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Abstract 

Annual plants possess the ability to perceive a broad spectrum of signals from their external and 

internal environments, enabling them to flexibly regulate flowering timing and optimize this 

crucial reproductive transition in seasonal conditions. However, the mechanisms underlying 

most of the seasonal flowering responses observed in the natural environments remain elusive, 

despite the wealth of molecular knowledge related to flowering-regulating genes and pathways. 

This dissertation presents two case studies related to seasonal flowering responses and 

explores the underlying molecular mechanisms. In the first chapter, I investigate vernalization-

induced flowering synchrony in Arabidopsis thaliana. My findings unveil the contributions of both 

leaf-based and non-leaf-based regulatory mechanisms to flowering synchrony, emphasizing the 

critical role of inter-organ crosstalk. The second chapter explores the molecular mechanisms 

underlying the long-day photoperiodism of annual Mimulus guttatus. Using QTL mapping and 

RNAseq, I reveal distinct molecular mechanisms capable of yielding similar photoperiodic 

responses, highlighting the flexibility of flowering pathways. Lastly, I examine differential 

transcriptomic regulations in response to constant and diel temperature fluctuations using 

Mimulus guttatus. This study is a component of a broader project that focuses on how plants 

interact with the real-world environment, which is crucial for achieving a comprehensive 

understanding of the seasonal flowering responses observed in natural conditions. Overall, 

these studies establish a foundational understanding of seasonal flowering responses and 

highlight the necessity of exploring interplays among pathways and among plant organs to 

obtain comprehensive insights into these phenomena. 
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Overall Introduction

To ensure reproductive success, plants in temperate climates have evolved to align their

reproductive transitions to the appropriate seasonal timing, ensuring optimal conditions for

pollination and subsequent fruit and seed development. This precision is especially crucial for

annual plants, which rely on a single reproductive event for their fitness. To achieve this, plants

utilize a diverse array of cues from both their external and internal environments (Srikanth &

Schmid, 2011; Kinoshita & Richter, 2020). The contemporary advances in our understanding of

the molecular basis of flowering regulation have revealed a plethora of flowering-related genes.

Additionally, multiple pathways governing the regulatory processes of flowering have been

established. This complexity underpins the considerable flexibility of flowering regulatory

mechanisms, allowing plants to respond effectively and promptly to their environment. However,

most of this knowledge in flowering regulation is derived from experiments conducted in

controlled laboratory settings, where there is relatively stringent control over the genetic

background of plant materials and/or environmental conditions. Thus, there remains uncertainty

regarding the practical application of these discoveries to expound upon the observed seasonal

flowering responses in natural conditions, which are characterized by multi-layered fluctuations

and intricate crosstalks among diverse regulatory mechanisms. The subject of this dissertation

is to offer insights into the regulatory mechanisms that underlie seasonal flowering responses

through two case studies with different annual plant species.

In Chapter 1, the focus lies on the molecular mechanisms driving flowering synchrony, a

seasonal phenomenon that has been a subject of long-standing scientific interest (Augspurger,

1983; Primack, 1985; Rathcke & Lacey, 1985; Ims, 1990). The synchronized flowering observed

across individuals within a population implies the existence of mechanisms capable of triggering

flowering simultaneously despite variations in growth times and developmental stages among

these plants (Miryeganeh et al., 2018; Miryeganeh, 2020). However, the underlying molecular
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mechanisms are largely unknown regardless of the wealth of our knowledge related to

flowering. My study focuses on vernalization-induced flowering synchrony in Arabidopsis

thaliana (hereafter, Arabidopsis). I demonstrate distinct transcriptional responses among leaves,

attributed to developmental stage differences at the time of vernalization treatment. This

variation across leaves suggests a potential leaf-based mechanism responsible for

synchronizing flowering following vernalization induction. Furthermore, this research indicates

the pivotal roles played by signals originating from organs beyond leaves in driving flowering

synchrony. However, further studies are required to unravel the intricacies of the interplay

between these inter- and intra-organ regulations. This chapter sheds light on the understanding

of the regulatory mechanisms behind the synchronous flowering phenomena under seasonal

conditions and emphasizes the importance of cross-communication between different organs

and pathways.

Chapter 2 delves into the photoperiodic responses of flowering, considering daylength

serves as a widely-utilized signal for plants to anticipate seasonal changes in their natural

environment (Gendron & Staiger, 2023). Our specific focus centers on exploring the variation in

long-day photoperiodic responses across the annual plant Mimulus guttatus (hereafter,

Mimulus) accessions. These accessions originate from distinct habitats and harbor a wide range

of genetic diversity (Sweigart & Willis, 2003; Twyford & Friedman, 2015; Puzey et al., 2017).

Using QTL mapping and RNAseq, I demonstrate that different Mimulus accessions can achieve

the same photoperiodism phenotypes through different mechanisms. This intriguing finding

highlights the plasticity of flowering pathways, which should be always taken into account for

studying seasonal flowering responses within populations exhibiting substantial genetic

variation. At the end of this chapter, I discuss the improvement of photoperiodism categorization

and propose fine-mapping experiments to further unveil the regulatory mechanisms behind this

inter-species variation in photoperiodic flowering response.
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Lastly, I present findings on the transcriptomic responses of Mimulus to constant and diel

fluctuating temperatures. This pilot experiment is part of a broader project aimed at

understanding how plants interact with the real-world environment. This project is prompted by

increasing evidence indicating that plants can exhibit markedly distinct responses under natural

conditions influenced by fluctuating environmental factors (Matsuzaki et al., 2015; Poorter et al.,

2016; Matsubara, 2018; Chiang et al., 2020; Hashida et al., 2022). A striking revelation by

Burghardt et al. in 2016 (Burghardt et al., 2016) suggests that previous studies may have

exaggerated the impact of the floral repressor FLC on flowering time due to the constant

temperature commonly used in laboratory settings. These discoveries emphasize the necessity

of incorporating a wide array of stimuli to investigate the seasonal flowering responses observed

in the actual environment. In this chapter, I present a time course experiment using an annual

Mimulus accession, SWC. I establish pipelines that provide insights into both global and

detailed differential responses to constant and diel fluctuating temperature conditions. Through

our results, I unveil transcriptional variations between the two temperature profiles, shedding

light on how plants respond to diel fluctuating temperatures. However, I also identify potential

limitations in my analysis pipeline and experimental design. To facilitate future research in this

field, I discuss the encountered challenges and propose potential improvements.

In summary, this dissertation aims to establish the foundation for the investigation of

seasonal flowering responses observed in natural conditions, highlighting the importance of

integrating existing discrete knowledge of flowering regulation and uncovering emerging novel

patterns through a comprehensive approach. Furthermore, I propose future research directions

that focus on investigating the interplay among different pathways and various plant organs.
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Chapter 1 Exploring the Molecular Regulation of Vernalization-induced

Flowering Synchrony in Arabidopsis

1.1 Abstract

Flowering synchrony has been a long-standing observation with potential advantages in plant

reproduction, yet its underlying molecular mechanisms remain largely unknown. To shed light on

this phenomenon, we conducted sequential planting experiments with varying germination times

to study vernalization-induced flowering synchrony in the Arabidopsis Col-FRI accession. A

simplified chamber environment was able to capture the synchronous flowering patterns

previously observed in a fluctuating field environment. To unravel the molecular regulation of

flowering synchrony, we experimentally tested whether flowering synchrony could be related to

the differential activity of flower-promoting FT signals across leaf ranks. FT was efficiently

expressed only in leaves developing within or after vernalization, and this uncharacterized

expression pattern suggests a leaf-based mechanism involved in flowering synchrony. Further

analyses including FLC and five other flowering regulatory genes identified from our RNAseq

data showed differences in the dynamics of this leaf-based regulation among target genes.

However, by manipulating daylength after vernalization, we discovered that signals originating

from sources other than leaves played pivotal roles in synchronizing flowering time, especially in

germination cohorts with prolonged growth before vernalization. To summarize our findings, we

propose three conceptual models of vernalization-induced flowering synchrony and suggestions

for future research in this field.
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1.2 Introduction

Flowering synchrony can offer several advantages to plants, including enhancing the

attractiveness of floral displays to pollinators, satiating predators, and promoting the chance of

outcrossing (Rathcke & Lacey, 1985; Ims, 1990). To synchronize flowering across individuals in

a population, plants utilize various external signals, including temperature, photoperiod, and

precipitation. Vernalization, the response to prolonged exposure to low temperatures during

winter, is used by many temperate plant species to promote synchronized flowering in the

spring. This mechanism is also used in horticulture and agriculture to synchronize flowering

(Suzuki & Metzger, 2001; Tyler et al., 2014; Rubin & Friedman, 2018; Somssich, 2020).

Flowering synchrony is particularly noticeable in natural populations with considerable variation

in germination time, leading to distinct differences in age, size, and physical characteristics

among flowering individuals. The simultaneous flowering of individuals within such populations

indicates the presence of specific mechanisms driving synchronization. Nonetheless, despite its

wide recognition, the underlying molecular mechanisms driving vernalization-induced flowering

synchrony remain poorly elucidated. Due to its ease of handling and well-understood flowering

pathways, Arabidopsis thaliana (hereafter, Arabidopsis) provides opportunities to deepen our

understanding of vernalization-induced flowering synchrony and gain insight into the molecular

pathways involved.

Extensive research on the regulation of flowering time in Arabidopsis has revealed

multiple interacting pathways modulating responses to various factors, including photoperiod,

ambient temperature, vernalization, gibberellin, and aging (Srikanth & Schmid, 2011). These

pathways, although partially distinct, converge on a set of integrator genes including

FLOWERING LOCUS T (FT), TWIN SISTER OF FT (TSF), and SUPPRESSOR OF

OVEREXPRESSION OF CO 1 (SOC1), which activate meristem identity genes such as LEAFY

(LFY) and APETALLA 1 (AP1). The role of FT in signal integration is particularly pivotal, as it
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acts as the main component of florigen and can be transported over long distances throughout

the plant (Putterill & Varkonyi-Gasic, 2016). FT protein synthesized in the leaves is transported

via the phloem vascular system and eventually reaches the shoot apical meristem (SAM) (Lin et

al., 2007; Corbesier et al., 2007; Tamaki et al., 2007; Jaeger & Wigge, 2007; Notaguchi et al.,

2008). This spatial movement facilitates leaf-to-apex communication, which triggers the onset of

flowering and influences the rate of flowering under inductive photoperiods.

Given these features, many mechanistic flowering time models use FT as the link

between molecular pathways and physiological growth, based on the assumption that total FT

levels are positively correlated with the size, number, or biomass of leaves (Salazar et al., 2009;

Satake, 2010; Jaeger et al., 2013; Kinmonth-Schultz et al., 2019). Such "leaf-counting models"

have successfully integrated qualitative gene relationships and quantitative expression

dynamics, and have proven to be powerful tools in breaking down intricate mechanisms and

uncovering hidden details that may not have been revealed through experiments alone (Salazar

et al., 2009; Antoniou-Kourounioti et al., 2021). As vernalization-induced flowering

synchronization is a quantitative characteristic associated with the regulation of flowering time,

these models are particularly suitable for shedding light on this process.

However, a largely untested assumption of leaf-counting models is that total FT

production is proportional to leaf number (or other relevant leaf properties), such that larger

plants with more leaves will always have higher FT levels and consequently flower earlier than

smaller plants with fewer leaves. Recent findings by Kinmouth-Shultz et al. (Kinmonth-Schultz et

al., 2019) demonstrated that this assumption is an oversimplification, as FT expression actually

varies with the developmental stage of the leaves. Additionally, based on our understanding of

the regulation of FT by the vernalization pathway, we hypothesize that FT production may differ

considerably among leaves in ways contrary to typical modeling assumptions.

In the vernalization pathway, FT is regulated by several MADS-box proteins. Prolonged

cold treatment leads to epigenetic reprogramming of the chromatin surrounding those key
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MADS-box genes, either repressing or activating their expression (Alexandre & Hennig, 2008;

Kim & Sung, 2013). The details of this process are best understood for the floral repressor

FLOWERING LOCUS C (FLC) (Dennis & Peacock, 2007; Xu & Chong, 2018; Kim, 2020). In

Arabidopsis accessions with a strong vernalization requirement, FLC expression is activated by

the FRIGIDA (FRI) complex and remains high before vernalization (Johanson et al., 2000; Choi

et al., 2011). High levels of FLC lead to delayed flowering by repressing FT, SOC1, and

FLOWERING LOCUS D (Michaels et al., 2005; Helliwell et al., 2006; Sheldon et al., 2006;

Searle et al., 2006). After vernalization, FLC is repressed by the Polycomb repressive complex 2

(PRC2) (De Lucia et al., 2008) in a process that involves the cold-induced induction of the

plant-homeodomain (PHD) finger protein VERNALIZATION INSENSITIVE3 (VIN3) and histone

modifications (primarily trimethylation of histone 3 on lysine 27, H3K27me3) (Sung & Amasino,

2004; Wood et al., 2006). Other MADS-box proteins, such as FLOWERING LOCUS M

(FLM)/MADS AFFECTING FLOWERING1 (MAF1) and MAF2-MAF5, also play negative roles in

flowering and are downregulated after vernalization (Kim & Sung, 2013), whereas

AGAMOUS-LIKE 19 (AGL19) is a floral activator that is induced after exposure to low

temperatures (Schönrock et al., 2006; Kang et al., 2015).

In one of the few molecular studies investigating the effects of the leaf developmental

stage during vernalization treatment in Arabidopsis, Finnegan and Dennis (Finnegan & Dennis,

2007) observed that FLC was incompletely repressed in leaves that had matured prior to

vernalization relative to leaves that developed after vernalization. In particular, they observed a

depletion of H3K27me3 epigenetic marks, which are responsible for maintaining the repression

of FLC after vernalization, in leaves that developed before vernalization. These findings suggest

that only leaves developing after (or perhaps during) the vernalization treatment “remember” the

cold stimulus. We term this phenomenon of vernalization memory differing among leaves with

different developmental histories "leaf-specific vernalization response”. If the leaf-specific

vernalization responses of FLC result in leaf-specific regulation of downstream FT, this will have
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important implications for how we understand and model post-vernalization flowering dynamics

such as flowering synchronization.

In addition to the leaf-based external signal sensing discussed earlier, recent studies

have started to unveil the important roles of aging pathways in regulating flowering in plants with

prolonged vegetative growth. The aging pathway is comprised of two microRNA-related

modules coordinating plant development in a timely manner: the miR156-SPL and miR172-AP2

modules, which act as count-down and count-up timers for flowering, respectively (Huijser &

Schmid, 2011; Teotia & Tang, 2015; Hyun et al., 2017). During the juvenile stage, miR156 is

highly expressed but miR172 is low. As plants progress into the adult and reproductive stages,

miR156 expression decreases, while miR172 expression increases. These expression features

of miR156 and miR172 enable plants to gradually gain flowering competence during growth

since miR156 represses the expression of the SPL family, positive regulators of flowering

(Huijser & Schmid, 2011; He et al., 2018), while miR172 represses the AP2 family, negative

regulators of flowering (Chen, 2004). The aging pathway can influence the integrator genes in

both the leaf and SAM, so their crosstalk is expected. For example, a recent study

demonstrated that SPL15 in the SAM functions in parallel with FT in leaves to induce flowering,

but with different effects at different developmental stages, thus underscoring the dynamic roles

of different plant organs during growth (Hyun et al., 2019). However, how plants balance the

signals from these two locations is still poorly understood.

In this study, we aimed to link the molecular pathways of vernalization and flowering

induction to the ecologically important trait of synchronous flowering, with a specific focus on the

potential roles of leaf-specific vernalization responses on flowering synchrony. We performed a

series of analyses to measure flowering synchrony across Arabidopsis germination cohorts in

both field and controlled chamber environments. Subsequently, we tested the leaf-specific

vernalization response hypothesis by studying the expression patterns of the FT, FLC, and

other vernalization-pathway genes across leaf ranks in different germination cohorts to test if

9



leaves of different developmental stages exhibited different vernalization responses. Finally, we

evaluated the importance of variation in FT production relative to other flowering induction

pathways in governing the synchronization of flowering induced by vernalization. Our study

provides new insights into the molecular basis of vernalization-induced flowering synchrony.
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1.3 Results

1.3.1. Flowering synchrony is observed in Col-FRI under natural conditions

Previous overwinter experiments demonstrated Arabidopsis accessions with

vernalization requirements exhibited flowering synchrony in both natural fields and

greenhouses, while those without vernalization requirements displayed flowering de-synchrony

under the same conditions (Miryeganeh et al., 2018; Miryeganeh, 2020). Here, we investigated

whether the vernalization-responsive genotype Col-FRI (Col with functional FRI introgressed

from SF-2 (Lee & Amasino, 1995)) also exhibited flowering synchrony after vernalization.

Although not included in Miryeganeh et al.'s studies, Col-FRI is widely used in vernalization

research due to its Col background, which is a commonly used wild-type accession that can

flower promptly without vernalization. We re-analyzed published data on spring flowering times

of Col-FRI planted in seven sequential cohorts from September to November 2007 in Cologne,

Germany (Wilczek et al., 2009). Additionally, we included Col data from the same experiment as

a control. To quantify flowering synchrony, we employed the synchronization index (SI)

described by Miryeganeh et al. (Miryeganeh et al., 2018; Miryeganeh, 2020). The SI is defined

as the ratio of the variance of germination time to the variance of the flowering time on the log2

scale. A positive SI value indicates flowering synchronization, whereas a negative value

indicates flowering de-synchronization.

As shown in Fig. 1.1A, Col exhibited a strong de-synchronization of flowering times in

relation to the variation in germination times, with an SI of -3.61. This finding is consistent with

the results using Col in the previous article (Miryeganeh, 2020). In contrast, Col-FRI displayed

an SI of 1.34, indicating that the variation in flowering times was approximately 40% of the

variation in germination time and demonstrated flowering synchrony for this

vernalization-responsive genotype (Fig. 1.1B). However, we noticed that the synchronization of

flowering was still incomplete, even in Col-FRI. In plants exhibiting complete synchronization,
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we would expect flowering to occur at the same time on average, regardless of their germination

time. However, we detected differences in the flowering dates between germination cohorts, as

measured by photothermal time accumulated from Jan 1st (F(6,44) = 14.649 and p =

4.153e-09). Specifically, we found that the 1st to 4th cohorts of Col-FRI showed significantly

earlier flowering dates compared to the 6th and 7th cohorts. These differences among cohorts

implied the presence of factors counteracting the mechanisms promoting synchronization,

preventing complete synchronization.

Fig. 1.1: The distribution of flowering time across germination cohorts of Col (A) and Col-FRI (B) in the

field data published by Wilczek et al, 2009. The plants were grown sequentially from September to

November 2007 in Cologne, Germany. Different cohorts were labeled by their germination date on the

y-axis. The flowering and germination times are presented on the photothermal time scale, with

photothermal time calculated from Jan 1st (red dashed line). Error bars represent standard deviations.

Samples without error bars do not have biological replicates in the dataset. Means with different letters

are significantly different based on the Tukey test at the 5% significance level.
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1.3.2. Controlled chamber experiments capture the trends of flowering synchrony observed in

Col-FRI under natural conditions

To investigate the specific impacts of vernalization and photoperiod on

vernalization-induced flowering synchrony, separate from the complex array of environmental

factors encountered in field conditions, we conducted a series of sequential planting

experiments in growth chambers using Col-FRI (see Fig. 1.2A). We grew plants in short days

(SD, 8/16 h day/night cycle) for 36, 22, 7, or 1 day before an 8-week vernalization treatment

(G36, G22, G7, G1, respectively, with “G” representing the “Germination cohort” and the number

representing the number of days). After vernalization, plants were moved to the long day (LD,

16/8 h day/night cycle) condition until flowering. Non-vernalization plants were included as a

control group (NV).

The results of the day-to-flowering after vernalization are depicted in Fig. 1.2B, with an

SI of 5.99, indicating substantial synchronization, and the flowering time variation was

approximately 2% of the germination time variation. Consistent with the major trend of flowering

times observed in the natural field for Col-FRI, pairwise comparisons among germination

cohorts revealed significant differences in flowering times, demonstrating that synchronization

was incomplete. Overall, the results from our controlled chamber environment mirrored the

major patterns observed in the natural fields, suggesting that we can investigate this

phenomenon in a simplified experimental setting. Furthermore, the absence of gradual changes

in photoperiods in chamber experiments ruled out the possibility that the synchronicity observed

in the field experiment was dependent on increasing spring daylength.
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Fig. 1.2: Col-FRI demonstrated flowering synchrony in chamber experiments. (A) Schematic figure of the

sequential planting experiments in growth chambers using Col-FRI. (B) The distribution of flowering time

across vernalization treatments (G1, G7, G22, and G36). The flowering and germination times are

calculated from the end of the vernalization (red dashed line). Error bars represent standard deviations.

Means with different letters are significantly different based on the Tukey test at the 5% significance level.

Cyan, purple, green, and salmon represent the growth before vernalization (pre-vern), within vernalization

(with-vern), after vernalization (post-vern), and without vernalization (no-vern), respectively.

1.3.3. FT expression patterns indicate leaf-specific vernalization responses across leaf ranks

Several quantitative models of flowering time regulation were constructed based on the

assumption that the number of leaves (or total leaf area) producing FT is a key determinant of

flowering time (Salazar et al., 2009; Satake, 2010; Jaeger et al., 2013; Kinmonth-Schultz et al.,

2019). The premise underlying this assumption is that all leaves (and leaf areas) produce FT at

an equal rate. However, the observations of Finnegan and Dennis (Finnegan & Dennis, 2007)

that FLC was not fully repressed in older leaves suggested that FT might not be highly

expressed in leaves that developed before vernalization, and therefore not contribute equally to

the total FT pool in a plant. To test whether leaves varied in FT expression after vernalization,

we investigated FT expression across leaf ranks in Col-FRI plants exposed to the G7 and G36
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treatments, as described in the preceding section. We collected every fifth leaf, starting from the

youngest fully extended rosette leaf and progressing basipetally until leaves began to senesce,

and measured the FT expression levels in each leaf using qPCR.

