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Over 26% of the world's land area and ~8% of its population depend on snowmelt as the 

primary water source. A typical example is the western U.S. (WUS), where snowmelt has been the 

center of streamflow research for the past two decades. Under climate warming, snow's 

contribution to streamflow will decrease, increasing the uncertainty of streamflow fluctuations and 

challenging streamflow forecasting and management that are based on traditional snow-based 

methods. Addressing these challenges requires a deep understanding of the linkages among 

warming, snowmelt, and other runoff-generating processes and how they affect future streamflow. 

In my dissertation, I take the WUS as an example, using hydrologic modeling and in-situ data to 

explore the following questions: 1. How does seasonal warming affect annual streamflow in 

different watersheds, and why? 2. What composes runoff during water-scarce seasons, and how 
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does the composition change under warming? 3. What mechanism dominates annual runoff decline 

under warming in snow-affected areas, and how do its dynamics affect the evolution of runoff? In 

1, I found and explained an asymmetrical pattern that controls annual streamflow response to 

seasonal warming, which indicates the cooler, inland region streamflow is more sensitive to warm 

season warming, whereas warmer, coastal region streamflow is more sensitive to cool season 

warming. I found this asymmetry is explained by the bell-shape variation of evapotranspiration-

temperature sensitivity as a function of increasing temperature, filling a long-lasting gap in the 

sub-annual linkages between water and climate in WUS. In 2, I developed a custom-period water 

source partition algorithm that uses a handful of output variables from land surface models to 

quantify the fractional contribution of custom-period rainfall to custom-period streamflow. Using 

this algorithm, I detected an increasing contribution of seasonal rainfall to summer streamflow 

under warming, which shed light on the evolution of a new dynamic for summer streamflow 

generation in the water-short WUS. In 3, I explored the ongoing runoff decline under warming 

across major WUS snow-covered regions and explored the linkage between the evolving trend 

dynamics with changing snow. In three major snow-covered basins, I discovered a smaller 

warming-sensitivity of runoff under a warmer climate with fixed precipitation, which could break 

the long-lasting static mechanism paradigm that governs hydrologic dynamics and a more rigorous 

assessment of future streamflow.  In summary, the dissertation provides important contributions to 

understanding ongoing and future runoff evolution in WUS snow-affected regions under a warmer 

future.  
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Chapter 1 Introduction 

In the western U.S. (WUS), seasonal snowpack is the dominant source of streamflow [Li 

et al., 2017]. Precipitation accumulates as snow in winter and melts in spring, providing the source 

for late-spring to early-summer seasonal peak flows. Snowmelt also replenishes the groundwater 

that dominates early-summer to fall low flows [Huntington and Niswonger, 2012; Li et al., 2017; 

Smakhtin, 2001]. Peak flows are critical for reservoir storage which provides agricultural and 

municipal water supply, hydroelectric power generation, and supports other uses like recreation, 

while summer and fall low flows are critical for ecosystem functioning (e.g., anadromous and 

migratory fish populations) and are correlated as well with tree mortality, insect outbreaks, and 

wildfire risk. Both peak flows and low flows, as well as annual streamflow volumes are critical for 

a region's socioeconomic security. Reliably predicting these flows is important for water systems 

that are intended to buffer against streamflow variations and provide a stable water supply.   

Historically, WUS seasonal streamflow forecasts mostly have focused on late-spring to 

early-summer seasonal peak flows (e.g., Apr-Jul) and widely rely on snow water equivalent (SWE) 

as the most important predictor and the primary initial hydrologic condition (IHC). As the warmer 

climate reduces snowpacks, these traditional methods have become less reliable. For example, 

Sturtevant and Harpold [2019] showed that forecast errors from regression-based methods that 

use SWE and precipitation as predictors during below-average snow years (snow droughts) are 

biased high by roughly one-third compared with above-average snow years. Livneh and Badger 

[2020] applied 28 climate model projections and showed a decline in the ability of snow to predict 

seasonal drought under declining future snowpack for historically snowmelt-dominated areas of 

the WUS. They also showed that the decrease of Apr 1st SWE-based prediction skill could not be 

fully compensated by adding ancillary predictors such as Apr 1st soil moisture. This change in 
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SWE’s reliability in forecasting late-spring to early-summer peak flow highlighted the need for 

better predictors and more adaptive forecast methods, which requires a dynamic understanding of 

the role of snowmelt and other runoff-generation mechanisms in (predicting) streamflow under a 

warming future.  

Given this background, my dissertation focuses on three questions having to do with 

streamflow responses in WUS to a warmer, reduced-snow future:  

1)  How does seasonal warming affect annual streamflow in different watersheds, and why? 

 2) What composes runoff during water-scarce seasons, and how does the composition 

change under warming?  

3) What mechanism dominates annual runoff decline under warming in snow-affected 

areas, and how do its dynamics affect the evolution of runoff? 

I address these questions in three core chapters of this dissertation (Chapters 2-4). In 

Chapter 2 I employ the Variable Infiltration Capacity (VIC) hydrological model [Liang et al., 

1994] and observations to explore and explain the annual streamflow responses to seasonal 

warming across the WUS. I find that annual streamflow is most sensitive to warm season warming 

in cool, inland basins, especially the northern Columbia River basin and most of the Upper 

Colorado River Basin, and most sensitive to cool season warming in warm, coastal basins. This 

bi-directional pattern is enhanced by vegetation coverage but weakened by long-term snowpack 

decline. In the coldest basins with short snow-free seasons, net radiation changes dominate the 

streamflow response asymmetry. For basins with cold-to-intermediate temperatures, vapor 

pressure deficit changes dominate. For the warmest basins, surface resistance changes (due to 

stomatal response to variations in aridity) dominate. This chapter was published in Water 

Resources Research [Ban and Lettenmaier, 2022]. 
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In Chapter 3 I developed a custom-period water source tracking algorithm and applied it 

to two widely used hydrological models to quantify the water source composition of summer 

streamflow and evaluate how the evolution of the composition under uniformly 1°C warming 

impacts summer streamflow predictability. Applying the snowmelt-rainfall tracking algorithm to 

two hydrological models, I show that cool-season rainfall provides an important volumetric 

contribution to summer streamflow for many WUS streams in the current climate, and this 

contribution will increase under climate warming, especially in years with warm snow droughts 

and abnormally dry summers. I also show that seasonal rainfall (warm-/cool-seasons) dominates 

the variability of summer streamflow across ~70% of WUS in areal extent. I show that an 

increasing warm-season rainfall contribution to summer streamflow (largely replacing snowmelt) 

results in reduced summer streamflow predictability. This chapter was published in Geophysical 

Research Letters [Ban et al., 2023a]. 

In Chapter 4, I show that snow loss and subsequent annual runoff decline will become less 

sensitive to warming as the reference climate warms. My analysis is based on warming 

experiments with land surface models (LSMs) and analysis of LSM-coupled downscaled global 

climate model (GCM) ensembles, applied to three major WUS river basins. This work extends 

from an earlier paper [Ban et al., 2023b] that discussed runoff sensitivity to annual warming and 

its association with snowmelt-radiation feedback across regions with different temperatures in the 

WUS. In Chapter 4, I find a decreasing sensitivity of snow loss to warming under a warmer 

reference temperature, which could decelerate streamflow decline and even reverse it (streamflow 

increase) with accompanied precipitation increase under near-linear warming. This chapter will be 

submitted to Nature Climate Change. 

In conclusion, this dissertation shows that: 
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1) Considering as background that the projected warm season warming signal in climate 

models is stronger than cool season warming, river basins with annual streamflow that is more 

sensitive to warm season than cool season warming tend to be cooler, inland basins, whereas 

warmer, coastal basins are more sensitive to cool season than to warm season warming. I therefore 

argue that cooler, inland river basins will be more sensitive (in terms of annual streamflow change) 

to future warming than warmer, coastal basins. 

2) Seasonal rainfall’s contribution to summer streamflow will increase in a warmer climate 

across the WUS, and the increasing effect of warm-season rainfall will reduce the predictability of 

summer streamflow. 

3) Annual runoff sensitivity to warming across the WUS (i.e., per degree C of warming) 

will weaken as temperatures warm and snowpacks decline as the strength of the snowmelt-

radiation feedback weakens. 

Taking 1) - 3) together, strongly snow-affected inland mountainous river basins are 

expected to have the strongest (negative) runoff response to warming in the future. If humans 

manage to control the rate of climate warming, I argue that the WUS will witness reduced (annual) 

streamflow declines and snow loss as the snowmelt-radiation feedback weakens. This may even 

lead to some increases in (annual) streamflow, probably starting from the warmer coastal regions 

of the WUS. 

Future research on the impacts of warming on WUS streamflow could: 1) quantitatively 

analyze the dynamic impact of the snowmelt-radiation feedback on streamflow evolution; 2) 

investigate the mechanisms that lead to the evolving impact of the snowmelt-radiation feedback 

on the rate of annual streamflow declines (as discussed in Chapter 4 & 5); 3) investigate other 

runoff-climate response factors, such as the changing atmospheric opacity, which could impact 
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streamflow loss by affecting radiation and thus evapotranspiration; 4) conduct model- and 

observation-based analyses intended to understand the aggregate effect of vegetation dynamics 

and discrete events such as wildfires, droughts, and event-scale precipitation on streamflow 

changes in a warmer climate. 
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Chapter 2 Asymmetry of Western U.S. River Basin Sensitivity to Seasonally Varying 

Climate Warming 

(This chapter has been published in Water Resources Research: Ban, Z., & Lettenmaier, D. P. 

(2022). Asymmetry of Western U.S. River Basin Sensitivity to Seasonally Varying Climate 

Warming. Water Resources Research, 58(2), e2021WR030367. 

Abstract: Future climate warming over the Western U.S. (WUS) is projected to be greater in 

summer than winter. Previous model-based studies of large river basins in the WUS showed much 

different annual streamflow responses to warming in warm vs. cool seasons. However, it remains 

unclear how are the annual streamflow relative responses to seasonal warming (asymmetry) and 

drivers of the response asymmetry vary across the entire WUS at the catchment-scale, and how 

the simulated results compare with observations. Here, we investigate the asymmetry of annual 

streamflow responses to warm vs. cool season warming at the HUC-8 level across the entire WUS 

using model simulations and observations. We also examine the asymmetries’ relationship with 

land surface and hydroclimate characteristics, and the primary contributor to the response 

asymmetry for each HUC-8 basin. The HUC-8 level results reveal more complexity than do earlier 

analyses of much larger river basins. Over 25% of WUS area has annual streamflow increases in 

response to warming in at least one season (mostly cool season). Annual streamflow is most 

sensitive to warm season warming in cool, inland basins, especially the northern Columbia River 

basin and most of the Upper Colorado River Basin, and most sensitive to cool season warming in 

warm, coastal basins. This bi-directional pattern is enhanced by vegetation coverage but weakened 

by long-term snowpack decline. In coldest basins with short snow-free seasons, net radiation 

changes dominate the streamflow response asymmetry. For basins with cold-to-intermediate 
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temperatures, vapor pressure deficit changes dominate. For warmest basins, surface resistance 

changes dominate. 

1 Introduction 

More than 26% of the global land area and ~8% of the global population depend on 

snowmelt as their dominant water resource [Qin et al., 2020]. Water availability in snowmelt-

dominated regions may change as snow accumulations decline under climate warming, threatening 

the regions’ economic, social, and ecological water uses [Adam et al., 2009; Barnett et al., 2005].  

The winter accumulation and spring melting of snow play a major role in the seasonal water 

supply for the Western U.S. (WUS), which is typical of many snow-dominated regions globally. 

Over the past decades, warming in the WUS has caused notable changes in the seasonal timing of 

runoff [Stewart et al., 2004], the fraction of runoff attributable to snowmelt [Qin et al., 2020], and 

annual runoff decreases [Forbes et al., 2018; Milly and Dunne, 2020]. Warming in the WUS is not 

evenly distributed on a sub-annual scale, with substantially larger warming in the warm season 

(Apr-Sep) than in the cool season (Oct-Mar) projected across most of the region [Ban et al., 2020; 

Das et al., 2011; Rupp et al., 2017]. Different seasons’ warming in the snowmelt dominated basins 

of the WUS will alter streamflow volumes quite differently. Cool season warming causes slower 

snow accumulation and earlier snowmelt, which may exacerbate dry-season water scarcity due to 

reduced storable snowmelt [Li et al., 2017]. Warm season warming may cause larger peak flows 

that will strain reservoir capacities and may cause larger evaporative losses in summer [Li et al., 

2017]. Both season’s warming may contribute to water scarcity, but their relative impact can 

substantially differ due to different seasonal warming magnitudes and seasonal sensitivities to 

warming [Ban et al., 2020; Vano et al., 2015]. To better predict streamflow responses to climate 
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warming and adapt to future water scarcity, understanding the streamflow sensitivity to seasonally 

varying climate warming is essential.  

Only a few studies have examined the relative impact of differential seasonal warming on 

the streamflow sensitivity of WUS basins. Das et al. [2011] used the Variable Infiltration Capacity 

model (VIC) [Liang et al., 1994] to simulate streamflow responses to seasonal warming for four 

regionally important river basins in the WUS. Vano and Lettenmaier [2014] and Vano et al. [2015] 

quantified the streamflow sensitivity to seasonal warming in the Colorado River basin (at basin-

scale), and the Pacific Northwest (HUC-8 level). Notwithstanding this work and seasonal 

differences in projected future warming (Ban et al., 2020; Das et al., 2011; Hayhoe et al., 2004), 

questions remain as to the impacts of seasonally differential warming. These include the signature 

of streamflow responses to seasonal warming, which season’s warming most strongly affects 

annual streamflow volumes, and the processes that dominate asymmetrical streamflow responses 

to seasonal warming. The answers to these questions have implications for the societal response 

to changing streamflow, especially in the water short WUS. To date, aside from Vano et al. (2015) 

(HUC-8 level over the Pacific Northwest) most studies that have addressed seasonal warming 

signatures on streamflow have been at the scale of large continental rivers (Das et al., 2011; Ban 

et al., 2020).  

Our previous work [Ban et al., 2020] studied streamflow responses to seasonal warming 

for four regionally important river basins in the WUS using four hydrological models. It defined 

streamflow response asymmetry (termed PrefQ as explained in section 3.2) as the ratio of annual 

streamflow decreases under warm season warming to annual streamflow decreases for the same 

temperature increment in the cool season. Using this definition, Ban et al. (2020) concluded that 

river basins with two features have larger annual streamflow decreases for warm season warming 



11 

 

as contrasted with cool season warming. The first feature is relatively cool temperature. The other 

is a relatively large ratio of warm season to cool season Gross Incoming Water, defined as initial 

water storage in soil and snow in the season plus the season’s precipitation [Ban et al., 2020]. 

However, their analysis was based on relatively large basins (15,000 ~ 600,000 km2 drainage areas), 

which suppresses spatial variability that might be apparent for smaller river basins. Moreover, the 

ability to explore the impact of other basin surface characteristics (apart from temperature and 

water availability) on the streamflow responses, and how the model simulations compared with 

observation-based streamflow responses was limited by the large size, and small number of the 

basins analyzed in that study.  

Here we expand the study area to the entire WUS at the HUC-8 level. We also explore 

observation-based annual streamflow sensitivities in comparison with model-based estimates, and 

evaluate the relative role of net radiation as drivers of annual streamflow sensitivity to seasonal 

warming under different potential evapotranspiration frameworks (Priestley-Taylor and Penman-

Monteith). Our aim in enlarging the number of basins relative to Ban et al. (2020) goes beyond 

simply extending our earlier analysis. Rather, the higher granularity (HUC-8) allows us to explore 

issues that Ban et al. [2020] and Das et al. [2011] were unable to test or explain, including 

statistically meaningful evaluation of similarity between simulated and observational streamflow 

response signals, and how those responses vary with basin characteristics and hydroclimatic 

factors. We also go beyond our earlier work in providing a new proxy for directly calculating the 

main contributor to the asymmetry of annual streamflow responses to warm and cool season 

warming (hereafter streamflow response asymmetry). Motivated by these goals, we address here 

three questions:  
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(1) How does the annual streamflow response asymmetry vary spatially across the WUS at 

the HUC-8 scale, and what controls the associated spatial patterns? 

(2) How does the streamflow response asymmetry at HUC-8 scale vary with different land 

surface characteristics, such as vegetation coverage, root depth, runoff ratio, and seasonal snow 

coverage?  

(3) What are the primary contributors to annual streamflow response asymmetry for each 

HUC-8 basin, and do they vary across the WUS? 

To address these questions, we first examine the annual streamflow responses to seasonal 

warming across the 616 HUC-8 basins that comprise the WUS using VIC model simulations 

(section 4.1) and compare the simulated sensitivities with those estimated from observations 

(section 4.2). We then examine the variation of annual streamflow responses to seasonal warming 

with different hydroclimatic and land surface characteristics (sections 4.3 and 4.4). Finally, we 

attribute and quantify the contribution of different ET-related processes, such as warming-induced 

changes in net radiation, vapor pressure deficit, and surface resistance to streamflow response 

asymmetry across the 616 HUC-8 basins (section 4.5). We discuss the results in section 5.0 in light 

of a comparison between the streamflow response attribution using the Penman-Monteith 

framework as contrasted with the Priestley-Taylor framework in Milly and Dunne [2020], and end 

with conclusions in section 6. 

