contains the region behind the event horizon. Thus the semiclassical

state on a late spatial slice like Σ+ (Fig. 3.3) need not be pure, even though Hqm
out is in

a pure state.

This suggests that semiclassical long term, evaporation time, and Page time

unitarity may all fail, even when a Page curve arises in an underlying unitary theory of

quantum gravity.20,21

Given these two levels of description, what will be measured by an observer at

19The out region in the holographic calculations is defined by a fixed radius surface outside all horizons,
rather than by our Sext, but the conclusion is the same.

20Some other studies (e.g. [9]) have suggested that the boundary Page curve and bulk Hawking curve
are contradictory. This relies on identifying the bulk and boundary entropies in a way that does not
follow from entanglement wedge reconstruction. This also assumes that a bulk Hawking curve in M
fundamentally violates unitarity, which we have argued against.

21Recently it has also been argued [189], based on the path-integral quantum gravity of an ensemble
of black holes, that a version of Page time unitarity arises effectively within superselection sectors of
the theory. In that approach the notion of quantum gravitational unitarity for an individual black hole
may differ somewhat from the above discussions.
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infinity? This depends on precisely what is meant by “observer at infinity,” in particular

whether such an observer interacts locally with bulk or boundary operators. Clearly an

observer with access to all boundary observables can deduce all information about the

state.22 However, if one conceives of an observer at infinity as one that observes itself

outside a spatially distant gravitating object, it seems implicit that such an observer is

interacting with bulk observables. In contrast, it is not clear in precisely what sense an

observer in the boundary theory can be described as being outside a spatially distant

gravitating object, given the nonlocal boundary encoding of interior and exterior bulk

degrees of freedom (see e.g. [62]). Further clarifying what bulk or boundary observables

might be realistically measured in experiments (i.e. which type of operators can “we”

measure) is a useful topic of continued study.

3.8 Discussion

The correct statement of the principle of unitarity depends at what level a

theory is described. In semiclassical gravity, it demands a unitary evolution between

states in H(Σu), the Hilbert space of quantum fields on a series of Cauchy surfaces. In

quantum gravity, it demands unitary evolution of states in Hqm, an underlying quantum

mechanical Hilbert space from which spacetime and gravity may emerge.

We have argued that even if unitarity holds in both senses described above,

the more commonly invoked notions of long term, evaporation time, and Page time

22As with any quantum system, an observer with access to these observables would still need to
reconstruct the state through tomography on an ensemble in order to gain full information about the
state.
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“unitarity” may all be violated. In other words, neither “information loss at infinity”

nor a semiclassical “Hawking curve” necessarily signify unitarity violation.23

One key aspect of the argument was the distinction between semiclassical and

quantum gravitational degrees of freedom—holographic calculations suggest that a Page

curve is present at the quantum gravitational level, but not necessarily at the semiclas-

sical level.

We see four ways to refute our conclusions about unitarity. One could claim

that: (1) No semiclassical theory accurately describes black hole formation and evapora-

tion; (2) There is a useful semiclassical theory but M is a poor approximation of it; (3)

The semiclassical framework above contains faulty assumptions or unjustified steps; (4)

Within the above framework, there is a stronger justification for long term, evaporation

time, or Page time unitarity that was not considered. It would be useful to distinguish

between these possibilities in claims that these forms of unitarity are restored.

On occasion other entropies are studied besides the ones considered here. In

that context, one might introduce some entropy related to black hole evaporation, find

that it deviates from a Page curve, and claim that this signifies an information prob-

lem. Then, one can introduce some other (perhaps very different) quantity, also called

“entropy,” which does follow a Page curve, thereby resolving the problem. Generalizing

the present work, we suggest that an entropy deviating from a Page curve is not nec-

essarily problematic, and any unitarity problem that arises should be made clear and

explicit. Further, any entropies introduced in these analyses should be carefully related

23As these are the forms of “unitarity” usually assumed in the argument for firewalls, this implies
there is no need for firewalls to form.
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to a particular meaning of the black hole Hilbert space.

Here we studied the problem in a spacetime M with singularity. A number of

other papers have argued for nonsingular models (like Fig. 3.7), where quantum effects

regulate the singularity. The common objection to such models is the claim: A unitarity

problem arises at the Page time, when singular and nonsingular models are equivalent.

If that were true, regularized models would be irrelevant to the information problem.

Our conclusions amount to an argument against this objection, affirming the

viability of regular models. Similar arguments were made recently by Ashtekar [19]

using a regular model inspired by loop quantum gravity that coincides with M in the

semiclassical region (our D(Σ−)). In that paper another form of the Page time argument

based on “energy budget per mode” was also refuted. In regular spacetimes one expects

long term unitarity to be restored, while evaporation time and Page time unitarity

remain violated.

Ultimately there is no guarantee that any semiclassical spacetime can fully

represent the black hole evaporation process. Nonetheless, use of spacetimes like M is

prevalent in the literature.

We emphasize that even if one does believe M is a useful evaporation model,

black hole evaporation is not paradoxical. There is no fundamental contradiction be-

tween unitarity and relativity. A contradiction only arises if one considers limited forms

of semiclassical unitarity that, on closer inspection, are poorly motivated.

On the other hand, the fact that long term unitarity is given up in M is a sign

of its pathologies (lack of global hyperbolicity and the pathology of future null infinity).

69



It does seem reasonable to hope evaporation will be described by a semiclassical theory

with a scattering matrix from past to future infinity (unless there arise significant corre-

lations between matter and geometry, or matter and sub-Planckian degrees of freedom).

But such a theory will not include something like M as a background.
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Figure 3.2: The spacetime M used as a background for quantum fields. This schematic
causal diagram for M is known to be qualitatively correct based on Penrose diagrams
that were computed numerically in previous work [239, 241].
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Σ−

Σ+

Figure 3.3: Early (Σ−) and late (Σ+) partial Cauchy surfaces in M. The domains of
dependence D(Σ−) (blue outline) and D(Σ+) (green outline) are not equal.
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Figure 3.4: Foliation Σu of the region D(Σ−) in M. The surface Sext (magenta), which
coincides with the outermost accreting shell for u ≤ 0 and with the outermost apparent
horizon for u ≥ 0 (and with both at u = 0 where they meet), separates D(Σ−) into “in”
(magenta fill) and “out” regions. Each Σu = Σin