The G36 treatment resulted in plants with approximately 25, 50, and 70 macroscopically

visible rosette leaves before vernalization, after vernalization, and at flowering, respectively. The

expression of FT across leaves followed a sigmoidal pattern, with low expression levels in

leaves with ranks less than 45 and high expressions in later-produced leaves (Fig. 1.3). In

contrast, plants in the G7 treatment had only cotyledons (zero true leaves), 10, and 20

macroscopically visible rosette leaves before vernalization, after vernalization, and at flowering,

respectively. In these plants, FT expression was low in the fifth leaf but increased sharply by the

20th leaf (see Fig. 1.3). The low expression of FT in lower leaf ranks of the G7 treatment was

expected because those were juvenile leaves known to have lower FT expression (Debernardi

et al., 2022). Interestingly, significant differences in FT levels were observed even among the

leaves developed after vernalization. For instance, there were differences in the maximum FT

levels between the G7 and G36 treatments, and the 20th true leaves of the G7 treatment

exhibited higher FT levels compared to the 70th true leaves of the G36 treatment. Moreover,

even within the G7 treatment, the expression of FT was higher in the 20th true leaves compared

to the 15th true leaves. Nevertheless, our results show a remarkable pattern that only leaves

developing within or after vernalization can effectively express FT, suggesting FT also exhibited

leaf-specific vernalization responses. This pattern suggests a possible role for leaf-specific

vernalization responses in flowering synchrony, with only ~20 leaves in both treatments
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contributing the majority of the FT pool, irrespective of the total number of leaves.

Fig. 1.3: FT expressions across leaf ranks indicate leaf-specific vernalization responses. The left panel

represents the expression curve of the G7 treatment, and the right panel represents the expression curve

of the G36 treatment. Each dot represents a biological replicate of leaves collected from different plants.

Dots are colored based on the best inference of when each leaf developed, with respect to the

vernalization treatment: before (pre-vern), during (with-vern), or after (post-vern) the plants were

vernalized, respectively. The grey area around the curve indicates the 95% confidence interval.

1.3.4. The differential expression patterns between FT and FLC indicate a complex regulatory

mechanism of leaf-specific vernalization responses

Although the above experiments provided evidence for systematic differences in FT

expression as a function of the developmental environment of each individual leaf, we could not

directly conclude these differences were caused by vernalization because vernalization timing

was confounded with daylength across treatments: leaves that developed after vernalization

also developed under longer daylength than those developed before vernalization. For example,

in the G7 treatment, the 15th leaf developed after vernalization in LD, while the corresponding

leaf in the G36 treatment developed before vernalization in SD. Also, as mentioned above, the

FT expression levels varied across leaf ranks in the G7 treatment due to differences in leaf
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development stages (i.e., juvenile vs. adult leaves) despite all developing after vernalization. To

address these potential confounding effects, we ran a follow-up experiment to isolate the effects

of vernalization from daylength and expression variations across leaf ranks. We kept the same

germination-time-variation design and grew plants in warm SDs for 36, 22, 8, or 1 day before

the vernalization treatment (G36, G22, G8, G1, respectively). However, instead of transferring

directly to LD after vernalization, we moved the plants back to warm SD conditions immediately

after vernalization and only exposed them to inductive LD on the day of sample harvest.

Previous studies have shown that a single LD after SD growing is sufficient to induce maximum

transcriptional responses of FT (Yanovsky & Kay, 2002; Krzymuski et al., 2015). Thus, all plant

leaves developed exclusively under SD conditions, with the only difference among treatments

being the timing of the vernalization treatment during development. We collected samples at

three chronological ages, measured as days at 20°C after planting: 22 d, 36 d, and 43 d or 50 d

(WSD22, WSD36, WSD43/50, respectively, with “WSD” representing the “Warm Short Day” and

the number representing the number of days). At each time point, we harvested three sets of

leaves: early-emerging leaves (ranks 3-7), mid-development leaves (ranks 14-17), and

late-emerging leaves (ranks 30+), if those leaves were present on the plants. We divided

similarly staged leaves into three groups: leaves that developed before (pre-vern), during

(with-vern), or after (post-vern) vernalization. We also included non-vernalized plants as a

negative control, which were sampled one week earlier at the last harvest because they were

significantly larger in size and were beginning to flower (see Fig. 1.4 and Table 1.1 for the

summary of the experimental design). We quantified FT and FLC expression by qPCR.
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Fig. 1.4: Schematic figure of the sequential planting experiments in growth chambers using Col-FRI. We

controlled the confounding daylength effects by growing plants in SD before, within, and after

vernalization. The plants were exposed to LD only on the day of sampling. Cyan, purple, green, and

salmon represent the growth before vernalization (pre-vern), within vernalization (with-vern), after

vernalization (post-vern), and without vernalization (no-vern), respectively. Leaves are colored based on

when they are presumed to have developed in the shoot apical meristem.
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Table 1.1: Summary of sequential planting experiments depicted in Fig. 1.4. Rows represent vernalization

treatments, and columns represent sampling time points. The leaf developmental stage at the time when

a plant experienced vernalization is indicated in parentheses and color-coded corresponding to Fig. 1.4.

Fig. 1.5 shows the expression levels of FLC (Fig. 1.5A) and FT (Fig 1.5B) across

different vernalization treatments (G1, G8, G22, G36, and NV) for three sets of leaf ranks (3-7,

14-17, and 30+) at three different sampling time points (WSD22, WSD36, and WSD43/50). To

account for any ontogenetic changes in gene expression or vernalization sensitivity related to

leaf rank, we compared FLC or FT expression only among leaves of the same leaf rank

collected at the same sampling time point. Within such comparably-staged leaves, expression

differences can clearly be attributed to the leaf developmental stage at the time when a plant

experienced vernalization (pre-vern, with-vern, post-vern, or no-vern). ANOVA for testing

differences in FLC or FT expression between vernalization treatments revealed significant
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differences (p < 0.05) within each set of comparable leaves (i.e. each panel in Fig. 1.5) (Table

S1.1 for the ANOVA results), indicating the impact of vernalization on the expression of these

two genes.

We observed consistent patterns across leaf ranks and sample harvesting time points for

each gene. FLC expression was highest in leaves on un-vernalized plants (no-vern leaves),

followed by the leaves developing before, within, and after vernalization, consistent with the

observations of Finnegan and Dennis. On the other hand, FT expression was similar between

the leaves developing either after or during vernalization (post-vern and with-vern leaves), but

was much higher in both these sets of leaves than in the leaves developing before vernalization

or in comparable leaves from non-vernalized plants (pre-vern and non-vern leaves).

Surprisingly, although both genes exhibited leaf-specific vernalization responses, FT expression

patterns were not directly opposite to FLC expression patterns: FLC expression markedly

decreased even in leaves developing before vernalization relative to leaves from

non-vernalization plants (pre-vern vs. non-vern leaves), albeit this decrease was less

pronounced compared to the decrease observed in leaves that developed after or during

vernalization (post-vern/with-vern vs. no-vern leaves). In contrast, FT expression remained

barely detectable in leaves that developed before vernalization, similar to leaves from plants

that were not vernalized (pre-vern vs. non-vern leaves), but expression levels were much

higher in all leaves that developed during or after vernalization (with-vern and post-vern leaves).

Therefore, the leaf developmental stage-dependent vernalization responses observed by

Finnegan and Dennis for FLC’s expression appeared to be even more pronounced in FT.
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Fig. 1.5: Expressions of FLC (A) and FT (B) show leaf-specific vernalization responses. Each plot grid's

columns represent sampling time points, while the rows represent leaf ranks. Within each panel, gene

expression values are grouped based on the vernalization treatments (G1, G8, G22, G36, and NV) and

color-coded according to the leaf's vernalization status (pre-vern, with-vern, post-vern, and no-vern), as

referenced in Fig. 1.4 and Table 1.1.

To quantify how a leaf's vernalization memory is affected by its developmental stage

when the plant was vernalized, we compared vernalization responses in leaves that developed

before and after the plant underwent vernalization. In each case, we defined the “vernalization

effect” as the difference in expression between leaves of plants that had been vernalized

(pre-vern or post-vern leaves) to corresponding leaves of plants that had not been vernalized

(no-vern leaves). We measured the ratio of these two effects to quantify the effect of the leaf

developmental stage on vernalization memory:
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The effect of the leaf developmental stage on vernalization memory

= | Pre-vern - No-vern | / | Post-vern - No-vern | (Equation 1)

A smaller value of this ratio indicates a reduced vernalization response in leaves

developing before vernalization relative to leaves developing after vernalization. For example, a

ratio close to zero indicates that expression levels in the leaves developing before vernalization

are similar to those in the leaves on non-vernalized plants. This also suggests a larger effect of

the leaf developmental stage on vernalization memory because the vernalization effects are

limited to the leaves developing after vernalization. As shown in Fig. 1.6, the vernalization effect

ratio was much smaller for FT than FLC, indicating a substantial difference in leaf-specific

vernalization responses between these two genes.

Fig1.6: The ratio of vernalization effects of leaves developed before vernalization (pre-vern) to the

vernalization effects of leaves developed after vernalization (post-vern). Each vernalization effect is

measured relative to corresponding leaves from plants without vernalization treatment (no-vern). A

smaller ratio indicates a relatively smaller vernalization response in pre-vern leaves, and therefore a more

dramatic effect of the leaf developmental stage on vernalization memory.
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1.3.5. Differential gene expression associated with vernalization memory in leaves is largely

restricted to seven key members of the vernalization pathway

Since the leaf developmental-stage effect on vernalization memory was stronger for the

downstream integrator FT than the upstream regulator FLC, we asked whether other FT

regulators are involved in shaping the pattern of FT’s leaf-specific vernalization responses. To

achieve this, we used RNA-seq to identify genes exhibiting vernalization memory in Col-FRI.

Specifically, we compared the gene expression levels between non-vernalized leaves and

vernalized leaves that underwent six weeks of vernalization before returning to standard growth

conditions for 14 and 18 days (n=3 per time point). To ensure accurate comparisons, we grew

and sampled non-vernalized plants (n=3 per time point) simultaneously with vernalized plants of

the same size and stage that had completed the cold treatment. We evaluated 19,319 genes for

differential expression between vernalized and non-vernalized leaves and identified 19 genes

with a significant response to vernalization at a false discovery rate (FDR) threshold of 0.05, and

seven at an FDR threshold of 0.001 (Table S1.3). This latter list of genes was composed of

well-known components of the vernalization response pathway: FLM, SOC1, AGL19, TSF,

MAF3, FT, and FLC (ordered by increasing p-value). Consequently, we chose to focus our study

on these seven genes to further characterize the transcription dynamics of the leaf-specific

vernalization responses.

1.3.6. Vernalization-pathway genes exhibit diverse patterns of leaf-specific vernalization

responses

We conducted detailed analyses of these seven genes using the same RNA samples

and analysis procedures described in Section 1.3.4. For brevity, we only present the expression

patterns of these genes in the middle leaf (ranks 14-17) at the final time point (WSD43/50) in
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Fig. 1.7. Results for the other two time points and two sets of leaves are available in

Supplementary Fig. S1.1-S1.5.

We observed strong (p < 0.05) evidence of developmental-stage-dependent

vernalization responses in all genes in most leaf sets (Table S1.1). However, the vernalization

responses varied among genes, resulting in different expression patterns. FLM and MAF3,

which are two MADS-box repressors of flowering time, exhibited similar expression patterns.

Their expression levels were high in leaves without vernalization, as well as in leaves that

developed before and during vernalization (no-vern, pre-vern, and with-vern leaves). In contrast,

their expression was relatively lower in leaves developing after vernalization (post-vern leaves).

Thus, vernalization memory was restricted to leaves that fully developed after vernalization for

these two genes. On the other hand, the MADS-box gene AGL19, which accelerates flowering

time, displayed different leaf-specific vernalization memory patterns. AGL19 showed higher

expression levels in leaves developing after and within vernalization (post-vern and with-vern

leaves), compared to the leaves developing before vernalization or leaves on non-vernalized

plants (pre-vern and no-vern leaves). Among the downstream integrator genes, TSF exhibited

expression patterns similar to FT, albeit with generally lower expression levels, consistent with

previous observations (Michaels et al., 2005; Jang et al., 2009). In contrast, SOC1 expression

demonstrated an approximately inverse pattern relative to FLC, with the lowest levels observed

in leaves without vernalization, followed by the leaves developed before, within, and highest

after vernalization.

As in Section 1.3.4, we quantified the effect of the leaf developmental stage on

vernalization memory by comparing the vernalization effects of leaves developing before

vernalization to the vernalization effects of leaves developing after vernalization (Equation 1)

across all the combinations of leaf ranks and sampling time points (Fig. 1.6). The ratio of these

two vernalization effects was generally low for the genes of interest, indicating that the
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expressions of these genes in the leaves developing before vernalization were similar to those

observed in the leaves without vernalization. However, SOC1 stood out as an exception,

showing a higher ratio similar to FLC. Taken together, our findings illustrate the diverse patterns

of leaf-specific vernalization responses for the seven target genes.

Fig. 1.7: The expression dynamics of seven candidate genes in the middle leaf (ranks 14-17) at the final

time point (WSD43/50). Each panel represents a single gene. Within each panel, gene expressions are

grouped based on the vernalization treatments (G1, G8, G22, G36, and NV) and color-coded according to

the leaf's vernalization status (no-vern, post-vern, pre-vern, and with-vern), as referenced in Fig. 1.4 and

Table 1.1.

1.3.7. AGL19 alone cannot explain the expression pattern differences between FLC and FT

Among candidate regulators of FT, AGL19’s expression paralleled FT’s leaf-specific

vernalization response most closely. Specifically, for FT, TSF, and AGL19, expression levels in

the leaves developing within and after vernalization were similar, and dramatically different from

those in the leaves developing before vernalization or without vernalization (i.e., with-vern

similar to post-vern leaves). In contrast, for FLM and MAF3, the leaves developing within

vernalization had expressions similar to those developing before and without vernalization (i.e.,
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with-vern leaves similar to pre-vern and no-vern leaves). FLC expression patterns were different

as well, as discussed above. AGL19 is a member of the MADS-box protein family and is an

activator of FT. Therefore, we hypothesized that the leaf-specific responses of FT may be

dependent on AGL19 in addition to its well-known dependence on FLC.

To test this hypothesis, we generated an agl19 mutant in the Col-FRI background. We

crossed Col-FRI with the T-DNA insertion mutant agl19-1 in the Col background to create the

agl19-1/Col-FRI genotype. This new genotype has high FLC and very low (but non-zero) AGL19

levels (Fig. 1.8C-D). We predicted that agl19-1/Col-FRI plants would exhibit extremely late

flowering compared to Col-FRI, particularly in the absence of vernalization. We also predicted

that this genotype would flower later than Col-FRI after vernalization. However, we did not

observe the expected difference in flowering time between these two genotypes (Fig. 1.8A-B) or

any significant alteration in FT levels between the agl19-1 mutants and the corresponding wild

types (Fig. 1.8E-F). One possible explanation for the lack of the expected phenotype could be

the low but still existing expression of the AGL19 gene. Nevertheless, considering that the

agl19-1 mutants exhibited only approximately 1/15 of the AGL19 expression levels compared to

their corresponding wild types, which was much lower than the fluctuations observed across leaf

ranks in the mentioned experiment (all less than a four-fold difference between vernalized and

non-vernalized leaves, for example, expression of AGL19 in Fig. 1.7), our results suggest that

AGL19 does not play a critical role in FT expression or the regulation of flowering time in our

conditions. Taken together, AGL19 alone is unlikely to reconcile the discrepancy between the FT

and FLC patterns observed previously.
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Fig. 1.8: The agl19 mutants did not show obvious differences in flowering time (A-B) and FT expressions

(E-F) compared to the corresponding wild types. We tested the agl19 mutants with three vernalization

treatments, G1, G36, and NV. Total leaf number (A) and days to flower (B) were recorded to estimate

flowering time. Expressions of AGL19 (C-D) and FT (E-F) were analyzed by qPCR in two leaf ranks

(14-17 and 30+). The order of genotypes for each treatment in each panel is as follows: Col (green),

agl19-1 (orange), Col-FRI (dark purple), and Col-FRI/agl19-1 (pink).
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1.3.8. Other tissues or mechanisms may be involved in the vernalization-induced flowering

synchrony

While our focus was on the expression dynamics in leaves, a recent article revealed that

parallel regulatory networks expressed primarily in the shoot apical meristem are important in

flowering regulation, particularly in plants with prolonged vegetative growth (Hyun et al., 2019).

To assess the relative importance of leaf-based vernalization responses, we reduced the total

FT expression of leaves by shortening the post-vernalization photoperiod. Specifically, we

repeated the flowering time analysis described in Section 1.3.3 but moved the plants to a 12/12

h medium photoperiod (MD) after vernalization instead of the usual LD condition (Fig. 1.2A).

Previous studies have shown that FT has similar transcript patterns in MD and LD, with both

exhibiting a peak at dusk. However, in MD, FT exhibits a much smaller peak intensity compared

to LD conditions (Song et al., 2012; Krzymuski et al., 2015). Thus, we expected to observe a

general delay in flowering across all treatments under MD conditions compared to those under

LD if the total FT expression produced by all leaves was a major determinant of flowering time

regulation.

We first examined whether FT responses to the MD conditions varied across leaf ranks of

the G36 treatment. We found a sigmoidal shape similar to that in LD, but the extent of the

induction under MD was much lower, with only 1/5 of the expression compared to LD (Fig.

1.9A). If the total FT production integrated across leaves was the primary determinant of

flowering time, around five times as many FT-producing leaves would need to develop to induce

flowering compared to the LD condition, requiring considerably more developmental time.

However, we observed only a slight delay in flowering time in each germination cohort, from 1.3

days (~10% delay in time post-vernalization) for the earliest germinating G36 cohort, to 4.3 days

(~33% delay in time) for the latest germinating G1 cohort. Differences in total leaf number
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showed similar trends. These results suggest that the leaf-based pathways are likely not the

dominant determinant of flowering synchronization under these conditions.

Fig. 1.9: FT levels responded to daylength differences (A) but the flowering time (B and C) did not show

as large a change relative to FT expression. (A) FT expression across leaf ranks in LD (light orange

curve) and MD (violet curve). The zoom-in of the FT curve in MD is shown in the subplot in the upper left.

The grey area around the curve indicates the 95% confidence interval. (B) and (C) show the comparisons

of days to flower and total leaf number between plants moved to LD (light orange) or MD (violet) after

vernalization treatments.
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1.4 Discussion

Flowering synchrony is a widely recognized phenomenon in natural conditions (Primack,

1985; Rathcke & Lacey, 1985; Ims, 1990). It refers to a reduced variation in the day of flowering

among individuals within a population in comparison to the levels of variation observed in other

developmental stage transitions, such as germination time. However, few studies have

investigated the underlying molecular mechanisms. Studies on flowering at the molecular level

typically compare flowering times among different genotypes or treatments without incorporating

perturbations in germination time, and thus without differences in developmental stages at which

environmental cues are received. For example, most studies of the vernalization pathway

compared genotypes under conditions that vary only in the duration or intensity of vernalization.

However, to study how vernalization contributes to flowering synchrony, it is crucial to vary

germination time, so that plants would be asynchronous if not for active synchronizing

mechanisms (Miryeganeh et al., 2018; Miryeganeh, 2020). Consequently, despite the wealth of

molecular knowledge on flowering, the challenge of bridging the gap between our understanding

and the observed phenomenon of flowering synchrony remains unresolved.

To address this question, we conducted a series of experiments focusing on flowering

synchrony across Arabidopsis germination cohorts in both field and controlled chamber

environments. We employed Miryeganeh et al.'s synchrony index (SI), which takes into account

both the variation in germination time and flowering time, providing a quantitative measure of

synchrony. Traditionally, flowering synchrony is considered a trait primarily associated with

flowering regulation. Previous studies commonly measured flowering synchrony in two ways: (1)

quantifying the variability in flowering time within a population using statistical measures such as

variance, standard deviation, or coefficient of variation, or (2) assessing the overlap in flowering

time among different populations or individuals under investigation (Augspurger, 1983).

However, we believe that Miryeganeh et al.'s SI provides a more robust approach to
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understanding the underlying mechanisms of flowering synchrony. This choice was motivated by

the recognition of the cascading effect of germination timing on flowering (Donohue et al., 2010,

2015; Chiang et al., 2013; Postma & Ågren, 2016) and the significant influence of internal

flowering signals, such as the aging pathway, which are highly related to the timing of

germination.

To the best of our knowledge, our article represents the first attempt to establish a

connection between the understanding of molecular flowering pathways and the phenomenon of

flowering synchrony. We provide insights into molecular mechanisms underlying the

synchronization of flowering after vernalization in Arabidopsis thaliana. While the benefits of

synchrony are most widely appreciated for outcrossing species and Arabidopsis is typically

considered a selfing species, Arabidopsis does have an estimated outcrossing rate of 1-3% and

as high as 20% in some populations (Abbott & Gomes, 1989; Shimizu & Purugganan, 2005;

Platt et al., 2010; Bomblies et al., 2010). In addition, flowering synchrony could still provide

fitness benefits through predator satiation in Arabidopsis, although further studies are required

to test this hypothesis. Finally, since most flowering pathways are conserved across the

Brassicaceae family, especially the vernalization pathway (Leijten et al., 2018), the insights

gained from this study can be extended to other outcrossing species, such as Brassica napus,

Brassica rapa, and Brassica oleracea. Therefore, our study lays the groundwork for future

research on flowering synchrony.

1.4.1. Transcriptional responses to vernalization are leaf-specific and indicate complexity in

vernalization-dependent flowering regulation

We conducted an extended analysis of the leaf-specific vernalization responses first

observed for FLC by Finnegan and Dennis (Finnegan & Dennis, 2007), testing this observation

across six additional genes (FT, FLM, MAF3, AGL19, TSF, and SOC1) and sampling leaves at
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different time points and leaf ranks. All seven genes showed some degree of leaf-specific

vernalization responses, but the dynamics differed among genes. To facilitate further discussion

of the potential factors shaping the patterns of leaf-specific vernalization responses of these

genes, we roughly divided them into two groups.