2. Study area 

Our study domain consists of the WUS and the Canadian part of the Columbia River Basin. 

Additionally, we added a buffer of one HUC-8 basin width east of the Continental Divide to 

examine whether this geographical divide also separates the characteristics of streamflow response 

to seasonal warming. The study area covers a wide range of hydroclimatic conditions and land 
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surface characteristics, with elevations ranging from below sea level (-71 m) to around 3700 m 

(Figure 1a). A total of 616 HUC-8 basins are included in the study area, with an average drainage 

area of about 4000 km2. We took HUC-8 basin boundaries from the USGS National Hydrography 

Dataset (Simley and Carswell, 2009). 

 

Chapter 2 Figure 1. 616 HUC-8 basins in our study area, which covers the WUS, the Canadian 

portion of the Columbia River Basin, and a set of buffer basins (red outlines) just east of the 

Continental Divide. (a) elevation (Gesch et al., 1999). (b) and (c): cumulative distribution functions 

(CDF) of long-term climatological basin-average annual precipitation (mm) and annual mean 

temperature (°C), averaged from water year 1951 to 2018 using the Livneh (L13) meteorological 

forcings (Livneh et al., 2013), and forcings extended to 2018 by Su (Su et al., 2021). (d) CDF of 

basin drainage areas. 
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3. Methods and data 

3.1 Model and forcing data set 

 We conducted warming experiments using the VIC macroscale land-surface hydrology 

model [Liang et al., 1994] version (4.1.2). The VIC model forcings and parameters are the same 

as in Ban et al. [2020]. The analysis period differs, though, with water years 1915-1950 used for 

spinup and water years 1951-2018 used for analysis. We chose the VIC model for our simulations 

because the VIC model results were closest to the multi-model mean simulated streamflow 

sensitivities to warming from four land surface models in Ban et al. (2020), and to observed 

hydrographs relative to the other models in our previous work [Ban et al., 2020]. The new analysis 

period was selected to check the robustness of the conclusions in Ban et al. [2020] for different 

simulation periods and because the forcing data quality is generally higher after 1950. 

3.2 Annual streamflow response asymmetry under seasonal warming 

We first calculated the temperature sensitivity of annual streamflow and evapotranspiration 

to warm and cool season warming by comparing the baseline simulation with two seasonal 

warming simulations. We conducted the baseline simulation using historical L13 forcings, 

extended to 2018 by Su. We set up the two seasonal warming simulations by adding 1°C to both 

daily maximum and minimum temperatures in every day of a) the warm season only, and b) the 

cool season only. Perturbing both maximum and minimum temperature ensures that the downward 

shortwave radiation generated by the Mountain Microclimate Simulation Model (MTCLIM) 

embedded in VIC [Bohn et al., 2013] is not changed. Downward and emitted longwave radiation 

from MTCLIM do change, as they are temperature-related. We isolated the warming impact on 

temperature sensitivity by keeping the precipitation unperturbed.  



15 

 

We calculated the temperature sensitivities of annual streamflow, annual 

evapotranspiration, and seasonal evapotranspiration as changes of their long-term averages (from 

water years 1951-2018) between a baseline and warmed scenarios, divided by the temperature 

increment (1°C). In all cases, temperature sensitivities are reported for each of the 616 HUC-8 

basins. For pixels that are partially within a river basin, we counted the grid cell’s values weighted 

by their fractional area in the basin.  

We applied the same measure of response asymmetry to describe the relative responses of 

annual streamflow (PrefQ) and evapotranspiration (PrefET) to seasonal warming, as was used in 

Ban et al. (2020) (Eqs. 1-2).  

PrefQ =
Qa,w1d̅̅ ̅̅ ̅̅̅ ̅̅ ̅−Qa,b̅̅ ̅̅ ̅̅

Qa,c1d̅̅ ̅̅ ̅̅ ̅̅ ̅−Qa,b̅̅ ̅̅ ̅̅
                                                  (Eq. 1) 

PrefET =
ETa,w1d̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ −ETa,b̅̅ ̅̅ ̅̅ ̅̅

ETa,c1d̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅−ETa,b̅̅ ̅̅ ̅̅ ̅̅
                        (Eq. 2) 

On the right-hand side of Eqs. 1-2, Q indicates streamflow, ET indicates evapotranspiration, 

the first subscript indicates the period of calculation (a: annual, w: warm season, and c: cool 

season), and the second subscript indicates the warming scenario (w1d: warm season 1°C warming, 

c1d: cool season 1°C warming, and b: baseline). Therefore, PrefQ (PrefET) is defined as the ratio 

of annual streamflow (annual evapotranspiration) changes in response to a constant warming 

magnitude (1°C) in warm season only to the same change in cool season only. A more positive 

PrefET (PrefQ) indicates a stronger “preference” for a basin to have stronger annual 

evapotranspiration (streamflow) response under warm vs. cool season warming. A negative PrefET 

(PrefQ) means that the annual evapotranspiration (streamflow) responses have opposite signs under 

the two seasonal warming. According to the long-term water balance, when the annual soil and 

snow storage change is negligible and precipitation is fixed, the annual streamflow reduction under 
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temperature warming equals the annual evapotranspiration increase. Under this water balance 

framework, Ban et al. (2020) made two critical assumptions: (a) PrefQ≈PrefET, and (b) the relative 

rank of PrefET across basins is governed by the relative rank of the seasonal ET-T sensitivity ratios 

(ratios of warm season ET-T sensitivity to cool season ET-T sensitivity, see Eq. 3, the notation is 

the same as in Eqs. 1-2).  

rank(PrefET ) =rank(
ETw,w1d̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅−ETw ,b̅̅ ̅̅ ̅̅ ̅̅ ̅

ETc ,c1d̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅−ETc,b̅̅ ̅̅ ̅̅ ̅̅
)            (Eq. 3) 

Ban et al. [2020] tested the above two assumptions for four major river basins in the WUS 

(the Columbia, the Upper Colorado River basin (hereafter UCRB), and the Northern Sierra and 

Southern Sierra basins). Here, we tested the two assumptions by comparing the PrefET, PrefQ, and 

seasonal ET-T sensitivity ratios across all 616 HUC-8 basins.  

3.3 Annual streamflow response asymmetry estimated from observations 

We checked whether our model-based streamflow response asymmetry could be 

reproduced using observations of annual streamflow from two sources: (i) USGS GAGES Version 

2 (GAGES II) reference database, which are identified as stations with minimum anthropogenic 

disturbances [Falcone, 2011], and (ii) USGS WaterWatch streamflow data [Brakebill et al., 2011], 

which provides a relatively complete set of streamflow data at the HUC-8 level from water year 

1951 to 2018. In the GAGESII database, we only chose the gages with more than 20 years that 

have more than ~11 months (335 days) record each year, resulting in 513 GAGESII stations. We 

also performed a screening of the WaterWatch records to remove the HUC-8 basins with USGS 

stations affected by large dams. Specifically, we identified large dams as having storage capacity 

greater than a quarter of the long-term average annual streamflow based on data from the Global 

Reservoir and Dam Database (GranD v1.3) [Lehner et al., 2011]. This screening yielded 286 HUC-

8 basins as having annual flows that are at most modestly affected by reservoir regulations. 
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For each selected GAGESII station’s contributing area and each screened WaterWatch 

HUC-8 basin, we calculated the corresponding annual precipitation (Pa) and seasonal mean 

temperature (Tw and Tc) from VIC model outputs. We applied linear regression at each of the 513 

GAGESII stations across years with more than 11 months record, and 286 screened WaterWatch 

HUC-8 basins across water year 1951 to 2018 using annual streamflow (Qa) as the dependent 

variable, and Pa, Tw, and Tc as predictors (Eq. 4).  

𝑄𝑎 = 𝑆𝑤𝑇𝑤 + 𝑆𝑐𝑇𝑐 + 𝑆𝑝𝑃𝑎     (Eq. 4) 

In Eq. 4, Sw, Sc, and Sp are the regression coefficients. PrefQ thus is estimated as Sw/Sc. In 

section 4.2, we focus more on the PrefQ estimates for basins that have both statistically significant 

(p=0.1) Sw and Sc. 

3.4 Relationships between annual streamflow response asymmetry and basin characteristics 

We checked the variations of seasonal ET-T sensitivity (a proxy governing streamflow 

response asymmetry, tested in sections 3.2 and 4.1) with temperature and seasonal water 

availability at the HUC-8 basin level. We used simulated basin-average temperature and Gross 

Incoming Water, and basin-aggregated seasonal evapotranspiration across the 616 HUC-8 basins 

from the VIC control experiment outputs to carry out the check. In addition to the above two 

hydroclimate variables, we also incorporated seven basin land surface and hydroclimatic 

characteristics:  

• Elevation: 1/16th degree, aggregated from the GTOPO30 Global 30 Arc Second (~1km) 

Elevation Dataset (Gesch et al., 1999). 

• Runoff ratio, snow cover fraction, and annual mean snow water equivalent (SWE): VIC 

baseline simulation outputs in this paper. 
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• Vegetation density: product of the annual mean leaf area index (LAI) and the vegetation cover 

fraction for each vegetation type summed for each pixel, where LAI and vegetation cover 

fraction came from the VIC vegetation parameter file. 

• Root depth: sum of root depth for each vegetation type weighted by the vegetation cover 

fraction for each pixel, where the root depth and vegetation cover fraction came from the VIC 

vegetation parameter file. 

• Vegetation height: sum of vegetation height for each vegetation type weighted by the 

vegetation cover fraction for each pixel, where the vegetation height and vegetation cover 

fraction came from the NLDAS vegetation classification scheme (Hansen et al., 2000) and 

parameters (https://ldas.gsfc.nasa.gov/nldas/vegetation-parameters). 

We classified the 616 HUC-8 basins based on the seven characteristics and examined how 

the asymmetries of seasonal ET-T sensitivity and annual streamflow response to seasonal warming 

vary with the seven characteristics above.    

3.5 Detection of the processes dominating ET-T sensitivity 

We considered five major processes that affect evapotranspiration change under 

temperature warming, as derived using a Penman-Monteith framework (e.g. Ban et al. [2020] and 

Y Yang et al. [2019]): (a) change of available radiation (R*, net radiation minus ground heat flux) 

due to processes like albedo change during snowmelt, (b) enhanced vapor-pressure deficit (es-ea) 

associated with warming, (c) increased surface resistance (rs) associated with elevated vapor 

pressure deficit, (d) reduced aerodynamic resistance (ra) over warmer, less stable land surfaces, 

and (e) elevated slope of the saturated vapor pressure 𝛿 associated with warming. We estimated 

contributions of the five processes to seasonal ET-T sensitivity using a Penman-Monteith first-
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order derivative expansion based on differences between the two season’s warming scenarios and 

baseline, which is the same as in section 3.6 in Ban et al. [2020].  

4. Results 

4.1 Asymmetry of annual streamflow responses to seasonal warming  

To check the similarity between the seasonal ET-T sensitivity ratio (see Eq. 3), PrefQ, and 

PrefET (see Eqs. 1-2), we plotted their spatial distributions (model-simulated)  at the HUC-8 level 

(Figure 2a-c). The three proxies show highly consistent spatial patterns, as indicated by their 

pattern correlation values: PrefET vs. PrefQ: 0.995, PrefQ vs. dETrt: 0.796, PrefET vs. dETrt: 0.795 

(we calculated pattern correlations using samples within 5% and 95% percentile of the proxies to 

remove outliers). The consistent spatial patterns are similar to those in Ban et al. [2020] for larger 

basins (smaller panels in Figures 2a-2c, values in those smaller panels are consistent with the 

cumulative effect expected from the HUC-8 basins involved). Additionally, proxies for HUC-8 

basins east of the Continental Divide act mostly like neighbors west of the divide, suggesting 

strong spatial continuity. 

In general, among basins with positive Pref (hereafter referring to both PrefQ and PrefET) 

values, basins with larger responses to warm season warming (higher Pref values) are located 

within the northeast part of the study domain. Basins with smaller responses to warm season 

warming (lower Pref values) are located within the southwestern part of the study domain (Figures 

2a-c). This southwest-northeast gradient in Pref values generally coincides with the direction of 

decreasing annual temperature and increasing warm vs. cool season Gross Incoming Water ratio 

(Figures 2d and 2e), which follows the conclusion in Ban et al. [2020].  
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Chapter 2 Figure 2. Proxies of response asymmetry and related variables. (a) PrefQ, (b) PrefET, 

and (c) seasonal ET-T sensitivity ratio (dETrt) under 1°C warm and cool season warming from the 

VIC-4.1.2 model results for HUC-8 basins, averaged from the water year 1951 to 2018. The small 

panels illustrate the basin-average values from multi-model mean results in Ban et al. (2020). (d) 

basin average annual mean temperature, (e) GIWrt: ratio of basin average warm season Gross 

Incoming Water (GIW) to basin average cool season GIW, (f) basin average annual precipitation. 

All values in (d) to (f) are based on climatologies from water year 1951 to 2018. 

The HUC-8 level maps of the three proxies (Figures 2a-c) however reveal more complexity 

than do the larger basin maps, especially concerning negative Pref values. In Ban et al. [2020], 
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multi-model mean Pref values for all four basins were positive, but at the HUC-8 level, negative 

Pref values are present for some basins and usually are clustered. Negative PrefET or PrefQ values 

are caused by annual evapotranspiration decrease or annual streamflow increase only under one of 

the two seasonal warming cases (mostly under cool season warming). No basin has annual 

evapotranspiration (streamflow) decreases (increases) under both warming scenarios. Therefore, 

the positive PrefET and PrefQ values are only related to the annual evapotranspiration (streamflow) 

increase (decrease) under both warming scenarios. The Columbia Basin has the largest area with 

negative Pref values, which cluster in the southern part of the basin (mostly arid to semi-arid, and 

borders on the Great Basin). The UCRB has negative Pref values in the northeastern part, while 

the two California basins have no negative Pref values. To further explore the relationship between 

seasonal responses and the sign and magnitude of Pref, we classified the basins into snow-affected 

(basin long-term mean Apr 1st SWE >= 20mm) and non-snow-affected group (basin long-term 

mean Apr 1st SWE < 20mm). We divided each group into four subgroups according to different 

signs and magnitudes of Pref values (Figure 3): 

A. Snow-affected (SA) group. 301 of 616 basins (48.86%) (the colored basins in the first 

row of Figure 3).  

A1. Pref positive and larger than 1.0, colored in red in Figures 3a-3b. In such basins, annual 

evapotranspiration (streamflow) increases (decreases) are stronger under warm season warming 

than under cool season warming. 218 of the 301 snow-affected basins for PrefET (72.4%) and 209 

of 301 snow-affected basins for PrefQ (69.4%) had these characteristics. Most of them coincide 

with ET-T sensitivity ratios that are positive and larger than 1.0 (colored red in Figure 3c).  

A2. Pref positive and smaller than 1.0, colored in brown in Figures 3a-3b. In such basins, 

annual evapotranspiration (streamflow) increases (decreases) are stronger under cool season 
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warming than under warm season warming. 61 of 301 snow-affected basins for PrefET (20.3%) 

and 67 of 301 snow-affected basins for PrefQ (22.3%) had these characteristics. Most of them 

coincide with ET-T sensitivity ratios that are positive and smaller than 1.0 (colored brown in Figure 

3c).  

A3. Pref negative and smaller than -1.0, colored in dark blue in Figures 3a-3b. 19 of 301 

snow-affected basins for PrefET (6.3%), and 22 of 301 snow-affected basins for PrefQ (7.3%) had 

these characteristics. Most of them coincide with the ET-T sensitivity ratios that are more negative 

than -1.0 (colored dark blue in Figure 3c). The 19 negative PrefET values are all caused by annual 

evapotranspiration decreases under cool season warming. Among these 19 basins, responses for 

10 basins are contributed solely by cool season evapotranspiration decreases, responses for 5 

basins are contributed solely by warm season evapotranspiration decrease, and responses for four 

basins are contributed by both warm and cool season evapotranspiration decreases (Figure S2a). 

Among the 22 negative PrefQ values, 19 are caused by cool season streamflow increases under 

cool season warming, and 3 are caused by warm season streamflow increases under warm season 

warming (Figure S2b). The latter three basins are in the northern part of the Columbia basin, at 

high elevation with short snow-free seasons and relatively lower vegetation density and shallower 

root depths than the surroundings (Figure S1). They have much later snowmelt season end dates 

than low elevation basins and have streamflow increases only in the warm season. The annual 

streamflow increase magnitudes in these three basins are relatively small (all less than 1%). These 

three basins do not have annual evapotranspiration decreases, suggesting that the slight annual 

streamflow increases at these three high elevation basins are associated with snowpack declines.  