u ∪ Σout
u decomposes accordingly. The

label u is the time at future null infinity (extrapolated along radial null curves) when
each Σu intersects Sext. Evaporation begins at u = 0 and ends at u = U .
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Figure 3.5: Sets of modes can be defined on various partial Cauchy surfaces in M.
Modes on each surface are taken to represent classical wavepackets, as can be achieved
by appropriate transformations from oscillating modes. Modes ξ− at past null infinity
define the quantum state |ψ⟩. Transforming to another set ξeh ⊕ ξ+ dictates particle
creation. Modes defined on Σ′ (green) can help resolve a pathology of the modes ξeh⊕ξ+,
which are technically not a valid complete set in M.
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Figure 3.6: Splitting H(Σu) into time-dependent in and out subspaces. The η modes
are wavepackets with limited support (support illustrated by green curve). Modes ηinu
and ηoutu (see (3.13)) are respectively complete on the in (blue fill) and out (green fill)
domains of dependence. All these spaces are time-dependent, with the boundaries and
mode support regions sliding around as functions of u. As u → U the in domain
becomes the region behind the event horizon.
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Figure 3.7: A spacetime like M but with a regular (nonsingular) center (see [241] for
a detailed exposition with numerically computed causal diagrams). An inner apparent
horizon (r−) lies within a Planck density core (orange). The evaporation time and Page
time unitarity problems, which are described entirely within the foliation Σu covering
the early region (blue outline), are exactly the same here as in the singular case. Long
term unitarity is viable in this background, unlike in M, but depends on how initial
data propagates through the strong quantum gravity region.

76



Figure 3.8: The entropy Srad(u) of outgoing Hawking modes up to time u is defined as
von Neumann entropy in Hrad

u , which is the Hilbert space of the modes ξradu . These ξradu

are the subset of ξ+ (Fig. 3.5) with wavepackets centered before time u. A different
entropy, the von Neumann entropy in the out region Hout

u ≡ H(Σout
u ), is discussed later.
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Figure 3.9: Minkowski space with fields in a state |ψ⟩ = |1v11v2⟩ in terms of wavepacket
modes similar to ξ−. Srad(u) rises when an entangled mode reaches infinity, then is
purified to zero when its partner arrives. Sout(u), the von Neumann entropy in the out
region (whose boundary is chosen to be analogous to Sext in M), is UV-divergent due to
vacuum entanglement, but can be argued to be related to Srad(u) after renormalizing.

78



Figure 3.10: Early (red) and late (blue) pairs of entangled Hawking modes. As u→ U ,
later outgoing Hawking partners emerge into the out region, similar to the Minkowski
space example of Fig. 3.9.
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Figure 3.11: A “boundary” theory on Hqm = Hqm
bh ⊗ Hqm

out with a semiclassical “bulk”
dual. Depicted is a time after the Page time during evaporation. The entanglement
wedge of Hqm

bh (red fill) is bounded by a cutoff surface (purple line) and quantum extremal
surface (QES). The entanglement wedge of Hqm

out (blue fill) includes an exterior region
and an “island” near r = 0. Below is an illustration of the boundary theory where the
holographic black hole Hilbert space (red dot) is coupled to a CFT (blue line). See
Fig. 18 of [13] and Fig. 2 of [14], on which this picture is based, for details.
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Part II

Numerical Simulation
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Chapter 4

Bubble Dynamics

4.1 Introduction

This work aims to explore the behavior of the Coleman De Luccia (CDL)

instanton [22, 65, 66] in coordinates inspired by the flat de Sitter slicing. Evolving the

initial instanton in this coordinate system is of great interest because of recent proposals

of multi-field scalar dynamics to create black holes and wormholes [75–77, 90, 105]. Our

flat(ish) coordinates are a good choice for modeling this type of spacetime because

of manifest spherical symmetry and limits to the flat Friedman-Lemâıtre-Robertson-

Walker (FLRW) metric. These limits allow us to embed bubble nucleation and evolution

into a realistic cosmology. A desire for a reasonable cosmology is the impetus for the use

of this coordinate system over a global (compact) coordinate system as was described

in [8].

There has been much work on bubble evolution and collision, see [4, 5, 37, 39,

82



54, 92, 97, 102–104, 148, 184] for a summary of the field. Several authors have (semi)

analytically or numerically described scalar fields and especially colliding bubbles using

the CDL instanton in hyperbolic coordinates [7, 128, 155, 274]. Because of our desire

to retain spherical symmetry and limits to flat de Sitter, we will be simulating bubble

walls in a novel coordinate system. In this work, we adapt the numerical code devel-

oped and used in [156, 268, 269] for the simulation of the spacetime of a single scalar

field to observe and validate the behavior of the bubble wall. With this validation com-

pleted, future work can be done to simulate multi-field potentials and more interesting

dynamics.

In Section 4.2, we discuss the scalar potential, the resulting instanton, and

scale factor in Euclidean coordinates. In Section 4.3, we define the Lorentzian coordi-

nate systems used throughout this paper. In Section 4.4, we introduce the equations of

motion and solve for the initial state of our system. In Section 4.5, we present the sim-

ulation results and discuss the validation and convergence of our results. In Section 4.6,

we present concluding thoughts and potential research avenues.

4.2 Finding the Instanton

We begin with the Euclidean instanton metric:

H2
F ds

2 = dr2E + ρ(rE)2 dΩ2
3. (4.1)

Here the radial coordinate is rE ∈ [0, π]. ρ(rE) is the radius of the 3-sphere
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and is zero at rE = 0, π. This metric has O(4) symmetry and is scaled by the false

vacuum de Sitter radius, H−1
F .1 The instanton field φ(rE), like ρ, is simply a function

of the radial coordinate rE .

We use CosmoTransitions [267] with the addition of gravitational effects [269]

to compute the instanton from our choice of scalar potential, shown in Fig. 4.1. This

potential is from [173] with equation:

V (φ, χ) = m2(φ2 + χ2) − a(φ2 + χ2)2 +
c

M2
Pl

(φ2 + χ2)3

+ gM4
Pl sin

(
φ

MPl

)
− jM4

Pl sin

(
χ

MPl

)
+ hM4

Pl

(4.2)

We tabulate our choice of potential variables in Table 4.2 in Appendix 4.A.

For this work, we choose to make the second field, χ, constant to validate

our simulation with previous single-field simulations. However, the coordinate system

and numerical code allow both fields to evolve for more interesting dynamics. For the

simulation, we rescale the potential such that the true vacuum value is 3
8πM

4
Pl. This

results in the instanton profile and scale factor shown in Fig. 4.2.

4.3 Defining the Coordinates

4.3.1 Transforming the Instanton

The CDL instanton interpolates from true vacuum to false vacuum with a wall

region in-between. It is useful and conventional to describe these regions with different

1For increasingly large bubbles, especially V3 and V4 (Table 4.2), we note that rmax
E ≲ π for this

specific potential.
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Figure 4.1: Scalar potential with true vacuum at φ ∼ 0.0MPl, Vmin = 3
8πM

4
Pl giving

H−1
T = M−1

Pl . The instanton tunnels from the false vacuum φ ∼ 0.053MPl. This is the
potential V1 of Table 4.2.
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Figure 4.2: Scale factor and instanton profile for V1 of Table 4.2.
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coordinate systems. To get the true vacuum coordinates with spherical symmetry, we

follow [7] and write the metric with the appropriate scale factor to match the wall

region2 at τ = rE = 0:

ds2 = −dτ2 + a(τ)2 [dξ2 + sinh2 ξ dΩ2
2] (4.3)

These coordinates are the familiar open coordinates in de Sitter space (for the particular

choice of a(τ) ∝ sinh τ).