First, extensive studies have been conducted on the molecular memory derived from

epigenetic regulation of the MADS-box genes: FLC, FLM, MAD3, and AGL19. The VIN3 protein

family plays a coordinated role in repressing FLC, FLM, and MAF3 through the deposition of

repressive epigenetic marks on these genes (Sung et al., 2006; Sheldon et al., 2009; Kim &

Sung, 2013, 2017). VIN3 is also involved in the activation of AGL19 following vernalization

(Schönrock et al., 2006). Surprisingly, we observed a striking contrast in vernalization memory

between FLC and the other MADS-box genes (Fig. 1.7, pre-vern vs no-vern leaves). While FLC

responded to vernalization in all leaves (although with a lower dynamic range in leaves that

developed before vernalization), the other MADS-box genes only responded to vernalization in

newly developed leaves (i.e., post- and with-vern leaves). The cause of the different

vernalization memory patterns among these genes is unclear. One potential explanation is

variation in target specificities of the chromatin remodeling factors, such as members of the

VIN3 protein family, along with the differences in their timing of function during the vernalization

process. The distinct patterns of PRC2-mediated H3K27me3 accumulation across the loci of

these MADS-box genes during vernalization may also contribute to the observed differences

(Kim & Sung, 2013). Additionally, aside from memory formation, another possibility is related to

the maintenance of memory and/or de-vernalization. Finnegan and Dennis (Finnegan & Dennis,

2007) demonstrated that the leaf-specific memory pattern of FLC was associated with a failure

to transition into the repression maintenance phase due to the lack of DNA replication in those

leaves. However, the underlying mechanism of memory maintenance and/or de-vernalization

remains largely unknown for other MADS-domain genes.
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The formation of leaf-specific memory dynamics for the integrator genes, FT, TSF, and

SOC1, can be influenced by two distinct processes: (1) leaf-specific memory of upstream genes

(such as FLC, FLM, etc), resulting in variations in the activities of these integrator genes and (2)

the leaf-specific epigenetic regulation of the integrator genes themselves. While these integrator

genes are regulated by MADS-domain genes (Gu et al., 2013; Kang et al., 2015), the interaction

effects of these MADS-box genes on their downstream targets remain unknown. As a case

study, we investigated the involvement of AGL19 in shaping the leaf-specific memory patterns of

FT, as the leaf-specific expression patterns of FT and AGL19 were the most similar. However,

the agl19 mutation in a genetic background with high FLC expression did not decrease FT

levels or delay flowering time. Since expression patterns of FLC and FT were not highly

correlated, these results together suggest that FLC and AGL19 cannot fully explain the

expression dynamics of FT. In addition to integrating the signals from the upstream

MADS-domain genes, FT and SOC1 are directly regulated through chromatin-mediated

repression and activation (López-González et al., 2014; Bratzel & Turck, 2015; Liu et al., 2023).

Therefore, similar molecular memory mechanisms for FLC or other MADS-box genes may also

play roles in leaf-specific memory for these integrator genes.

1.4.2. Conceptual models for the regulation of vernalization-based flowering synchrony

We constructed three conceptual models (Fig. 1.10) to explore the potential role of

leaf-specific vernalization responses in synchronizing flowering in Arabidopsis. First, Model 1 is

inspired by the idea that flowering is triggered by the total FT produced across all leaves of a

plant, so a specific number of leaves is required to trigger flowering as a function of photoperiod

(since FT production per leaf increases in longer photoperiods). The principles underlying Model

1 have also been incorporated into previous quantitative models (Salazar et al., 2009; Satake,

2010; Jaeger et al., 2013; Kinmonth-Schultz et al., 2019). As depicted in Fig. 1.10, Model 1,

applied to cohorts of plants that germinated at different times pre-winter, this conceptual model
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would predict largely desynchronized flowering in the spring. Early-germinating cohorts reaching

the leaf number threshold would flower immediately after the conclusion of winter, but later

germinating cohorts would require the development of additional leaves to meet the total FT

threshold. Under this model, we would only see synchronization among the earliest germinating

cohorts: those that produced a large number of leaves before winter but could not flower at that

point because of a lack of vernalization.

However, it is evident from our presented experiments that the assumption made by

Model 1, which suggests an equal FT production rate in all leaves, does not hold true. We

observed that approximately equal numbers of leaves produced FT in early and late germinating

plants at the time of flowering (around 20 leaves in our case, Fig. 1.3) and that only leaves

developing during or after vernalization produced high levels of FT. As a result, regardless of

the germination timing, if a fixed total FT production was required for flowering, flowering would

be triggered at approximately the same time across germination cohorts since earlier

developing leaves contribute little to the total FT pool. Under this model, only very

late-developing plants - those that do not start developing leaves until after winter - would

exhibit asynchrony in flowering (Fig. 1.10, Model 2).

While promising, our experimental results also revealed several factors that are not

consistent with Model 2. First, we observed variation in FT levels among leaves developed after

vernalization (Fig. 1.3, Section 3 in Results), which contradicts the assumption made in Model 2

of uniform FT production rate across all these leaves. As mentioned earlier, some of this

variation can be attributed to the developmental stage of leaves. For example, the 5th true leaf

in the G7 treatment, which is considered a juvenile leaf (He et al., 2018), exhibited low FT

expression due to the high miR156 and low miR172 levels overriding external signals. However,

the reasons behind the remaining variation in FT levels remain unclear, indicating the presence

of additional factors regulating leaf-specific vernalization responses that were not included in the
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model. Second, Model 2 predicts largely synchronized flowering across germination cohorts,

except perhaps for very late germinating cohorts that do not produce leaves during

vernalization. Additionally, the synchronized flowering is expected to be theoretically complete,

meaning that all the plants exhibiting flowering synchrony should flower at the same or almost

the same time point, except for the variation in germination timing. However, both the natural

field observations and controlled chamber experiments consistently revealed incomplete

flowering synchrony, as demonstrated by the significant differences among cohorts of

Arabidopsis plants (Fig. 1.1 and 1.2). This phenotypic deviation from the prediction could be

attributed to the missing factor related to leaf-specific vernalization responses mentioned above,

or it could indicate the involvement of other sources apart from the leaves.

To examine the relative importance of the leaf-based regulations in vernalization-induced

flowering synchrony, we attenuated the influence of leaves on flowering by reducing total FT

expression through a shortened post-vernalization photoperiod from LD to MD. As shown in Fig.

1.9, we observed only a 1-day difference in flowering time between the MD and LD conditions

for the G36 and G22 cohorts, suggesting that in early-germinating cohorts, FT expression, and

thus leaf-derived signals may no longer play a decisive role in determining flowering time. This

observation is likely due to the increased dominance of the aging pathway operating in the

SAM. Recent research has demonstrated that SPL15 expressed in the SAM can induce

flowering independently of FT produced in the leaves, and its effects are particularly important in

non-inductive photoperiods and older plants (Hyun et al., 2019). Specifically, Hyuan et al found

that the ft/tsf double mutant flowered significantly later than the wild type after growing in SD for

two weeks followed by vernalization, but the flowering times of the ft/tsf double mutant and wild

type were approximately the same after growing in SD for six weeks followed by vernalization.

These findings are consistent with our flowering time patterns for the late and early germination

cohorts, respectively.
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Taken together, these findings suggest that the importance of the leaf and SAM in

flowering may shift as plants grow older. In younger plants, leaves likely play a more dominant

role in determining flowering time, while in older plants, the SAM may be more decisive. This

hypothesis is reminiscent of the need for researchers to test the phenotypes of Arabidopsis in

short days to delay plant growth when investigating the GA or aging pathways. In long days,

plants flower too rapidly due to the dominance of FT signals, making it difficult to discern the

effects of other pathways. The shift of dominance between leaf and SAM (or external to internal

cues) may be due to increased activity of SAM-based pathways, or reduced sensitivity to FT in

older plants. However, the precise mechanism by which plants integrate these two sources of

signals to regulate flowering is not yet fully understood. Furthermore, it remains unclear at what

point during plant development the shift in the relative importance of the leaf and SAM occurs.

Thus, further research is needed to answer these questions, and our MD and LD comparison

may provide a promising strategy to reveal this shift in flowering determinations.

Based on these arguments, we propose Model 3 as a model for vernalization-induced

flowering synchrony (Fig. 1.10, Model 3). Building upon Model 2, Model 3 retains the concept of

leaf-specific vernalization responses as the leaf-based signal, but its effect is limited to

late-germinating individuals. In addition, Model 3 incorporates the contribution of flowering cues

from the aging pathway, represented by the blue line in Fig. 1.10, Model 3. According to this

model, early-germinating individuals with strong aging pathway activation surpassing its

threshold can initiate flowering immediately after vernalization, irrespective of the leaf count.

This is exemplified by the left two individual in Fig.1.10, Model 3, which possesses only two

leaves developed within or after vernalization, fewer than the four-leaf threshold. In contrast,

later germinating (younger) plants have reduced aging pathway activity and so require a high

level of FT to trigger flowering. Such high levels of FT require the development of additional

leaves after the end of vernalization to meet the flowering threshold. In such cases, plants can
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initiate flowering either by accumulating four leaves (the leftmost plant in Fig. 1.10, Model 3) or

by accumulating a combination of leaves and aging signals from the SAM to reach the flowering

threshold (the second plant from the left in Fig 1.10, Model 3). While flowering dynamics

predicted by Models 2 and 3 are similar under long photoperiods (solid lines), the effect of

reducing photoperiods to intermediate lengths is predicted to differ and Model 3 seems more

consistent with our observations (dash lines).

By considering both leaf-based vernalization signals and the SAM-based aging pathway,

Model 3 provides a more comprehensive hypothesis for understanding the mechanisms

underlying vernalization-induced flowering synchrony. We believe that this framework lays a

cornerstone for future research and model development in this field. However, it is important to

acknowledge that our findings also reveal gaps in our understanding of these mechanisms,

emphasizing the necessity of a comprehensive approach that considers multiple regulatory

factors to accurately capture the intricacies of this phenomenon.

Fig. 1.10: Three conceptual models proposed to explain flowering synchrony in Arabidopsis. Each model

illustrates four different plant sizes before exposure to vernalization, representing germination timing from

early fall (early-germination individuals) to early winter (late-germination individuals). The anticipated

sizes at the end of winter (“Post-Vern”) and at the time of flowering (“Flowering”) are depicted pictorially

according to the assumption of each model, and the total FT expression integrated across leaves at the

time of flowering is represented by the red solid curves based on the number of leaves capable of
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producing FT (represented by green leaves). Cyan leaves indicate those that cannot efficiently contribute

to FT production. The predicted days to flower after vernalization are depicted by green curves, with the

solid curve representing the LD condition and the dashed curves representing the MD condition. The

minimum threshold of FT-induced flowering requirement is four leaves in this case.

Model 1 is based on the "leaf-counting model" and assumes that all leaves can produce FT at the same

rate. Under this model, plants must have at least four leaves to initiate flowering. Plants with fewer leaves

at the end of winter (“Post-Vern”) require additional time to grow in the spring, while those with at least

four leaves at the end of winter flower immediately at this time. This results in an apparent broken-stick

pattern with synchronous flowering for very early cohorts, but germination-dependent flowering time for

the remaining cohorts. Note that total FT levels at flowering for early germinating cohorts are above the

threshold - they have more leaves (six) than needed but failed to flower earlier because they reached four

leaves before vernalization was complete.

Model 2 incorporates the leaf-specific vernalization responses observed in this study, where only leaves

developing within or after vernalization can effectively contribute to the FT pool. We depict a scenario

where two leaves develop during the winter (with-vern) in all but the latest germinating cohort. In this

scenario, the three plants on the left need to grow two more leaves in the spring to meet the flowering

requirements (four FT-producing (green) leaves) and thus flower synchronously. In contrast,

late-germination individuals require more time to grow in the spring to reach the four-leaf requirement and

exhibit delayed flowering time compared to the majority. Since all the plants flower with four leaves, the

total FT levels are expected to be the same at flowering.

Model 3 builds upon Model 2 but introduces an additional flowering signal source from the SAM

represented by blue circles on the top of plants. The SAM's flowering signal increases as plants grow, as

shown by the blue line in Model 3. A plant will flower if the sum of the FT signal (red curve) and the SAM

signal (blue line) exceeds the flowering threshold (purple dashed line). In this scenario, despite having

only two FT-producing leaves, the left two plants are ready to flower at the end of winter, as their

combined signal with the SAM flowering signal is sufficiently high to reach the flowering threshold. For the

plants germinating later in the fall (right two individuals), the plant with extremely late germination

(rightmost) reaches the flowering threshold mainly by accumulating enough leaves and FT, as the SAM

flowering signal is weak in this case. In contrast, the second individual from the right combines signals

from both leaves and SAM, requiring only three leaves to meet the threshold.

The differences between Models 2 and 3 are more prominent when considering the flowering time in MD.

In Model 2, the flowering time is always delayed in MD compared to LD due to relatively low FT

production across all the leaves in MD. This delay in flowering is expected to be constant across all

germination cohorts, as the leaf-based FT signal is the only flowering cue. In contrast, for the two

individuals on the left side of the figure in Model 3, the flowering time is expected to be the same in both
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MD and LD because the major determinant for flowering is the SAM-based aging signal, and the

leaf-based signal becomes less important. Thus, in Model 3, the flowering delay in MD will only be

observed for the plants germinating later, as the leaf-based signal still plays a role in flowering induction.

1.5 Conclusion

This study suggests valuable insights into the molecular mechanisms underlying

vernalization-induced flowering synchrony using the Arabidopsis Col-FRI accession. Our finding

of leaf-specific vernalization responses among seven target genes suggests a potential

leaf-based mechanism contributing to flowering synchrony. Additionally, we found signals

originating from tissues other than leaves, likely the aging pathway signals in the SAM, as

pivotal regulators of flowering synchrony, particularly in early germination cohorts with extended

vegetative growth. These findings emphasize the importance of considering the crosstalks

within and among organs when studying intricate plant responses to their environment. Overall,

our research contributes to a better understanding of the complex interplay between

vernalization and flowering synchrony, paving the way for further investigations in this field.
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1.6 Materials and methods

Plant materials and growth conditions

The Col-FRI genotype was derived by introgressing the FRI locus from the San Felui 2

(SF-2) genotype into the Col background, rendering it vernalization-dependent for promoting

flowering (Lee & Amasino, 1995). Seeds of Col-FRI were cold-stratified in either water or a

0.15% agar solution for 3 to 4 days in the dark at 4°C. After stratification, seeds were planted in

5 cm pots filled with Sunshine Mix #1 potting soil. Pots were randomly assigned to different

vernalization treatments (G1, G7 or G8, G22, G36, and NV) in Conviron E7/2 growth chambers.

Trays of pots (four per chamber cabinet) were rotated three times per week, and plants in warm

temperature conditions were watered twice a week with fertilizer water supplied by the UC Davis

Controlled Environment Facility. During the warm temperature growth phase, conditions were

set at 20°C, with either 8 hours (short day, SD), 12 hours (medium day, MD), or 16 hours (long

day, LD) of light at 250 umol m-2 s-1 PAR provided by fluorescent tubes without additional far-red

supply. For the vernalization treatments, plants were subjected to 4°C with an 8-hour light period

at 50 umol m-2 s-1 PAR, provided by fluorescent tubes without extra far-red supplementation. To

maintain humidity during vernalization, trays were covered with clear plastic lids, eliminating the

need for additional watering.

For in-chamber phenotyping and FT expression testing, plants were grown under SD

warm conditions before vernalization and randomly assigned to receive either G1, G7, G22, or

G36 treatment (Fig. 1.2A). After 8-week vernalization, we moved the plants to either warm LD or

MD chambers until flowering and recorded the flowering date and the number of rosette and

cauline leaves. At ZT12 for MD and ZT16 for LD, when FT expression levels were expected to

be at their maximum, we harvested every 5th fully expanded leaf basipetally until leaves were

senescing (around the 5th and 20th true leaf for the 7d and 35d treatment, respectively).

To analyze the expression levels of the 7 candidate genes identified from RNAseq, we

grew plants in SD warm chambers and randomly assigned them to receive one of four
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treatments: G1, G8, G22, or G36 (Fig. 1.4). After four weeks of vernalization, the plants were

moved back to SD warm conditions until the date of tissue collection. At this point, the plants

were transferred to LD warm chambers and harvested a single leaf at each defined leaf rank at

ZT16. We selected three ranges of leaves on each plant by leaf rank (3-7, 14-17, 30+) such that

within each range, the leaves were visible (and thus largely post-mitotic) before vernalization

(pre-vern) in a set of the treatments, the leaves emerged during vernalization (with-vern) in other

treatments, and the leaves emerged after vernalization (post-vern) in the remaining

vernalization treatments (see Fig. 1.4 and Table 1.1). We also selected corresponding leaves by

leaf rank in non-vernalized plants (non-vern). We harvested plants in each treatment at three

chronological ages: 22d, 36d, and 43 or 50d under the warm SD condition (WSD22, WSD36,

WSD43/50, respectively). Non-vernalized plants were sampled one week early at the last

harvest because they were beginning to bolt. On the WSD22 and WSD36 harvests, only the first

or first two leaf sets were visible and could be sampled.

For the RNAseq experiment, we subjected six plants to six weeks of vernalization,

starting 8 days after sowing. Six additional plants were grown without vernalization as a control.

The non-vernalized plants were planted 17 days before the vernalized plant were removed from

the cold treatment to match their size and developmental stage. Following vernalization, plants

were grown for an additional 14-18 days in the warm SD before sampling a single leaf (rank

~10). This treatment ensured the observed transcriptional differences were related to the

vernalization memory. Three plants from each treatment were sampled on each day.

For AGL19 experiments, the T-DNA insertion lines agl19-1 (SALK_N578786, in the Col

background) were obtained from the SALK Institute (http://signal.salk.edu/). We generated the

agl19-1/Col-FRI mutant in the Col-FRI background by crossing the homozygous agl19-1

mutants with Col-FRI and self-pollination of the F1 generation. The homozygous F2s for FRI

and agl19 alleles were determined by PCR amplification using the primers (Table S1.2). For
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phenotyping and the qPCR, we subjected the plants to either G1 or G36 treatments with eight

weeks of vernalization and returned them to the warm LD condition until flowering.

All the leaf samples were cut at the base of the blade, immediately submerged in liquid

N2, and stored at -80°C before conducting RNA extraction for gene expression analysis using

qPCR or RNAseq.

qPCR analysis

Total RNA was extracted with the ZR Plant RNA Miniprep Kit (Zymo Research, Irvine,

CA, USA) with DNase digestion. RNA concentrations were standardized to ~40 ng/ul, and then

10ul was used for cDNA synthesis with the High-Capacity cDNA Reverse Transcription Kit

(ThermoFisher Scientific, Grand Island, NY, USA) with random primers. cDNA was diluted 5-20x

and analyzed by qPCR on a BioRad CFX96 instrument (BioRad, Hercules CA USA) using the

SsoAdvanced Universal SYBR Green Supermix (BioRad). Each reaction was run at a volume of

20ul. Assay primers are listed in Table S1.2.

RNAseq analysis

Illumina HiSeq compatible RNAseq libraries were prepared from cell lysates using a

custom protocol based on Kumar et al 2012 with some modifications (Kumar et al., 2012). The

six libraries analyzed in this study were barcoded, pooled with 18 other libraries, and sequenced

in a single lane on the HiSeq 2000 at the UC Davis Genome Center DNA Technologies &

Expression Analysis Core, resulting in 9 million 50bp PE reads. Reads were aligned to the

Arabidopsis thaliana genome (TAIR10) (Berardini et al., 2015) using TopHat v2.1.0 with the

`--mate-inner-dist` parameter set to 20 (Kim et al., 2013). Reads uniquely mapped to any exon

of any isoform of each gene were counted with the featureCounts (Liao et al., 2014), and the

differential expression was assessed with limma-voom (Law et al., 2014).
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Statistical analysis

All statistical analyses for phenotyping and gene expressions were conducted using the

R language (R version 4.2.2). For ANOVA, we first fitted a linear model using the `lm` function in

the `stats` package and then processed the `lm` results using the `anova` function in the same

package. For pairwise comparisons, we used the `emmean` and `contrast` functions in the

`emmeans` package to process the `lm` results. Data visualization was performed using the

`ggplot2` package.

For determining flowering synchrony, we adopted the synchronization index (SI)

described in Miryeganeh et al.’s article (Miryeganeh et al., 2018; Miryeganeh, 2020). In brief, the

SI was developed to compare the variation in germination time to the variation in flowering time,

calculated as

SI = log2 [(variance of germination timing)/(variance of flowering timing)]

A positive SI indicates synchronization, while a negative SI indicates desynchronization.
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Fig. S1.1: The expression dynamics of seven candidate genes in the leaf rank 3-7 at WSD22. Each panel

represents a single gene. Within each panel, gene expressions are grouped based on the vernalization

treatments (G1, G8, G22, G36, and NV) and color-coded according to the leaf's vernalization status

(no-vern, post-vern, pre-vern, and with-vern), as referenced in Fig. 1.4 and Table 1.1.
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Fig. S1.2: The expression dynamics of seven candidate genes in the leaf rank 3-7 at WSD36. Each panel

represents a single gene. Within each panel, gene expressions are grouped based on the vernalization

treatments (G1, G8, G22, G36, and NV) and color-coded according to the leaf's vernalization status

(no-vern, post-vern, pre-vern, and with-vern), as referenced in Fig. 1.4 and Table 1.1.
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Fig. S1.3: The expression dynamics of seven candidate genes in the leaf rank 14-17 at WSD36. Each

panel represents a single gene. Within each panel, gene expressions are grouped based on the

vernalization treatments (G1, G8, G22, G36, and NV) and color-coded according to the leaf's

vernalization status (no-vern, post-vern, pre-vern, and with-vern), as referenced in Fig. 1.4 and Table 1.1.
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Fig. S1.4: The expression dynamics of seven candidate genes in the leaf rank 3-7 at WSD43/50. Each

panel represents a single gene. Within each panel, gene expressions are grouped based on the

vernalization treatments (G1, G8, G22, G36, and NV) and color-coded according to the leaf's

vernalization status (no-vern, post-vern, pre-vern, and with-vern), as referenced in Fig. 1.4 and Table 1.1.
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Fig. S1.5: The expression dynamics of seven candidate genes in the leaf rank 30+ at WSD43/50. Each

panel represents a single gene. Within each panel, gene expressions are grouped based on the

vernalization treatments (G1, G8, G22, G36, and NV) and color-coded according to the leaf's

vernalization status (no-vern, post-vern, pre-vern, and with-vern), as referenced in Fig. 1.4 and Table 1.1.
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Table S1.1: ANOVA tests for the expression differences within each combination of vernalization

treatment and leaf rank for seven target genes. The significance of the results indicates the presence of

developmental-stage-dependent vernalization responses in at least one pair of gene expression

comparisons among G1, G8, G22, G36, and NV. P-values greater than 0.05 are highlighted in red.