A4. Pref negative and larger than -1.0, colored light blue in Figures 3a-3b. 3 of 301 snow-

affected basins (1.0%) for both PrefET and PrefQ had these characteristics. Most of them coincide 



23 

 

with ET-T sensitivity ratios that are less negative than -1.0 (colored light blue in Figure 3c). The 

negative Pref values are caused by annual evapotranspiration decreases (annual streamflow 

increases) under cool season warming, which have a smaller magnitude than the opposite response 

under warm season warming. All the three annual evapotranspiration decreases (annual 

streamflow increases) are solely contributed by cool season evapotranspiration decreases 

(streamflow increases).  

For conditions A3 and A4, excepting the three high elevation basins in the northern 

Columbia River Basin for which annual streamflow increases under warm season warming, all 

other basins with negative Pref values experienced annual evapotranspiration decreases (annual 

streamflow increases) under cool season warming.  Spatially, these latter basins are mostly located 

within or at the boundary of the cold desert region (Ecoregion Level-II classification: 

https://www.epa.gov/eco-research/ecoregions-north-america) in or near the Great Basin, and the 

West-Central semi-arid prairies area in the northeastern buffer zone of the Columbia River Basin 

boundary (Figures 3a-3b). Such regions have moderate temperatures (Figure 2d), moderate 

elevations (Figure S1e), low precipitation (Figure 2f), low runoff ratios (Figure S1d), low 

vegetation coverage (Figures S1a-S1b), and low snow coverage (Figures S1f-S1g). For these 

basins, the warm season evapotranspiration decreases under cool season warming can be explained 

by the Dettinger hypothesis [Dettinger et al., 2004]: under cool season warming, earlier snowmelt 

releases water exiting the basin before summer comes, which leaves less water available for 

evapotranspiration later in the year (i.e., warm season). Possible reasons for the small decreases 

(all <5%) of cool season evapotranspiration under cool season warming (colored in cyan in Figure 

S2a) are:  
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1) those basins are mostly water-limited, thus relatively insensitive to elevated evaporative 

demand under warming [Condon et al., 2020].  

2) warmer cool season temperature increases the chance for cool season snowpack to melt 

before sublimating, which enables a larger portion of snowmelt to become streamflow or to 

penetrate into deeper soil layers without being sublimated (Barnhart et al., 2016), which is the 

dominant cool season evapotranspiration process in these basins (Table S1).  

3) those basins usually have thin and sparse snow coverage in the cool season. In this 

context, warming can cause temporally discontinuous snow coverage within the cool season, thus 

extending the cool season’s water-limited period. 

B. Non-snow-affected (nonSA) group. 315 of the 616 basins (51.1%) were in this group 

(the colored basins in the second row of Figure 3).  

B1. Positive Pref greater than 1.0 (colored red in Figures 3d-3e). Annual 

evapotranspiration increases (annual streamflow decreases) are stronger under warm season 

warming than under cool season warming in these basins, of which there are 60 for PrefET (19.0%), 

and 59 for PrefQ (18.7%). Most of these basins have ET-T sensitivity ratios that are positive and 

larger than 1.0 (colored in red in Figure 3f).  

B2. Positive Pref, less than 1.0, colored in brown in Figures 3d-3e. Annual 

evapotranspiration increases (annual streamflow decreases) are stronger under cool season 

warming than under warm season warming for these basins, of which there are 151 for PrefET 

(47.9%) and 154 for PrefQ (48.9%). Most of them have ET-T sensitivity ratios that are positive 

and smaller than 1.0 (colored in brown in Figure 3f).  

B3. Negative Pref, more negative than -1.0, colored in dark blue in Figures 3d-3e. 35 basins 

fall into this category for PrefET (11.1%) and 36 for PrefQ (11.4%). Most of these basins coincide 
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with ET-T sensitivity ratios that are negative and smaller than -1.0 (colored in dark blue in Figure 

3f). The negative PrefET and PrefQ values are caused by annual evapotranspiration decreases and 

annual streamflow increases under cool season warming. For the 35 basins with annual 

evapotranspiration decreases, 25 are associated solely with cool season evapotranspiration 

decreases, seven are associated solely with warm season evapotranspiration decreases, and three 

have both cool season and warm season evapotranspiration decreases (Figure S2a). For the 36 

basins with annual streamflow increases, 26 are contributed solely by cool season streamflow 

increases, and 10 have both warm and cool season streamflow increases (Figure S2b). All these 

basins are located within or near the boundary of cold desert areas. The decreasing warm season 

evapotranspiration under cool season warming is due to stronger soil moisture deficits in the 

beginning of the warm season following enhanced evapotranspiration during cool season warming. 

Possible reasons for the decreasing cool season evapotranspiration under cool season warming are 

the same as we discuss for A3 and A4 above.  

B4. Negative Pref, less negative than -1.0, colored in light blue in Figures 3d and 3e. 69 of 

315 non-snow-affected basins for PrefET (21.9%) and 66 PrefQ (21.0%) had these characteristics. 

Most of them coincide with ET-T sensitivity ratios that are less negative than -1.0 (colored in light 

blue in Figure 3f). For the 69 basins that have negative PrefET, 27 basins are associated with warm 

season evapotranspiration decreases under warm season warming, 39 are associated with cool 

season evapotranspiration decreases under cool season warming, and three basins are associated 

with both warm and cool season evapotranspiration decreases under cool season warming. For the 

66 basins with negative PrefQ, 25 are dominated by cool season streamflow increases under warm 

season warming, and 41 are dominated by cool season streamflow increases under cool season 

warming. The 27 basins with warm season evapotranspiration decreases (which includes the 25 
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basins with cool season streamflow increases) under warm season warming fall into the warm 

desert Ecoregion Level-II classification (reddish color in Figures S2a and S2b) near the Mojave 

and Sonoran Deserts. The warm desert regions generally have low precipitation (Figure 2f), low 

vegetation coverage (Figures S1a and S1b), as well as low snow coverage (Figures S1f and S1g), 

low runoff ratios (Figure S1d), low elevation (Figure S1e) and higher temperatures (Figure 2d) as 

compared to the cold desert type. These basins are very arid and have limited streamflow, with 

maximum basin average annual streamflow less than 40 mm, relative increases of annual 

streamflow less than 1%. The warm season evapotranspiration decreases under warm season 

warming in these 27 basins are mostly due to elevated surface resistance associated with warmer 

temperatures, which is supported by the high surface temperature part (>20 °C) in Figure S3.  

In general, the basins with negative Pref values (126 basins for PrefET and 127 basins for 

PrefQ) are in low elevation, arid regions with high temperatures and little snow coverage. These 

basins contribute slightly less than 9% of the total streamflow for all 616 HUC-8 basins in the 

WUS, according to the VIC simulation results. Although these basins have streamflow increases 

under certain warming scenarios, their streamflow increases tend to be small and far from enough 

to compensate for streamflow declines elsewhere across our WUS domain. 
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Chapter 2 Figure 3. Map of 616 HUC-8 basins categorized based on snow-affected (SA: mean 

Apr 1st SWE>20mm) or non-snow affected (nonSA: mean Apr 1st SWE < 20mm) conditions; 
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signs of PrefET, PrefQ, and ET-T sensitivity ratios (dETrt), and their absolute values relative to 1.0 

for the three indices (shown separately in subplots a-f). 

4.2 Observation-based asymmetry of annual streamflow responses to seasonal warming  

We compared all of the observation-based and VIC model-simulated PrefQ (Figures 4a and 

4b) on a point-by-point basis and found that, despite differences between observation-based and 

simulated estimates, they share similar probability distributions, and are roughly similar in their 

variations with air temperature, especially the basins with statistically-significant temperature 

regression coefficients (Sw and Sc, at p=0.1 level) (Figures 4 and S4). Comparison of Figures 4a 

and 4b shows that PrefQ values estimated using WaterWatch have a better match with VIC-

simulated ones than do the GAGESII (USGS Reference) gauges, probably because the 

WaterWatch basin areas (mean drainage area 3180 km2) are larger than the GAGESII ones (mean 

drainage area 520 km2). Both Figures 4a and 4b show decreasing PrefQ (both model- and 

observation-inferred) as temperature increases, despite the different spatial coverage between the 

two datasets (Figure S5). This decreasing trend echoes the pattern of lower PrefQ under warmer 

temperature found from multiple model simulations in Ban et al. [2020]. We also conducted two 

similar comparisons for Sw and Sc separately (Figures S6 and S7), and compared PrefQ spatially 

(Figure S5), which also show some hint of similarity. The above results provide some data support 

to the simulated patterns and interpretations of simulated asymmetry in the following sections.   

A high fraction of temperature coefficients estimated from Eq. 4 are statistically 

insignificant (only 30 out of 513 gages, and 31 out of 286 basins are statistically significant at 

significance level=0.1). Nonetheless, the significant coefficient fractions (5.8% and 10.8%) are 

still much larger than that can be attributed to chance (0.1*0.1=0.01=1%). Considering all the 
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above, we argue that the similarity between model- and observation-inferred PrefQ distribution is 

not coincidental, which adds credibility to our model-based results.  

 

Chapter 2 Figure 4. Point-by-point comparisons between VIC-simulated and observation-based 

PrefQ, for (a) GAGESII (GG) basins, and (b) WaterWatch (WW) HUC-8 basins. Crosses highlight 

the basins that have statistically significant (p=0.1) temperature regression coefficients in Eq.4, 

and other points show all basins’ estimates. 

4.3 ET-T sensitivity as a function of temperature and gross incoming water 

In section 4.1, we confirmed the similarity between the seasonal ET-T sensitivity ratios and 

the Pref values. Here, we examine another conclusion in Ban et al. [2020] relative to the variation 

of ET-T sensitivity with temperature and Gross Incoming Water (see Section 1 for definition) at 

the HUC-8 level. Warm and cool season ET-T sensitivities from each of the 616 HUC-8 basins are 

plotted together as a function of seasonal surface temperature and LOWESS-smoothed into a red 

curve in Figure 5a. In Figure 5b, relationships between ET-T sensitivities and Gross Incoming 

Water are plotted as scatterplots separately for warm and cool season.  

The increasing-to-decreasing pattern (above -5°C) of ET-T sensitivity as temperature 

increases (Figure 5a) and the positive relationship between ET-T sensitivity and Gross Incoming 

Water (Figure 5b) confirm the findings in Ban et al. [2020]: i) ET-T sensitivity increases (decreases) 
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with temperature in cool (warm) environments, so cooler basins have a higher ratio of warm to 

cool season ET-T sensitivity, thus higher Pref values; and ii) higher water availability favors higher 

ET-T sensitivity, so among basins with similar temperatures, a higher warm-to-cool-season Gross 

Incoming Water ratio favors a higher ET-T sensitivity ratio, thus higher Pref values. These 

relationships support the southwest-to-northeast increasing Pref values (Figures 2a-2b), west-to-

east increasing Gross Incoming Water ratio (Figure 2e), and southwest-to-northeast decreasing 

annual mean temperature across the WUS (Figure 2d, which is a consequence of the both south-

to-north increasing latitude and west-to-east increasing elevation), as identified in Section 4.1. We 

further separated the basins into snow-affected and non-snow-affected subgroups to evaluate the 

patterns (Figure S8) and found that the patterns in Figures 5a and 5b above are generally consistent 

in both subgroups.  

 

Chapter 2 Figure 5. (a) ET-T sensitivity as a function of seasonal surface temperature (Tsurf). 

The red curve is LOWESS-smoothed from the seasonal values from each of the 616 HUC-8 basins. 

Both warm and cool season values are plotted in panel a). The LOWESS-smooth span parameter 

is 0.5; shading denotes the confidence interval (level=0.95) for the possible locations of the 
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smoothed lines. The lower 1st and upper 99th percentiles of cool season temperature basins are 

excluded as outliers and are not plotted in this figure. (b) Relationship between ET-T sensitivity 

and Gross Incoming Water (GIW: initial water storage in soil and snow in the season plus the 

season’s precipitation). Red (blue) points are for warm (cool) season. Each point denotes a basin’s 

basin-average value. 

4.4 Streamflow response asymmetry and ET-T sensitivity asymmetry across basin characteristics 

Here we focus on the relationship among basin surface characteristics (other than 

temperature and water availability discussed above), the asymmetry of annual streamflow response 

to seasonal warming, and seasonal ET-T sensitivity asymmetry. We calculated seven basin 

characteristics for each of the 616 HUC-8 basins with VIC parameters and simulations (as 

described in section 3.4): vegetation height, vegetation density, root depth, runoff ratio, elevation, 

climatological annual mean snow water equivalent (SWE), and climatological annual mean snow 

cover fraction (see Figures S1a-g for maps). We also calculated the annual streamflow response 

asymmetry and ET-T sensitivity asymmetry for each of the 616 HUC-8 basins, in the form of 

SUBQ and SUBETS (defined in Eqs. 5-6, notation is the same as in Eqs. 1-3, where Q indicates 

streamflow, and ETS is short for ET-T Sensitivity).  

SUB𝑄 = (𝑄𝑎,𝑏
̅̅ ̅̅̅ − 𝑄𝑎,𝑤1𝑑

̅̅ ̅̅ ̅̅̅ ̅) − (𝑄𝑎,𝑏
̅̅ ̅̅̅ − 𝑄𝑎,𝑐1𝑑

̅̅ ̅̅ ̅̅ ̅̅ )                     (Eq. 5) 

SUB𝐸𝑇𝑆 = (𝐸𝑇𝑤,𝑤1𝑑
̅̅ ̅̅̅ ̅̅ ̅̅̅ − 𝐸𝑇𝑤,𝑏

̅̅ ̅̅ ̅̅ ̅) − (𝐸𝑇𝑐,𝑐1𝑑
̅̅ ̅̅ ̅̅ ̅̅ ̅ − 𝐸𝑇𝑐,𝑏

̅̅ ̅̅ ̅̅ ̅)          (Eq. 6) 

By construct, a more positive value of SUBQ or SUBETS means stronger annual streamflow 

(evapotranspiration) decreases (increases) under warm vs. cool season warming.  

We plotted the 616 HUC-8 basins’ SUBQ and SUBETS (model-estimated) together with their 

(seven) basin characteristics and LOWESS-smoothed the results in Figures 6a-6g. To highlight the 

relationship among SUBQ, SUBETS and basin surface characteristics apart from temperature 
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impacts, we parsed the 616 basins into three zones according to long-term annual mean air 

temperature (cool: < 4°C, moderate: 4~12°C, warm: >12°C). We also plotted scatterplots 

corresponding to Figures 6a-6g in Figures S9 and S10, with long-term average annual mean 

precipitation indicated by colors.  

 

Chapter 2 Figure 6. Variation of asymmetry of seasonal ET-T sensitivity (SUBETS), and 

asymmetry of annual streamflow response to seasonal warming (SUBQ) with (a) vegetation height, 

(b) vegetation density, (c) root depth, (d) runoff ratio, (e) elevation, (f) climatological annual mean 

SWE, and (g) climatological annual mean snow cover fraction, in three different temperature zones 

divided according to long-term average annual mean air temperature (Cool: <4°C, Moderate: 

4~12°C, and Warm: >12°C) across the HUC-8 basins. Each plot shows LOWESS-smoothed curves 

of scatterplots (points are not plotted for clarity) between the asymmetries and basin characteristics 

using values from each 616 HUC-8 basins. The LOWESS-smoothing span parameter is 1.0, 

shading is as in Figure 5a. 

Figures 6a-c suggest that the increasing SUBETS, SUBQ is associated with higher, denser, 

and deeper vegetation structure in cool zones, while in warm zones the relationship is reversed, 
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and in moderate regions the relationship lies between the two. This is understandable within the 

VIC model configuration: higher vegetation increases evaporation by increasing roughness length 

and aerodynamic resistance; denser vegetation increases transpiration by reducing canopy 

resistance; and deeper root increases transpiration by supporting more water extraction. Therefore, 

more vegetation enhances the asymmetry of annual evapotranspiration response to seasonal 

warming, leading to a stronger preference for warm season warming (i.e., more positive SUBQ and 

SUBETS with increasing vegetation) in the cool zones, and contrastingly, a stronger preference for 

cool season warming (i.e., more negative SUBQ and SUBETS with increasing vegetation) in the 

warm zones.  

Figure 6d shows the variation of SUBETS and SUBQ with runoff ratio. In cool zones, among 

basins with runoff ratio <0.5, a higher runoff ratio generally means more rapid spring snowmelt 

and cooler snowpack, which indicates less sensitive winter snowpack to cool season warming, and 

more snowmelt occurring in the warm season. This seasonal pattern of snowmelt leads to a stronger 

preference for evapotranspiration increase under warm season warming (i.e., more positive SUBQ 

and SUBETS). For runoff ratio > 0.5, basins with deep snowpacks can experience non-negligible 

net snowpack decrease on a long-term scale, generating additional streamflow increases. In such 

basins, the additional streamflow increases more under warm season warming than under cool 

season warming, which reduces streamflow reduction from warm season warming by a larger 

degree than from cool season warming, thus reducing SUBQ. This tendency is stronger in cooler 

basins with deeper snowpacks and higher runoff ratios, leading to decreasing preference for warm 

season warming (i.e., decreasing SUBQ). In warm zones, higher runoff ratios correspond to higher 

precipitation, mostly in coastal regions (Figures 2d, 2f, S1d) and greater precipitation in winter vs. 
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summer (Figure 2e), leading to a stronger preference for cool season warming (i.e., more negative 

SUBQ and SUBETS).  