Now for the wall region we take [7]:

θ → iξ + 3π/2 (4.4)

in the instanton metric Eq. 4.1, giving a wall-region metric of:

H2
F ds

2 = −ρ(rE)2dξ2 + dr2E + ρ(rE)2 cosh2 ξ dΩ2
2. (4.5)

Here we have a new time coordinate ξ, and the 3π/2 results in a cosh ξ from the angular

coordinate on the initial 3-sphere. rE remains the radial coordinate.

The false vacuum region can be covered by coordinates analogous to the open

slicing used in the true vacuum, beginning at rE = π (rmax
E ) rather than rE = 0.

While this patchwork of coordinates is useful for understanding the individual

regions, for a numerical simulation of the full spacetime of a bubble nucleation we need

2The authors of [7] note that {rE → iτ, θ → iξ} of Eq. 4.1 gives Eq. 4.3.
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coordinates that cover all three regions at once; constructing this single coordinate

system and tying it to the three patches so that the results can be understood is a core

challenge of this work. In the next section we connect the three coordinate systems

through their embedding in higher-dimensional Minkowski space, then in Sec. 4.3.3 we

describe the global coordinates we use for the numerical calculation.

4.3.2 Minkowski Space Embedding

We start with 5D Minkowski:

ds2 = −dX2
0 + dX2

4 +
∑
i

dX2
i . (4.6)

In our application, we need to consider two different vacuum energies and, thus, two

different hyperboloids, each inducing a de Sitter space metric with a different scale. To

determine the radii of the hyperboloids, we calculate the Hubble radii with VT,F , the

minima for true and false vacua, respectively:

H−1
T,F =

√
3M2

Pl

8πVT,F
. (4.7)

We consider an initial false hyperboloid and glue a true hyperboloid along

constant XW
4 = H−1

F

√
1 −R2

0 [104], a timelike slice, starting at X0 = 0. Where R0

is the initial radius of curvature of the bubble in units of H−1
F . See Fig. 4.3 for a

picture of the gluing. This choice of X4 breaks pure de Sitter’s SO(4,1) symmetry to

SO(3,1). With this glued hyperboloid, we can match our three coordinate regions from
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Figure 4.3: 3D True (blue) and False (red) Hyperboloids glued together with H−1
F =

0.7H−1
T . Two flat time slices t = 0, t > 0, a gray deformed circle at X0 = 0, and dashed

black boundaries of the wall region are drawn. Two additional dimensions are hidden.

Section 4.2.

To smoothly match the glued hyperboloids at XW
4 , we must shift the true

vacuum hyperboloid by XS
4 = XW

4 −
√
H−2

T −H−2
F R2

0. This shift aligns the R0 radius

of curvature region of the two hyperboloids at XW
4 when X0 = 0. In the limit of

vanishing bubble radius, we obtain XW
4 = H−1

F and XS
4 = −H−1

T + H−1
F , where both

hyperboloids are aligned at X4 = H−1
F at zero radius of curvature. In Fig. 4.4, we can

see that the red false vacuum hyperbola is centered at X4 = 0, while the blue true

vacuum hyperbola is shifted by XS
4 .

While Figs. 4.3, 4.4 represent the same spacetime, they tell a slightly different
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Figure 4.4: True (blue) and False (red) Hyperboloids glued together at HFX4 = 0.6 in
purple, with H−1

F = 0.7H−1
T . Two flat time slices are drawn at t = 0, t > 0, and the

wall region is shaded in orange. Three additional dimensions are hidden.
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story. Fig. 4.3 highlights the two hyperboloids with different radii glued together. It

would be easy to believe this figure is telling us there are actually two physical regions

rather than three, but we caution the reader from this conclusion. Fig. 4.4 does a better

job of conveying the three regions of the Lorentzian instanton. Outside of the orange

wall region, we are in pure de Sitter space (true or false), while inside the orange region,

the curvature varies with radius. The bubble wall (instanton radius) is centered around

the purple line (hyperbola), and this is where the curvature changes from false to true

de Sitter. Naturally, the wall region contains the bubble wall, but away from the bubble

wall, the curvature in the wall region is very close to either false or true de Sitter.

The wall region is the bounded area between the two open-slicing vacuum re-

gions. Its boundaries are shown in Fig. 4.4 as the black vertical lines and it is shaded

in orange. To embed it in our Minkowski space we need an embedding that has zero

radius of curvature on the boundaries, X4 =
{
H−1

T + XS
4 = H−1

T +
√
H−2

F −R2
0 −√

H−2
T −R2

0,−H−1
F

}
at X0 = 0. We reproduce the wall region metric using the embed-

ding3

X0 = H−1
F ρ(rE) sinh(ξ),

X4 = H−1
F h(rE),

Xi = H−1
F ρ(rE) cosh(ξ)ωi,

(4.8)

where h is a function to be solved for that makes X4 depend on (only) rE . Due to the

instanton symmetry, ρ(rE) and φ(rE) must both be functions of only rE . The mapping

3The embedding coordinates are constructed to match Eq. 4.5 when substituted into Eq. 4.6 [8].

91



h(rE) can then be solved for by using Eqs. 4.5, 4.6, and 4.8 to give h′(rE)2 = 1−ρ′(rE)2.

Solving this differential equation provides invertible mapping, rE ↔ X4.

Having all three coordinate patches in the same embedding now allows us to

construct a global coordinate system by slicing through this patched-together embedded

spacetime in a manner analogous to the construction of the flat slicing coordinates of

standard de Sitter spacetime.

4.3.3 Flat(ish) slicing

Although flat-slicing coordinates are not the ones perfectly adapted to the

metric in any of the three regions, they cover all three. Moreover, far away from the

bubble wall at both large and small radius, we have constant vacuum energy, and in

these limits, a (truly) flat slicing is accurate and also provides a clear interpretation.

For the simulation, we will be considering general spherically-symmetric met-

rics of the form:

H2
T ds

2 = −α(t, r)2dt2 + e2HT t × [a(t, r)2 dr2 + b(t, r)2 r2 dΩ2] (4.9)

On our initial surface, t = 0, to agree with flat-sliced de Sitter in the small-
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and large-r regimes, we expect limits:

αr→0 = 1,

αr→∞ = H−1
F HT ,

a = 1,

b = 1.