Gene Vernalization

treatment

Leaf rank p-value

FLC WSD22 3-7 5.19E-06

FLC WSD36 3-7 4.35E-10

FLC WSD36 14-17 1.57E-12

FLC WSD43/50 3-7 3.05E-08

FLC WSD43/50 14-17 2.67E-06

FLC WSD43/50 30+ 6.11E-06

FT WSD22 3-7 0.000306

FT WSD36 3-7 0.02983

FT WSD36 14-17 1.23E-05

FT WSD43/50 3-7 0.04968

FT WSD43/50 14-17 7.65E-05

FT WSD43/50 30+ 0.003628

FLM WSD22 3-7 2.41E-03

FLM WSD36 3-7 4.82E-06
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FLM WSD36 14-17 1.22E-05

FLM WSD43/50 3-7 3.41E-04

FLM WSD43/50 14-17 1.13E-04

FLM WSD43/50 30+ 2.53E-07

MAF3 WSD22 3-7 1.76E-04

MAF3 WSD36 3-7 4.33E-05

MAF3 WSD36 14-17 2.47E-06

MAF3 WSD43/50 3-7 1.38E-05

MAF3 WSD43/50 14-17 2.29E-03

MAF3 WSD43/50 30+ 3.47E-04

AGL19 WSD22 3-7 2.35E-06

AGL19 WSD36 3-7 5.05E-05

AGL19 WSD36 14-17 7.06E-04

AGL19 WSD43/50 3-7 1.08E-04

AGL19 WSD43/50 14-17 1.45E-06

AGL19 WSD43/50 30+ 1.97E-01

TSF WSD22 3-7 2.08E-04
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TSF WSD36 3-7 3.59E-02

TSF WSD36 14-17 1.29E-03

TSF WSD43/50 3-7 8.43E-02

TSF WSD43/50 14-17 1.98E-04

TSF WSD43/50 30+ 1.05E-02

SOC1 WSD22 3-7 1.22E-03

SOC1 WSD36 3-7 1.23E-05

SOC1 WSD36 14-17 6.86E-04

SOC1 WSD43/50 3-7 8.47E-02

SOC1 WSD43/50 14-17 4.22E-03

SOC1 WSD43/50 30+ 9.57E-02
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Table S1.2: Primers used in this article.

Primer Name Sequence Purpose

AGL19_F ATGGTGAGGGGCAAAACGGAG qPCR

AGL19_R CCAGATGTTTCGTCTCTCGC qPCR

FLC_393F AGCCAAGAAGACCGAACTCA qPCR

FLC_550R TTTGTCCAGCAGGTGACATC qPCR

FLM_B_F CATGCTGATGAACTTAGAGCCTTAGATC qPCR

FLM_B_R CAGCAACGTATTCTTTCCCAT qPCR

FT_372F CTGGAACAACCTTTGGCAAT qPCR

FT_590R AGCCACTCTCCCTCTGACAA qPCR

MAF3_F TCGGAATTATCTTCCACACAAGGAG qPCR

MAF3_R GCCAGAATCTGGTTCTCTTCTATCAGC qPCR

SOC1_F AGCTGCAGAAAACGAGAAGC qPCR

SOC1_R TGAAGAACAAGGTAACCCAATG qPCR

TSF_F GAGTCCAAGCAACCCTCACCAA qPCR

TSF_R CACAATACGATGAATTCCCGAG qPCR

UBC_F CTGCGACTCAGGGAATCTTCTAA qPCR

UBC_R TTGTGCCATTGAATTGAACCC qPCR
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ListerFRI_F GCGAGACAAGTTTCGCTTCT Col-FRI genotyping

ListerFRI_R GCAAAGGTGGTTCCTTTTGT Col-FRI genotyping

AGL19_LP TCTGATCTACACACATGCGATG agl19-1 genotyping

AGL19_RP TGTGATGCTGAAGTTGCTTTG agl19-1 genotyping

LBb1-3 ATTTTGCCGATTTCGGAAC agl19-1 genotyping
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Table S1.3: Target genes in RNAseq analysis with adjusted p-values smaller than 0.001.

Gene ID Adjusted p-value Gene name

AT1G77080 1.67E-07 FLM

AT2G45660 1.06E-05 SOC1

AT4G22950 1.06E-05 AGL19

AT4G20370 8.59E-06 TSF

AT5G65060 8.59E-06 MAF3

AT1G65480 1.90E-05 FT

AT5G10140 8.59E-06 FLC
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Chapter 2 Understanding the molecular mechanisms of obligate

photoperiodism in Mimulus guttatus

2.1 Abstract

Daylength is an environmental factor that plays a vital role in regulating the flowering responses

of plants. While our understanding of the genetic components and regulatory networks involved

in the photoperiod pathway has advanced, our knowledge is still limited to facultative long-day

or short-day plants. To gain insights into the molecular mechanisms underlying the stringent

photoperiodic responses observed in plants with obligate-type photoperiodism, we conducted a

series of experiments using the annual Mimulus guttatus, a well-known obligate long-day plant.

We generated several lines exhibiting facultative long-day photoperiodism phenotypes. We

employed QTL mapping to identify the genetic basis of photoperiodism and flowering time of

two mapping populations under the short-day condition. Interestingly, we identified specific

QTLs related to photoperiodism but not flowering time in short days. Furthermore, the QTL

results suggested that different accessions of Mimulus guttatus achieved similar photoperiodism

phenotypes through distinct genetic mechanisms. Our RNAseq analyses provided further

support for this hypothesis. Overall, this study offers new insights into the molecular basis of

obligate long-day photoperiodism, shedding light on the intricate regulation of plant flowering in

response to daylength cues.
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2.2 Introduction

To maximize reproductive success, plants integrate multiple environmental cues to

precisely align their flowering time with optimal conditions. Daylength, also known as

photoperiod, is an environmental factor that is highly correlated with seasonal changes and is

used as a signal for regulating flowering time in many plant species. Based on their flowering

responses to daylength, plants can be categorized into three main photoperiodism groups:

day-neutral plants, long-day plants (LDPs), and short-day plants (SDPs). Day-neutral plants are

capable of flowering at the same time regardless of the photoperiod, while LDPs demonstrate

accelerated flowering when the daylength exceeds a specific threshold. Conversely, SDPs

exhibit delayed flowering when the daylength extends beyond a maximum threshold. The

flowering responses of LDPs and SDPs can be further classified as obligate or facultative,

depending on whether a specific daylength is essential for initiating flowering. For example,

facultative LDPs can eventually flower in any daylength, but longer photoperiods can expedite

the process. In contrast, obligate LDPs have a minimum daylength requirement, known as the

critical photoperiod, and they will only flower if this requirement is met. Despite comparable

numbers of species in each photoperiodism group (Thomas & Vince-Prue, 1997), our

understanding of the underlying molecular mechanisms of photoperiodic responses is

predominantly limited to facultative LDPs and SDPs. Consequently, we know little about the

mechanisms that control the stringent daylength requirements observed in plants with obligate

photoperiodism.

Photoperiodic flowering regulation is best understood in Arabidopsis thaliana (hereafter

referred to as Arabidopsis) and rice, which are facultative LDP and SDP, respectively. In both

species, a canonical photoperiod-measuring regulation known as the CO-FT module plays a

key role. In Arabidopsis, this module consists of the genes CONSTANS (CO) and FLOWERING

LOCUS T (FT), while in rice, their homologs Heading date1 (Hd1) and Heading date3a (Hd3a),
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respectively, are involved (Song et al., 2015; Hill & Li, 2016; Gendron & Staiger, 2023). The FT

protein functions as the main component of florigen, which is transported from leaves to the

shoot apical meristem to trigger flowering (Lin et al., 2007; Corbesier et al., 2007; Tamaki et al.,

2007; Jaeger & Wigge, 2007; Notaguchi et al., 2008). Under inductive photoperiods (long days

for Arabidopsis and short days for rice), FT expression is upregulated in leaves (Kardailsky et

al., 1999; Kobayashi et al., 1999; Kojima et al., 2002). The regulation of FT expression is

controlled by the transcription factor CO, which exhibits a circadian oscillation and acts as a

bridge between the endogenous circadian rhythm and external photoperiodic sensitivity

(Suárez-López et al., 2001; Yanovsky & Kay, 2002; Kojima et al., 2002). Interestingly, CO exerts

distinct effects on FT expression in Arabidopsis and rice. In Arabidopsis, CO functions as an

activator, promoting FT expression under inductive long-day conditions (Kobayashi et al., 1999;

Samach et al., 2000; Yanovsky & Kay, 2002). However, in rice, CO serves as a bifunctional

regulator of FT: the rice CO homolog, Hd1, induces the FT homolog, Hd3a, in inductive

short-day conditions, while Hd1 acts as an repressor of Hd3a transcription in non-inductive

long-day conditions (Yano et al., 2000; Hayama et al., 2003).

In addition to the canonical FT-CO module, plants recruit a wide range of genes to

respond to varying daylengths and precisely regulate flowering based on local conditions. The

interplay between the circadian clock, metabolic oscillation, and photoreceptors also influences

photoperiodic flowering (Ballerini & Kramer, 2011; Song et al., 2015; Gendron & Staiger, 2023).

Interestingly, different plant species can display distinct levels of dependence on specific

mechanisms, and some species even possess their own unique species-specific or

lineage-specific pathways. For instance, in rice, alongside the FT-CO module, a

monocot-specific pathway involving Grain number and heading date7 (Ghd7) and Early heading

date1 (Ehd1) operates in parallel to regulate the expression of Hd3a (Doi et al., 2004; Itoh et al.,

2010; Osugi et al., 2011). This intrinsic complexity within the photoperiodic regulation network

61



equips plants with the flexibility and robust regulatory capacity required to fine-tune their

flowering time in accordance with different environmental conditions and habitats. Moreover, this

complexity forms the foundation for the diversity observed in plant photoperiodic responses.

The diversity in photoperiodic responses manifests through the variations in two distinct

floral traits: flowering time and photoperiodism. While variation in flowering time is common

(e.g., numerous documented Arabidopsis mutants exhibit significant differences in flowering

time compared to their wild-type counterparts), transitions among photoperiodism groups can

also occur, and numerous examples have been documented across diverse species (Thomas &

Vince-Prue, 1997). Interestingly, mutations in only a few genes can switch plants from one form

of photoperiodism to another. For instance, the ga1-3 mutant in Arabidopsis, which is deficient

in gibberellin synthesis, displayed obligate LDP characteristics and failed to flower in short days

even after an extended growing period (> 117 days) (Wilson et al., 1992). This

gibberellin-dependent short-day flowering regulation is mediated by the floral pathway

integrators, SUPPRESSOR OF OVEREXPRESSION OF CO 1 (SOC1) and AGAMOUS-LIKE

24 (AGL24). Consistently, the soc1-2/agl24-1 double mutant also displayed similar obligate LDP

characteristics and a flowering defect in short days (Liu et al., 2008). In rice, flowering under

non-inductive long-day conditions relies on OsMADS50 and Rice FT-like 1 (RFT1), an FT

homolog other than Hd3a. OsMADS50 acts as an upstream activator of RFT1 in long days (Ryu

et al., 2009; Komiya et al., 2009). Loss-of-function mutations in RFT1 or OsMADS50 resulted in

the obligate SDP responses, demonstrated by failure to flower under long-day conditions

(Komiya et al., 2009; Ogiso-Tanaka et al., 2013).

However, the insights gained from the aforementioned transitions among photoperiodism

groups do not directly elucidate the underlying mechanism governing flowering regulation in

obligate LDPs or obligate SDPs. The inherent flexibility and vast diversity of plant photoperiodic
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responses pose challenges in extrapolating our current knowledge to infer potential

mechanisms in new species or across different photoperiodism groups. Furthermore, the

scarcity of molecular-level studies conducted on plants exhibiting obligate photoperiodisms

hinders comparative analyses between photoperiodism groups. In this study, we focus on

obligate LDPs and propose two models based on our existing understanding of photoperiodic

regulation (Fig. 2.1). The observed existence of simple genetic bases facilitating transitions

among photoperiodism groups suggests the presence of certain genes that may act as toggle

switches in determining photoperiodic responses. Expanding on this concept, we propose

Model 1, assuming the presence of switch-like genes responsible for determining whether a

plant can initiate flowering under specific daylength conditions. Once the plant is capable of

flowering, a separate set of genes acting as dials regulate the flowering time. The switch-like

genes might interact epistatically with the dial-like genes, or they might be located upstream to

activate the expression of the dial-like genes. Hence, flowering regulation under this model is

controlled by two distinct sets of genes: switch-like genes and dial-like genes. In contrast, Model

2 hypothesizes the absence of switch-like genes. Instead, plants growing under non-inductive

photoperiods prolong the flowering process indefinitely by adjusting the dial-like genes, resulting

in the absence of observable flowering within their lifespan.
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Fig. 2.1: Switch-vs-dial Model. The primary distinction between Model 1 and Model 2 lies in the presence

of switch-like genes that specifically determine whether a plant will flower under certain daylength

conditions. In Model 1, when exposed to conditions that can induce flowering, such as long days for both

obligate and facultative LDPs or short days for facultative LDPs, the switch-like genes are in the "ON"

state, and the timing of flowering is regulated by dial-like genes. However, if the daylength does not

exceed the critical photoperiod of obligate LDPs, the switch-like genes remain in the "OFF" state,

resulting in a non-flowering phenotype. In this situation, the state of the dial-like genes either has no effect

on flowering, or they are not activated due to the absence of inductive signals from the switch-like genes.

On the other hand, Model 2 represents the dial-only model, where switch-like genes are absent. In this

case, plants unable to flower in short days indefinitely delay their flowering date through the action of

dial-like genes, leading to a perpetual postponement without reaching the flowering stage.

To test these hypotheses, we conducted a series of experiments using annual

populations of Mimulus guttatus (hereafter referred to as Mimulus). Mimulus is generally

considered to be an obligate LDP with significant phenotypic (Friedman et al., 2015; Kooyers et

al., 2015) as well as genetic diversity (Sweigart & Willis, 2003; Twyford & Friedman, 2015;

Puzey et al., 2017). Its distribution spans a wide geographic range throughout western North
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America, encompassing diverse habitats ranging from sea level to elevations exceeding 3,000

m. These habitats differ in various environmental factors, including variations in precipitation,

seasonal temperature, soil compositions, and biotic factors (Wu et al., 2008). Such factors

collectively shape the timing of the growing season, and different Mimulus populations are able

to precisely respond to certain specific external cues and properly align their life cycle with the

optimal growth period. An example highlighting this local adaptation is the association observed

between the critical photoperiod required for flowering and the onset of the growing season

(Kooyers et al., 2015). Intriguingly, according to the detailed records from previous studies,

several annual Mimulus populations exhibit remarkably short critical photoperiods, some as brief

as 8 hours (Friedman & Willis, 2013; Kooyers et al., 2015), suggesting naturally-occurred

non-obligate LD accessions may be present within Mimulus.

In this study, we aimed to identify the mechanisms underlying the regulation of critical

photoperiod and short-day flowering time in Mimulus, which serves as an example of a

predominantly obligate LD species. We first screened and characterized non-obligate LD

Mimulus plants. We then used QTL mapping to explore the genetic basis underlying the

differences in short-day flowering time and photoperiodism, thereby testing our switch-vs-dial

model. Finally, we conducted RNAseq to investigate the gene expression patterns associated

with the distinct flowering responses observed among accessions exhibiting different

photoperiodisms. Our results provide new insights into the molecular basis of obligate LD

photoperiodism.
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2.3 Results

2.3.1 A screen of natural accessions identifies several facultative LD lines in Mimulus

To investigate the genetic basis of photoperiodism, it is essential to study genotypes that

exhibit variation in this trait. In a study by Kooyers et al. (Kooyers et al., 2015), the critical

photoperiods of 52 Mimulus accessions representing much of the Mimulus geographic range

were evaluated. Among these accessions, three (BEL, MAC, and TER) were observed to

achieve over 50% flowering even when exposed to daylength as short as 8 hours. The ability to

flower under an 8-hour daylength is typically considered short-day flowering, especially since

winter daylengths across the range of these three accessions never fall below 9.5 hours.

However, due to it being a predominantly outcrossing species, Mimulus accessions exhibit

significant genetic and phenotypic diversity and maintain high levels of heterozygosity

throughout their genomes (Sweigart & Willis, 2003; Twyford & Friedman, 2015; Puzey et al.,

2017). Taking this into account, we conducted a screening within BEL, MAC, and TER

accessions to identify maternal lines capable of successful short-day flowering. A minimum of

eight maternal lines per accession were assessed, with at least five individuals from each line,

under 9:15 hour day/night cycles (short days, SD) over a duration of 16 weeks. We successfully

generated several lines from BEL, MAC, and TER accessions that exhibited reliable SD

flowering phenotypes (i.e., non-obligate LD lines) after at least four generations of selection and

inbreeding. To serve as negative controls in the subsequent experiments, we also generated

typical obligate LD lines from these three accessions as well as four other accessions with

longer critical photoperiods (Fig. S2.1).

In this study, we focused on two flowering phenotypes: photoperiodism and flowering

time. The photoperiodism group assigned to each line was based on its ability to flower in SD,

which allowed us to differentiate between obligate LDPs and facultative LDPs. Additionally, we
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examined whether the flowering times differ under SD and the long-day (16:8 day/night cycles,

LD) conditions to determine if a plant exhibits day-neutral characteristics. To compare flowering

times under different daylengths, we used the node of the first flower bud as a measure of

flowering time instead of the node of the first fully open flower. Although the latter trait has been

commonly used in previous flowering-related studies, we observed that many Mimulus plants

produced aborted flower buds under shorter daylengths (Fig. 2.2). The presence of aborted

buds indicated that the initiation of flowering occurred but further development was halted,

potentially due to inadequate metabolic resources or a lack of signaling for subsequent

developmental stages. This phenomenon also indicated a decoupling between flowering

induction and development in these situations. In addition, the number of aborted flower buds

differed among lines, suggesting variation in the regulation of flower bud development.

Fig. 2.2: Aborted flower buds observed in SD. (A) The black arrow indicates the node where aborted

flower buds were observed. Note that the first flower was produced at a node distant from the node of the

first flower bud. Zoomed-in views (B) and (C) highlight the nodes with aborted flower buds (indicated by

red arrows) halted at different developmental stages.

After characterizing the flowering phenotypes of the Mimulus lines we generated, we

found that all the non-obligate LD lines derived from BEL, MAC, and TER exhibited facultative

LD photoperiodism. As shown in Fig. 2.3, these lines were able to initiate flowering with an
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average of fewer than 5 nodes under the LD condition. However, under the SD condition, a

minimum of 10 nodes on average was required for flowering induction, highlighting each line’s

sensitivity to photoperiod and the delaying effect of SD on flowering. In contrast, the obligate

lines, serving as the negative control, did not flower in SD, but their flowering in LD was as rapid

as that of the facultative lines (Fig. S2.2). In addition to the observed reproductive stage

variation, we also noticed a wide range of vegetative variation across different lines in SD (Fig.

S2.3), which is consistent with the Mimulus phenotype diversity described in previous studies.

Fig. 2.3: A comparison of the node number of the first flower bud under SD and LD conditions indicates

that all the non-obligate LD lines generated in this study exhibit facultative LD photoperiodism. Flowering

times are substantially delayed in SD compared to LD. Each dot represents the average node number of

the first flower bud for each facultative LD line. The red 1:1 diagonal line depicts the exact identical

flowering time under the two photoperiod conditions.

2.3.2 F2 mapping populations display a large degree of variation in flowering phenotypes

To investigate the genetic basis of obligate LD photoperiodism and test the switch-vs-dial

hypothesis, we performed QTL mapping. We generated two F2 mapping populations by

crossing a facultative LD line and an obligate LD line derived from each of the two accessions:

BEL4 x BEL4.2 and MAC1.2 x MAC7, where the first line in each pair represents the facultative

LD line, and the second line represents the obligate LD line. We grew a total of 250 F2 plants for
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each mapping population in SD for a duration of 22 weeks. For each F2 individual, we evaluated

both the photoperiodism and flowering time, which correspond to the “switch” and “dial”

components, respectively, in the switch-vs-dial model (see the next section). The

photoperiodism of each F2 individual was categorized as either facultative LDP or obligate LDP

based on whether flowering was eventually induced within the 22-week experimental period,

without considering the time taken to flower. Regarding flowering time, we considered not only

the node of the first flower bud, as described in the preceding screening section, but also the

day-to-flower since we focused exclusively on the SD condition.

We observed wide phenotypic variation in the flowering-related traits within each F2

mapping population (Fig. 2.4 and Fig. S2.4). For example, morphologically, facultative LD

individuals usually exhibited a prominent main stem in SD, with the first flower bud emerging on

it. In contrast, obligate LD individuals usually displayed a "bushy" phenotype characterized by

numerous side branches but no conspicuous main stem. We also observed intermediate

phenotypes with varying degrees of main stem prominence; however, these individuals

ultimately failed to develop flower buds and were classified as obligate LDPs. Additionally, a few

individuals developed several aborted flower buds in earlier nodes, suggesting that they

underwent the reproductive phase change, but the buds in later nodes reverted back to the

vegetative phase, ultimately resulting in a failure to flower in SD. Due to the ambiguity of

characterization, these plants were excluded from the data analyses below.
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Fig. 2.4: Morphological variation within the F2 mapping population of BEL in SD. The leftmost individual

exhibits a typical facultative LD phenotype with a prominent main stem. In contrast, the individual with a

typical obligate LD phenotype appears "bushy" in SD (rightmost). The population also displays a wide

spectrum of obligate LD individuals showing intermediate phenotypes with varying degrees of main stem

extension but without flowering induction (middle two).