Figure 6e shows relationships among SUBETS, SUBQ, and elevation. Across the three 

temperature zones, there is no significant increasing or decreasing pattern, indicating that 

elevation’s impact on asymmetry mostly comes from its influence on temperature and precipitation 

(also see Figures S9-S10), excluding which the remaining impact is insignificant.  

The curves in Figures 6f-6g share similar patterns. In cool zones, higher SWE and snow 

cover fraction favors lower temperature, more water available for evapotranspiration in the warm 

season, and less sensitive snowmelt (and thus evapotranspiration) to warming in the cool season, 

thus higher SUBETS. SUBQ is smaller than SUBETS and started to decline for cool zones with SWE > 

~200 mm and snow cover fraction > ~0.6, which is due to net snowpack decrease as discussed 

above. In moderate zones, SUBETS and SUBQ generally increase with higher SWE and snow cover 

fractions, which relates to lower temperatures. In warm regions, the snow coverage and SWE are 

both very low, so the snow impact is not substantial (as shown in Figures S9t-u and S10t-u).  

The similarity of curve shapes across Figures 6a-d and 6f-g can be explained by the spatial 

coincidence of the above basin characteristics. Regions with more abundant snowpack (higher 

SWE, snow cover fraction) usually support higher runoff ratio and vegetation growth (Figures 

S1a-d, S1f-g). Across Figures 6a-g, regions with high values of the asymmetry all tend to have 

lower temperatures. They especially tend towards moderate elevations-high latitude parts of the 

domain (the northern part of the Columbia River Basin in particular) and moderate latitude-high 

elevation regions (the northern and eastern parts of the UCRB) (Figures 2d and S1h).  

Taken over Figures 6a to 6g, the SUBETS generally is lower than the SUBQ in warm zones 

and at lower values of the seven basin characteristics for the other two temperature zones, which 
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corresponds with warmer, more arid regions. The SUBETS generally is higher than the SUBQ when 

the values of the seven basin characteristics are higher, corresponding to cooler, more humid basins. 

The smaller SUBETS relative to the SUBQ are due to the compensating effect of warm season 

evapotranspiration decreases under cool season warming, as discussed in Ban et al. [2020]. The 

larger SUBETS relative to the SUBQ generally occur for basins with high snow cover fraction and 

high SWE, which leads to situations where the net snow storage decline can be non-negligible 

[Mote et al., 2005; Mote et al., 2018], as discussed above. In other words, long-term snow storage 

decline mitigates the general trend of stronger streamflow responses to warm season warming at 

cooler regions, at the price of reducing snowpack. 

4.5 Processes dominating streamflow response asymmetry across temperatures 

Figure 7a shows the five primary ET-T sensitivity-related processes’ (see section 3.5 and 

Figure 7 captions) contributions to SUBETS (defined in Eq. 6) as a function of annual mean surface 

temperature. We calculated their contributions to SUBETS as their contributions to warm season 

ET-T sensitivity (using derivative expansion, described in section 3.5) minus those to cool season 

ET-T sensitivity. We added up the five processes’ estimated contributions to SUBETS (brown curve, 

Figure 7a), which is quite close to the SUBETS (red curve, Figure 7a) directly calculated from model 

output, which confirms the accuracy of the approximation. The process with the largest fractional 

contribution to SUBETS is identified as the dominant process on a HUC-8 basin basis (Figure 7b). 
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Chapter 2 Figure 7. (a) LOWESS-smoothed asymmetry of ET-T sensitivity (SUBETS, see Eq. 6 

for definition), estimated SUBETS, and contribution of the five major ET-related processes to the 

estimated SUBETS across values for each of the 616 HUC-8 basins, as a function of annual mean 

surface temperature; The five processes: Available radiation (R*), vapor pressure deficit (es-ea), 

surface resistance (rs), aerodynamic resistance (ra), and slope of saturated vapor pressure curve (δ). 

(b) Dominant processes controlling SUBETS for each HUC-8 basin. The LOWESS-smoothing span 

parameter and shading denotation are the same as the ones in Figure 5a. 

Figure 7 suggests that different processes dominate the asymmetry of ET-T sensitivity 

(SUBETS) under seasonal warming at different temperatures. The contribution of available 

radiation change to the ET-T sensitivity asymmetry increases as cooler basins warm (Figure 7a). 

However, the difference in available radiation changes between warm and cool season warming 

contributes most to the asymmetry of ET-T sensitivity for only 5 of the 616 basins, all of which 

are at the highest latitudes (> 50°N) or very high elevations (> 3000m) (Figures 7b, S1e).  This 

result is consistent with the more active snowmelt and albedo-radiation feedback, and therefore 
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enhanced potential evapotranspiration (Neto et al., 2020) in these basins’ warm seasons. For basins 

with moderate temperatures, the difference in vapor pressure deficit change between warm and 

cool season warming contributes most to the asymmetry of ET-T sensitivity (293 basins), while 

changes in aerodynamic resistance and slope of saturated vapor pressure curve dominates fewer 

(12 for both) basins. For basins with the warmest temperatures, sensitivity of ET to warming-

induced vapor pressure deficit change starts to decline, while the sensitivity of ET to surface 

resistance change remains relatively high at high temperatures (see supplement Figure S17 of Ban 

et al., 2020). Therefore, change in surface resistance becomes the dominant contributor to ET-T 

sensitivity’s asymmetry (294 basins). Over the entire domain, changes in vapor pressure deficit 

and surface resistance contribute most to the asymmetry of ET-T sensitivity (587 of the 616 basins) 

and therefore dominate the annual streamflow response asymmetry. 

5. Discussion 

Milly and Dunne [2020] and Neto et al. (2020) concluded that increased net radiation from 

reflective snow loss under warming contributes most to the annual streamflow decline under 

annual warming for the UCRB. However, in our results, for the asymmetry of streamflow 

responses to seasonal warming, change in available radiation contributes less than change in vapor 

pressure deficit and surface resistance across most of the WUS (Figure 7). There are several 

reasons for this. First, our discussion focuses on the asymmetry of annual streamflow response to 

seasonal warming instead of the annual streamflow response to annual warming as in Milly and 

Dunne [2020]. Radiation-driven evapotranspiration increase is more evenly split by the warm and 

cool seasons than are evapotranspiration increases driven by changes in vapor pressure deficit or 

surface resistance (Figure S12, taking UCRB as an example). Therefore, changes in vapor pressure 

deficit and surface resistance contribute more substantially to the seasonal asymmetry of annual 
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streamflow response than do changes in available radiation (Figure S12). Second, we calculated 

contributions of vapor pressure deficit change and surface resistance change to evapotranspiration 

changes explicitly and separately in the Penman-Monteith expansion, while Milly and Dunne 

[2020] implicitly included contributions from the two processes together in the non-linear term 

category. Due to the feedback between elevated vapor pressure deficit and elevated surface 

resistance, if we consider the two factors’ total effect on evapotranspiration changes, their 

contributions partially cancel out, and the remaining net contribution to annual evapotranspiration 

change under annual 1°C warming is smaller than the contribution from available radiation change 

in the study area (UCRB) of Milly and Dunne [2020] (Table S2). Nevertheless, discussing the two 

factors explicitly and separately is beneficial since the cancellation level varies across different 

hydroclimate conditions, and varies when discussing the response asymmetry instead of the annual 

response to annual warming (Figure 7).  

We also show in Table S2 that when contributions from surface resistance change and vapor 

pressure deficit change partially cancel, the available radiation change still contributes less than 

the change in the slope of the saturated vapor pressure curve. This contribution ranking differs 

from Milly and Dunne [2020]’s finding that snow-albedo effect contributes more to streamflow 

decline than do temperature-associated changes in saturated vapor pressure. This difference in our 

results and theirs is probably due to differences in the evapotranspiration calculation framework. 

Our results come from a Penman-Monteith framework that considers the impact of vapor pressure 

deficit change on actual evapotranspiration, while Milly and Dunne [2020] used a Priestley-Taylor 

framework that discounts this impact. Under warming, reduced snowpack and albedo elevate net 

radiation, enhancing latent heat flux and bringing more moisture to the air, which reduces the vapor 

pressure deficit increment that directly comes from warming. This negative side effect of enhanced 
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radiation on vapor pressure deficit mitigates the radiation-driven evapotranspiration increase under 

warming somewhat. However, as mentioned above, the vapor pressure deficit impact on 

evapotranspiration is ignored in Priestley-Taylor framework. As a result, using a Priestley-Taylor 

framework results in a larger contribution of radiation (e.g., snowmelt-albedo feedback) to 

evapotranspiration increase and hence streamflow decline under warming.  

We recognize that our land surface modeling does not consider the impact of elevated 

humidity from evapotranspiration increase on vapor pressure deficit, which could overemphasize 

vapor pressure deficit increase under temperature warming, leading to a larger contribution of 

vapor pressure deficit change to evapotranspiration increase. To check if this effect is substantial, 

we compared the relationship between vapor pressure deficit and air temperature in the VIC model 

and one high-resolution (50km) general circulation model (CNRM-CM6-1-HR) acquired from the 

Coupled Model Intercomparison Project (CMIP) version 6 multi-model ensemble  [Juckes et al., 

2020; Voldoire, 2019]. We used the two models’ daily historical period from 1950/01/01 to 

2014/12/31 for the UCRB (using basin averages) and plotted the results in Figure S13. Vapor 

pressure deficit in the coupled model is slightly lower than that in the VIC model at moist pixels, 

and the two converge in regions with low soil moisture. In general, the difference between the 

slope of vapor pressure deficit vs. air temperature is not substantial between the two models, 

indicating the feedback between enhanced evapotranspiration and vapor pressure deficit should 

not substantially affect our findings based on the off-line implementation of the VIC model.  

In addition to our model-based evaluation in section 4.4, we also utilized observation-based 

estimates (i.e., Sw and Sc in Eq. 4) to check their relationships with basin characteristics (Figure  

S11, detailed discussions see Text S1). Besides the similarity in a general context, the observation -

based results are more inclined to have a stronger streamflow decrease under cool season warming 
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especially in moderate regions, and reflect a stronger suppressive effect of long-term snowpack 

reduction on streamflow sensitivity to warm season warming in cool regions, compared to results 

from model-simulations. Supposing the observation-based estimates can represent the reality, 

these differences may reflect how the real-world sensitivities could deviate from simulations.  

Despite these differences, overall similarities between simulated and observation-based 

results (Figure 4, Figures S4-S7) suggest that the simulated results are not just reflecting how the 

model works, but also the streamflow response in the external world. Here, some differences 

between simulated and observation-based estimates of streamflow response are not unexpected, 

and we choose to rely on model outputs because: 1) Observation-based estimations treat each year 

as an individual realization of reference climates, which is less clear and informative than the 

model simulations treating baseline climatology as the reference climate; 2) Interannual variations 

in precipitation and their effect on streamflow generally dominate effects of temperature variation, 

complicating extraction of temperature effects from observations. This is a problem as well in 

observation-based estimations of elasticity, for example of annual streamflow to potential 

evapotranspiration [Xiao et al., 2020]; 3) Some other issues in the observation-estimates, including 

shorter records, linear assumption, fewer predictors, and potential inevitable human disturbances 

to observations even after screening. There are also limitations in model simulations, such as static 

and smoothed parameters that may cause stronger spatial-smoothness of asymmetry than in reality.  

The streamflow response asymmetry and its controlling mechanisms (characteristics) 

discussed in this paper represent a refinement of previous runoff-climate studies at much lower 

spatial resolution (Ban et al., 2020; Das et al., 2011) and for seasonal rather than annual scale of 

warming (e.g., Milly and Dunne, 2020). Future studies could follow the pathway we’ve developed 

to address additional issues such as implications of differential warming for seasonal water scarcity 
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(especially in the dry-season). Exploration of seasonal streamflow responses to differential 

warming might also explore the implications of vegetation dynamics, and atmosphere-land surface 

coupling.  

6. Conclusions 

We examined the complex spatial patterns of annual streamflow relative response to warm 

vs. cool season warming across the WUS. At a much higher granularity (HUC-8), we confirmed 

relationships between annual streamflow response asymmetry, temperature, and Gross Incoming 

Water found in our earlier work at much coarser spatial scales [Ban et al., 2020]. We also evaluated 

the observation-based support for model-based sensitivity estimates; examined impacts of 

different basin surface characteristics on the patterns of annual streamflow relative response to 

seasonal warming; identified the processes that contribute most to the annual streamflow response 

asymmetry across the 616 HUC-8 basins, and discussed the relative role of net radiation as drivers 

to annual streamflow sensitivity to seasonal warming. All of these analyses expand on our previous 

work [Ban et al., 2020]. Additionally, the smooth transition of results from west- to east- of the 

Continental Divide suggests that our findings could be applied to other similar basins (snow-

dominated, asymmetrical seasonal warming).  

Based on our work, we conclude that: 

1. Using the ratio of annual streamflow decreases resulting from warm vs. cool season 

warming, moist basins with relatively low temperatures, high warm-to-cool-season Gross 

Incoming Water ratios, and moderate winter snow accumulation have the largest asymmetries 

(ratio > 1). These basins are mostly at high latitude (north of 37.5°N) or high elevation, especially 

the northern Columbia River basin and most of the Upper Colorado River Basin. Warmer coastal 

basins have smaller asymmetry (ratio < 1). Extremely warm and arid basins (e.g., those bordering 
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on the Mojave and Sonoran Deserts) and extremely cold basins with long snow seasons (e.g., three 

basins at the northern boundary of the Columbia River Basin) have negative asymmetries, with 

annual streamflow increases under warm season warming. Extremely arid but moderate 

temperature basins (e.g., those draining to the Great Basin) also have negative asymmetries, but 

with annual streamflow increases under cool season warming. Generally, stronger asymmetry 

occurs for cooler basins. This is because the ratio between warm and cool season 

evapotranspiration-temperature sensitivity which constrains the asymmetry is higher for cooler 

temperatures. Ban et al. [2020] found a similar pattern among four much larger river basins.  

2. LOWESS-smoothed relationships between basin characteristics and asymmetry of 

annual streamflow responses from VIC indicate that cool (warm) basins streamflow has an 

asymmetrical tendency to be more sensitive to warm (cool) season warming. In both types of 

basins, increased vegetation (height, root depth, and density) enhances the above tendency by 

enhancing evapotranspiration and thus amplifies ET-T sensitivity. Runoff ratio and snow also 

enhance the tendency when runoff ratio<0.5, SWE<200mm, and snow cover fraction<0.6. Above 

these thresholds, net snowpack decrease causes additional snowmelt, a larger proportion of which 

occurs under warm season warming than cool season warming, mitigating the tendency of 

streamflow to decrease under warm season warming. Compared with model-based results, 

observation-based estimates show less asymmetry towards warm season warming. 

3. Different warming-associated processes dominate the asymmetry of seasonal 

evapotranspiration-temperature sensitivity and hence the response asymmetry for annual 

streamflow across the 616 HUC-8 basins. In the extremely cold basins with the shortest snow-free 

season with 85% or more of snowmelt-generated streamflow occurring after Apr 1st, available 

radiation changes that primarily due to reduced snow cover dominate the streamflow response 
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asymmetry; in basins with intermediate temperature, vapor pressure deficit changes dominate, and 

in basins with the warmest temperatures, surface resistance increases under warmer temperature 

dominate.  

Acknowledgments 

 We acknowledge Mr. Chandramauli Awasthi and Dr. Sankar Arumugam at North Carolina 

State University and Dr. Richard Vogel at Tufts University for their help in setting up panel 

regression with observations in our exploration for the paper. We acknowledge Chen Xin and Lu 

Su of UCLA Department of Geography for helpful discussions. We acknowledge the World 

Climate Research Programme, which, through its Working Group on Coupled Modelling, 

coordinated and promoted CMIP6. We thank the climate modeling groups for producing and 

making available their model output, which we used in the discussion section, the Earth System 

Grid Federation (ESGF) for archiving the data and providing access, and the multiple funding 

agencies who support CMIP6 and ESGF. Data and codes in this paper are publicly available at the 

following URLs:  

GRanD v1.3 database: http://globaldamwatch.org/data/#core_global. USGS GAGESII: 

https://water.usgs.gov/GIS/metadata/usgswrd/XML/gagesII_Sept2011.xml#stdorder. 

USGS WaterWatch: https://waterwatch.usgs.gov/index.php?id=wwds_runoff. 

VIC-4.1.2.g:  https://doi.org/10.5281/zenodo.4695040. 

Other data (and information) used in this paper:  https://doi.org/10.6084/m9.figshare.14349527.v5. 