(4.10)

This choice of metric is spherically symmetric and already in the Arnowitt–Deser–Misner

(ADM) decomposition with the shift vector set to zero (see Sec. 4.4.1). Note that we

removed the exponential from the definitions of a, b.

4.3.3.1 Naive Flat Embedding

The true vacuum flat slicing in the embedding coordinates is [8]:

X0 = H−1
T sinh(HT t) +

H−1
T

2
eHT tr2,

X4 = XS
4 +H−1

T cosh(HT t) −
H−1

T

2
eHT tr2,

Xi = H−1
T reHT tωi.

(4.11)

Notice that a shift by XS
4 in X4 has been applied to make the hyperboloid joining

surface smooth, as seen in Fig. 4.3. The Hubble radius is chosen to match the true

vacuum to align the r = 0 surface with the true vacuum hyperboloid, see t = 0 black

line in Fig. 4.4. Also, the coordinate r is in units of H−1
T .
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Eq. 4.11 results in a de Sitter space metric, Eq. 4.9, with {α = 1, a = 1, b = 1}.

This solution only really holds in the limit of degenerate minima (HT ∼ HF ) and no wall,

as Eq. 4.11 assumes the entire spacetime is true vacuum. Now we need an embedding

with similar properties, but that allows for more freedom in the metric functions so that

we can interpolate from true to false vacuum.

4.3.3.2 Picturing Naive Flat Coordinates

Although the naive embedding is not satisfactory for representing the initial

state of this system, we can use it to build intuition for the relations between coordinates.

We plot two spacetimes in Figs. 4.5, 4.6 where the first assumes the naive

embedding, Eq. 4.11, and the second uses the compact coordinates of reference [8].

Both of these pictures require degenerate vacua, and in this work, we will only consider

down to 2% different de Sitter radii (sample V4). In practice, this means that we can

only trust the picture for r < rwall, where we are closer to the true vacuum. For this

shape potential (Eq. 4.2), we note that as the false vacuum is raised further from true

vacuum, we get smaller radius instantons. As this picture requires nearly degenerate

vacua, the approximation becomes worse as our instanton becomes smaller radius. The

compact picture is included to give the reader a more familiar picture of the bubble

spacetime before continuing with the trickier flat(ish) coordinates.

In Fig. 4.5 we plot the wall region boundaries, X4 =
{
H−1

T +
√
H−2

F −R2
0 −√

H−2
T −R2

0,−H−1
F

}
with thick black lines as function of flat coordinates (these are

also the thick black lines in Fig. 4.6). In the wall coordinates, these values remain at
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rE = {0, π}, and the wall radius is fixed at rE = rwallE . Note that in Fig. 4.5, r is

not compact like η in Fig. 4.6 and thus increases without bound. As t increases, the

constant X4 begin to converge on r = 1 (H−1
T ). In our simulation we will see that our

bubbles approach H−1
F and not H−1

T as is suggested by this naive coordinate system. It

is key to remember that the flat coordinate r is a comoving coordinate. If we want to

consider physical size we need to tack on eHT t (see top panel of Fig. 4.11).

We also depict three red curves in each plot, which are constant time surfaces

in the opposite coordinate system (compact ↔ flat). This helps to show the non-trivial

conversion between the two coordinate systems.

4.3.3.3 Flat(ish) Embedding

Starting with the basic form of Eq. 4.11 we introduce some unknown functions:

X0 = f0(t) +H−1
T g0(t, r) e

HT t,

X4 = XS
4 + f4(t) −H−1

T g4(t, r) e
HT t,

Xi = H−1
T reHT tωi.

(4.12)

Importantly, our new embedding retains the Xi component as we still want b = 1

solution for limits matching flat FLRW.

Substituting the embedding definitions into the Minkowski metric and com-
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Figure 4.5: Open coordinates cover the true (left) and false (right) regions, and wall
coordinates cover the region between. Three compact times (T ) drawn in red. Con-
tours are constant X4, largest in the top left true vacuum region and decreasing
counterclockwise.
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Figure 4.6: Compact coordinates (T, η) defined in Eq. 12 of [8]. Three flat slicing times
(t) drawn in red. Contours are constant X4 and decrease counterclockwise, starting in
the top left true vacuum region toward the central wall region, and top right false
vacuum.
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paring to Eq. 4.9, we get the following for the dr2 component:

a2 = 1 − g′20 + g′24 . (4.13)

We would like the flat-slice property where X0 +X4 has no radial dependence, but we

will have to settle for this being accurate in the limit of small (large) radius, where we

are in pure de Sitter.

This implies that if we have pure de Sitter (a = 1, α = const.) then g0(t, r) −

g4(t, r) is a function of t only. Now, if we considerX0+X4 at small radius we should agree

with the naive embedding, Eq. 4.11, because we are deep in the true vacuum regime.

Because f0, f4 are radially independent, we can set them to their naive solutions of

f0 = H−1
T sinhHT t, f4 = H−1

T coshHT t.

Furthermore, there is an equation for α2 (dt2 component) analogous to Eq. 4.13

that contains temporal derivatives of functions g0, g4. After running the simulation to

determine {a, α}, we can combine these equations to write a differential equation for

our unknown functions g0 and g4.
4

4.3.4 Initial Slice Coordinate Transformation

The instanton provides us with field and metric components in all three regions.

In order to find initial conditions for the bubble in our flat(ish) coordinates (t, r), we will

need to relate them to the coordinates (ξ, rE) in the wall region, on the initial (t = 0)

4In practice, we need to make some more simplifying assumptions, such as temporal derivatives
tending to zero at late times, to solve this differential equation. See Appendix 4.B for more discussion.
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slice.

We can characterize this t = 0 slice in the wall region by finding ξ as a function

of rE by matching the embeddings Eqs. 4.8 and 4.12 with t = 0. To do this, we first

match the Xi pieces between the embeddings, to get H−1
T r = H−1

F ρ(rE) cosh(ξ), then

we match X0 + X4 to get f0(0) + f4(0) + XS
4 = H−1

F ρ(rE) sinh(ξ) + H−1
F h(rE). We

finally combine the two equations and substitute in our solutions for f0, f4 to solve for

ξ at t = 0.

ξt=0(rE) = arcsinh

[
H−1

T +XS
4 − h(rE)

H−1
F ρ(rE)

]
. (4.14)

Then, we obtain the mapping between r and rE using our Xi matching again:

H−1
T rt=0(rE) =

√
[H−1

T +XS
4 −H−1

F h(rE)]2 +H−2
F ρ(rE)2. (4.15)

This mapping is plotted in Fig. 4.7. We now have the coordinate transformations at

t = 0 and we will return to solve for all metric functions and derivatives on the initial

slice in Sec. 4.4.3.