In addition to the observed morphological variation, we also examined the distribution of

the node of the first flower bud and day-to-flower for the F2 individuals that eventually flowered

(i.e., facultative LD individuals) (Fig. 2.5). The distributions of these two flowering time-related

traits exhibited right-skewed patterns, indicating that the majority of individuals from these

populations flowered within a relatively narrow time window in SD, but there were some

individuals that displayed a much later flowering time. These findings suggest that

photoperiodism is not simply a binary trait - the various morphological and developmental

characteristics of photoperiodism groups are not always aligned among individuals.
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Fig. 2.5: Distribution of flowering time of the facultative LD individuals from the BEL (A and B) and MAC

(C and D) F2 mapping populations, displaying right-skewed patterns. Two proxies were used to estimate

flowering time: the node of the first flower bud (A and C) and day-to-flower (B and D). Obligate LD

individuals are not included in this figure as they did not induce flowering during the experimental period.

The red dashed line in (B) and (D) indicates the threshold for selecting individuals that are ready to flower

in SD for QTL mapping. The threshold is approximately set at the peak of the day-to-flower distribution.

2.3.3 QTL mapping detects photoperiodism-specific QTLs, providing evidence for the existence

of switch-like genes

To investigate our switch-vs-dial hypothesis, we conducted QTL mapping within the two

F2 mapping populations for three flowering phenotypes in SD: day-to-flower, the node of the first

flower bud, and photoperiodism (facultative vs obligate LD photoperiodism). Day-to-flower and

the node of the first flower bud served as indicators of the plant's speed of flowering in SD,

representing the "dial" component in our models. For these two flowering time-related traits,

obligate LD individuals were not included in the QTL mapping, as they did not have exact
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flowering times. On the other hand, we classified the F2 individuals into binary photoperiodism

groups based on their ability to flower in SD for the third trait, which represented the "switch"

component in our models. If all three traits share the same QTLs, it would support the dial-only

model, suggesting that the non-flowering phenotype of obligate LD lines in SD is the result of

extremely delayed flowering. Conversely, the presence of photoperiodism-specific QTLs would

support the switch model, indicating the involvement of specific genes in determining the ability

to flower in SD.

We constructed linkage maps for BEL and MAC by whole-genome resequencing. We

identified a total of 134,831 high-quality SNPs for the BEL mapping population and 123,011

high-quality SNPs for the MAC mapping population. Following the removal of redundant

markers in strong linkage disequilibrium, the linkage maps for BEL and MAC were generated

using 5,319 and 4,961 SNPs, respectively (Fig. 2.6). The genetic maps spanned 5,319 cM for

the BEL mapping population and 4,961 cM for the MAC mapping population, distributed across

14 chromosomes. The average interval length between markers was 0.4 cM for both mapping

populations.
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Fig. 2.6: Linkage maps of BEL (A) and MAC (B) based on SNP markers obtained from whole-genome

resequencing. The black lines represent the positions of the markers on 14 chromosomes.

Using the BEL mapping population, we identified two QTLs for both day-to-flower and

the node of the first flower bud (Fig. 2.7A), with a shared QTL located on chromosome 10 (refer

to Table 1 for the effects of these QTLs). Interestingly, a unique QTL was associated with each

flowering time-related trait: a QTL on chromosome 12 for day-to-flower and a QTL on

chromosome 7 for the node of the first flower bud. Discrepancies in the results between these

two flowering time-related traits might stem from inherent developmental differences underlying

these proxies for flowering time, or from potential limitations in statistical power due to our

sample size. Further discussions of this observation can be found in the discussion section.

We did not detect any genome-wide significant QTLs for photoperiodism when

comparing facultative LD individuals to obligate LD individuals within the BEL F2 population.

Considering the substantial variation in the F2 mapping population, as described in the previous
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section, we suspected that the binary photoperiodism groups might not adequately capture the

diversity of photoperiodic responses. With the right-skewed patterns observed in day-to-flower

and the node of the first flower bud (Fig. 2.5), it is plausible that the facultative LD group

designated in our study actually encompassed multiple subgroups, each with different

flowering-inducing mechanisms in SD. Grouping them together would potentially obscure the

genetic associations between QTLs and phenotypic variations. Hence, we narrowed our focus

to the facultative LD individuals that exhibited early flowering in SD, characterized by

day-to-flower no larger than 11 weeks. This threshold was chosen based on the peak of the

day-to-flower distribution shown in Fig. 2.5B.

This approach led to the identification of three QTLs (Fig. 2.7B), among which two QTLs

on chromosomes 7 and 10 overlapped with those associated with flowering time. Given that this

analysis examined QTLs associated with differences between obligate LD individuals and

early-flowering facultative LD individuals, it's challenging to untangle the confounding factors of

photoperiodism group differences and the early flowering phenotype. Therefore, regarding the

QTLs identified on chromosomes 7 and 10, it remained uncertain whether they contributed to

both flowering time and photoperiodism group determination, or if they merely manifested

specific allele frequencies within the early flowering individuals. Nonetheless, we did detect a

QTL on chromosome 14 that was not observed in the flowering time QTL mapping, indicating

the existence of the photoperiodism-specific QTL in the context of early flowering facultative LD

individuals.

To further investigate the photoperiod-specific QTL, we carried out a parallel analysis

comparing obligate LD individuals to late-flowering facultative LD individuals (day-to-flowering >

11 weeks). Despite not discovering any genome-wide significant QTLs in this scenario, we

found that the previously mentioned QTL on chromosome 14 still demonstrated a significant

association (p = 0.016) with this comparison based on the individual marker analysis.
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Furthermore, this particular QTL displayed a significant effect when investigated in the context

of the comparison between all facultative LD individuals and obligate LD individuals (p = 0.001).

In contrast, this QTL showed no significant association with either day-to-flowering or the node

of the first flower bud across all the facultative LD individuals (Fig. S2.5). Collectively, our results

suggest the existence of a QTL specifically influencing photoperiodism but not flowering time in

the BEL population, thereby providing support to the presence of switch-like genes.

Fig. 2.7: QTL analysis of the BEL mapping population. Panel (A) displays the genome-wide LOD score

plots for day-to-flower (dark green curve) and the node of the first flower bud (purple curve). No

genome-wide significant LOD peak was observed when comparing obligate and facultative LD individuals

directly. However, a specific LOD peak (B) associated with photoperiodism was identified on chromosome

14 when comparing the obligate LD individuals with those flowered early in SD (day-to-flower < 11
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weeks). The horizontal red line represents the genome-wide significance level (α = 0.1) with 1000

permutations.

For the MAC mapping population, we observed a single QTL on chromosome 4 that

accounted for 13.0% of the variance in day-to-flower (Fig. 2.8A). However, no genome-wide

significant QTLs were found for the node of the first flower bud. Similar to the BEL mapping

population, no genome-wide significant QTLs were identified when comparing facultative LD

individuals to obligate LD individuals within the MAC F2 population. Consequently, we adopted

the aforementioned approach, focusing on the comparison between obligate LD individuals and

early-flowering facultative LD individuals. In this case, the criterion for early flowering was a

day-to-flower not exceeding 12 weeks, corresponding to the peak of the distribution shown in

Fig. 2.5D. Our investigation unveiled two QTLs on chromosomes 3 and 5, neither of which

overlapped with the QTL linked to flowering time (Fig. 2.8B). While no genome-wide significant

QTLs emerged in the comparison between obligate LD individuals and late-flowering facultative

LD individuals (day-to-flower > 12 weeks), the QTL on chromosome 5 exhibited a significant

association (p = 0.032) with this comparison based on the individual marker analysis.

Intriguingly, regarding the QTL on chromosome 3, we did not detect evidence linked to this

comparison (p = 0.581), possibly due to sample size constraints or its exclusive presence within

the early-flowering facultative LD subgroup. Both of these particular QTLs also demonstrated

significant effects when examining the comparison between all facultative LD individuals and

obligate LD individuals using individual marker analysis (p = 0.043 and 0.005 for the QTL on

chromosomes 3 and 5, respectively). In contrast, the analysis of the QTL effect for these two

QTLs indicated no significant associations with day-to-flower or the node of the first flower

across all the facultative LD individuals (Fig. S2.6 and S2.7), implying their specificity to

photoperiodism.
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Collectively, the findings in both the BEL and MAC mapping populations suggest the

presence of photoperiodism-specific QTLs, supporting the idea that the short-day flowering

phenotype of facultative LD individuals is regulated by both switch-like and dial-like genes.

Interestingly, we noted different photoperiodism QTLs between the BEL and MAC populations.

One possibility for this phenomenon is that all the identified photoperiodism QTLs contribute to

this trait, but different loci segregate or possess polymorphisms between the BEL and MAC

populations. Alternatively, it's possible that different accessions achieve the same

photoperiodism phenotype through diverse genetic mechanisms.

Fig. 2.8: QTL analysis of the MAC mapping population. Panel (A) displays the genome-wide LOD score

plots for day-to-flower (dark green curve) and the node of the first flower bud (purple curve). Similar to the
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results of BEL, no significant genome-wide LOD peak was observed when comparing obligate and

facultative LD individuals directly. However, two specific LOD peaks (B) associated with photoperiodism

were identified on chromosomes 3 and 5 when comparing the obligate LD individuals with those flowered

early in SD (day-to-flower < 12 weeks). The horizontal red line represents the genome-wide significance

level (α = 0.1) with 1000 permutations.

Table 1: QTL positions, peak positions, 1.5-LOD score intervals in both cM and Mb, percentage of the

variance explained by each QTL, additive effects (a) with corresponding standard errors (SE), dominance

effects (d) with corresponding SE, LOD scores, and significance levels are presented for each trait in

each accession. The photoperiodism QTLs result from the comparison between obligate LD individuals

and those flowered early in SD.

2.3.4 No common gene expression responses to daylength are apparent between facultative LD

and obligate LD lines across different Mimulus accessions

Although distinct QTLs are responsible for photoperiodism variation in the BEL and MAC

mapping populations, it is possible that the effects of these QTLs converge on shared
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downstream pathways, resulting in similar photoperiodic responses. If this is the case, we would

expect common gene expression differences between facultative and obligate LD lines across

accessions. To test this hypothesis, we conducted RNAseq on the leaf samples of seven

obligate LD lines and seven facultative LD lines (Fig. S2.8) at three different time points: dawn,

noon, and dusk. Initially, all plants were grown in SD until they reached a minimum of four pairs

of true leaves. This strategy was adopted to postpone flowering time in LDs, as plants in this

condition would otherwise commit to flowering very early. Subsequently, half of the plants were

transferred to the LD condition, while the other half continued to grow in SD. We harvested the

6th or 7th fully expanded true leaf under both conditions to ensure a comparable developmental

stage among the samples. For each combination of daylength and time point, three biological

replicates from different plants were collected for each line.

To analyze transcriptomic patterns, we conducted separate analyses for each time point.

First, to identify genes that exhibited different responses to daylengths between facultative and

obligate LD photoperiodism, we performed a 2-way ANOVA on each gene to test for a

significant interaction between photoperiodism and daylength. Second, since facultative and

obligate LD lines primarily differed phenotypically in short days, we screened for genes

differentially expressed between these two groups specifically in SD (i.e. regardless of any

interaction with daylength).

This combined analysis did not reveal any genes that reached genome-wide

significance. One potential reason is the presence of high variation across different Mimulus

accessions (as mentioned earlier in the first section of the results), and the limited sample size

of only seven lines per photoperiodism group may result in insufficient statistical power to

identify candidate genes. Another plausible explanation is the absence of a universally shared

pathway among accessions within the same photoperiodism group, despite exhibiting the same

79



ultimate photoperiodism phenotype. Under this hypothesis, different accessions may recruit

distinct sets of genes to achieve their photoperiodism phenotypes.

2.3.5 A very limited number of genes related to the transcriptomic differences in photoperiodism

are shared among the BEL, MAC, and TER accessions

To investigate whether different accessions utilized distinct transcriptional regulations to

achieve similar photoperiodism phenotypes, we subsetted our RNAseq data and focused on

gene expression variation within the BEL, MAC, and TER accessions separately, each of which

contained both facultative and obligate lines. In the BEL accession, we examined three

facultative LD lines (BEL2.1, BEL4, and BEL15) and a single obligate LD line (BEL6.1).

Similarly, the MAC and TER accessions consisted of two facultative LD lines each (MAC1.2 and

MAC2.1, and TER1.1 and TER1.3, respectively) along with a single obligate LD line (MAC7 and

TER1.10). Given the lack of replicates for obligate LD photoperiodism within each accession,

we applied filtering criteria to identify candidate genes. Similar to our previous approach, we

performed separate analyses for the data collected at different time points (dawn, noon, and

dusk) and employed two strategies to identify preliminary candidate genes: (1) conducting a

2-way ANOVA analysis to detect genes displaying line-by-daylength interactions and (2)

examining differential expression specifically in SD across all lines. Subsequently, we filtered the

genes based on their expression patterns, with a particular focus on identifying genes that

exhibited similar expression patterns among all facultative lines and distinct expression patterns

in the obligate line compared to all facultative lines. Table 2 and Table 3 provide the numbers of

the filtered candidate genes obtained from the 2-way ANOVA analysis and the differential

expression analysis in SD, respectively.
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Table 2: Numbers of filtered candidate genes identified by 2-way ANOVA detecting line-by-daylength

interactions within each accession at three distinct time points.

Table 3: Numbers of filtered candidate genes identified by differential expression analysis in SD within

each accession at three distinct time points.

Next, we examined the presence of shared candidate genes among the BEL, MAC, and

TER accessions. While no genes were found to be shared among all three accessions based on

the 2-way ANOVA analysis, the differential expression analysis in SD revealed 51 candidate

genes that were shared. These 51 genes were further filtered using Gene Ontology (GO) terms,

leading to the identification of a single gene, Migut.I00979, which is annotated with a GO term

associated with flowering regulation. Migut.I00979 encodes a basic helix-loop-helix protein, and

its homolog in rice was shown to be involved in the photoperiodic pathway of flowering (see the

discussion section for more information on this gene). The expression levels of Migut.I00979

were found to be generally higher in obligate LD lines compared to facultative LD lines under

the SD condition across all three accessions, and this pattern is specifically observed at dusk

(Fig. 2.9). Collectively, our analysis revealed a very limited number of shared genes among the
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BEL, MAC, and TER accessions, even considering the higher false positive rates due to the

lack of replicates for obligate LD photoperiodism. Thus, our results suggest that those

accessions may achieve similar photoperiodism phenotypes through distinct underlying

molecular mechanisms.

Fig. 2.9: Expression patterns of Migut.I00979 in BEL (A), MAC (B), and TER (C) accessions at dusk. In

SD, this gene exhibits generally higher expression levels in obligate LD lines compared to the

corresponding facultative LD lines. Each sub-panel represents the expression levels in a single line in

either LD or SD. Facultative LD lines are represented by green, while obligate LD lines are represented

by blue.
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2.3.6 Integration of QTL and RNAseq results identifies multiple candidate genes related to

flowering regulation in BEL and MAC accessions

To integrate the information from QTL mapping and RNAseq analyses in the BEL and

MAC accessions, we examined whether any candidate genes identified in the RNAseq data

were located within the 1.5-LOD intervals of the QTLs specifically related to photoperiodism

(i.e., the QTL on chromosome 14 for BEL and the QTLs on chromosomes 3 and 5 for MAC).

Subsequently, we applied a filtering process to these candidate genes using GO terms

associated with flowering regulation.

In the BEL accession, none of the genes identified from the RNAseq results using the

2-way ANOVA met the criteria of being located within the photoperiodism QTL and being

associated with the GO terms of interest. However, two flowering-related genes, Migut.N00999

and Migut.N00245, exhibited differential expressions between two photoperiodism groups in

BEL under the SD condition and were located within the photoperiodism QTL interval (Table 4).

Table 4: Flowering-related candidate genes identified by differential expression analysis in SD and located

within the photoperiodism-specific QTL on chromosome 14 of the BEL accession.

On the other hand, in the MAC accession, we identified several candidate genes related

to flowering regulation that were located within the photoperiodism-specific QTLs (chromosomes

3 and 5). Four genes, Migut.C01074, Migut.E00408, Migut.E01232, and Migut.E01656,

exhibited line-by-photoperiod interactions (Table 5). Additionally, two genes, Migut.E01551 and

Migut.E01667, showed differential expressions between obligate and facultative LD
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photoperiodisms in SD (Table 6). Further discussion regarding the candidate genes listed above

is provided in the discussion section.

Table 5: Flowering-related candidate genes identified by 2-way ANOVA detecting line-by-daylength

interactions and located within the photoperiodism-specific QTLs on chromosomes 3 and 5 of the MAC

accession.

Table 6: Flowering-related candidate genes identified by differential expression analysis in SD and located

within the photoperiodism-specific QTLs on chromosomes 3 and 5 of the MAC accession.
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2.4 Discussion

Photoperiod is a crucial external signal that plays a pivotal role in the adaptation of

plants to their local environment. Consequently, understanding how plants respond to

photoperiods has received considerable attention in evolutionary and ecological research. In

agricultural contexts, the artificial adaptation of crops to broad geographic ranges is a key step

during crop domestication. The extensive manipulation of photoperiodic responses in crops has

resulted in a diverse array of varieties that can be successfully cultivated at latitudes beyond the

range occupied by their wild progenitors (Nakamichi, 2015; Hill & Li, 2016; Brambilla et al.,

2017). While traditional breeding relies on natural genetic variation, gaining a deeper

understanding of the molecular mechanisms underlying a wide range of photoperiodic

responses is essential for efficient crop improvement. However, most of our current

understanding of photoperiodic responses is limited to plants with facultative photoperiodism. In

this study, we aimed to further our understanding of photoperiodism by studying the molecular

mechanism underlying obligate photoperiodism using Mimulus as a case study. Our research

focused on addressing two key questions: (1) What are the mechanisms that lead to the

stringent photoperiodic responses observed in obligate LDPs? and (2) Do different accessions

exhibiting similar photoperiodic responses share the same underlying mechanisms?

To address our first aim, we proposed and tested the "switch-vs-dial" hypothesis (Fig.

2.1). In Model 2, dial-like genes contribute to both the regulation of flowering time and

determining whether a plant can flower under certain photoperiod conditions. In contrast, Model

1 suggests that switch-like genes specifically dictate whether a plant can flower or not, while

dial-like genes modulate the timing of flowering. Through our QTL mapping using the BEL and

MAC populations, we identified several photoperiodism-specific QTLs, and those QTLs did not

exhibit significant effects on the flowering time phenotypes. These findings provide evidence for

the existence of switch-like genes in Mimulus. To gain deeper insights into the interplay between
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dial-like and switch-like genes in regulating short-day flowering phenotypes, further experiments

are required. For instance, exploring whether switch-like genes directly activate dial-like gene

expression or exert epistatic effects on dial-like genes would shed light on the underlying

molecular mechanisms of obligate-type photoperiodism.

Interestingly, our investigation uncovered distinct photoperiodism-specific QTLs within

the BEL and MAC populations (Fig. 2.7 and Fig. 2.8). One possible explanation for this

discovery is that similar photoperiodic responses across different accessions could be controlled

by different genetic mechanisms. Our RNAseq analysis supports this hypothesis because of a

lack of consistent transcriptional responses to photoperiod between facultative LD lines and

obligate LD lines in Mimulus. Finally, the integration of QTL and RNAseq results allowed us to

identify several candidate genes related to flowering regulation, which could be the focus of

future studies. Thus, in the first part of the discussion, we provide some information about those

candidate genes based on the functions of their homologs in other species.

We also recognized some potential challenges and caveats associated with the intrinsic

characteristics of our materials and the considerations in experimental design. Therefore, we

discuss these points in detail in the remaining part of our discussion. We believe that these

insights and experiences can be valuable for future research on organisms like Mimulus, which

receives relatively less attention compared to well-established model organisms.

2.4.1 Candidate genes related to photoperiodism in this study

In our RNAseq analysis (Section 2.3.5 of the results), we explored the presence of

shared candidate genes among the BEL, MAC, and TER accessions that were related to the

differences in photoperiodism. We identified a single candidate gene, Migut.I00979, which

exhibited higher expression in the obligate LD lines specifically at dusk under the SD condition.

Migut.I00979 encodes a protein belonging to the basic helix-loop-helix DNA-binding superfamily,
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with its predicted ortholog in Arabidopsis being AT3G21330. The function of AT3G21330

remains largely unknown due to the lack of study. However, its rice homolog, OsLF

(Os05g0541400), is implicated as a flowering repressor under both long-day and short-day

conditions. OsLF is proposed to interact with components of light signaling and the circadian

clock, ultimately influencing flowering-regulating genes including OsGI and Hd1 (Zhao et al.,

2011). The higher expression of Migut.I00979 in the obligate LD lines in SD is consistent with its

putative repressor function. Considering its potential role in transcriptional regulation, we

expected to identify other downstream flowering-related genes in our RNAseq analyses.

However, we did not detect any other candidate genes shared by these three accessions.

Therefore, further molecular experiments are necessary to confirm the role of Migut.I00979 in

the photoperiodism of Mimulus.

In BEL, we identified two flowering-related genes located within the

photoperiodism-specific QTL interval on chromosome 14: Migut.N00999 and Migut.N00245.

The homolog of Migut.N00999 in Arabidopsis is Nucleoporin 160 (Nup160), which is a

nucleoprotein that forms nuclear pore complexes involved in nucleocytoplasmic transport. In a

recent article (Li et al., 2020), Nup160 was demonstrated to mediate flowering regulation

through the diurnal abundance of the CO protein by ensuring the proper localization of an

E3-ubiquitin ligase called HIGH EXPRESSION OF OSMOTICALLY RESPONSIVE GENES1

(HOS1). Mutations in Nup160 result in an additional morning peak of FT expression and

accelerated flowering. On the other hand, the homolog of Migut.N00245 in Arabidopsis is

FLOR1, which encodes a leucine-rich protein. FLOR1 has been reported to interact with the

floral organ identity gene AGAMOUS (Gamboa et al., 2001). Mutations in FLOR1 result in a

slight delay in flowering under long-day conditions (Torti et al., 2012).