This work was funded in part by a grant from the NOAA Regional Integrated Sciences and 

Assessments (RISA) program to the California Nevada Climate Applications Program (CNAP) at 

the Scripps Institution of Oceanography, grant number NA17OAR4310284, under subaward to the 

University of California, Los Angeles.   

http://globaldamwatch.org/data/#core_global
https://water.usgs.gov/GIS/metadata/usgswrd/XML/gagesII_Sept2011.xml#stdorder
https://waterwatch.usgs.gov/index.php?id=wwds_runoff
https://doi.org/10.6084/m9.figshare.14349527.v4


44 

 

References 

Adam, J. C., Hamlet, A. F., & Lettenmaier, D. P. (2009). Implications of global climate change for 

snowmelt hydrology in the twenty‐first century. Hydrological Processes: An International 

Journal, 23(7), 962-972.  

Ban, Z., Das, T., Cayan, D., Xiao, M., & Lettenmaier, D. P. (2020). Understanding the asymmetry 

of annual streamflow responses to seasonal warming in the Western US. Water Resources 

Research, e2020WR027158.  

Barnett, T. P., Adam, J. C., & Lettenmaier, D. P. (2005). Potential impacts of a warming climate 

on water availability in snow-dominated regions. Nature, 438(7066), 303-309.  

Barnhart, T. B., Molotch, N. P., Livneh, B., Harpold, A. A., Knowles, J. F., & Schneider, D. (2016). 

Snowmelt rate dictates streamflow. Geophysical Research Letters, 43(15), 8006-8016. 

Bohn, T. J., Livneh, B., Oyler, J. W., Running, S. W., Nijssen, B., & Lettenmaier, D. P. (2013). 

Global evaluation of MTCLIM and related algorithms for forcing of ecological and 

hydrological models. Agricultural and forest meteorology, 176, 38-49.  

Brakebill, J. W., Wolock, D. M., & Terziotti, S. (2011). Digital Hydrologic Networks Supporting 

Applications Related to Spatially Referenced Regression Modeling 1. JAWRA Journal of 

the American Water Resources Association, 47(5), 916-932.  

Condon, L. E., Atchley, A. L., & Maxwell, R. M. (2020). Evapotranspiration depletes groundwater 

under warming over the contiguous United States. Nature communications, 11(1), 1-8.  

Das, T., Pierce, D. W., Cayan, D. R., Vano, J. A., & Lettenmaier, D. P. (2011). The importance of 

warm season warming to western US streamflow changes. Geophysical Research Letters, 

38(23).  



45 

 

Dettinger, M. D., Cayan, D. R., Meyer, M. K., & Jeton, A. E. (2004). Simulated hydrologic 

responses to climate variations and change in the Merced, Carson, and American River 

basins, Sierra Nevada, California, 1900–2099. Climatic Change, 62(1), 283-317.  

Falcone, J. A. (2011). GAGES-II: Geospatial attributes of gages for evaluating streamflow. US 

Geological Survey. 

Forbes, W. L., Mao, J., Jin, M., Kao, S.-C., Fu, W., Shi, X., et al. (2018). Contribution of 

environmental forcings to US runoff changes for the period 1950–2010. Environmental 

Research Letters, 13(5), 054023.  

Gesch, D. B., Verdin, K. L., & Greenlee, S. K. (1999). New land surface digital elevation model 

covers the Earth. Eos, Transactions American Geophysical Union, 80(6), 69-70. 

Hansen, M. C., DeFries, R. S., Townshend, J. R., & Sohlberg, R. (2000). Global land cover 

classification at 1 km spatial resolution using a classification tree approach. International 

journal of remote sensing, 21(6-7), 1331-1364. 

Hayhoe, K., Cayan, D., Field, C. B., Frumhoff, P. C., Maurer, E. P., Miller, N. L., ... & Verville, J. 

H. (2004). Emissions pathways, climate change, and impacts on California. Proceedings of 

the national academy of sciences, 101(34), 12422-12427. 

Juckes, M., Taylor, K. E., Durack, P. J., Lawrence, B., Mizielinski, M. S., Pamment, A., et al. 

(2020). The CMIP6 data request (DREQ, version 01.00. 31). Geoscientific Model 

Development, 13(1), 201-224.  

Lehner, B., Liermann, C. R., Revenga, C., Vörösmarty, C., Fekete, B., Crouzet, P., et al. (2011). 

High‐resolution mapping of the world's reservoirs and dams for sustainable river‐flow  

management. Frontiers in Ecology and the Environment, 9(9), 494-502.  



46 

 

Li, D., Wrzesien, M. L., Durand, M., Adam, J., & Lettenmaier, D. P. (2017). How much runoff 

originates as snow in the western United States, and how will that change in the future? 

Geophysical Research Letters, 44(12), 6163-6172.  

Liang, X., Lettenmaier, D. P., Wood, E. F., & Burges, S. J. (1994). A simple hydrologically based 

model of land surface water and energy fluxes for general circulation models. Journal of 

Geophysical Research: Atmospheres, 99(D7), 14415-14428.  

Livneh, B., Rosenberg, E. A., Lin, C., Nijssen, B., Mishra, V., Andreadis, K. M., et al. (2013). A 

long-term hydrologically based dataset of land surface fluxes and states for the 

conterminous United States: Update and extensions. Journal of Climate, 26(23), 9384-9392. 

Milly, P. C., & Dunne, K. A. (2020). Colorado River flow dwindles as warming-driven loss 

of reflective snow energizes evaporation. Science, 367(6483), 1252-1255.  

Mote, P. W., Hamlet, A. F., Clark, M. P., & Lettenmaier, D. P. (2005). Declining mountain 

snowpack in western North America. Bulletin of the American Meteorological Society, 

86(1), 39-50.  

Mote, P. W., Li, S., Lettenmaier, D. P., Xiao, M., & Engel, R. (2018). Dramatic declines in 

snowpack in the western US. Npj Climate and Atmospheric Science, 1(1), 1-6.  

Neto, A. A. M., Niu, G. Y., Roy, T., Tyler, S., & Troch, P. A. (2020). Interactions between snow 

cover and evaporation lead to higher sensitivity of streamflow to temperature. 

Communications Earth & Environment, 1(1), 1-7. 

Qin, Y., Abatzoglou, J. T., Siebert, S., Huning, L. S., AghaKouchak, A., Mankin, J. S., et al. (2020). 

Agricultural risks from changing snowmelt. Nature Climate Change, 10(5), 459-465.  



47 

 

Rupp, D. E., Li, S., Mote, P. W., Shell, K. M., Massey, N., Sparrow, S. N., et al. (2017). Seasonal 

spatial patterns of projected anthropogenic warming in complex terrain: a modeling study 

of the western US. Climate Dynamics, 48(7-8), 2191-2213.  

Simley, J.D., Carswell Jr., W.J., 2009, The National Map—Hydrography: U.S. Geological Survey 

Fact Sheet 2009-3054, 4 p. 

Stewart, I. T., Cayan, D. R., & Dettinger, M. D. (2004). Changes in snowmelt runoff timing in 

western North America under abusiness as usual'climate change scenario. Climatic Change, 

62(1), 217-232.  

Su, L., Cao, Q., Xiao, M., Mocko, D. M., Barlage, M., Li, D., et al. (2021). Drought Variability 

over the Conterminous United States for the past century. Journal of Hydrometeorology.  

Vano, J. A., & Lettenmaier, D. P. (2014). A sensitivity-based approach to evaluating future changes 

in Colorado River discharge. Climatic Change, 122(4), 621-634.  

Vano, J. A., Nijssen, B., & Lettenmaier, D. P. (2015). Seasonal hydrologic responses to climate 

change in the P acific N orthwest. Water Resources Research, 51(4), 1959-1976.  

Voldoire, A. (2019). CNRM-CERFACS CNRM-CERFACS CNRM-CM6-1-HR model output 

prepared for CMIP6 CMIP historical. Version 20200130. Earth System Grid Federation. 

doi:https://doi.org/10.22033/ESGF/CMIP6.4067 . 

Xiao, M., Gao, M., Vogel, R. M., & Lettenmaier, D. P. (2020). Runoff and Evapotranspiration 

Elasticities in the Western United States: Are They Consistent With Dooge's 

Complementary Relationship? Water Resources Research, 56(8), e2019WR026719.  

Yang, Y., Roderick, M. L., Zhang, S., McVicar, T. R., & Donohue, R. J. (2019). Hydrologic 

implications of vegetation response to elevated CO 2 in climate projections. Nature Climate 

Change, 9(1), 44-48.  



48 

 

Chapter 3 The Increasing Role of Seasonal Rainfall in Western U.S. Summer Streamflow 

(This chapter has been published in Geophysical Research Letters: Ban, Z., Li, D., & Lettenmaier, 

D. P. (2023). The Increasing Role of Seasonal Rainfall in Western U.S. Summer Streamflow. 

Geophysical Research Letters, 50(9), e2023GL102892. 

Abstract: Summer streamflow variations strongly affect water supply reliability and ecological 

functioning of western U.S. (WUS) streams. Traditional snow-based forecasts of summer 

streamflow are becoming less accurate with warming-induced reductions in winter snow 

accumulation. This reflects a rising importance of competing runoff-generating processes in 

controlling summer streamflow variations, primarily an increasing role of rainfall in contrast to 

snowmelt. Here, based on a snowmelt-rainfall tracking algorithm applied to two hydrological 

models, we show that cool-season rainfall provides an important volumetric contribution to 

summer streamflow for many WUS streams in the current climate, and this contribution will 

increase under climate warming, especially in years with warm snow droughts and abnormally dry 

summers. We also show that seasonal rainfall (warm-/cool-seasons) dominates the variability of 

summer streamflow across ~70% area of WUS. We show that an increasing warm-season rainfall 

contribution to summer streamflow (largely replacing snowmelt) results in reduced summer 

streamflow predictability. 

Plain Language Summary: Summer streamflow is a critical water resource in the generally dry 

summers of the western U.S. (WUS), and is routinely forecasted using spring snowpack and/or 

winter total precipitation as primary predictors. However, climate warming leads to reduced 

snowpacks, exacerbates summer low flows, and reduces the accuracy of snow-based summer 

streamflow forecasts. On the other hand, the role of winter rainfall as a control on summer 

streamflow increases in a warmer climate. Here, we explicitly quantify the contributions from 
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cool-season rainfall, warm-season rainfall, and snowmelt to summer streamflow across the WUS, 

and how they change under a uniformly 1°C warmer climate. We show that the cool-season rainfall 

contribution to summer streamflow increases under warming across WUS, especially in streams 

that currently have low-to-moderate snow contributions to runoff, and in years with anomalously 

warm winters and/or dry summers. We also show that the warm-season rainfall contribution to 

summer streamflow increases widely, especially in the southern interior of WUS in a warmer 

climate, and that increasing warm-season rainfall contribution to summer streamflow (largely 

replacing snowmelt) results in reduced summer streamflow predictability.  

1 Introduction 

Summer (Jul-Sep) streamflow is a critical water resource for aquatic ecosystems, 

agriculture, industry, and municipal water supply in the Western U.S. (WUS). Although Jul-Sep 

streamflow for most WUS river basins is not a major part of annual runoff volume, it is a period 

when the lowest flow generally occurs, and therefore is especially ecologically important and 

arguably will become more so as the climate warms. Summer streamflow represents a balance 

between snow and soil water storage accumulated in the previous winter, and peaking water 

demand driven by seasonally high net radiation and vapor pressure deficit [Cooper et al., 2018; 

Crozier et al., 2008; Li et al., 2017; Palmer et al., 2009]. This tension is exacerbated as climate 

warming causes earlier snowmelt and soil moisture depletion, resulting in reduced summer 

streamflow. This change in summer water availability adversely impacts wildlife and water supply, 

and accentuates seasonal drought and wildfires [Stewart et al., 2005]. Worse still, reduced 

snowmelt challenges the predictability of summer streamflow for snow-based 

forecasting/management systems [He et al., 2016; Livneh and Badger, 2020; Mote, 2003; Shrestha 

et al., 2022; Tsuruta and Schnorbus, 2021] (see also Supporting Information Figs. S1-S3 which 
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show smaller correlations between summer streamflow and spring snowpacks in less snow-

covered river basins across WUS). These adverse consequences associated with ongoing trends in 

snowmelt and summer streamflow heighten the need for better understanding of controls on 

summer streamflow variations. They also bring attention to bear on streamflow contributing 

processes other than snowmelt that might better constrain forecasts of summer streamflow in a 

reduced snow future. 

Tague and Grant [2009] proposed a simple conceptual model that relates summer 

streamflow sensitivity to warming to two factors: timing of peak snowmelt relative to late season 

flows, and drainage efficiency. More recently, understanding of summer streamflow variations has 

focused on long-term elasticities/sensitivities of summer low flows to spring snowmelt, winter 

accumulative water supply, and summer evapotranspiration [Cooper et al., 2018; Safeeq et al., 

2013; Safeeq et al., 2014]. However, rainfall in winter and the following warm season (Apr-Sep) 

can make nontrivial contributions to summer streamflow by replenishing soil moisture, a 

mechanism that generally has received less attention than snowmelt. For example, Lapides et al. 

[2022] found that warm season runoff generation is strongly tied to root-zone water storage deficits, 

which must be replenished by snowmelt or rainfall before substantial runoff occur. Moreover, 

Cooper et al. [2018] found a larger percentage change of summer low flows per percentage change 

of winter precipitation for rain-dominated catchments as compared with snow-dominated 

catchments in maritime WUS mountains. Furthermore, quality‐controlled SNOTEL data show a 

significant decrease in annual maximum snowmelt but a significant increase in the frequency of 

rain-on-snow events across the WUS over the period 1979–2017 [Yan et al., 2019]. These findings 

suggest a future in which cool-season (Oct-Mar) rainfall will be increasingly important to 

streamflow in the following summer and will at least partly displace the contribution of snowmelt 



51 

 

to summer streamflow. Despite many previous studies that have discussed ongoing precipitation 

delivery (i.e., composition of rainfall and snowmelt fraction) change impacts on annual streamflow 

(e.g.,  Kiewiet et al. [2022]), knowledge of how precipitation delivery impacts sub-annual (e.g., 

summer) streamflow is still limited, especially for large spatial domains. How the water source 

(rainfall and snowmelt) composition of summer streamflow will evolve under warming, and how 

the warming-induced change in precipitation delivery affects summer streamflow predictability 

across the WUS has received little previous attention, and is our focus here.   

We focus on the water source composition of summer streamflow across WUS to (i) 

quantify the contribution to summer (Jul-Sep) streamflow from cool-season (Oct-Mar) rainfall, 

warm-season (Apr-Sep) rainfall, and snowmelt; (ii) assess the change in contribution from these 

three components under climate warming, and (iii) examine whether and how the summer 

streamflow predictability relates to above precipitation delivery change.   

2 Methods 

We derive explicit quantifications of contributions to summer streamflow from snowmelt 

(F_snow), cool-season rainfall (F_rainc) and warm-season rainfall (F_rainw). We do so by further 

developing the snowmelt-tracking system of Li et al. [2017] to allow custom-period tracking 

(details in Text S1). Our modification separates the contribution to summer streamflow from cool 

and warm-season rainfall temporally by the time the rainfall occurs. This temporal partitioning 

also separates snowmelt from rainfall (the rain-on-snow refreeze effect on the tracking is negligible 

(see Li et al. [2017]). This modification maintains the reliability of the original algorithm in Li et 

al. [2017], for which the snowmelt contribution showed good agreement with isotope 

measurements. 
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We applied the custom-period tracking algorithm to two land surface models: the Variable 

Infiltration Capacity model (VIC) version 4.1.2g [Liang et al., 1994] and Noah-MP (HRLDAS-

v3.9, with Jordan’s snowfall-rainfall partitioning scheme) [Niu et al., 2011] to account for 

uncertainty related to model specifics. We note that both models use physics-based snow 

parameterizations relying on first principles and are generally non-adjustable, unlike the models’ 

runoff response algorithms that require calibration for parameters such as soil water holding 

capacity. Such calibrations have been performed in previous studies (notably for VIC [Livneh et 

al., 2013]). Furthermore, comparisons of simulated and observed snow water equivalent (SWE) 

and streamflow from numerous previous studies using standard versions of VIC in particular have 

shown plausible consistency with observations [Chen et al., 2014; Li et al., 2017; Livneh et al., 

2013]. 

We ran both models from water year 1951-2018 with ten repeats of the first year as spin 

up. Both models were forced by 1/16th degree lat-long degree meteorological forcings from Livneh 

et al. [2013], which were extended to 2018 by Su et al. [2021]. Simulated results of summer 

streamflow from the two models show a plausible consistency (albeit with slight underpredictions 

at low values in Noah-MP) with observations (Fig. S4). Based on the simulations, we calculated 

the contributions from the three sources (cool/warm season rainfall, snowmelt) to summer 

streamflow on a grid-cell level across the WUS. To avoid initialization issues with the tracking 

algorithm, we excluded early years 1950-1958 from our analysis which was performed for the 60-

year period from water year 1959-2018.  