4.4 Simulation Setup

4.4.1 Simulation Coordinates

For simulating the bubble we will redefine our time coordinate to N ≡ HT t,

making it dimensionless and in units of the true vacuum de Sitter radius, like r. As
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Figure 4.7: Conversion of Euclidean radial coordinate to flat radial coordinate on t = 0
surface for V1 of Table 4.2.
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mentioned in Sec. 4.2, we scale the scalar field potential such that the true vacuum has

value VT = 3
8π . This gives us a de Sitter radius of H−1

T = 1 for MPl = 1, which we

will use for the remainder of the simulation. We will continue to write H−1
T instead of

setting it equal to 1, but the important scale is now H−1
F / H−1

T or just H−1
F .

We rewrite our metric of Eq. 4.9 with t→ N :

H2
T ds

2 = −α(N, r)2dN2 + e2N ×
[
a(N, r)2 dr2 + b(N, r)2 r2dΩ2

]
. (4.16)

Our next task is to write out the equations of motion for our new coordinates.

4.4.2 Equations of Motion

We follow the method of Johnson et. al (see App. A in [155], a discussion on

the ADM formalism [64], and a review of numerical relativity [175]) in deriving the time

evolution equations for our metric functions and scalar fields using the metric Eq. 4.16.

4.4.2.1 Lapse and Shift Gauge Choices

Choosing a coordinate system does not fully specify the initial state of the

system, and we are required to make additional gauge choices for the lapse and shift

[28].

First, we make the simplifying gauge choice of zero shift, βr = 0.
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In line with [155], we write the time derivatives of a and b as:

ȧ = −a (1 +Kr
r α),

ḃ = −b (1 +Kθ
θ α),

(4.17)

which come from the definition of extrinsic curvature (K) found in [28].

Next, we make another simplifying gauge choice for the lapse, α = −1/Kθ
θ.

This results in b being a constant in time.

4.4.2.2 Evolution Equations

All of the following functions are functions of (N, r) unless otherwise stated.

Note that here V = V (N, r), which is equivalent to V (φ1(N, r), φ2(N, r), . . . , φn(N, r)).

We define the derivatives of the kth scalar field:

Φk ≡ φ′
k,

Πk ≡ a

α
φ̇k

(4.18)

We denote the derivatives of f as f ′(N, r) ≡ ∂rf(N, r) and ḟ(N, r) ≡ ∂Nf(N, r).

We now write the time evolution equations:

102



ȧ = e−2N × α2

{
1

2r2a2b2
a (−a2 + b2) +

1

ra2b
(−ba′ + 3ab′)

+
1

2a2b2
(−2ba′b′ + ab′2 + 2abb′′) +

2π

a2
a
∑
k

Φ2
k

}
+

1

2
(−a) [3 − 8πV α2]

+
2πα2

a2
a
∑
k

Π2
k (4.19)

ḃ = 0 (4.20)

α̇ = e−2N × α2

{
1

2r2a2b2
α (a2 − b2) +

1

ra2b
(−bα′ − αb′)

+
1

2a2b2
(−2bb′α′ − αb′2) +

2π

a2
α
∑
k

Φ2
k

}
+

1

2
α [3 − 8πV α2] +

2πα2

a2
α
∑
k

Π2
k

(4.21)

φ̇k =
α

a
Πk (4.22)
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Π̇k = e−2N × 1

a

{
2

r
αΦk +

1

ab
αΦk(−a′b+ 2ab′) + α′Φk + αΦ′

k

}
− 3Πk − aα

∂V

∂φk

(4.23)

There are many similarities between the forms ȧ and α̇ equations (Eq. 4.19, 4.21).

However, there are some sign differences that have important consequences for the

shapes of a, α during evolution. The signs of the potential terms (∝ V ) are opposite for

a and α. For α evolution, this results in a cancellation of the term proportional to V

and the terms proportional to the field derivatives (Φ,Π), while for the evolution of a,

there is an additive effect.

In each of the evolution equations, the terms grouped in curly braces have a

e−2N suppression factor. The terms proportional to 1/r, 1/r2 are deemed transients

because their contribution to evolution dies quickly over time, especially for N > 1.

Although there are different time regimes for which terms are relevant, all terms are

included in the calculation at all times during the simulation. For the purposes of our

simulation, all b derivatives are zero because of our choice of initial state and gauge

fixing.

Finally, our last evolution equation, Eq. 4.23 is derived from the Klein Gordon

equation for scalar field evolution.
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4.4.3 Initial Conditions

We need to solve for the initial state of the system that has the correct symme-

tries to match the CDL instanton and solve our derived evolution equations. We take

our metric functions and scalar fields as Taylor expansions in N .

a(N, r) = a0(r) + a1(r)N + O(N2) (4.24)

From here on out, we will use subscripts to represent the order in the Taylor

series in time N . To not confuse with the Sec. 4.4.2 usage of subscript k to represent

scalar field k, we will only consider the case of two scalar fields φ, χ, where the latter

does not participate in the dynamics in this work.

We would like to retain FLRW limits, so we enforce a0, b0 = 1. This defines

N = 0 as a space-like spatially flat (3-curvature) surface. The rest of the choices for

our simulation parameters can be found in Table 4.2. We take Taylor expansions of

Eqs. 4.19 - 4.23 to 2nd order in all functions except for φ, which we can calculate to

3rd order. This allows us to satisfy all evolution and constraint equations to at least

1st order. Satisfying these gives us the initial state functions which we write down for

{α′
0, a1, b1, α1, φ2} in Eq. 4.25. To solve these equations, we now need to add in the

initial data for the instanton initial state.
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α′
0(r) = −α0(r)

1

2r

{
−3 + 4π α0(r)

2 [2V (r) + φ′
0(r)

2] + 4π[φ1(r)
2 − 2rφ1(r)φ

′
0(r)]

}
,

a1(r) = −3

2
+ 2π α0(r)

2 [2V (r) + φ′
0(r)

2] + 2πφ1(r)
2,

b1(r) = 0,

α1(r) = −1

r
α′
0(r)α0(r)

2 +
1

2
α0(r)

{
3 − 4πα0(r)

2[2V (r) − φ′
0(r)

2] + 4πφ1(r)
2
}
,

φ2(r) = −α0(r)
1

2r

{
−2φ′

0(r)α0(r) − rα′
0(r)φ

′
0(r) − rφ′′

0(r)α0(r) + rα0(r)
V ′(r)

φ′
0(r)

+ 8πrV (r)α0(r)φ1(r) + φ1α
′
0(r)

}
(4.25)

Notice that each of these equations depends on the undetermined α0 and φ1.

We can use the fact that we know the wall region metric (Eq. 4.5) at t = N = 0 to

calculate the Ricci curvature in the wall region coordinates (ξ, rE) and then convert to

our simulation coordinates using Eq. 4.15. Next, we can calculate the Ricci curvature

using the simulation metric (Eq. 4.16) at N = 0 and set these equal to each other to

solve for our unknowns.