In MAC, we identified several genes located within the QTL interval that are potentially

involved in flowering regulation through different pathways. Migut.E01551 and Migut.E01232
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encode homologs of Arabidopsis EARLY FLOWERING 3 (ELF3) and SUPPRESSOR OF

PHYA-105 1 (SPA1), respectively, suggesting their role in circadian rhythm and photoperiodic

regulation of flowering (Zagotta et al., 1996; Hicks et al., 2001; Laubinger et al., 2006). We also

found genes involved in flowering regulation through carbohydrate metabolism and nitrate

transportation, such as Migut.E00408 (homologous to Arabidopsis ribose-5-phosphate

isomerase 2, RPI2) (Xiong et al., 2009) and Migut.E01667 (homologous to Arabidopsis

NITRATE TRANSPORTER 1.1, NRT1.1) (Teng et al., 2019). Migut.E01656 shares homology

with ORIENTATION UNDER VERY LOW FLUENCES OF LIGHT 1 (OWL1) in Arabidopsis,

which is known to sense light signals under very low light conditions (Kneissl et al., 2009). While

the function of the homolog of Migut.C01074 in Arabidopsis remains unclear, its homolog in rice,

Early heading date 3 (Ehd3), has been associated with long-day flowering through the

Ghd7-Ehd1 pathway. Interestingly, the ehd3 mutant failed to activate RFT1 in long days, leading

to a phenotype of obligate SD photoperiodism (Matsubara et al., 2011).

2.4.2 Challenges and caveats in this study

(A) QTL mapping

To detect the QTL associated with photoperiodism, we categorized the F2 individuals in

the mapping populations as either facultative LDP or obligate LDP based on their ability to

flower in SD. However, we observed a wide range of diversity in morphology (Fig. 2.4 and Fig.

S2.4) and flowering time among the F2 individuals (Fig. 2.5). In addition, when comparing these

binary groups directly, we did not detect any genome-wide significant QTLs. In contrast, we

found QTLs related to photoperiodism by comparing the obligate LD individuals with

early-flowering facultative LD individuals and then tested their QTL effects based on individual

marker analyses to determine if they were specifically linked to photoperiodism.
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These observations raise doubts about the effectiveness of binary categorization in

accurately capturing the variations present in our F2 populations for QTL mapping. It is plausible

that photoperiodic responses are influenced by multiple switch genes. Thus, if individuals

flowering early in SD tend to possess a certain combination of alleles of these genes compared

to those flowering late, grouping them together under a single photoperiodism category may

hinder the detection of individual switch-like genes involved. Similarly, inadequate categorization

could occur in individuals assigned to obligate LDP if they are unable to flower in SD due to

different combinations of causal genes, thereby compromising the accuracy of QTL mapping.

The challenge of properly categorizing similar flowering phenotypes is not uncommon, as these

phenotypes are typically modulated by multiple genes or pathways and exhibit high flexibility.

For example, in the case of rice, it has been reported that lines showing similar photoperiod

sensitivity can actually harbor different combinations of underlying flowering gene alleles (Zong

et al., 2021). In addition to the challenge of proper categorization, the relatively small sample

size in our experiment (192 F2s sequenced for each accession) further hinders the robust

detection of QTL signals, especially when we subsetted the dataset based on their flowering

time in some analyses. To address these issues, a more systematic recording across different

phenotypes is required for defining possible sub-categories within each photoperiodism.

Additionally, larger sample sizes are crucial to ensure sufficient replicates within each

sub-category, enabling more robust QTL mapping analyses.

Besides, we noticed that the QTLs associated with the two flowering time-related

phenotypes were not exactly identical. In BEL, we identified QTLs on chromosomes 10 and 12

for day-to-flower, while QTLs on chromosomes 7 and 10 were found for the node of the first

flower bud. On the other hand, in MAC, we only detected a QTL for day-to-flower, which was on

chromosome 4, while no genome-wide significant QTLs were found for the other trait. One

possibility is that these two flowering time-related phenotypes actually share the same
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underlying QTLs, but due to the small sample size used in this study, we might not have

detected all of the QTLs with sufficient statistical power. Consistent with this hypothesis, we

observed significant effects of the day-to-flower QTL on the node of the first flower bud in both

BEL and MAC (p = 0.013 and p = 0.005, respectively) when testing each individual QTL effect

separately. Additionally, in BEL, the QTL for the node of the first flower bud on chromosome 7

also exhibited a significant effect (p = 0.001) on the day-to-flower phenotype. Another possibility

is that these two flowering time-related phenotypes indeed have their own specific QTLs. As

suggested by Thomas and Vince-Prue (Thomas & Vince-Prue, 1997), different flowering time

proxies may hold distinct biological meanings for different species under varied experimental

conditions. Further fine-mapping is required to test these two hypotheses.

(B) RNAseq

To identify candidate genes associated with photoperiodism differences within

accessions, we subsetted our original RNAseq dataset and compared the transcriptomes of

facultative LD lines with a single obligate LD line in the BEL, MAC, and TER accessions. While

we had three biological replicates for each line at every single time point, it is important to note

the limitation of this analysis due to the lack of replication of obligate LD photoperiodism. This

limitation makes it challenging to distinguish between genes truly related to photoperiodism and

those influenced merely by the uniqueness of the single obligate LD line. To mitigate this issue,

we applied additional criteria and specifically focused on genes that showed similar expression

patterns among facultative lines but differed from the obligate line. However, it is expected that

this approach may include more false positives compared to the analysis with true replicates of

obligate LD photoperiodism. Interestingly, even with this lenient approach, we only detected a

single gene, Migut.I00979, which was shared by all three accessions. This finding supports the

possibility that different accessions achieve similar photoperiodic phenotypes through distinct
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molecular mechanisms, and it is consistent with our QTL results and the original RNAseq

analysis that directly compared seven obligate and facultative LD lines across accessions.

Furthermore, sample selection is another important factor to consider in future studies. In

our current investigation, we primarily focused on the transcriptome regulations in leaves, as it

has been well-established that plants perceive photoperiod signals through their leaves.

However, emerging evidence suggests the involvement of other pathways and tissues in

flowering regulation, particularly in plants with prolonged growth. For instance, the aging

pathway in the shoot apical meristem, specifically the SPL15 gene, has been shown to act in

parallel with FT in inducing flowering in older plants (Hyun et al., 2019). Therefore, incorporating

additional pathways and tissues into future studies may provide a more comprehensive

understanding of the regulatory mechanisms underlying photoperiodism.

(C) Integration of the QTL and RNAseq results

To integrate the results from QTL and RNAseq, we analyzed the candidate genes

obtained from the RNAseq that were located in the QTL interval. We identified several candidate

genes and discussed their possible functions in flowering regulation above.

Although the candidate genes identified in our study provide a valuable starting point for

future experiments, we acknowledge that the assumption underlying our analysis—that the

causal genes within the QTLs would exhibit transcriptional differences—may not hold true in all

cases. In addition, it is important to recognize that the GO annotation in Mimulus is still

incomplete. Most of the available evidence for Mimulus GO annotations is based on the

prediction using homologous genes in other plant species, primarily Arabidopsis and rice.

However, due to the intrinsic diversity and complexity of the flowering pathway, certain lineage-

or species-specific genes may not be well annotated. Furthermore, recent studies have

highlighted crosstalk between the classical flowering pathway and other metabolic pathways,
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such as nutrition or sugar metabolism (Gendron & Staiger, 2023). This poses challenges in

precisely defining "flowering-related genes" for GO filtering. Therefore, further fine mapping is

necessary to identify the genetic basis of photoperiodism, and functional studies combining

mutagenesis will be crucial in elucidating the detailed mechanisms involved.

92



2.5 Materials and Methods

Plant materials and growth conditions

The annual Mimulus guttatus seeds used in this study were collected by Benjamin K.

Blackman’s lab, and the accessions were described in Kooyers et al (Kooyers et al., 2015). To

initiate germination, seeds were cold stratified on a soil mixture consisting of 50% Sunshine Mix

#1 potting soil and 50% vermiculite in the dark at 4°C for 7 days. Following cold stratification,

seeds were transferred to Conviron E7/2 growth chambers until the second true leaves

emerged (approximately 10 to 14 days). Seedlings were then transplanted into plastic rose pots

measuring 5 cm square by 8 cm deep. A fresh mixture of Sunshine Mix and vermiculite was

used as the growing medium. Pots were randomized within chambers and rotated three times

per week. Seedlings were watered every 2 days with fertilizer water provided by the UC Davis

Controlled Environment Facility. Growth chambers were maintained at a temperature of 22°C

and photosynthetically active radiation of approximately 250 umol m-2s-1, with a red-to-far-red

light ratio of about 1.5.

For the phenotypic screening, the plants were germinated and grown under a short day

(SD) condition, with a day/night cycle of 9:15 hours. This daylength was chosen because it

corresponds to the minimum daylength observed in the natural habitat of the accessions used in

this study, which is not shorter than 9.5 hours. By using this SD condition, we aimed to ensure

that the individuals capable of flowering under these conditions would also be capable of

flowering in any daylength in their natural habitat throughout the year, assuming other

environmental factors such as drought or abiotic stress are not considered. The experiment was

conducted for a duration of 16 weeks to align with the typical life cycle of annual Mimulus

accessions. These plants typically germinate in the spring and undergo senescence during

93



summer droughts. To establish stable flowering responses, the candidate lines were selfed for

an additional 2 generations, reaching at least the F4 generation.

To evaluate flowering traits, including photoperiodism and flowering time, the plants were

grown under either SD or long day (LD, 16:8 hours day/night cycle) conditions. The lines that

could only flower in LD were classified as obligate LD lines. Among the lines capable of

flowering in SD, we distinguished between day-neutral lines and facultative LD lines by

comparing their flowering time in SD and LD. Day-neutral lines were expected to flower at the

same time regardless of daylength, while flowering in facultative LD lines was anticipated to be

accelerated in LD. To estimate flowering time, we recorded day-to-flower, as well as the node of

the first flower bud and the node of the first fully-opened flower. The experiment concluded at

the end of the 16th week, as described previously.

For RNAseq analysis, we took into consideration the high sensitivity of the transcriptome

to plant age and the timing of harvest. To ensure accurate sampling, we established two criteria:

(1) We harvested the 6th or 7th true leaves (excluding leaves on reproductive nodes) to ensure

the comparisons were made across adult leaves. (2) We collected samples at three time points:

Dawn (ZT0 for both SD and LD), Noon (ZT4.5 for SD and ZT8 for LD), and Dusk (ZT9 for SD

and ZT16 for LD). To meet these criteria, all plants designated for RNAseq analysis were

germinated and grown under the SD condition until the emergence of the 4th true leaves. This

approach was adopted to delay flowering in the LD treatment, as plants germinating directly

under LD conditions typically flowered before reaching the 6th node. Subsequently, the

seedlings were randomly assigned to either SD or LD chambers, and when available, the 6th or

7th fully extended true leaves were collected for RNA extraction. For each line, we harvested

three leaves from three different biological replicate plants.
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For QTL mapping, the BEL and MAC F2 mapping populations were grown under SD

conditions, as described above. The experiment duration was extended by 6 weeks (a total of

22 weeks) to identify plants that did not flower more accurately. For the plants that flowered by

the 22nd week, we recorded the days to flowering, the node of the first flower bud, and the node

of the first flower.

All leaf samples harvested during our experiments were promptly submerged in liquid

nitrogen to rapidly halt any biological processes. The samples were then stored at -80°C to

maintain their integrity until RNA or DNA extraction was performed.

Generating mapping populations and conducting QTL mapping analysis

We constructed two F2 mapping populations by crossing lines with distinct

photoperiodism from the same accession for QTL mapping of the obligate photoperiodism trait.

We selected BEL4 (facultative LD line) and BEL4.2 (obligate LD line) for the BEL accession and

MAC1.2 (facultative LD line) and MAC7 (obligate LD line) for the MAC accession. The F1

generations were generated by crossing one individual from each line, followed by selfing of a

single F1 individual to produce recombinant F2 mapping progenies.

To obtain genomic data for our mapping populations, we employed a whole-genome

resequencing approach. Total genomic DNA was isolated from 192 F2 samples and both

parents in each mapping population using a high-throughput column-based method with slight

modifications, as described by Anderson et al. (Anderson et al., 2018). DNA integrity was

assessed using agarose electrophoresis, and the concentration was determined using

Quant-iT™ PicoGreen™ dsDNA Assay Kits (ThermoFisher, Cat. # P7589). High-quality DNA

samples were sent to the DNA Technologies & Expression Analysis Core at UC Davis for library
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preparation using the SeqWell DNA Library kit. Pooled libraries were sequenced on an Illumina

HiSeq X sequencer, generating 150-bp paired-end reads.

To obtain SNP markers for subsequent linkage map construction and QTL mapping, we

conducted variant calling and marker selection. The sequencing results were first subjected to

quality analysis using FastQC (Andrews, 2010) and trimmed using HTStream (Angell & S4HTS,

2017). Subsequently, the reads were aligned to the Mimulus guttatus reference genome

(Mimulus guttatus v2.0 from Phytozome v13 (Goodstein et al., 2012)) using the BWA-MEM

alignment tool (Li & Durbin, 2009). Next, we called variants for the parental lines using GATK4

based on its best practices workflows (Poplin et al., 2018) and filtered the resulting SNPs using

bcftools (Li, 2011) with setting `-g ^miss` and `-e 'N_PASS(GT="AA")>1'`. After obtaining

high-confidence SNP markers, we performed variant calling for the F2 individuals at these

marker loci using bcftools mpileup. The VCF files generated from each individual were then

merged, and an additional round of marker filtering was carried out to remove markers with

unusual allele frequencies. This filtering was carried out by vcftools with setting MAF=0.35 and

QUAL=50. Due to potential issues such as low coverage and noise, we developed a custom R

script to re-score genotypes for fixed windows of 1 Kb. Subsequently, the TIGER script (Rowan

et al., 2015) was utilized for genotype imputation. The procedures are summarized in Fig. S2.9.

Linkage maps construction and subsequent QTL mapping were performed using R/qtl

(Broman et al., 2003). Linkage groups and the order of SNP markers were determined based on

the 14 chromosomes defined in the reference genome. The linkage maps were then assessed

by plots of the pairwise recombination fractions and LOD scores. We identified a clear inversion

on chromosome 10. To identify possible breakpoints of the inversion fragments, we developed a

custom R script that employed a sliding window strategy and calculated the correlation of allele

frequencies between marker blocks. The inversion fragments were manually rearranged and the

LOD scores of pairwise recombination fractions were analyzed. For QTL mapping, single-QTL
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genome scans were conducted using the Haley-Knott regression method implemented with the

`scanone` function. To establish genome-wide significance thresholds, 1000 permutations were

conducted for each phenotype individually, setting the significance level at α = 0.1. The QTL

intervals were estimated by calculating 1.5-LOD support intervals using the `lodint` function.

Furthermore, multiple-QTL models were fitted using the `fitqtl` function to determine the additive

effect, dominance deviation, and the percentage of phenotypic variance explained by each QTL

among the F2 individuals. Non-additive interactions among QTLs were also examined using the

`addint` function, but no significant interactions were detected.

RNAseq library preparations and data analyses

Samples were treated with liquid nitrogen and ground with two or three 2.8 mm ceramic

beads using the SPEX™ SamplePrep 2010 Geno/Grinder at 1100 rpm for 2 minutes.

Subsequently, mRNA was extracted from the samples using the Dynabeads™ mRNA DIRECT

Kit (Invitrogen, Cat. #: 61012). The concentration of mRNA was assessed using the QuantiFluor

RNA System (Promega, Cat. #: E3310) to ensure sufficient input mRNA for library preparation.

RNAseq libraries were generated following the BrAD-seq protocol (Townsley et al., 2015) with

some modifications, and then cleaned and size-selected using homemade SPRI beads. Gel

electrophoresis was performed to examine the libraries, and they were pooled together at the

same concentration. The pooled libraries were then sequenced on a single lane of an Illumina

HiSeq X sequencer, generating 150-bp paired-end reads.

The sequencing reads were analyzed using FastQC (Andrews, 2010) for quality

assessment, and then mapped to the Mimulus reference genome using the STAR aligner (Dobin

et al., 2013). The resulting count tables generated by STAR were merged to create a count

table, which served as the input for the limma-voom package (Law et al., 2014). Data obtained

from different time points were analyzed separately. The model fitting was performed following
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the guidelines provided in the limma-voom tutorial (Law et al., 2018). Candidate genes were

identified based on a false discovery rate (FDR) threshold of 10% (i.e., with a

Benjamini-Hochberg adjusted p-value below 0.1 (Benjamini & Hochberg, 1995)).

For filtering gene lists by GO terms, GO annotations for each gene were obtained from

Dicots PLAZA 5.0 (Van Bel et al., 2022). The predicted homologs of Mimulus genes in

Arabidopsis or rice were obtained by querying the Dicots PLAZA 5.0 website.
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Fig. S2.1: The percentage of plants that either flowered or failed to flower in SD among the generated

obligate and facultative LD lines. The yellow bars represent the proportion of plants that flowered or

induced flowering in SD. The cyan bars represent the plants that senesced and died before the end of the

16-week experiment. The green bars represent the plants that did not flower but still maintained

vegetative growth in SD. All lines underwent at least 4 generations of inbreeding to stabilize their

flowering responses.
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Fig. S2.2: Nodes of the first flowering bud for both facultative LD lines (green) and obligate LD lines (blue)

under the LD condition. The diamonds in each box plot represent the mean of the node of the first flower

bud.
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Fig. S2.3: A wide variation in 7-week-old Mimulus seedlings in SD. The upper row displays obligate LD

lines (from left to right): ASK3.3, BLD8.2, GBS1.3, SHC2.1, and TER1.10. The lower row exhibits

facultative LD lines (from left to right): BEL2.1, BEL15, MAC1.2, MAC2.1, and TER1.1. Red bars located

beside the shoot apical meristem (SAM) of each plant in the panels indicate a length of 1 cm.
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Fig. S2.4: Morphological variation within the F2 mapping population of MAC. (A) An individual exhibiting a

typical facultative LD phenotype. (B) Obligate LD individuals display a diverse range of phenotypes.
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Fig. S2.5: Phenotypic effects of the photoperiodism-specific QTL on chromosome 14 in BEL on (A)

day-to-flower and (B) the node of the first flower bud. “A” represents the allele from BEL4.2, an obligate

LD line, while “B” represents the allele from BEL4, a facultative LD line. Error bars indicate standard

errors.
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Fig. S2.6: Phenotypic effects of the photoperiodism-specific QTL on chromosome 3 in MAC on (A)

day-to-flower and (B) the node of the first flower bud. “A” represents the allele from MAC1.2, a facultative

LD line, while “B” represents the allele from MAC7, an obligate LD line. Error bars indicate standard

errors.
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Fig. S2.7: Phenotypic effects of the photoperiodism-specific QTL on chromosome 5 in MAC on (A)

day-to-flower and (B) the node of the first flower bud. “A” represents the allele from MAC1.2, a facultative

LD line, while “B” represents the allele from MAC7, an obligate LD line. Error bars indicate standard

errors.
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Fig. S2.8: Experimental design of RNAseq comparing photoperiodism across Mimulus accessions. The

study included 7 lines from each facultative LD photoperiodism (dark green ellipses) and obligate LD

photoperiodism (blue ellipses). The circles connected to the ellipses indicate the accessions from which

each line was derived.
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Fig. S2.9: Schematic workflow illustrating the process of SNP marker acquisition prior to QTL mapping.
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Chapter 3 Transcriptomic Responses to Temperature Fluctuations of

Mimulus

3.1 Abstract

Controlled environment conditions are extensively used in plant biology research and have

provided valuable insights. However, extrapolating findings from controlled environments to

natural field conditions is challenging due to the substantially greater fluctuations of

environmental factors in the latter conditions. To bridge this knowledge gap, we incorporated

diel fluctuating temperature into the controlled growth system and investigated the

transcriptomic differences between constant and diel fluctuating temperature conditions in the

Mimulus SWC accession. As part of a broader project, we developed pipelines for analyzing our

time-course transcriptomic data. We summarized global expression variations using the

molecular timetable method and identified specific genes displaying differential expression

patterns between the two temperature profiles using a B-spline fitting strategy. Different

expression patterns of circadian core clock genes were observed in the diel fluctuating

temperature condition. Our study sheds light on the influence of diel fluctuations of temperature

on gene expression and facilitates further research in understanding the impact of fluctuating

environmental factors on plant transcriptomes. Moreover, we offer insights into potential caveats

in this project that require subsequent refinement.
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3.2 Introduction

Deciphering the molecular mechanisms that underlie plant responses to dynamic

external environments has long been a fundamental objective in plant research. However, the

intrinsic complexity of these processes poses challenges in studying all possible environmental

factors simultaneously. To overcome this, a common strategy is to dissect environmental factors

in controlled environments, where plants are cultivated under consistent conditions, with the

exception of the specific factor being investigated. Although this approach has successfully

contributed to our understanding of plant responses to environmental stimuli, increasing

evidence shows that this strategy has certain limitations, particularly in extrapolating findings to

real-world field conditions (Matsuzaki et al., 2015; Poorter et al., 2016; Matsubara, 2018; Chiang

et al., 2020; Hashida et al., 2022). Notably, several recent articles shed light on the impact of

natural temperature profiles on plant development and suggest that temperature can be one of

the missing factors connecting laboratory results and field observations (Burghardt et al., 2016;

Annunziata et al., 2018; Song et al., 2018; Hashida et al., 2022). Unlike growth chambers or

greenhouses, which typically maintain constant or relatively stable temperatures, natural

environments exhibit diel fluctuations in temperature, with peak values often occurring during

the afternoon and lowest values at dawn. The diel temperature fluctuations exert wide-ranging

influences on plants, including primary metabolism (Annunziata et al., 2018), flowering

regulation (Burghardt et al., 2016; Song et al., 2018), and the circadian clock (Annunziata et al.,

2018; Hashida et al., 2022). These findings underscore the importance of considering diel

fluctuating temperature in plant studies. Therefore, to achieve a comprehensive understanding

of the effects of diel temperature fluctuations, further investigations encompassing different

species and/or temperature profiles are necessary.