To assess the climate warming impact on the role of each contributor, we applied uniform 

1°C warming to the historical (baseline) simulations for each of the two models. Furthermore, we 

assessed the contributions’ spatial pattern by categorizing the WUS into different land surface 
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conditions by three factors: elevation, precipitation ratio (defined as the ratio of cool-season 

precipitation to warm-season precipitation), and long-term average summer streamflow volume. 

Temporally, we separated the 60 years for each grid-cell into two categories: (1) percentile of the 

summer streamflow historical distribution (<33.3%, 33.3%-66.7%, and >66.7%), and (2) We 

defined warm snow drought years as having below-median peak SWE (i.e., maximum depth of 

snow water equivalent within a year), but above-median cool-season temperature and precipitation, 

dry snow drought years as having below-median peak SWE, cool-season temperature and 

precipitation, and warm-and-dry snow drought years as having below-median peak SWE and cool-

season precipitation, and above-median cool-season temperature. We defined no snow drought 

years as having above-median peak SWE.  

To assess the relationship between precipitation delivery (the contributors) and summer 

streamflow predictability, at each grid cell, we conducted a stepwise regression between summer 

streamflow (dependent variable) and cool-season rainfall, warm-season rainfall, and peak SWE as 

predictors across the 60 years. Among the predictors selected from the stepwise regression, we 

removed the ones without statistically significant coefficients (t-test, significance level = 0.05). 

Then, from the predictors remaining in the equation, we identified the predictor that explained 

most of the summer streamflow variance, as found by the analysis of variance of the stepwise 

regression (ANOVA) as the dominant predictor. Finally, we assessed how different contributors 

and how their warming-driven changes impact summer streamflow predictability by conducting 

(i) linear regression using peak SWE as the only predictor, and (ii) multiple linear regressions that 

additionally included cool-season rainfall and/or Apr-Jun rainfall as predictors. We note that 

although our warm season is Apr-Sep, we avoid using summer months’ rainfall in analyzing 

summer streamflow predictability under both baseline and uniform 1°C warming scenarios. We 
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use adjusted-R2 (Eq. 1) to measure the regression performance. We calculated adjusted-R2 using 

60-years leave-one-year-out summer streamflow predictions based on predictor variables from 

model simulations.  

𝑅̅ 2 = 1 −
𝑆𝑆𝑟𝑒𝑠 /(𝑛−𝑝−1)

𝑆𝑆𝑡𝑜𝑡 /(𝑛−1)
      (Eq. 1) 

where p is the number of predictors, n is the population size, SSres is the sum of squares of 

residuals, and SStot is the sum of squares.  

3 Results 

3.1 Contribution of cool-season rainfall to summer streamflow 

Fig. 1a shows the contributions from cool-season rainfall to summer streamflow (F_rainc) 

from the tracking algorithm applied to the VIC simulation results. Across the WUS, cool-season 

rainfall substantially contributes to summer streamflow, on average accounting for 10.5% 

(corresponding Noah-MP result: 4.0%, hereafter in parentheses) of the entire WUS summer 

streamflow. Cool-season rainfall contributes the most to summer streamflow in maritime basins  

(Fig. 1a), where most of the annual precipitation occurs in the cool-season. The contributions from 

warm-season rainfall and snowmelt to summer streamflow are shown in the supplement (Fig. S5). 

Warm-season rainfall contributes most in the southeast part of the region where the North 

American Monsoon contributes substantially to annual precipitation and hence the ratio of warm 

to cool-season precipitation is the highest (Figs. S5a, S7c); this region accounts for 33.0% (23.7%) 

of the entire WUS summer streamflow (Figs. S5a, S5c). Snowmelt is the greatest contributor to 

summer streamflow in snow-dominant mountainous regions, accounting for 57.5% (72.1%) of 

WUS summer streamflow (Figs. S5b, S5d). Our results are comparable to the snowmelt 

contribution to annual streamflow in Li et al. [2017] (53% for WUS excluding the Canadian part). 
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Across different subregions of the WUS, cool-season rainfall plays an especially important 

role in summer streamflow generation at low elevations (Figs. 1c, 1f), in areas with precipitation 

highly concentrated in winters (Figs. 1d, 1g), and dry summers (Figs. 1e, 1h). For some low-lying 

coastal regions with precipitation concentrated in winter, cool-season rainfall contributes over half 

of the summer streamflow (Figs. 1c-1d, 1f-1g). A simple prediction of the long-term average cool-

season and warm-season rainfall contributions to summer streamflow can be made using multiple 

linear regression with cool-season and Apr-Jun precipitation and temperature, averaged across 

water years 1959-2018 for each grid cell in the WUS as predictors (see Supporting Information 

Tab. S1). The resulting prediction equations reveal that grid  cells with higher cool-season 

temperatures favor higher cool-season rainfall contribution, and higher Apr-Jun temperature and 

precipitation favor a higher warm-season rainfall contribution. Noah-MP results have patterns that 

are generally consistent with VIC (Figs. S5-S6).  
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Chapter 3 Figure  1. Contribution of long-term (water years 1959-2018) average cool-season 

rainfall (F_rainc) to summer streamflow (a), changes under uniform 1°C warming (b), and their 

baseline cumulative distribution function across regions with different elevations, precipitation 

ratios, and long-term average summer streamflow volumes (c-e). Panels (f-h) show maps of 

elevation, precipitation ratio (cool-season precipitation divided by warm-season precipitation), and 

long-term average summer streamflow volume. Results are from VIC simulation; corresponding 

comparison with Noah-MP results is shown in Supplement Fig. S6.   
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3.2 Change in seasonal rainfall contribution to summer streamflow under warming 

We find that the cool-season rainfall’s contribution to summer streamflow increases almost 

everywhere in the WUS under warming, with a maximum increase of about 10% of summer 

streamflow volume in maritime regions (Fig. 1b) for 1°C warming. Warm-season rainfall 

contribution to summer streamflow increases mostly in snow-covered regions (Fig. S7), and 

snowmelt contribution decreases almost everywhere (Fig. S8). Fig. 2 shows the spatial-temporal 

classified contributions from seasonal rainfall and snowmelt to summer streamflow, and their 

changes for uniform 1°C warming. Spatially, across subregions binned by long-term average peak 

SWE (<150mm, 150-500mm, 500-1000mm, >1000mm), contributions from both warm and cool-

season rainfall increase under warming, the sum of which approximately cancels the decrease in 

contribution of snowmelt (Fig. 2a). For regions with relatively low snow accumulations (peak 

SWE < 500 mm), cool-season rainfall has comparable or higher contribution increases than does 

warm-season rainfall (Fig. 2a). For regions with relatively high peak SWE, the contribution of 

warm-season rainfall to summer streamflow increases more than cool-season rainfall (Fig. 2a). 

Across water years with different percentiles of summer streamflow, cool-season rainfall 

contribution (F_rainc) and sensitivity of the contribution to warming are larger in years with lower 

summer streamflow volumes (i.e., drier summers), probably because such years have less available 

snowmelt and warm-season rainfall than other years (Fig. 2b).  

Across water years with different snow drought conditions, years with snow drought due 

to abnormally warm temperatures (type warm) have a larger contribution from cool-season rainfall 

to summer streamflow, and also a larger sensitivity of the contribution to warming than other 

categories (Fig. 2c). This is because more precipitation is partitioned into rainfall than snowfall, 

resulting in a decline in snowmelt (and its contribution) to summer streamflow under warm snow 
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drought conditions. On the other hand, we found substantial increases in F_rainc under warming 

even without snow drought (Fig. 2c), indicating that warming leads to an increasingly important 

role of cool-season rainfall in summer streamflow even during normal snow years. Additional 

analysis (results not shown) of wet years (top 10% cool-season precipitation) and large snow years 

(top 10% peak SWE) also shows substantial increases in seasonal rainfall’s contribution (i.e., 

F_rainc and F_rainw), albeit the increments are smaller than for the four cases discussed above. 

Noah-MP results (Fig. S9) exhibit similar patterns. 

 

Chapter 3 Figure  2. Changes in contributions from cool-season rainfall, warm-season rainfall, 

and snowmelt to summer streamflow under uniform 1°C warming, summarized for areas with 

different long-term (water years 1959-2018) average peak SWE bins (a), and for years categorized 

by different summer streamflow volumes, divided by terciles over the 60 years (Q_scheme) (b), 

and different snow drought categories (c). Subplots (d, e, f) show the contributions from the three 

sources under baseline and warming scenarios across the same region/periods corresponding to a-

c. All contributions were calculated as a fraction of the area-weighted average summer streamflow 
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volume summarized within the regions/periods. Results are from VIC simulations; corresponding 

Noah-MP results are shown in Fig. S9. 

3.3 Role of precipitation delivery in summer streamflow predictability 

We find that rainfall dominates summer streamflow variations over much of the western 

U.S. in VIC results aside from high mountain areas (Fig. 3a). Generally, cool-season rainfall 

dominates in the mid-south part of Pacific Northwest (PNW) and other low elevation areas in the 

coast range and the Cascades and some southern parts of the WUS (Fig. 3a), where summer 

streamflow is low (Fig. 1h). Warm-season rainfall dominates most of the rest of the domain, aside 

from high elevation regions where much of the annual precipitation accumulates as SWE during 

the winter months (Fig. 3a). Noah-MP results show similar patterns to VIC, except that cool-season 

rainfall dominated parts are more centered in the southern part of WUS (Fig. S12a) due to two 

models’ difference in simulated summer streamflow spatial patterns. Both VIC and Noah-MP 

results show that cool and warm season rainfall contribute to the summer streamflow variations 

more than across ~70% of WUS, including the main streamflow-generation regions (Fig. S11). 

Figs. 3b-3d show the changes in summer streamflow predictability (measured by adjusted-

R2
 of regressions) for different predictors added compared with baseline regressions using 

peakSWE as the only predictor, based on VIC model simulations. Adding cool-season rainfall 

(rain_c, mm) as a predictor substantially increases summer streamflow predictability, especially in 

the central and southern parts of the PNW, and California’s Central Valley (Fig. 3b). Adding Apr-

Jun rainfall (AJrain, mm) as a predictor causes a smaller increment in predictability for the rest of 

the domain (Fig. 3c). Adding both predictors effectively sums the predictability improvement 

effects of the two individual predictors (Fig. 3d, compared with Figs. 3b-3c). Noah-MP results 

show similar patterns (Figs. S12b-S12d).   
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We further checked whether summer streamflow predictability varies with changes in 

precipitation delivery (measured by a combination of F_rainc, F_rainw, and F_snow) in Figs. 3e-

3h. Across all four prediction frameworks, summer streamflow predictability is reduced with 

decreasing fractions of snowmelt (Figs. 3e-3h). Adding cool-season rainfall as a predictor 

increases predictability in some regions with low snow but high cool-season rainfall contribution 

(Fig. 3f, as compared to Fig. 3e). Adding Apr-Jun rainfall as a predictor similarly increases summer 

streamflow predictability in regions with low snow but high warm-season rainfall contribution 

(Fig. 3g, as compared to Fig. 3e). Again, adding both predictors roughly sums the predictability 

improvements caused by the individual predictors (Fig. 3h). Again, Noah-MP results are 

qualitatively similar (Figs. S12e-S12h).  

Fig. 2d shows a switch in the relative importance of warm-season rain and snow for 

peakSWE in the 150-500 mm range. As warm-season rain becomes more important than snow, the 

prediction with regression based on peakSWE and cool-season rain (aligns with common 

streamflow forecast predictors) becomes less skillful (i.e., lower adjusted-R2, see Figs. 3f, S10a 

and S10c). Across different snow drought scenarios, years with warm snow droughts have greater 

predictability than dry snow droughts, followed by no droughts (Figs. S10b and S10d).  

Under uniform 1°C warming, the change in adjusted-R2 of predictions based on peakSWE 

and cool-season rain (which aligns with common operational streamflow forecast predictors) has 

the largest correlation to F_rainw change compared to correlations with F_rainc and F_snow 

change (see cg_cor in Fig. 3f), which indicates that the reduced summer streamflow predictability 

under warming is most strongly tied to increased relative importance of warm season rainfall. 

Noah-MP results are similar (Fig. S12f).  
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Chapter 3 Figure  3. (a) predictors that explain most variance of summer streamflow variation 

among variables selected by analysis of variance (ANOVA) of the stepwise regression (and with 

statistically significant coefficients, significance level = 0.05); (b-d) absolute increase in adjusted-

R2 by adding cool-season rainfall (rain_c), Apr-Jun rainfall (AJrain), or both rain_c and AJrain as 

predictors compared to adjusted-R2 in regression with only peakSWE as a predictor. Here we 

consider Apr-Jun rather than warm-season to ensure no summer data are used in the prediction. (e-

h) ternary plots showing baseline adjusted-R2 as a function of F_rainc, F_rainw, and F_snow across 

every grid cell of the WUS. Correlation values (cg_cor) in (f) are calculated between adjusted-R2 

changes (with peakSWE and rain_c as predictors in operational streamflow forecast practice) and 

the changes of F_rainc, F_rainw and F_snow under uniform 1°C warming relative to baseline. 

Results are from VIC simulations, corresponding Noah-MP results are in Fig. S12. Blank regions 
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in (a) indicate no predictor with statistically significant coefficients remains after predictor 

selection by stepwise regression. All predictions are for summer streamflow. 

4 Discussion 

We have explicitly quantified the contributions from cool-season rainfall, warm-season 

rainfall, and snowmelt to summer streamflow. The substantial contributions from cool-season 

rainfall to summer streamflow revealed long-span memory of soil that can store water from cool 

season augmenting the following summer’s streamflow, as also found by Frisbee et al. [2011] and 

Shaw et al. [2014]. This is especially the case for low mountain or valley regions. This alternative  

inter-season water transport process is expected to become increasingly important in a warming 

climate. As we found in a uniformly 1°C warming scenario, the contribution to summer streamflow 

from cool-season rainfall increases almost everywhere in the WUS, and takes the place of near 

half of the decreased contribution from snowmelt (the other half is an increased contribution of 

warm-season rainfall).  

We found substantial improvement in the adjusted-R2 for regression-based summer 

streamflow prediction by introducing cool-season rainfall (Fig. 3b), supporting the current usage 

of cool-season rainfall (or precipitation) as a predictor in some summer streamflow forecast 

practices [Godsey et al., 2014]. However, under 1°C uniform warming, we found the predictability 

using solely peakSWE and cool-season rainfall decreased mainly due to the increasing relative 

importance of warm season rainfall (Figs. 3f and S12f), which usually is not included as a predictor 

in operational streamflow forecast methods (practically, forecasts are made before summer 

precipitation. Apr-Jun rainfall may be used as an alternative, but it provides a shorter lead time 

than cool-season rainfall or peakSWE). As a result, in addition to common processes (snowmelt, 

evapotranspiration, or total precipitation), it would be beneficial to consider seasonal precipitation 
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delivery change (rainfall rather than snowmelt), and/or soil moisture more carefully to capture 

future streamflow variability. Additionally, we show the adjusted-R2 of peak SWE-based 

predictions for baseline and uniform 1°C warming scenarios in supplement Fig. S15 to indicate 

predictability reduction.  

Our tracking results (from VIC simulations) suggest that snowmelt generates about 60% 

of summer streamflow for the entire WUS, slightly higher than 53%, which is the contribution of 

snowmelt to total runoff in the region from Li et al. [2017]. This slightly higher contribution from 

snowmelt to summer streamflow than annual streamflow is consistent with the fact that snowmelt 

peaks in the (early) warm-season and contributes more to streamflow during spring and summer 

than winter. A check of snowmelt contribution to annual streamflow also reproduced results in Li 

et al. [2017] (Fig. S13). Our tracking system partitioning occurs at seasonal scale, but arguably 

could be applied to any temporal subdivision that is larger than model steps to perform more 

detailed analyses. Additionally, it can be applied to other land surface hydrology models given the 

required outputs available. Therefore, it has the potential to be applied to fields such as 

geochemistry and agriculture that need to consider pollution or nutrient release within a certain 

period, or as a bridge to connect pollution with the natural precipitation and soil water transport 

processes.  

Our work is based entirely on (and therefore is limited by limitations of) model simulations. 

We do note that the original version of the tracking algorithm was compared with observations via 

isotope tracking (Li et al. [2017], see also Beria et al. [2018]). Additionally, we applied our 

tracking algorithm to two widely-used land surface models, to evaluate the extent to which our 

results are model-dependent. Notably, despite some differences in large-scale average statistics, 

the grid-cell scale patterns of the three sources’ contribution to summer streamflow and their 
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changes are qualitatively similar for the two models. Nonetheless, application of the tracking 

algorithm to other land surface models should be feasible. As for our regression-based analysis, 

we intend to explore how warming-induced precipitation delivery change impacts summer 

streamflow predictability, and hence our regressions are based on model-simulated results, rather 

than observations. The core value of this study is not specific predictions or their spatial patterns, 

but rather the broad shifts in the roles of different water sources in generating and predicting 

summer streamflow. In this context, the two models give consistent first-order messages as to the 

relative importance of precipitation delivery forms in summer streamflow generation under climate 

warming in the WUS.  