The first step is to solve for α0 as a function of φ1 using R(4) written in our

Taylor expanded functions, then substitute it into the α′
0 equation, Eq. 4.25. We can

then rewrite the α′
0 equation into a φ′

1 equation and solve for φ1. Interestingly, there is

some degeneracy of solutions because R(4) depends on the ratio of (φ1/α0)
2, so we need

an extra piece of information to nail down the overall sign of φ1 and thus the shape of

α0. Knowing φ1, we can solve for α0 using our knowledge of R(4).5

5Additionally, we can calculate the Kretschmann scalar to confirm we have the correct overall scale
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To find the appropriate sign for φ1, we will use our naive picture for intuition.

The scalar field in the coordinates of the wall region should follow a constant rE ↔

X4 [6]. If we could plot the path X4 = Xwall
4 follows, we would have our answer.

Consider Fig. 4.5 and look at the contours in the wall region (constant X4). They are

decreasing in radius for small t (N). However, remember this is a naive picture using

the embedding Eq. 4.11 which we know only has a limited domain of r ≲ rwall. We

expect to have a reasonable agreement between the naive and flat(ish) embeddings at

small radius at early time because we are close to pure true vacuum de Sitter space (see

Fig. 4.14).

Now, we look at dt/dr of the contours in Fig. 4.5 for r ≲ rwall and see that

they are initially negative, meaning that the comoving radius initially contracts. We

believe it reasonable to expect a smooth change in the slope of dt/dr as we change

the radius in both directions. This means that smaller instantons will decrease less in

radius compared to larger ones. Eventually, we expect the initial decrease to go to zero

for minuscule bubbles, and we return to the original infinitesimally thin CDL bubble

of [65, 66]. However, in this work, we will only consider bubbles with R0 > 0.5 (H−1
F )

radius of curvature.

We know that our bubble initially decreases in time, but what does this mean

for the sign of φ1? Looking at Fig. 4.8, we include a dashed red lines which is the

approximate shape of φ at N ≳ 0, φ0 + φ1 × 0.05. Because φ1 is positive, the bubble

wall moves to the left, to smaller radius. This result depends on whether the field

for φ1 and shape for α0. However, we only need R(4) to fully solve for our initial state. Other scalars
are zero for this metric due to the high level of symmetry.
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Figure 4.8: Initial field and time derivative profiles for V1 of Table 4.2. In dashed red,
we draw φ0 + φ1 × 0.05 to show the initial leftward movement of the field.

tunnels to a larger or smaller field value, where the sign would flip for φ1. Finally, we

can say that we want the positive solution for φ1 for initially shrinking bubbles, and

our initial state is solved for.

4.4.4 Numerical Method

The numerical code used in this work was first developed in [269]. For a

detailed description of the algorithm, see the previous work. We will summarize the

relevant information here.
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The code employs the method of lines [28] with adaptive mesh refinement

(AMR) [1, 176]. As we will see, the bubble wall becomes length-contracted during the

simulation and our functions develop large gradients. We need a non-uniform grid that

has higher density near large gradients, so that we can properly resolve the details.

The grid density is set by the gradient of the scalar field, |dφ/dr|. At the start of

the simulation, the grid is uniform with the number of grid points O(100). As the

gradients sharpen, the number of grid points grows to O(103)−O(104). Finite difference

first and second derivatives are calculated using the stencils developed in [96]. First

derivatives have error ∝ ∆r4 and second derivatives have error ∝ ∆r3. Due to the

large gradients, we enforce a stringent Courant-Friedrichs-Lewy (CFL) condition [179]

of c∆N ∼ 0.01∆r. Our coordinate system requires a time step smaller by an order of

magnitude compared to the previous work.

4.5 Simulation Results

4.5.1 Bubble Walls and Metric Functions

Unless stated otherwise, we use the parameters for V1 in Table 4.2 for the

following results. We also include some results for three other simulation runs with

increasing instanton radius (V2, V3, V4). In Fig. 4.9 we show the scalar field in (N, r).

The true vacuum is red, the false vacuum is black, and the transition region is white.

Initially, the wall moves toward smaller r, much like the constant X4 seen in the naive

coordinates of Fig. 4.5. After the initial decrease in radius, the wall moves back toward
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Figure 4.9: Instanton field in r and N . Ingoing and outgoing null paths are in green
and blue, respectively. Boundary nulls are drawn in black analogous to Fig. 4.5. This
result is for V1 of Table 4.2.
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larger radius and thins due to length-contraction in co-moving coordinates. From previ-

ous simulations and junction conditions, we expect our bubble wall to asymptote to the

false vacuum radius, r → H−1
F /H−1

T [6, 26, 155, 269], which we draw in dashed cyan.

Next, we plot the metric functions a and α in Fig. 4.10. a is initially constant

equal to 1, but quickly starts to form a sharp peak at the location of the transition

region in φ. As mentioned previously (Sec. 4.4.2), ȧ contains terms that are additive,

which causes the sharp spikes to remain long after they form. The initial peak follows

the transition region of φ over time and eventually asymptotes to two roughly vertical

lines, with the right line at the bubble wall location and the left line at ∼ H−1
T −H−1

F

smaller radius. The initial plateau region seen in blue at N = 0.71 remains at late times

because of the additive ȧ equation. At small and large radii a retains the FLRW limits

of a→ 1. Fig. 4.10 tells us that the bubble wall has an outsized effect on the spacetime

compared to its thickness, as seen in Fig. 4.9. This has important consequences for

forcing boundary null paths to asymptote to H−1
F as we will see below.

α has the same initial peak structure as a, but as mentioned before, α̇ has terms

that cancel each other out, causing the peak to decay after the transient terms die out.

α approaches a step function with limits α → 1 for true vacuum and α → H−1
F /H−1

T

for false vacuum. Note that all of {φ, a, α} evolve more and more slowly as time elapses

for N > 1. This is the effect of co-moving coordinates where the temporal derivatives

tend to zero.

We calculated the ingoing (green) and outgoing (blue) null paths for 0.2 (H−1
T )

intervals (defined at N = 5) and overlayed them on Fig. 4.9. In pure de Sitter space, we
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would predict an outgoing null path that begins at r = 0 to reach H−1 (for our setup,

this would be H−1
T ). In the case of the bubble spacetime, the r = 0 boundary null

reaches r = H−1
F /H−1

T (left black line). The ingoing boundary null (right black line)

starting at the right edge of our boundary, X4 = −H−1
F , also reaches r = H−1

F /H−1
T .

These two nulls are analogous to the thick black lines in Fig. 4.5 that bound the wall

region. Solving for these nulls and seeing that they asymptote to the same position as

the bubble wall, H−1
F , gives credence to the predictions mentioned previously and to the

numerical simulation. The functions a and α define these null paths, so the fact that

they follow the expected behavior should be further confirmation that we obtained the

correct forms for our metric functions in the simulation.