Time-course transcriptome analysis can be used to explore the differences in plant

responses to constant and fluctuating conditions. Such analysis provides valuable information

along the time axis, offering insights into the dynamic regulatory networks of plants. However,
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the intricate nature of time-course transcriptomic data, along with the abundance of information

it provides, presents challenges in terms of concise interpretation. To obtain a straightforward

summary of time-course transcriptome analysis, we utilized the molecular timetable method,

initially described by Ueda et al (Ueda et al., 2004). This method comprises two main modules:

circadian time group (CT group) binning and internal time prediction (Ueda et al., 2004; Kerwin

et al., 2011; Fukuda et al., 2018; Wang et al., 2021). Time points in this analysis are usually

represented on the scale of Zeitgeber time (ZT), which is a temporal unit determined by the

period of external cues (day-night cycle in our case and ZT0 corresponds to the onset of light).

CT group binning involves the identification and grouping of cycling genes based on the timing

of their peak expression levels. For example, a gene exhibiting maximum expression at ZT10

will be allocated into the CT10 group. To obtain summarized expression patterns for each CT

group, the expression levels of each gene are standardized across all the samples.

Subsequently, the average expression of all genes within the same CT group is calculated at

each sampling time point. With a designated CT group, the global patterns can be compared

between temperature profiles, either by visualizing the average expression curves or by utilizing

rhythmicity prediction programs to acquire estimated rhythmic parameters.

The second component of the molecular timetable method involves internal time

prediction. The primary objective of internal time prediction is to leverage the oscillating patterns

within a pre-constructed training set to predict the internal time of a sample collected at a single

time point. The establishment of the training set is based on the CT group binning method

described earlier. Within this approach, genes belonging to a predetermined CT group can

serve as “time indicators” for a specific time point. For instance, genes in CT10 act as time

indicators for ZT10 due to their peak expression at that time. Utilizing this information, we are

able to predict the internal time for a sample by identifying which group of time indicator genes

displays the highest average expression at the time of collection. In practice, the average

expression for each CT group is computed for a sample, and subsequently, a curve is fitted to
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these average expressions across the CT groups. The internal time is expected to coincide with

the peak of the fitted curve. The relationship between CT groups and the predicted internal time

can be illustrated using a three-dimensional wave plot. For detailed derivation of this

relationship, please refer to the previous articles (Fukuda et al., 2018; Talamanca & Naef, 2020).

Similar to CT group binning, with a defined CT group, the disparities among the predicted

internal times of the samples collected under different temperature profiles can provide global

summaries of the impact of temperature on the rhythmic regulation of gene expression.

This study is part of a broader project aimed at investigating the influence of diel

fluctuating temperature on plant transcriptomes. Building upon unpublished data by Johanna

Schmitt and Daniel Runcie, who examined transcriptomic differences in Arabidopsis thaliana,

our objective is to expand this project by focusing on Mimulus guttatus (hereafter referred to as

Mimulus), another species used in our laboratory. To replicate the natural diel temperature

fluctuations experienced by Mimulus in its native habitat, we constructed an hourly-based

temperature profile using publicly available weather data. Our primary goal is to establish a

systematic analysis workflow that incorporates the molecular timetable method and spline-fitting

modeling to analyze time course data. Through the application of these approaches, we gained

deeper insights into the molecular dynamics and regulatory mechanisms underlying Mimulus'

response to diel temperature fluctuations. However, we also recognized issues in the analysis

pipeline we developed and suggested potential improvements for future research.
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3.3 Materials and methods

Plant materials and growth conditions

In this study, we utilized the annual Mimulus guttatus SWC accession collected by Benjamin K.

Blackman's laboratory and described in the article by Kooyers et al (Kooyers et al., 2015). The

seeds underwent cold stratification on a 1:1 mixture of Sunshine Mix #1 potting soil and

vermiculite in the dark at 4°C for 7 days prior to germination. Germination took place under

controlled conditions of 22°C and 14:10 hours light/dark cycles (constant condition) in Conviron

E7/2 growth chambers. After germination, the young seedlings were transplanted into plastic

rose pots measuring 5 cm square by 8 cm deep, filled with a fresh mixture of Sunshine Mix #1

potting soil and vermiculite. The pots were randomized within the growth chambers and rotated

three times per week and were watered every 2 days using fertilizer water provided by the UC

Davis Controlled Environment Facility. Upon the development of the 2nd true leaves, half of the

plants were transferred to a diel fluctuating temperature condition, also with 14:10 hours

light/dark cycles. Details of the temperature profile are provided below. On the 12th day after the

transfer, fully expanded 2nd or 3rd true leaves were collected from the plants in both

temperature profiles every 3 hours, starting at dusk on the first day, spanning a 24-hour

duration, for RNAseq library preparation. We collected four biological replicates from different

plants for each combination of time point and temperature profile.

Temperature treatments

For the constant temperature profile, we maintained the temperature at 22°C, as this is

commonly used for conducting Mimulus experiments. The daylength was set as a 14:10 hours

day/night cycle, based on the critical photoperiod (the minimum daylength required for

flowering) for the SWC accession.

To recreate a diel fluctuating temperature profile that mimics the temperature conditions

during the growing season of Mimulus, we obtained and analyzed hourly-based ground
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temperature data from the KRDM weather station on the Weather Underground database

(https://www.wunderground.com/). This weather station was chosen because of its proximity to

Iron Mountain in Oregon, USA, which is the habitat of the widely utilized Mimulus IM accession

series. We applied and fitted the temperature model described by Cesaraccio et al (Cesaraccio

et al., 2001). Among the available temperature data, we selected the dataset from 6/6, 2016, as

it closely matched the desired temperature profile we intended to evaluate (14:10 hours

day/night cycle, average temperature 22°C) and displayed a smooth diel fluctuating temperature

pattern. Based on this dataset, we generated an hourly temperature profile (Fig. S3.1) with a

maximum temperature of 32°C (at ZT10 and 11) and a minimum temperature of 12°C (at ZT1).

RNAseq library preparation and data analysis

Samples were frozen using liquid nitrogen and then homogenized with two or three 2.8

mm ceramic beads using the SPEX™ SamplePrep 2010 Geno/Grinder at 1100 rpm for 2

minutes. mRNA extraction was conducted using the Dynabeads™ mRNA DIRECT Kit

(Invitrogen, Cat. #: 61012), and the concentration of mRNA was assessed using the QuantiFluor

RNA System (Promega, Cat. #: E3310) to ensure sufficient input mRNA for library preparation.

RNAseq libraries were prepared following the BrAD-seq protocol (Townsley et al., 2015) with

some modifications. The libraries were then cleaned and size-selected using homemade SPRI

beads. After performing gel electrophoresis to assess qualities, the libraries were pooled

together at the same concentration and sequenced on a single lane of an Illumina HiSeq X

sequencer, producing 150-bp paired-end reads.

The sequencing reads were subjected to quality assessment using FastQC (Andrews,

2010) and trimmed with Trimmomatic (Bolger et al., 2014). Mapping to the Mimulus reference

genome was performed using the STAR aligner (Dobin et al., 2013), and the count tables

generated were merged to create the input for the limma-voom package (Law et al., 2014).
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RNAseq data normalization and model fitting were performed following the guidelines

presented in the limma-voom tutorial (Law et al., 2018). For the time course data, B-splines

were applied using the `pbs` function in the `pbs` package, with degrees of freedom set to 5.

Candidate genes were identified based on a false discovery rate (FDR) threshold of 5% (i.e.,

with a Benjamini-Hochberg adjusted p-value below 0.05 (Benjamini & Hochberg, 1995)).

Molecular timetable analysis

The first step of the molecular timetable method involved circadian time group (CT

group) binning. To identify cycling genes and determine their CT group, we utilized the

JTK_CYCLE algorithm version 3.0 (Hughes et al., 2010) on our normalized RNAseq data (on

the counts per million, CPM, scale) following the user guide provided on the JTK_CYCLE

website (https://openwetware.org/wiki/HughesLab:JTK_Cycle). We applied a false discovery

rate (FDR) threshold of 5% to identify target cycling genes. Since we collected a total of nine

time points in a 24-hour period, JTK_CYCLE automatically binned the cycling genes into 16 CT

groups for each temperature profile based on their peak time. The cycle genes within a CT

group can be defined by either the dataset of constant or diel fluctuating temperature conditions.

To compare expression patterns between the two temperature profiles within the same

CT group, we analyzed the datasets from the different temperature profiles separately and

visualized them together with curve plots (see Fig. 3.2) using `ggplot2` package in R.

Specifically, we standardized the expressions of each gene across samples within the same

temperature profile to ensure all cycling genes had the same average expression level and

standard deviation, thus eliminating the effect of intrinsic expression level variation among

genes. Next, we calculated the average expressions of all genes within the same CT group for

each sample. Since four samples were collected at each ZT time point, each sample

represented a single replicate of that specific ZT time point. The expressions were then

standardized again across samples within the same CT group to make them comparable among
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different CT groups. In addition to visualizing CT curves, we also used JTK_CYCLE to estimate

the phase and amplitude of each CT curve for the purpose of comparison.

To predict the internal time for each sample based on the information obtained from the

CT group binning, we applied JTK_CYCLE on each sample's CT group expression data to

detect the CT group with the highest expression, which was defined as the internal time of that

sample.

GO enrichment analysis

The Mimulus GO annotations for each gene were obtained from Dicots PLAZA 5.0

(Van Bel et al., 2022). GO enrichment analysis was performed using GOseq (Young et al., 2010)

with read count bias correction. For function predictions, we retrieved the homologs of Mimulus

genes in Arabidopsis or rice by querying the Dicots PLAZA 5.0 website (Van Bel et al., 2022).

Statistical analysis

All statistical analyses for phenotyping and gene expressions were conducted using the

R language (R version 4.2.2). We used the `pheatmap` package to construct heatmaps and

other data visualization was performed using the `ggplot2` package. For pairwise comparisons,

we used the `emmean` and `contrast` functions in the `emmeans` package to process the `lm`

results.
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3.4 Results

3.4.1 Identification of cycling genes under constant and diel fluctuating temperature conditions

To investigate the transcriptomic differences in Mimulus under different temperature

conditions, we conducted a time-course experiment using the SWC accession. The plants were

exposed to either constant or diel fluctuating temperatures with an average of 22°C, following a

14:10-hour light/dark cycle (Fig. S3.1). We collected leaf samples at 3-hour intervals over a

24-hour period, starting at dusk on the first day (ZT-10) and ending at dusk on the second day

(ZT14). Four biological replicates were obtained, each harvested from different plants. RNAseq

was used to obtain the transcriptome data. After data preprocessing and filtering, we obtained

17,912 genes with a sufficiently large number of counts for downstream analyses.

We applied the JTK_CYCLE algorithm (Hughes et al., 2010) to our RNAseq data to

identify cycling transcripts, resulting in the detection of 1,557 and 2,945 genes exhibiting

rhythmic expression patterns under constant temperature and diel fluctuating temperature

conditions, respectively (Fig. 3.1A and B). Based on the timing of their peak expression as

predicted by JTK_CYCLE, we binned these genes into 16 CT groups for each temperature

condition. The CT groups ranged from CT-10 to CT12.5, with each group representing a

1.5-hour window, which is the resolution of our analysis. As shown in Fig. 3.1C and D, the

distributions of the bin sizes differed between the two temperature profiles. Under the diel

fluctuating temperature condition, we observed two peaks at CT-1 and CT11 with a high

frequency of cycling genes. In contrast, the constant temperature condition exhibited a single

peak at CT11.
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Fig. 3.1: Identification of cycling genes under constant (A and C) and diel fluctuating (B and D)

temperature conditions. Heat maps (A and B) illustrate the standardized expression levels of cycling

genes under constant (A) and diel fluctuating (B) temperature conditions, comprising 1,557 and 2,945

genes, respectively. The adjacent columns represent four biological replicates for each time point,

ordered from ZT-10 to ZT14, left to right. Genes are sorted in rows based on their peak expression times.

Yellow and blue represent high and low expression levels, respectively. The bar plots depict the

differences in the frequency distributions of the cycling genes across 16 CT groups under constant (C)

and diel fluctuating (D) temperature conditions.

3.4.2 Diel temperature fluctuations have influence on the global expression patterns of cycling

genes

To investigate the global pattern variation in cycling genes under two different

temperature conditions, we analyzed expression curves of CT groups: The standardized

expression levels of all genes within a CT group were averaged along the ZT time axis
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separately for the datasets of constant and diel fluctuating temperature conditions.

Subsequently, the resulting average expression curves (CT curves) were subjected to analysis

using JTK_CYCLE to obtain the phase and amplitude information. Meanwhile, CT curves were

visualized and compared directly.

First, we examined the expression patterns using the CT groups defined under the

constant temperature condition (Fig. 3.2). Using JTK_CYCLE, all the CT curves derived from

samples collected under the constant temperature were shown to have the peak times at the

corresponding ZT time points (Table 3.1). However, visualizing these CT curves (Fig. 3.2,

salmon curves) revealed certain deviations. In general, most CT curves displayed prominent

peaks around their corresponding ZT time points. For example, the CT-1 curve exhibited the

highest expression levels at ZT-1. Nonetheless, certain CT groups, such as CT3.5 and CT5,

demonstrated deviations by peaking at approximately ZT2 and ZT3, respectively. The disparities

between the JTK_CYCLE calculations and the visualized CT curves could be attributed to the

limited resolution of our dataset. Since we sampled at intervals of 3 hours within a single

24-hour period, only 16 bins were generated using JTK_CYCLE. This restricted number of bins

might not adequately capture the rhythmic patterns of the cycling genes, subsequently leading

to imprecise predictions or categorizations of the peak time of the cycling genes. We discuss

these deviations and suggest potential improvements in the discussion section. Nevertheless,

the comparisons of CT curves between two temperatures remained valid, as we only examined

the timing of expression peaks within the same CT groups. We found that the majority of the

expression peaks observed using the fluctuating temperature dataset aligned with those

observed in the constant temperature dataset, except for CT-7, CT-5.5, CT8, and CT9.5, which

JTK_CYCLE indicated delayed maximum expressions under the fluctuating temperature

condition. The visualized results approximately demonstrated these delayed patterns (Fig. 3.2,

cyan curves). However, we also noticed that certain variations in rhythmic characteristics, such

as waveform, were challenging to detect using JTK_CYCLE but were evident in the visualized
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curves. For example, the CT8 curves may also display waveform differences between two

temperature profiles, not just phase shift.

Fig. 3.2: Phase shifts observed in some CT groups determined under the constant temperature

conditions. JTK_CYCLE identified delayed maximum expressions for CT-7, CT-5.5, CT8, and CT9.5

under the fluctuating temperature condition (see Table 3.1). Expression levels of cycling genes within
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each CT group were standardized, averaged separately for the constant temperature dataset (salmon

curves) and the diel fluctuating temperature dataset (cyan curves), and arranged from ZT-10 to ZT14.

Dots indicate mean expression values in a single sample, while shaded ribbon plots represent standard

deviations.

Table 3.1: Predicted phase of each CT curve using JTK_CYCLE. CT groups were defined under the

constant temperature condition. Therefore, all predicted peak times of CT curves using the constant

temperature dataset are consistent with CT group binning. CT groups highlighted in red indicate those

showing delayed peak times under the diel fluctuating temperature condition.

CT groups Constant Diel Fluctuating

CT-10 -10 -10

CT-8.5 -8.5 -8.5

CT-7 -7 -5.5

CT-5.5 -5.5 -4

CT-4 -4 -4

CT-2.5 -2.5 -2.5

CT-1 -1 -1

CT0.5 0.5 0.5

CT2 2 2

CT3.5 3.5 3.5

CT5 5 5
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CT6.5 6.5 6.5

CT8 8 9.5

CT9.5 9.5 11

CT11 11 11

CT12.5 12.5 12.5

Next, we conducted the same analysis, but using the CT groups defined under the diel

fluctuating temperature condition (Table 3.2 and Fig. 3.3). Similar to the previous analysis,

JTK_CYCLE indicated that all CT curves derived from the dataset of diel fluctuating temperature

exhibited peak times aligned with the expected ZT time points. The disparities between

JTK_CYCLE calculations and the visualized CT curves were also observed in this case, with

several CT groups displaying notable deviations from their expected peak times in Fig. 3.3

(cyan curves). Additionally, based on JTK_CYCLE calculations, phase shifts were identified by

comparing the CT curves between constant and diel fluctuating temperature conditions (Table

3.2). Intriguingly, more CT groups exhibited phase shifts between two temperature profiles in

this case compared to the previous one. Specifically, we observed delayed maximum

expression in the diel fluctuating temperature condition for CT-10, -2.5, -1, 0.5, 9.5, 11, and 12.5,

while accelerated maximum expression was noted for CT-7, -5.5, and 3.5.

The more pronounced disparity between CT curves of different temperature profiles

using the CT group defined under the diel fluctuating temperature condition could be attributed

to the higher number of cycling genes identified in this dataset (2,945 genes vs 1,557 predicted

cycling genes in the dataset of constant temperature). However, it is challenging to differentiate

between the possibility that the higher count of cycling genes resulted from better RNAseq
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experimental performance in the diel fluctuating temperature dataset, or whether the diel

temperature introduced additional signals to entrain more cycling genes. Interestingly, a

consistent pattern emerged when investigating CT8 and CT9.5 for CT groups defined under the

constant temperature condition (Table 3.1) with CT9.5 and CT11 for CT groups defined under

the diel fluctuating temperature condition (Table 3.2). In these cases, the predicted peak times

of the CT curves derived under the diel fluctuating temperature condition occurred at ZT9.5 and

ZT11, exhibiting delayed peak expressions. Given this time window corresponded to the period

with the highest temperature (above 30°C) in the diel fluctuating temperature profile, it’s

plausible that these shared shifts in CT curves were influenced by the temperature. Taken

together, our findings of CT curve comparisons suggest that the global expression patterns of

cycling genes are influenced by diel temperature fluctuations.
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Fig. 3.3: Phase shifts observed in some CT groups determined under the diel fluctuating temperature

conditions. JTK_CYCLE identified delayed maximum expressions for CT-10, CT-2.5, CT-1, CT0.5, CT9.5,

CT11, and CT12.5 under the constant temperature condition (see Table 3.2). Expression levels of cycling

genes within each CT group were standardized, averaged separately for the constant temperature

dataset (salmon curves) and the diel fluctuating temperature dataset (cyan curves), and arranged from
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ZT-10 to ZT14. Dots indicate mean expression values in a single sample, while shaded ribbon plots

represent standard deviations.

Table 3.2: Predicted phase of each CT curve using JTK_CYCLE. CT groups were defined under the diel

fluctuating temperature condition. Therefore, all predicted peak times of CT curves using the diel

fluctuating temperature dataset are consistent with CT group binning. CT groups highlighted in red and

blue indicate those showing delayed and advanced peak times under the diel fluctuating temperature

condition, respectively.

CT groups Constant Diel Fluctuating

CT-10 -11.5 -10

CT-8.5 -8.5 -8.5

CT-7 -5.5 -7

CT-5.5 -4 -5.5

CT-4 -4 -4

CT-2.5 -4 -2.5

CT-1 -2.5 -1

CT0.5 -1 0.5

CT2 2 2

CT3.5 5 3.5

CT5 5 5

CT6.5 6.5 6.5
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CT8 8 8

CT9.5 8 9.5

CT11 9.5 11

CT12.5 11 12.5

In addition to the CT curve analyses, we conducted additional assays to investigate the

differences between two temperature profiles. Instead of examining the rhythmic parameters

after obtaining the CT curves by averaging across the cycling genes, we estimated the rhythmic

parameters for each gene individually. In other words, we treated each individual cycling gene

within a CT group as a replicate for estimating that specific CT group.

Using the CT groups defined under the constant temperature condition, we observed six

CT groups exhibited later average phases under the diel fluctuating temperature condition

compared to the constant temperature condition (Fig. S3.3A). Conversely, when using the CT

groups defined under the diel fluctuating temperature condition (Fig. S3.3C), earlier average

phases under the constant condition for seven CT groups were detected. These results indicate

a delayed maximum expression in the diel fluctuating temperature condition, which is similar to

the trends observed in CT curve analyses. However, we did not observe any advanced peaks

under the diel fluctuating temperature condition, as we detected in analyses shown in Fig. 3.3

and Table 3.2. Furthermore, while there were some overlapping results, several differences

within CT groups detected by this strategy differed from the CT curve analyses. These

deviations could be attributed to the influence other than peak time that contribute to shaping

the final CT curve during the averaging process. For instance, a gene with a wide peak or a

unique waveform could exert effects on time points other than the maximum peak. Some of
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those information may be lost when focusing on the estimated rhythmic parameters for each

individual gene.

However, investigating rhythmic parameters for each gene in a CT group separately

provided a better understanding of the amplitude distributions. The ratio of the amplitude under

different temperature conditions can be examined on a logarithmic scale. Deviations from zero

in the ratio distribution indicate differences in amplitudes under the two temperature profiles. We

observed consistent patterns using CT groups defined by either constant or fluctuating

temperature conditions, with the amplitudes of cycling genes tending to be greater in CT-2.5, -1,

and 0.5 under the diel fluctuating temperature condition. These CT groups had their expected

peak time around dawn, corresponding to the time window with the lowest temperature in the

diel fluctuating temperature condition. Thus, this amplitude difference could be related to the

temperature-sensing or temperature-responding genes. Taken together, our results suggest that

diel temperature fluctuations can have global effects on the amplitude and phase of cycling

genes. However, further investigations and strategies are required to obtain closer insights into

other rhythmic parameters, such as waveform.

3.4.3 Internal time prediction of the molecular timetable method is not suitable for summarizing

the global differences in our transcriptome data

To further characterize the global differences in cycling genes under different

temperature conditions, we used the molecular timetable method to predict internal times based

on the CT group information established above. Specifically, we estimated the peak expressions

across CT groups within a single sample and assessed if the predicted internal time aligns with

the actual sample collecting time. This approach also allows us to compare the predicted

internal times between samples collected under constant and diel fluctuating temperatures.