Our focus here has been the role of water sources (rainfall and snowmelt) in summer 

streamflow variability, rather than water sinks (most notably evapotranspiration (ET)), despite ET 

being also important in controlling summer streamflow. We do not expand on ET here because its 

effect is incorporated (at every time step) in our tracking algorithm. From this we can infer that a) 

increased ET in the cool season can reduce the contribution of cool-season rainfall and snowmelt 

in summer streamflow, and b) increased ET in the warm season reduces the contribution of 

snowmelt and warm-season rainfall in summer streamflow (Text S1). Future studies could extend 

to more comprehensive forecasting practices with larger model ensembles and better calibrations, 

and logically would be based on observations (in-situ or remote-sensed for precipitation and 

streamflow in ungauged basins) to the extent possible. Furthermore, our analyses are based on 1°C 

(uniform) warming to focus on the derivative of changes, and therefore are not subject to new 

GCM versions as we do not attempt to make projections of future climate. Logical extensions 

might consider seasonal variations in warming and/or changes in precipitation seasonality. 
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5 Conclusions 

Our snowmelt-rainfall tracking shows that seasonal rainfall provides important volumetric 

contributions to summer streamflow for many streams in the WUS. In low-elevation coastal 

streams, cool-season rainfall contributes the most, while warm-season rainfall dominates in the 

southern interior of our WUS domain. As the climate continues to warm and snowmelt declines, 

seasonal rainfall's contribution to summer streamflow will increase. This increase will be mostly 

from warm-season rainfall, offsetting two-thirds of the reduction in snowmelt contribution, with 

the other one-third offset by cool-season rainfall (the three sources’ contributions are normalized  

to sum to one). The contribution increase from cool-season rainfall is especially large in years with 

warm snow droughts and abnormally dry summers.  

Furthermore, we find that seasonal rainfall dominates summer streamflow variability 

across ~70% of WUS. By incorporating cool-season and Apr-Jun rainfall, we can substantially 

mitigate the loss of summer streamflow predictability due to reduced snowmelt contribution 

compared to predictions based solely on peak SWE. Our findings of the substantial contribution 

of seasonal rainfall to summer streamflow (even in catchments with substantial spring snowmelt) 

highlight the increasing value in studying these alternative contributions and associated hydrologic 

processes (rainfall) as the control of summer streamflow, especially with continued climate 

warming and declining snowpacks. 
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Chapter 4 Weakening Runoff Response to Warming with Snowpack Reduction in the 

Montane Western U.S. 

Abstract: Snow loss under climate warming has been a prominent hydrologic signature across the 

western United States (WUS), posing a threat to the stability and availability of water supplies. 

Numerous studies have discussed the mechanisms linking WUS warming-driven snow loss to 

annual runoff declines, especially in the Upper Colorado River Basin (UCRB). However, the 

dynamics of how the rate of snow loss and subsequent annual runoff decline will evolve under 

warming remains unknown. Here we show that the snow and subsequent annual runoff declines 

will be smaller (in absolute value) under a warmer reference climate than for a cooler reference 

climate, given unchanged precipitation. Our analyses are based on controlled warming 

experiments with land surface models (LSMs) and analysis of LSM-coupled downscaled global 

climate model (GCM) ensembles, over three major river basins in the WUS. We discovered a hint 

of decelerated streamflow decline in the historical record (for UCRB). Then, with controlled 

warming experiments, we further confirmed the weakening warming sensitivity of streamflow, 

snow, and evapotranspiration under warming with fixed precipitation. From GCM-LSM 

simulations (off-line forcing of LSMs with bias corrected and downscaled GCM output), we also 

detected a hint of deceleration in runoff ratio decline in the SSP245 scenario. A sub-basin analysis 

suggests a slower snow loss at lower-elevation/less-snow regions, which analogs to a warmer 

future. At the end, we raised several hypotheses about the weakening warming sensitivity in 

streamflow and snow. Further research is required to examine the hypotheses and isolate the related 

mechanism’s effect with more idealized experiments. 
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Main 

Declining runoff poses a threat to western U.S. (WUS) water and energy security, including 

water availability for agriculture and municipal water supplies, hydropower generation, and water 

quality related to increased concentration of nutrient and sediment loading [Johnson et al., 2015]. 

Previous studies have shown that declining springtime snowpack and associated net radiation 

increase are the predominant drivers of increased evapotranspiration, ultimately causing loss of 

annual runoff, especially in the Upper Colorado River Basin (UCRB) [Milly and Dunne, 2020; 

Neto et al., 2020]. Our earlier study [Ban et al., 2023] further showed that the snowmelt-radiation 

feedback dominates the annual runoff sensitivity to warming for over 50% of the area of the WUS. 

Previous studies have mostly summarized the annual runoff decline mechanism/sensitivity from a 

static view, but whether and how the mechanisms will evolve remain uncertain [Milly and Dunne, 

2020; Neto et al., 2020]. We envision that, under a low-to-no snow future, the snow-related 

mechanism/sensitivity will be strongly non-stationary.  

Slower snowmelt is expected under a warming future due to the earlier shift of snowmelt 

season to a period with lower available energy, which could reduce evapotranspiration energized 

by snowmelt-radiation feedback, and cause a slower runoff decline [Musselman et al., 2017]. For 

example, despite the common perception of declining annual runoff in the UCRB over the last 

~100 years (1906-2018), the decreasing trend in streamflow is mostly dominated by the record 

before 1970. This is also the case for simulated runoff from Variable Infiltration Capacity (VIC) 

hydrologic model [Liang et al., 1994] driven by trend-corrected H&L forcing [Hamlet and 

Lettenmaier, 2005] during 1916-1970, see Methods “Historical Simulations” for details (Fig. 1e). 

Similarly, the dominant decreasing trend before 1970 is also found in VIC-simulated runoff driven 

by an ensemble of historical forcings downscaled from seven Global Climate Models (GCMs) in 
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Coupled Model Intercomparison Project Phase 6 (CMIP6) (see Methods “GCM-LSM Simulations” 

for details) (1950-1970) (Fig. 1e), as well as the naturalized flow records (1916-1970) (Fig. 1f). 

After 1970, the decreasing trend has become much less obvious or even reversed (Figs. 1e-1f). 

One reason for the apparent decelerating runoff decline comes from the decelerating precipitation 

decline after water year 1970 (Fig. 1a). Additionally, snow extent decrease and subsequent net 

radiation increase also appear to have decelerated over the last half century (Figs. 1c-1d), which 

may lead to decelerated radiation-energized evapotranspiration loss and could be another reason 

for the slower annual runoff decline [Ban et al., 2023; Milly and Dunne, 2020]. The decelerating 

runoff decline after 1970 contrasts with the accelerating temperature warming after 1970 (Fig. 1b), 

suggesting a possibly smaller sensitivity of runoff, net radiation, and snow change to warming. It 

is important to understand whether these changes reflect a more general signal of less warming 

sensitivity of key hydrologic processes at an annual scale under a warmer reference climate, given 

the critical importance of annual runoff to water supplies across the WUS. 
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Chapter 4 Figure 1. Time series of annual precipitation (a), annual average temperature (b), 

annual average snow cover area fraction (c), annual average net radiation (d), annual runoff (e), 

and naturalized annual flow (f) in the UCRB from 1916 to 2014, and trends in different periods. 

Blue lines in (a-e) show VIC model outputs driven by 1916-2014 H&L forcing (see Methods for 

details) [Hamlet and Lettenmaier, 2005], and blue line in (f) shows naturalized flow. Dashed lines 

in (a-f) are linear fit lines of VIC historical simulations during 1916-1970, 1970-2014, and 1916-

2014. Red lines show ensemble average of VIC outputs driven by seven CMIP6 GCMs’ 

downscaled forcings during 1950-2014 (see Methods “GCM-LSM Simulations” for GCM 

selection details), with light grey lines denote each of the seven members. Shadings show the ±1 

standard error of the ensemble means. Solid straight lines show the corresponding linear fit lines 

of GCM-VIC simulation ensemble average results during 1950-1970, 1970-2014, and 1950-2014. 

The values of change in the legend are relative to the first water year of the linear fit. 

Herein, we address the following questions using hydrological model simulations driven 
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by an ensemble of forcings (CMIP6), as well as naturalized flow records for three major river 

basins across WUS: a) Are trends in annual runoff evolving, and if so, how?  b) Where trends are 

evolving, how are they related to changes in snow, and in climate warming? c) What is the main 

mechanism controlling changes in the rates of annual runoff declines, where present?  

To fully sample the spatial variability of montane hydroclimate across the WUS in 

answering the above questions, we considered three major river basins: Columbia (Pacific 

Northwest, hereafter PNW), Sacramento – San Joaquin (California, hereafter CA), and UCRB. We 

used naturalized flow records (records based on observed streamflow corrected for upstream 

reservoir storage and diversions) from the California Data Exchange Center (CDEC) for CA, U.S. 

Bureau of Reclamation (UCRB), and Bonneville Power Administration (PNW). The spatial 

domain is shown in Fig. 2. The stream gages (in total 60) within each of the three major river 

basins are listed in Appendix Table C1.  



76 

 

 

Chapter 4 Figure 2.  Map of the three major WUS river basins, within which we analyzed 

naturalized flows for the 60 tributaries. 

1-degree Controlled Warming Experiments 

To determine changes in the rate of the snow and annual runoff declines as they might be 

affected by warming rates, we conducted a controlled warming experiment using two Land Surface 

Models (LSMs): the Variable Infiltration Capacity (VIC) model [Liang et al., 1994], and the Noah-

multiparameterization (Noah-MP) [Niu et al., 2011; Yang et al., 2011]. We initially conducted a  

baseline simulation for the historical period (1950-2018) with Livneh meteorological forcings 

[Livneh et al., 2013] (extended to 2018 by Su et al. [2021]). Then, we applied one-degree warming 

to both daily maximum and minimum temperature for every day in the historical simulation 

historical period (1950-2018) while keeping precipitation unchanged. We used two warming 
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magnitudes (1°C and 2°C), constituting two 1-degree warming cases with different reference 

climates (baseline to 1°C, and 1°C-2°C). Table 1 summarizes changes in annual runoff (Q), 

evapotranspiration (ET), and average snow water equivalent (SWE) for the two warming cases. 

Comparing the changes between the two warming cases in Table 1, there are consistently smaller 

changes for 1°C-2°C warming case than for baseline to 1°C warming case across all variables, 

models, and basins. This general pattern confirms that the tendency toward weaker warming 

sensitivity as the climate warms is not model-dependent and occurs for all three of the major river 

basins discussed here. A more general map of the difference of the three variable’s warming 

sensitivity between the two warming cases is shown in Fig. C1, where we see the weakening of 

warming-sensitive signal is strongest in moderately snow-covered regions, and less strong in 

colder/snowier and low snow regions.  

Chapter 4 Table 1. Results of controlled warming experiment differences for 0-1°C and 1-2°C 

over the historical period (water years 1951-2018). Percent deceleration is calculated as 1-2°C 

changes (in means) minus 0-1°C changes in means, divided by 0-1°C change.   

 

GCM-VIC Simulations for Future Warming 

The controlled warming historical experiments confirmed the existence of a weakening 

Long-term annual average/sum value over WY 1951-2018 

Basin-average PNW UCRB CA 

Model T-change 0-1°C 1-2°C 

Percent 
Deceleration 
(%) 0-1°C 1-2°C 

Percent 
Deceleration 
(%) 0-1°C 1-2°C 

Percent 
Deceleration 
(%) 

VIC 

∆Q (mm) -12.02 -11.75 -2 -3.82 -3.39 -11 -14.31 -13.96 -2 

∆ET (mm) 13.51 12.55 -7 3.81 3.36 -12 14.48 14.03 -3 

∆SWE 
(mm) -13.68 -13.34 -2 -2.65 -2.56 -3 -16.73 -13.49 -19 

Noah-
MP 

∆Q (mm) -12.25 -12.02 -2 -5.57 -5.20 -7 -16.46 -16.28 -1 

∆ET (mm) 12.22 12.00 -2 5.54 5.17 -7 16.47 16.28 -1 

∆SWE 
(mm) -13.05 -12.22 -6 -2.44 -2.31 -5 -15.27 -12.73 -17 
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warming sensitivity under a warmer climate, given fixed precipitation. To get a sense of how future 

snowpacks and runoff may evolve, we simulated the hydrologic responses to future climate 

projections. In particular, we used GCM-based LOCA2 hybrid downscaled daily temperature and 

precipitation archived at https://loca.ucsd.edu/ [Livneh et al., 2015; D Pierce and Cayan, 2016; D 

W Pierce et al., 2014; D W Pierce et al., 2023; D W Pierce et al., 2015] and wind speed downscaled 

from the National Centers for Environmental Prediction (NCEP)–National Center for Atmospheric 

Research (NCAR) reanalysis [Livneh et al., 2013], to drive the VIC model for the period 1950-

2100 (using 1950-2018 wind climatology for 2015-2100 simulation). To average out sub-century 

scale variability in the historical record, we performed VIC simulations driven by downscaled 

forcings from the seven “best” CMIP6 GCMs for the three major river basins, taking the first 

available member from each of the GCMs, resulting in a seven-member ensemble of GCM-VIC 

outputs (see Methods “GCM-LSM Simulations” for details including how the seven “best” GCMs 

were identified).  

To better visualize the long-term evolution of hydrology inferred from the GCM 

simulations, we applied 30-yr moving averages throughout the time series of output variables. To 

evaluate the effects of alternative warming rates, we used both SSP245 (with an additional 

radiative forcing of 4.5 W/m² by the year 2100, assuming climate protection measures are taken) 

and SSP585 (with an additional radiative forcing of 8.5 W/m² by the year 2100) warming scenarios. 

The moving averaged results under the two SSP scenarios are shown in Fig. 3. The results are 

somewhat difficult to interpret, because the projected precipitation changes tend to overwhelm all 

other factors’ impact on runoff evolution. However, at least for SSP245, we do see that there is no 

acceleration in runoff decline (blue line) and there seems to show a hint of deceleration. A similar 

hint of deceleration in change rates are also shown in SSP245’s runoff ratio, SWE, and net radiation. 

https://loca.ucsd.edu/
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Future work to better separate the precipitation and temperature warming effect and isolate the 

temperature-related mechanism of the decelerated runoff sensitivity under warming with more 

idealized experiments, is outlined in the Section “Further Research”. 

 

Chapter 4 Figure 3. The evolution of 30-yr moving average time series of annual runoff (billion 

cubic meters per year, BCM/yr), annual runoff ratio, annual precipitation (BCM/yr), annual-

average SWE (mm), annual-average net radiation (W/m2), and annual-average temperature (°C) 

for water years 1951-2100. Shading shows the ±1 standard error of the ensemble means. Orange 

dashed lines partition the results of the historical simulation (1950-2014) from that of future 

projections (2014-2100). Blue and dark red lines show the ensemble average from SSP245 and 

SSP585 scenarios and grey lines represent each of the ensemble members. 

Sub-basin Scale SWE Loss Evolution 

Considering the obscuring effect of non-constant warming rate and precipitation change on 

the evolution of hydrologic warming sensitivity (specifically, for runoff in Fig. 3), we refined the 

evaluation to focus on the evolution of SWE loss at the sub-basin level. We take SSP585 as an 
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example, splitting the three major river basins into major tributaries for which historical 

naturalized flow records were available. We further segregated by sub-basin mean elevations and 

snow amounts, as shown in Fig. 4. Fig. 4 shows that the SWE loss is slower under warming at 

lower-elevations and/or less-snowy sub-basins, which can be considered analogs to warmer 

reference temperatures. This result serves as further substantiation of the weakening warming 

sensitivity of SWE loss under a warmer reference climate, as suggested by the control warming 

experiments. Fig. C2 shows similar plots for SSP245.  

 

Chapter 4 Figure 4. Time series of SSP585-driven VIC output SWE in sub-basins with 

naturalized flow records, averaged by a 30-year moving window over water years 1951 to 2100 in 

(a) PNW, (b) UCRB, and (c) CA. 

After confirming the weaker warming sensitivity under a warmer climate, we further 

evaluate which season dominates the change. A temporal analysis in Fig. 5 shows that the 

increasing fraction of ET from precipitation, decreasing snow cover ratio (fraction of area covered 

by snow), and increasing net radiation with temperature are all dominated by melt period changes, 

when the snowmelt-radiation feedback is strongest. This temporal analysis underlines the 
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substantial contribution of melt-period (and likely the snowmelt-radiation feedback) to annual 

SWE loss, ET increase, and radiation change, which is consistent with findings in Ban et al. [2023] 

that snowmelt-radiation feedback is the dominant contributor to annual runoff response to warming 

for most montane, runoff-sensitive basins. Further actions to assess the relationship more 

rigorously between the evolving warming sensitivity and snowmelt-radiation feedback are 

outlined in the “Further Research” section. 