V1 V2 V3 V4

H−1
F /H−1

T 0.832 0.867 0.948 0.977

r0 (H−1
T ) 0.501 0.674 1.107 1.248

rf (H−1
T ) 0.824 0.860 0.945 0.978

Table 4.1: Simulation results for four samples, see Table 4.2. r0 (H−1
T ) is the initial

bubble radius for each sample in coordinates of Eq. 4.16. rf (H−1
T ) is the final bubble

radius.

Next, we show the radius of curvature for our four simulations in the top plot

of Fig. 4.11. As expected of flat coordinates, our bubble walls grow in size like eN , as

can be seen by the linear curves on a logarithmic scale. Looking at the red curve, V1,

and comparing it to the path of the wall in Fig. 4.9, the initial decrease of the wall in

co-moving coordinates is compensated for by the exponential, eN , and we get monotonic
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Figure 4.10: a and α in r and N . This result is for V1 of Table 4.2.
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growth of the physical size of the bubble.6

In the bottom panel of Fig. 4.11, we plot the ending positions of our four

simulated bubble walls (rf ) vs. their de Sitter radius ratios (H−1
F /H−1

T ). We also

tabulate these results in Table 4.1. We see a difference between predicted and simulated

that is less than 1%.

4.5.2 Constraint Violation

If we satisfy the constraint equations on the initial slice, we are guaranteed to

satisfy them at later times by the Bianchi Identity [28, 175]. We will use this to estimate

the accuracy of the simulation by observing the momentum constraint violation over

time.

The momentum constraint equation in this coordinate system with b = 1 is

CP (N, r) ≡ αȧ− 4πrα2 Π Φ + raα′ = 0, (4.26)

where we ignore the derivatives of the constant scalar field, χ.

Due to the length contraction of the bubble wall, spatial derivatives become

divergent quickly (see Fig. 4.10). To account for this, we scale the momentum constraint

violation, Eq. 4.26, by 1/max(a′(N)) on each time slice. This gives us a relevant physical

scale to compare our violation to, as the constraint equation is dominated by spatial

6For smaller bubbles, the initial contraction can overcome the exponential factor to cause the physical
size of the bubble to initially decrease before exponential growth.
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Figure 4.11: The top plot shows the radius of curvature for the four potential choices of
Table 4.2. The bottom plot shows the final positions of the walls for the four samples.
Additionally, we plot the predicted line of rf = H−1

F /H−1
T .
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Figure 4.12: L2 norm of rescaled momentum constraint, Eq. 4.26. This result is for V1
of Table 4.2.
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derivatives. We take the L2 norm of the rescaled momentum constraint over the spatial

extent and plot as a function of N in Fig. 4.12.

We see that there is an initial rise in violation caused by the transient 1/r and

1/r2 terms seen in Eqs. 4.19 - 4.23. These terms have a large effect early, causing the

spikes seen in Fig. 4.10 at N < 1. As time increases, the importance of these terms

falls off like e−2N , and we see that reflected in the leveling off and eventual decrease in

violation.

If we wanted to decrease the overall violation of the simulation, we could make

a few alterations to our methods. The first is to calculate more orders in the Taylor

Expansion of the initial state and begin the simulation at a time earlier than N = 10−6.

The second and more effective method would be to more accurately calculate the initial

state functions {φ1, α0}, as these are the overwhelming source of the initial violation.

Finally, different numerical methods beyond the method of lines and AMR could be

used to better constrain the initial sharp increase in violation and spikes in the metric

functions.

4.5.3 Convergence

We check the simulation convergence by calculating the self-convergence factor

[49, 155, 177, 269]

2q =
||φp − φ2p||2
||φ2p − φ4p||2

. (4.27)

We expect order q ∼ 3 because finite difference second derivatives in this setup

117



have an error of ∆r3 in Runge-Kutta integration [155, 269].

The subscript p represents the grid spacing in Eq. 4.27, and to calculate the

self convergence we ran three simulations of V1 with doubling grid density, [p, 2p, 4p],

and plotted in Fig. 4.13.

The result is convergence between 2nd and 3rd order after the initial transients

of N ≲ 1 die away. For this particular coordinate choice, we get large gradients in our

metric functions and scalar field. These large gradients require more mesh density,

resulting in a non-uniform mesh that becomes more non-uniform as time elapses. In

[269], they noted that a uniform mesh results in a higher convergence order, and we are

seeing the opposite effect here. This non-uniformity of the mesh due to large gradients

accounts for the lower-than-expected convergence. Much like in the constraint violation,

improvements to the numerical methods that better suit this coordinate system would

likely improve convergence.

4.6 Discussion

In this article, we started with the Euclidean instanton, then we wrote a patch-

work of coordinates to describe the space-time of the Lorentzian instanton. We defined

a new flat(ish) coordinate system and solved for the transformation between these co-

ordinates. Next, we solved for the initial state satisfying the Einstein equations and

scalar equations of motion. Finally, we numerically simulated the system in full general

relativity. The result was a better than 1% agreement with the prediction that bubbles
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Figure 4.13: Convergence rate of scalar field. This result is for V1 of Table 4.2. After
initial transient behavior, the simulation converges to between 2nd and 3rd order.

119



approach the false vacuum de Sitter radius (H−1
F ). We have validated our simulation

for a single scalar field, which opens the door for simulating multi-field potentials to get

more interesting behavior and possibly form black holes or wormholes. Additionally,

we would like to simulate smaller radius instantons, especially those that do not reach

the true minimum initially (more discussion can be found in App. 4.A). Simulating

this expanded class of instantons would inform us of how a generic instanton evolves in

general relativity.

4.A Potential Variables

V1 V2 V3 V4

m/MPl 10−4 10−4 10−4 10−4

c 1.04 × 10−3 10−3 0.94 × 10−3 0.94 × 10−3

a 6.1 × 10−6 6.1 × 10−6 6.1 × 10−6 6.15 × 10−6

g 10−11 10−11 10−11 10−11

j 10−10 10−10 10−10 10−10

h 8.× 10−12 8.× 10−12 8.× 10−12 8.× 10−12

χ/MPl 10−3 10−3 10−3 10−3

Table 4.2: Simulation variable choices for four samples, see Eq. 4.2.

We run four samples (V1 - V4), each with increasing H−1
F , but the same H−1

T .

The ratio of Hubble radii can be seen in the first row of Table 4.1. For this particular

potential, Eq. 4.2, the instanton radius increases as the true and false vacua become

more degenerate.