As in the preceding section, internal time predictions can be conducted based on the CT

groups defined under either constant or diel fluctuating temperature conditions. When using the
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CT groups defined under the constant temperature condition (Fig. 3.4A), the predicted internal

times of the samples collected under the constant temperature approximately reflected their

actual sample collecting ZT times. However, the predictions were not perfect, and a general

acceleration of predicted internal times was observed (i.e., all the salmon boxes are positioned

above the 1:1 line in Fig. 3.4A). The only exception was the prediction at ZT11, where the 95%

confidence interval encompassed the actual ZT time, so we did not have evidence showing

whether the predicted internal time differed from the actual time. Using the same CT groups, the

internal time predictions for samples collected under the diel fluctuating temperature also

exhibited some extent of deviation between the predicted internal time and the actual sample

collecting time. Similar observations were found using the CT groups defined under the diel

fluctuating temperature condition (Fig. 3.4B). Surprisingly, we did not detect any internal time

alternation corresponding to the phase shift observed in the CT curve analyses above. Several

possible reasons can contribute to this inability to precisely predict the internal time, including

imprecise CT group binning, sparse sampling time points within a single day of data collection,

and variation in peak amplitude across CT groups (please refer to the discussion section).

Interestingly, we consistently detected significant differences (p < 0.05) in predicted

internal time at ZT2 between the samples collected in different temperature profiles (Fig. 3.4A

and B). However, due to the concerns of imperfect internal time prediction, we cannot rule out

the possibility of artifacts, and thus it is challenging to explain the biological meaning of this

observation. Based on our current findings, it appears that the internal time prediction of the

molecular timetable method may not be suitable for summarizing the global differences in our

transcriptome data, and further investigations and improvements in this method are required.
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Fig. 3.4: Internal time prediction did not provide precise estimation in our case. CT groups were defined

under the constant (A) and diel fluctuating (B) temperature conditions. The samples collected under the

constant temperature condition are shown in salmon, while those collected under the diel fluctuating

temperature condition are shown in cyan. Samples from the same conditions are grouped based on the

actual sampling time. The black line represents the 1:1 line, indicating perfect alignment between

predicted and actual sampling times.

3.4.4 Genes with distinct expression patterns between two temperature profiles are enriched

with GO terms associated with temperature responses

Given the observations in the section of CT group comparisons, which demonstrated the

global variation in cycling genes related to temperature profile differences, our subsequent goal

was to identify specific genes exhibiting different expression patterns. To exploit the information

thoroughly from the time-course experimental design, we fitted B-spline curves to our

transcriptomic data, allowing us to assess the pattern variations between the two temperature

treatments. We found 2,066 genes that displayed a significant response to diel fluctuating

temperature at a false discovery rate (FDR) threshold of 0.05.

To investigate the biological relevance of those genes, we performed a Gene Ontology

(GO) enrichment analysis. This analysis identified six significantly enriched GO terms, with an
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FDR threshold of 0.1 (Table 3.3). Notably, three of these enriched terms were specifically related

to temperature responses, including "response to heat," "response to temperature stimulus,"

and "cellular response to heat." These temperature-related terms were nested within the

broader category of "response to abiotic stimulus," which was another enriched GO term.

Additionally, among the target genes associated with the "protein folding" GO term, several

encoded heat shock protein homologs in Arabidopsis known to respond to heat stress, such as

Migut.A00100, Migut.C00037, Migut.C00039, Migut.F00194, etc. As for the remaining enriched

GO term related to flowering time regulation, GO:0048577, we offer a detailed discussion in the

discussion section due to certain potential issues with this enrichment. Taken together, these

findings suggest that the target genes identified in our RNAseq experiment are enriched with

GO terms associated with temperature responses, which is consistent with the temperature

treatment employed in our experiment.

Table 3.3: List of significantly enriched GO terms and the adjusted p-value.

3.4.5 Diel fluctuating temperature modulates the expression patterns of circadian clock-related

genes in Mimulus

In our analysis of the 2,066 target genes showing significant responses to diel fluctuating

temperature, we identified 33 genes annotated with the GO term "circadian rhythm"

(GO:0007623). Although not enriched, circadian clock genes have been known to be influenced
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by external signals such as temperature. Hence, we specifically examined the expression

patterns of core clock genes within these 33 genes, including homologs of Arabidopsis genes

CCA1, LHY, PRR7, TOC1, LUX, RVE6, RVE8, and FKF1.

As depicted in Fig. 3.5 and Table 3.4, diel fluctuating temperature exerted different

effects on the expression of the target core circadian genes. We detected phase shifts in

Migut.N01518 (CCA1/LHY), Migut.D01764 (TOC1), Migut.D00884 (LUX), Migut.F00285

(RVE6), and Migut.E00487 (FKF1) based on the JTK_CYCLE estimations, all of which exhibited

a delay in the expression peak under the diel fluctuating temperature condition. However, it's

important to note that certain genes displayed noticeable variations in the waveform, and for

these changes, JTK_CYCLE can not offer effective estimations.

For the remaining target genes, Migut.L01650 (PRR7) and Migut.J00406 (RVE8),

JTK_CYCLE predicted the same phase but different amplitudes between the two temperature

profiles. The prediction of Migut.J00406 (RVE8) was unexpected, given that the expression

curves of this gene appeared to have different peak times between two temperature profiles

upon visual inspection. One possible explanation for this discrepancy could be the limited

resolution mentioned earlier, which resulted in the truncated peak pattern between ZT-1 and

ZT2 for the expression curve of diel fluctuating temperature. This truncated pattern might pose

challenges in directly interpreting the data. For PRR7, although there was a difference in

amplitude estimated by JTK_CYCLE, the result should be interpreted with caution because

JTK_CYCLE only provides a single estimation, making it infeasible for conducting statistical

tests.

Furthermore, we investigated the Mimulus homolog of PIF4 (Migut.M00105), which was

also among the 2,066 target genes responding to diel fluctuating temperature. In Arabidopsis,

PIF4 is a pivotal gene known to integrate thermal signals and circadian rhythms and regulate

various developmental processes. Interestingly, we observed distinct expression patterns of

PIF4 between our two temperature profiles. Under the diel fluctuating temperature condition,
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PIF4 exhibited a sharp peak, whereas under constant temperature conditions, it displayed a

broad hump-shaped expression pattern. These findings collectively demonstrate the influence of

diel fluctuating temperature on the expression patterns of genes associated with circadian

rhythm in Mimulus. Further investigations are required to unravel the specific roles of individual

genes in temperature response mechanisms within Mimulus.

Fig. 3.5: Expression patterns of circadian clock genes under constant (salmon lines/dots) and diel

fluctuating temperature (cyan lines/dots) conditions. Each dot represents the expression value of a

biological replicate at a specific time point, and the shaded ribbon plots depict the standard deviation.
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Table 3.4: Predicted phases and amplitudes of circadian clock genes using JTK_CYCLE. C.Phase and

F.Phase represent the phase under the constant and diel fluctuating temperature conditions, respectively.

C.Amp and F.Amp represent the amplitude under the constant and diel fluctuating temperature conditions,

respectively.

Mimulus gene Arabidopsis homologs C.Phase F.Phase C.Amp F.Amp

Migut.N01518 CCA1/LHY 2 3.5 247.5 267.9

Migut.L01650 PRR7 6.5 6.5 7.4 6.6

Migut.D01764 TOC1 12.5 14 12.3 6.5

Migut.D00884 LUX -10 -8.5 14.0 17.2

Migut.F00285 RVE6 9.5 11 15.0 15.9

Migut.J00406 RVE8 2 2 15.9 20.4

Migut.E00487 FKF1 9.5 11 7.9 9.8

Migut.M00105 PIF4 6.5 8 40.4 41.3
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3.5 Discussion

Laboratory investigations of plant physiological mechanisms commonly involve the

utilization of controlled environments, such as growth chambers or greenhouses. While this

approach contributes to our understanding of the components and architectures of molecular

mechanisms across various topics in plant science, it is crucial to recognize that plants in their

natural environments are subjected to far greater fluctuations and variability. Natural

environments encompass a range of factors that exhibit regular fluctuations, such as diel

temperature and light changes, as well as seasonal variations in photoperiod, along with

unpredictable elements like weather factors and biotic interactions. The disparity between

laboratory and field responses has been receiving increasing attention, prompting the

exploration of strategies aimed at bridging this gap and enhancing the practical applicability of

knowledge (Matsuzaki et al., 2015; Poorter et al., 2016; Matsubara, 2018; Chiang et al., 2020;

Hashida et al., 2022). One approach directly examines plant responses in the field and attempts

to explain the observed differences using existing knowledge or incorporating modeling for more

comprehensive prediction and explanation (Nagano et al., 2012; Matsuzaki et al., 2015;

Iwayama et al., 2017; Dantas et al., 2021). Alternatively, some studies “reintroduce” natural

fluctuating factors gradually into controlled environments to mimic natural field conditions

(Annunziata et al., 2017, 2018; Song et al., 2018; Chiang et al., 2020; Hashida et al., 2022).

This approach provides researchers with greater control over experimental conditions and

enables the dissection of confounding factors influencing specific responses of interest. In this

article, we adopt the second strategy and focus on the effect of diel fluctuating temperature.

Specifically, we investigated the transcriptomic dynamics of Mimulus guttatus SWC accession

under both constant and diel fluctuating temperature conditions. The objective of this pilot study

is to develop pipelines for examining time-course RNAseq data, providing both global and

detailed insights into the differences between the two temperature profiles. The ultimate goal of
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the broader project is to establish links between these patterns and whole-plant characteristics,

such as flowering time and growth.

To gain the global summaries of the transcriptomic differences responding to constant

and diel fluctuating temperatures, we utilized the molecular timetable method (Ueda et al.,

2004), which comprises two components: CT group binning and internal time prediction. This

approach enabled us to detect general variations in expression patterns when comparing the

two temperature profiles in our experiments. Nevertheless, we also encountered some caveats

and limitations, which we discuss below.

In the CT group binning analysis, we identified shifts in expression peaks using CT

groups defined under both constant and diel fluctuating temperature conditions. However, the

extent of CT curve differences between the two temperature profiles varied, with more

pronounced distinctions observed when CT groups were defined under the diel fluctuating

temperature condition. Interestingly, a shared trend emerged, specifically when focusing on the

time window where CT curves from the fluctuating temperature condition exhibited predicted

peak times at ZT9.5 and 11, resulting in delayed maximum expressions (Table 3.1 and 3.2).

Notably, these time points coincided with the period of highest temperature in the diel fluctuating

temperature condition, where temperatures remained greater than 30°C. Consequently, it's

plausible that these phase shifts are influenced by factors like heat-shock responses or

temperature fluctuations between day and night. Another possible regulatory hub contributing to

these phase shifts is the Evening Complex (EC) in the core clock, consisting of LUX, ELF3, and

ELF4, as the EC has been shown to play a vital role in entraining ambient temperature cues

(Box et al., 2015; Ezer et al., 2017) and can influence various developmental regulations

through PIF4 and PIF5 (Nusinow et al., 2011). It is possible that other core clock genes are also

involved, as discussed below. However, additional experiments are necessary to fully

understand the underlying mechanisms of these CT group expression shifts. For example, it is
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important to distinguish if the shifts are the result of delayed/accelerated expression or if they

are related to the stabilities of the mRNA transcripts.

Although we detected variation in global expression patterns by comparing CT curves of

different temperature profiles, we noticed the disparities between the JTK_CYCLE estimations

and the visualized CT curves, and the peak times of certain CT groups did not precisely

coincide with the expected ZT time points. These observations suggest that the binning of

cycling genes by JTK_CYCLE may be imprecise for our experiment. It was reported that phase

estimation using JTK_CYCLE can be inaccurate when the input data is sparse (Hughes et al.,

2017). Even if the estimation was accurate in our case, it's worth noting that we generated only

16 CT groups from our time-course data, which encompassed 9 time points across a single

24-hour cycle. Such resolution may not be sufficient for accurately describing the patterns of

cycling genes. In addition, JTK_CYCLE only produces a single estimate for the phase and

amplitude of each CT curve, thereby making it infeasible to assess differences through

statistical tests. To address this issue, we can improve the resolution by increasing the

frequency of sampling time points. Moreover, in future experiments, extending the duration of

the study from 24 hours to a minimum of 48 hours will be beneficial. Simulations have indicated

that experiments with fewer than 48 hours (equivalent to 2 cycles in the time series) can render

the resulting data sensitive to outliers and elevate the risk of encountering false negatives.

Another improvement can be achieved by using more sophisticated algorithms that align better

with our experimental design or that are capable of better estimating different rhythmic

parameters, such as waveforms. For example, eJTK demonstrates better performance for

experiments involving replicates compared to repeated cycles (Hutchison et al., 2018), making it

a potentially more fitting choice for our experimental design. In general, this issue of imprecise

CT group binning did not substantially affect the CT curve comparisons, as we only examined

the pattern differences within the same CT group. However, it can pose challenges when

conducting cross-analysis comparisons, like comparing results between analyses using CT
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groups defined under different temperature profiles (i.e., Fig. 3.2 vs Fig. 3.3), because the CT

groups with the same name may actually have very different peak times. Additionally, this could

potentially raise issues with downstream predictions of internal time.

In the internal time prediction section, we found this method was not suitable for

summarizing the global expression differences for our RNAseq data. As internal time prediction

is based on the results of CT group binning, the primary issue lies in the imprecise CT group

binning mentioned in the previous paragraph, which may cause cascading effects and amplify

the bias. Furthermore, we observed that the maximum expression levels of CT curves varied

among CT groups even after standardization. Therefore, a local peak within a CT group may not

necessarily represent the highest expression compared to other CT groups for a sample (see

Fig. S3.2 for an example). Finally, if a shift in CT curves is not significant enough, the low

resolution of our molecular timetable construction may not effectively detect it. These issues

make it difficult to interpret any discoveries from internal time predictions and confirm their

accuracy. As the field is rapidly evolving and newer approaches continue to emerge, future

analyses could incorporate updated algorithms other than the molecular timetable method for

internal time predictions, as outlined in the recent review by Talamanca and Naef (Talamanca &

Naef, 2020). Taken together, for our RNAseq data, only the CT curve comparison can provide a

relatively reliable global summary of transcriptomic differences.

To gain a deeper insight into the variation in the transcriptome, we identified genes that

responded to diel fluctuating temperature by applying B-spline fitting to our time-course data.

The subsequent GO enrichment analysis revealed a significant enrichment of GO terms

associated with temperature responses (GO:0009408, GO:0009266, and GO:0034605), which

was consistent with our investigation of the impact of diel fluctuating temperature. Interestingly,

we also identified an enriched gene ontology term: GO:0048577, "negative regulation of

short-day photoperiodism, flowering". Among all the 22,019 genes with GO annotations in

Mimulus, only eight genes were associated with GO:0048577, and six of them were among our
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identified candidate genes: Migut.D00803, Migut.D01811, Migut.H00566, Migut.J00012,

Migut.J00795, and Migut.L01278. Migut.L01278 and Migut.D01811 encode homologs of the

CYCLING DOF FACTOR (CDF) family, which were demonstrated to function as repressors of

Constans (CO), a positive circadian regulator of flowering time in Arabidopsis (Imaizumi et al.,

2005; Sawa et al., 2007; Fornara et al., 2009). In line with this, Migut.H00566 encodes a

homolog of CONSTANS-like 2 in Arabidopsis, which is a close homolog of CO (Simon et al.,

2015). While CONSTANS-like 2 in Arabidopsis is primarily involved in circadian rhythm

regulation rather than flowering regulation (Ledger et al., 2001), its homolog in rice

(Os09g0240200, OsCO3) acts as a repressor of short-day flowering (Kim et al., 2008). The

three remaining genes, Migut.D00803, Migut.J00012, and Migut.J00795, encode proteins

containing K-homology (KH) RNA-binding domains, and their homologs affect flowering time in

rice (Cai et al., 2014) or Arabidopsis (Ripoll et al., 2009) under both long-day and short-day

conditions. While the detection of these six genes aligned with the previous finding that

flowering genes can respond differently to diel fluctuating temperatures compared to constant

temperature conditions (Song et al., 2018), it is crucial to interpret the results of the enrichment

in GO:0048577 with caution. First, the limited number (only eight in total) of genes associated

with this specific GO term may be due to incomplete GO annotation of Mimulus, which can

introduce bias and affect the statistical analysis based on this incomplete GO term. Moreover,

GO:0048577 focuses on flowering regulation under short-day conditions, which can be

misleading as it encompasses evidence from both long-day plants (such as Arabidopsis) and

short-day plants (such as rice). It is important to note that short days act as inductive cues for

short-day plants but repressive cues for long-day plants. This essential difference can potentially

result in different biological implications of this GO term across different species. Nonetheless,

there is room for refinement in the GO enrichment analysis. In this study, we assessed

enrichment by considering all the target genes collectively. However, to more effectively
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incorporate temporal information, binning these target genes into distinct CT groups and

subsequently conducting GO enrichment analysis might unveil more specific patterns.

Finally, we examined the influence of diel fluctuating temperature on core circadian clock

genes in Mimulus. Previous studies investigating various species and temperature profiles have

indicated that diel fluctuating temperatures can alter the expression of circadian clock genes

(Annunziata et al., 2018; Hashida et al., 2022). This observation is not surprising, as circadian

clocks have the ability to utilize external temperature cues to entrain their rhythms with the

environmental day-night cycles (Gil & Park, 2019). Consequently, some studies suggested that

while constant conditions are necessary for dissecting individual components of the circadian

clock, understanding the adaptive roles of the circadian clock requires investigations under

conditions that more closely resemble the natural environment (Rubin et al., 2017; Panter et al.,

2019; Paajanen et al., 2021; Laosuntisuk et al., 2023).

Among the 33 candidate genes associated with the circadian rhythm, we specifically

focused on seven genes that are known to play key roles in the core clock of Arabidopsis. The

peak expression times of these seven genes were generally consistent with their Arabidopsis

homologs, supporting the notion that the fundamental architecture of the core clock is

conserved across these diverse plant species (Filichkin et al., 2011; Nakamichi, 2020;

Laosuntisuk et al., 2023).

Interestingly, the majority of these genes exhibited a delayed peak in our diel fluctuating

temperature condition compared to the constant temperature condition, except for the homologs

of PRR7 and RVE8. These phase shifts may be related to the peak shifts in the CT groups

described earlier, given the core clock genes can influence a wide array of downstream genes

and cause global changes. It is important to note that although certain target core clock genes

did not belong to the CT groups exhibiting the phase shifts, we cannot rule out their role in

shaping the CT groups. It is possible that there are phase shifts in those clock genes, but the

CT curves do not reflect this change due to their averaging nature. Surprisingly, we did not
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observe a significant difference in the expression of ELF3 or ELF4, known to play a crucial role

in integrating ambient temperature signals (Thines & Harmon, 2010; Box et al., 2015; Ezer et

al., 2017; Jung et al., 2020). This could be related to the thermosensory mechanism of ELF3

(Jung et al., 2020), which involves regulation at the protein level and may not be accurately

reflected in mRNA expression levels. Interestingly, we did detect a prominent pattern change in

PIF4, a gene regulated by ELF3 and involved in integrating multiple environmental signals,

including temperature cues (Choi & Oh, 2016). Under the constant temperature condition, PIF4

exhibited a broad expression peak throughout the day. However, under the diel fluctuating

temperature condition, we detected a sharper peak at ZT8, which corresponds to the hottest

time point in our diel fluctuating temperature profile. This finding is consistent with the role of

PIF4 in thermoresponsive growth reported previously.

As part of a larger research project focused on investigating the impact of diel fluctuating

temperature on plant transcriptomes, we developed pipelines for analyzing time-course

transcriptome data. However, some improvements are suggested to better test rhythmic

parameter differences and to optimize the application of the molecular timetable method

(Hughes et al., 2017; Parsons et al., 2020). Our analyses provide both global and detailed

insights into the expression patterns under constant and diel fluctuating temperature conditions.

Interestingly, the differences observed between constant and diel fluctuating temperature

conditions in Mimulus are not as pronounced as those found in our unpublished Arabidopsis

dataset. Since different diel fluctuating temperature programs were employed for these two

species, it is difficult to attribute these differences solely to species or temperature profile

variations. Nonetheless, this discovery highlights the dynamic nature of plant transcriptomic

responses to temperature and underscores the challenges of using non-constant environments

in experiments. Thus, to gain a better understanding of the effects of diel temperature

fluctuations, further experiments across different species and temperature profiles are
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necessary, and subsequent meta-analyses may provide an improved resolution to address this

question.
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Fig. S3.1: Temperature profile of the constant (salmon) and fluctuating (cyan) temperature conditions.
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Fig. S3.2: Possible issue of internal time predictions caused by the amplitude differences between CT

groups. As depicted in the upper panels, the CT groups exhibit their expression peaks at the

corresponding ZT time points. For instance, CT10 exhibits the maximum expression at ZT10. Note the

amplitude of CT12 is higher than CT10 in this case. For the samples collected at ZT10, the internal times

are predicted as the highest expression among CT groups (as shown in the lower panel). However, due to

the amplitude differences between CT10 and CT12, the internal time of those samples may be incorrectly

predicted as ZT12 instead of ZT10 since the expression of CT12 is higher than CT10 at ZT10.
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Fig. S3.3: Investigation of the phase (A and C) and amplitude (B and D) of individual cycling genes within

the same CT group reveals the global influence of diel fluctuating temperature. Panels A and B display

results using CT groups derived under the constant temperature condition, while Panels C and D show

results using CT groups derived under the diel fluctuating temperature condition. In the phase analyses (A

and C), the red diagonal lines represent an exact match of the expected CT group peak times and the

peak times derived from the tested dataset (diel fluctuating temperature dataset for A and constant

temperature dataset for C). Delayed peak times compared to the corresponding CT groups are indicated

by the boxes above the diagonal line. In the amplitude analyses, the ratio of the amplitude observed

under the diel fluctuating temperature condition to that observed under the constant temperature condition

is depicted on a log2 scale. Positive deviations from zero (red dashed lines) indicate larger amplitudes

under the diel fluctuating temperature condition. Stars represent significant differences in phase or

amplitude from the expected value (peak times of the corresponding CT groups for phase analyses, and 0

for amplitude analyses) using one-sample t-tests with Bonferroni corrections (p < 0.05), while circles

represent observations with 0.05 < p < 0.1.
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