At a certain point, as the false vacuum is raised away from the true vacuum,

the instanton does not travel all the way to the true minimum (φ(r = 0) > 0.0). For
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this work, we chose four instantons that reach vacuum to vacuum to avoid the issue of

choosing the initial de Sitter radii for matching hyperboloids. For the case where the

instanton does not reach the true vacuum initially, it is unclear if we can accurately

picture the spacetime as two hyperboloids like in Figs. 4.3, 4.4. Assuming the initial

instanton defines the energy density of the hyperboloids, we simulated such an example

and saw that during the simulation, the scalar field rolled into the true vacuum over

time, as expected. This question deserves more attention in future work.

4.B Return to Embedding

After determining the initial state in Sec. 4.4.3 we can match our metric com-

ponents with those predicted by Eq. 4.12 to determine the functions g0(t, r), g4(t, r).

We will start by comparing g0(0, r) to the naive prediction of r2

2 from Eq. 4.11. This

will give us an idea of how accurate the naive picture (Fig. 4.5) is for t = 0. We do this

for our four samples in Table 4.2.

As we can see in Fig. 4.14, the difference between naive prediction and gener-

alized result improves as bubble size increases (from V1 to V4). This is in line with the

claims made in Sec. 4.3.3.2. Notice that no matter the bubble size we start to diverge

from the naive result at large r. This is no surprise because we are no longer in a pure,

true vacuum regime as r increases, and thus Eq. 4.11 is inadequate for describing the

spacetime.

As N → ∞, we can solve the generalized embedding equations using our
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V4.
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simulated metric functions a and α. Using Eq. 4.13 and the equivalent α equation with

the simplification that as N → ∞ we find ġ0 ġ4 → 0, we are able to solve for X4 at

N = 5. As mentioned in [6], Israel Junction conditions predict a CDL bubble will follow

a constant X4 (rE) trajectory. We are able to estimate the X4 value of the bubble wall

at N = 5, and we overestimate the prediction given by N = 0 calculation by ∼ 10%.

This overestimate is caused in part by rf ≲ H−1
F (H−1

T ) as seen in Table 4.1. While this

may at first seem large compared to better than 1% of matching rf to H−1
F , consider

that Xwall
4 = 0.849 (H−1

T ) and X4(N = 5) varies from 74 (H−1
T ) to −150 (H−1

T ). Given

the large range of X4(N = 5), 10% difference from prediction seems more reasonable

than at first glance.
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Chapter 5

Conclusion

In this thesis, we looked at three research avenues related to black hole and

bubble physics. In the first project, we outlined a novel search for Primordial Black

Holes using microlensing simulations of the Nancy Grace Roman Space Telescope. In

the second project, we analyzed the black hole information problem in the context of an

explicitly defined evaporation diagram. In the final project, we developed a coordinate

system for bubble nucleation and evolution and numerically simulated the system in

full general relativity.
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Ed Beshore, and Bonnie Meinke. An observational upper limit on the interstellar

135



number density of asteroids and comets. The Astronomical Journal, 153(3):133,

feb 2017.

[89] Sonja Engmann and Denis Cousineau. Comparing distributions: the two-sample

anderson–darling test as an alternative to the kolmogorov–smirnov test. Journal

of Applied Quantitative Methods, 6:1–17, 09 2011.
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I. Soszyński, R. Poleski, P. Pietrukowicz, S. Koz lowski, M. Pawlak, K. Ulaczyk,

(The OGLE Collaboration), M. D. Albrow, S.-J. Chung, Y. K. Jung, C. Han, K.-

153



H. Hwang, I.-G. Shin, J. C. Yee, W. Zhu, S.-M. Cha, D.-J. Kim, H.-W. Kim, S.-L.

Kim, C.-U. Lee, D.-J. Lee, Y. Lee, B.-G. Park, R. W. Pogge, and (The KMT-

Net Collaboration). A neptune-mass free-floating planet candidate discovered by

microlensing surveys. The Astronomical Journal, 155(3):121, feb 2018.

[211] Takahiro T. Nakamura and Shuji Deguchi. Wave Optics in Gravitational Lensing.

Progress of Theoretical Physics Supplement, 133:137–153, January 1999.

[212] Hiroko Niikura et al. Microlensing constraints on primordial black holes with

Subaru/HSC Andromeda observations. Nature Astron., 3(6):524–534, 2019.

[213] Hiroko Niikura, Masahiro Takada, Naoki Yasuda, Robert H. Lupton, Takahiro

Sumi, Surhud More, Toshiki Kurita, Sunao Sugiyama, Anupreeta More,

Masamune Oguri, and Masashi Chiba. Microlensing constraints on primordial

black holes with the Subaru/HSC Andromeda observation. Nature Astronomy,

3(6):524–534, June 2019. arXiv: 1701.02151.

[214] Hiroko Niikura, Masahiro Takada, Shuichiro Yokoyama, Takahiro Sumi, and

Shogo Masaki. Constraints on earth-mass primordial black holes from OGLE

5-year microlensing events. Physical Review D, 99(8), apr 2019.

[215] Hiroko Niikura, Masahiro Takada, Shuichiro Yokoyama, Takahiro Sumi, and

Shogo Masaki. Constraints on Earth-mass primordial black holes from OGLE

5-year microlensing events. Phys. Rev. D, 99(8):083503, 2019.

154



[216] Yasunori Nomura. Interior of a unitarily evaporating black hole. Phys. Rev. D,

102(2):026001, 2020.

[217] S. Calchi Novati. Pixel lensing. General Relativity and Gravitation, 42(9):2101–

2126, dec 2009.

[218] S. Calchi Novati, V. Bozza, F. De Paolis, M. Dominik, G. Ingrosso, Ph Jetzer,

L. Mancini, A. Nucita, G. Scarpetta, M. Sereno, F. Strafella, and A. Gould.

CANDIDATE MICROLENSING EVENTS FROM M31 OBSERVATIONS WITH

THE LOIANO TELESCOPE. The Astrophysical Journal, 695(1):442, March

2009. Publisher: The American Astronomical Society.

[219] B. Paczynski. Gravitational Microlensing at Large Optical Depth. ApJ, 301:503,

February 1986.

[220] Don N. Page. IS BLACK HOLE EVAPORATION PREDICTABLE? Phys. Rev.

Lett., 44:301, 1980.

[221] Don N. Page. Average entropy of a subsystem. Phys. Rev. Lett., 71:1291–1294,

1993.

[222] Don N. Page. Information in black hole radiation. Phys. Rev. Lett., 71:3743–3746,

1993.

[223] Don N. Page. Time Dependence of Hawking Radiation Entropy. JCAP, 09:028,

2013.

155



[224] Geoffrey Penington. Entanglement Wedge Reconstruction and the Information

Paradox. JHEP, 09:002, 2020.

[225] M. T. Penny, E. Kerins, N. Rattenbury, J.-P. Beaulieu, A. C. Robin, S. Mao,

V. Batista, S. Calchi Novati, A. Cassan, P. Fouqué, I. McDonald, J. B. Marquette,
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