 

Chapter 4 Figure 5. (a) Ratios of annual ET, melt-period (mp, Mar-May) ET, and non-melt-period 

(nmp, Jun-Feb) to annual precipitation (P) as a function of temperature, derived from the pooled 

GCM-driven VIC outputs for water years 1951 to 2100; (b) same as (a), but for net radiation 

averaged over annual period, melt-period, and non-melt-period; (c) same as (b), but for snow cover 
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ratio (fraction of area covered by snow). Note that our definition of melt period (Mar-May) did not 

consider the timing shift caused by earlier snowmelt. Results are from SSP585 scenario; 

corresponding results for SSP245 are shown in Fig. C3.  

Summary and discussion 

Using a combination of LSM-based 1°C/2°C controlled warming in the historical period 

(1950-2018) and sub-basin analysis of GCM-LSM output (1950-2100), we found a weaker 

warming sensitivity of SWE loss, ET increase, and Q loss under a warmer reference climate in 

three major montane river basins of the WUS. In our GCM experiments, under near-linear 

warming in SSP245, the runoff ratio decrease, SWE loss, and related net radiation increase show 

a hint of deceleration across time. In contrast, no hint of deceleration is shown in SSP585 scenario, 

which is probably due to the accelerating warming rate in SSP585, which cancels (or reverses) 

deceleration in the hydrologic response. The above differences between SSP245 and SSP585 

imply that with slower warming (e.g., SSP245), we could witness smaller annual runoff declines 

accompanied by decelerating snow loss, and even increasing annual runoff given more 

precipitation. 

A few potential mechanisms are responsible for the less warming-sensitive SWE and 

annual runoff loss: 1) Under a warmer reference climate, the higher snowline may elevate slower 

(i.e., with less area additionally exposed below the snowline), which translates to less snow loss 

per unit degree of warming; 2) An earlier shift of the snowmelt season to a period with lower 

available energy [Musselman et al., 2017], reduces the overall efficiency of energizing 

evapotranspiration by the snowmelt-radiation feedback, which contributes to a slower (per °C 

warming) runoff decline; 3) Less snow coverage under a warmer reference climate causes reduced 

effect of albedo change during the melt season under a warmer reference climate. Further actions 



83 

 

to examining these hypotheses are outlined in the “Further Research” section. 

In our earlier study [Ban et al., 2023], we found that the region dominated by snowmelt-

radiation feedback comprises about 53% of the area of the entire WUS. These regions are mainly 

snow-covered with strong annual runoff change in response to warming. For the highly warming-

sensitive (>5% change/°C) basins, 74% of them have more than half of the runoff change caused 

by the snowmelt-radiation feedback. For the remaining basins, the runoff sensitivity could be 

attributed to other factors, such as the saturation-vapor pressure effect, which can hold more ET 

from elevated saturated vapor pressure with warming, elevated vapor pressure deficit, and changes 

in aerodynamic and surface resistance that affect ET and thus the runoff decline. In this paper, 

while acknowledging other possible factors’ effects, we focus on the major runoff generation basin 

(snow-affected, warming-sensitive mountainous basin) and the non-stationarity of the major driver 

(snowmelt-radiation feedback [Ban et al., 2023]) of these basins’ runoff sensitivity. 

The work we cited for selecting GCM [Ashfaq et al., 2022; Krantz et al., 2021; D W Pierce 

et al., 2022] mainly conducted assessments based on temperature and precipitation fields, and the 

snow performance was not considered because GCMs do not generally archive snow-related 

variables in their standard output. However, the better performance in GCMs’ simulation of 

temperature and precipitation field should indirectly benefit a better snow simulation when 

coupled with a land surface model, as those two variables are the most important drivers of snow 

melt among the GCM outputs. Acknowledging this potential effect, we selected seven best GCMs 

in temperature and precipitation performance to capture a more realistic spread of snow simulation 

while also accounting for the uncertainties in temperature and precipitation fields.  

Our analysis primarily emphasizes annual values of runoff, rather than the timing of peak 

flow, which is widely recognized to occur earlier under climate warming. Additionally, we have 
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not specifically examined the extremes of runoff, which could be influenced by other factors, such 

as variability in precipitation patterns. Regarding the seasonal timing of runoff, we hypothesize 

that the observed earlier shift may be slowing down in response to a warmer climate. Conducting 

further analysis to investigate this potential change and its impacts would provide valuable insights 

for future research endeavors. 

Further research 

Idealized experiment with expanded control warming using LSM 

In the current paper, we only conducted 1~2°C and 0~1°C warming experiments and 

changes in sensitivity are small for some basins (e.g., ~2% change in annual runoff for PNW and 

CA in Chapter 4 Table 1). To get a better view of the evolving sensitivity at different levels of 

warmer reference climate, further study could include more control warming steps (3°C, 4°C, 5°

C, and 6°C) with fixed precipitation. These fixed-precipitation warming experiments would serve 

to better elucidate runoff sensitivity evolution under a constant warming rate meanwhile control 

for precipitation changes.  

Detection of evolving snowmelt-radiation feedback impact on runoff 

The 1~6°C control warming experiment could be used in conjunction with the attribution 

method developed by Ban et al. [2023] to isolate the mechanism as specific to the snowmelt-

radiation feedback (SRF) and quantify the SRF's contribution to the ET and runoff sensitivity 

change among the different warming cases.  

For GCM-VIC simulations, further analysis could use the attribution method [Ban et al., 

2023] to obtain the time series of SRF contribution to runoff and back out the remaining part of 

runoff evolution (caused by other factors) as another time series. Plotting the two separate time 
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series together with the runoff time series through the 1950-2100 period would provide insight 

into how the SRF-driven ET loss (thus runoff loss) will evolve in the projected future and whether 

and when the future dominant mechanism will be replaced by the remaining factors (e.g., 

precipitation). Please note that here the interpretation of the CMIP6 GCM-VIC simulations focuses 

more on the reference value of projection rather than re-interpret/re-identify the pattern of 

weakening sensitivity. This is because the GCM-VIC simulated results are essentially VIC outputs 

driven by GCM-LOCA downscaled temperature and precipitation rather than GCM output. 

Therefore, adjusting the downscaled temperature to a constant warming rate or detrending 

downscaled precipitation will eventually route back to the idealized experiment described above. 

Examining hypotheses of less warming-sensitive snow loss and streamflow decline 

The LSM results from the control warming experiment could be used to examine the three 

hypotheses of the less warming-sensitive snow loss and streamflow decline under a warmer 

reference climate, as specified below: 

Hypothesis 1): Under a warmer reference climate, the higher snowline may elevate slower 

(i.e., with less area additionally exposed below the snowline) per unit degree of warming and may 

lead to a slower snow loss per unit of temperature warming.  

Further study could collect the three major basins’ elevation-area profile, their average 

elevation of snow-covered grid cells, and the difference in total area of snow-covered grid cells 

across different magnitudes of warming. If under a warmer reference climate, the average elevation 

is progressively higher; shrinkage in the area of snow-covered grid cell by 1°C warming is 

progressively smaller; and the additionally exposed area between elevated snowlines by 1°C lapse 

rate is also progressively smaller, we can confirm the hypothesis. 
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Hypothesis 2): earlier snowmelt shifts to a period with lower available radiation, leading 

to less efficient ET loss and a slower runoff decline with the weaker snowmelt-radiation feedback. 

 Further study in this paper can collect the snowmelt timing and the average radiatio n 

during the snowmelt period and calculate the snowmelt-radiation feedback (SRF) contribution to 

ET loss. If under a warmer reference climate, the snowmelt timing is progressively earlier, average 

radiation smaller, and the decreasing SRF contribution largely accounts for the smaller runoff 

change, we can confirm the hypothesis.  

Hypothesis 3): less snow coverage under warmer reference climate leads to less total snow 

coverage and albedo change during the melt season under a warmer reference climate.  

Further study in this paper can calculate the snow coverage area and albedo and their 

change across the control warming experiments. If the snow coverage and albedo change are 

progressively smaller under a warmer reference climate, we can confirm the hypothesis. 

Effect of net longwave radiation change in response to atmospheric opacity change 

Our earlier study [Ban et al., 2023] found that accounting for the atmospheric opacity 

change can substantially affect the runoff response to warming. In a parallel set of 1~6°C control 

warming experiments, further study could include the atmospheric opacity effect by modifying the 

model’s atmospheric opacity-driven increment in incoming longwave per °C to a reasonable value 

(comparable to the median of IPCC6 estimate of net longwave change per warming). By 

comparing the findings with the warming experiment without considering the effect, we can assess 

the atmospheric opacity effect on the results. 
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Methods 

Historical Simulations 

In our simulations, we used Variable Infiltration Capacity (VIC) model version 4.1.2g. The 

VIC model is driven by gridded daily precipitation, maximum temperature, minimum temperature, 

and wind speed at 1/16th degree resolution from the Hamlet & Lettenmaier forcing, hereafter H&L 

forcing (Hamlet & Lettenmaier, 2005) from 1915 to 2014. The meteorological data for the H&L 

forcing come from National Climatic Data Service’s Cooperative Observer (NCDC Co-op) 

network, Environment Canada station data (ECAN), monthly U.S. Historical Climatology 

Network (HCN) and the Historical Canadian Climate Database (HCCD) station data for temporal 

adjustment, and monthly precipitation maps from Precipitation Regression on Independent Slopes 

Method (PRISM) method [Daly et al., 1994] for topographic adjustment [Hamlet and Lettenmaier, 

2005]. The H&L forcing adjusted the artificial trend in gridded daily precipitation and temperature 

maxima and minima over the continental United States based on electronic form NCDC Co-op 

station data from the early 1900s on, and therefore is suitable to be used with hydrologic modeling 

for long-term trend analysis of simulated variables [Hamlet and Lettenmaier, 2005]. The VIC 

simulation with H&L forcing uses the full-energy balance mode, which means that the effective 

surface temperature is estimated to solve the surface energy budget at every time step. 

Control Warming Experiments 

We used Livneh forcing [Livneh et al., 2013] (1915-2013, extended to 2018 by Su et al. 

[2021]) to drive the VIC model as baseline simulation. We apply two warming scenarios, applying 

1°C and 2°C warming uniformly to daily maximum and minimum temperatures, respectively. We 

compared outputs from the baseline scenario with the 1°C warming outputs to calculate sensitivity 

under the baseline condition. We compared the 2°C warming outputs with the 1°C warming 



88 

 

outputs to calculate sensitivity under a warmer reference climate (1°C warming). Across the 

warming scenarios, we kept the precipitation unchanged to isolate the warming impact on 

temperature sensitivity.  

GCM-LSM Simulations 

The same VIC version (4.1.2g) was used as in the controlled warming experiments. We 

included a 10-yr spin-up at the beginning of both historical (1950-2014) and future projection 

(2015-2100) runs, which we discarded. We used a (daily) wind climatology (taken from Livneh et 

al. [2013] and extended by Su et al. [2021] to 2018) summarized from the historical period (1950-

01-01 – 2018-12-31), which is applied to the future period 2015-2100. For the historical run, we 

used the original wind speed time series from Livneh et al. [2013]. Daily maximum/minimum 

temperatures and precipitation from the GCMs’ LOCA2 hybrid downscaled dataset [Livneh et al., 

2015; D Pierce and Cayan, 2016; D W Pierce et al., 2014; D W Pierce et al., 2023; D W Pierce et 

al., 2015] were used to generate other VIC forcings (downward solar and longwave radiation, 

humidity) following methods summarized by Bohn et al. [2013]. From the model output, we 

collected the runoff on a grid cell basis without routing, whereas the streamflow (subject to 

adjustment via naturalization) is observed within river channels. However, on the annual basis (the 

time scale in our study), it makes very little difference as the routing effect is small.  

The best five GCMs selected for the three major river basins are:  

PNW: GFDL-CM4, EC-Earth3-Veg, NorESM2-MM, HadGEM3-GC31-MM, ACCESS-

CM2; UCRB: IPSL-CM6A-LR, GFDL-ESM4, MPI-ESM1-2-HR, NorESM2-MM, ACCESS-

CM2; CA:  EC-Earth3-Veg, MPI-ESM1-2-HR, MRI-ESM2-0, IPSL-CM6A-LR, ACCESS-CM2. 

Different GCMs were selected for each of the three river basins based on Ashfaq et al. 

[2022] for the PNW, Krantz et al. [2021] for CA, and D W Pierce et al. [2022] for UCRB, 
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respectively. To ensure the GCM consistency among basins and scenarios, we took the union of 

the five best models for each of the three basins, resulting in 10 GCM models. From the 10 models, 

we removed the HadGEM3-GC31-MM, for which downscaled results were not available in the 

LOCA downscaled dataset as of the date of retrieval (2023-06-10) for SSP245. We also removed 

EC-Earth3 and GFDL-ESM4 to avoid including multiple models from the same institution (with 

similar performance) in the ensemble. We chose to keep EC-Earth3-Veg and GFDL-CM4 instead 

due to their generally better performance than EC-Earth3 and GFDL-ESM4 in the WUS [Ashfaq 

et al., 2022].  

Naturalized Flow Subbasin Delineations 

Colorado River Basin 

We obtained the natural flow polygon for the entire Colorado River Basin (data provided 

below archived with other data) from James R. Prairie at the Bureau of Reclamation. Our focus 

was on the UCRB (equivalent to the USGS hydrologic region: upper Colorado, except the great 

divide subbasin), so we only used information for that part of the Colorado River basin (which 

accounts for about 90% of the average annual flow of the entire basin).   

California 

Our California domain covers the stream basins with available long-term full-naturalized-

flow gauges from CDEC, which coverage is different from the USGS California hydrologic region. 

We delineated the CDEC long-term full-naturalized-flow gauges’ associated basin polygon 

shapefiles using 3 arc-second MERIT Hydro flow direction in GIS and gauge coordinates obtained 

from CDEC (https://cdec.water.ca.gov/reportapp/javareports?name=MonthlyFNF). The results 

were carefully checked against other papers [Bass et al., 2023; VanRheenen et al., 2004] and data 

sources (listed below): 

https://cdec.water.ca.gov/reportapp/javareports?name=MonthlyFNF
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1. Margulis dataset [Margulis et al., 2016]  

2. WBD HUC8 and HUC10, watershed description and polygons [Jones et al., 2022].  

3. CNRFC watershed dataset, retrieved at (CNRFC - California Nevada River Forecast 

Center (noaa.gov)).  

4. MERIT Hydro flow accumulation raster (to double-check that the watershed drains 

into the gauge) [Yamazaki et al., 2019].  

A total of 31 basins remained after all the above steps, which provide good coverage of the 

central Sierra Nevada, eastern Sierra Nevada, and maritime basins. It contains all 16 watersheds 

used in Bass et al. [2023] except Calaveras (long-term full-naturalized-flow not available), and 

covers all 16 watersheds in VanRheenen et al. [2004] except Calaveras and Bear Rivers, which are 

small. We believe this dataset provides comprehensive and complete coverage for California’s 

available long-term full-naturalized-flow gauges from CDEC. The shapefiles are provided as 

described in Data Availability. The gauges list can be found in Table C1 in the supplement.  

Pacific Northwest (PNW) 

 The PNW covers the PNW hydrologic region less coastal tributaries (beyond the Columbia 

River at Bonneville). We obtained the watershed polygons for PNW major tributaries in BPA-

modified flow gages from USGS WBD HUC-4 and HUC-6, and the stations of the tributaries’ 

outlets are selected based on the: 

1. MERIT Hydro 90m flow accumulation dataset [Yamazaki et al., 2019]. 

2. Streamflow routing network in Payne et al. [2004].  

3. BPA provided flow point location and upstream watershed area (Historical Streamflow 

Reports - Bonneville Power Administration (bpa.gov)).  

https://www.cnrfc.noaa.gov/#?zoom=8&lat=38.560&lng=-118.498&BASINS=true
https://www.cnrfc.noaa.gov/#?zoom=8&lat=38.560&lng=-118.498&BASINS=true
https://www.bpa.gov/energy-and-services/power/historical-streamflow-data
https://www.bpa.gov/energy-and-services/power/historical-streamflow-data
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The watersheds are carefully cross-checked against the above resources to confirm they 

make sense.  

A total of 9 major tributaries (and associated gauges) were obtained after the above steps. 

Among the nine gauges, five were used by Hamlet et al. [2002] and Payne et al. [2004], including 

Hells Canyon as the Middle Snake outlet, Ice Harbor as Lower Snake outlet, Priest Rapid as Upper 

Columbia outlet, Watena as Pend Oreille outlet, and Bonneville as the overall outlet at the 

boundary of middle Columbia (more perfectly located at the boundary of USGS WBD watershed 

than the Dalles). Additionally, four smaller watersheds are included: Snake River at King Hill 

(SKHI) for upper and middle snakes separated by USGS WBD HUC-4. Yakima (YAK) for Yakima 

separated by USGS WBD HUC-4. Brilliant (BRI) for Kootenay separated by USGS WBD HUC-

6. Long Lake (LLK) (located reasonably close to the outlet and closest among all natural flow 

locations provided by BPA) for Spokane is separated by USGS WBD HUC-6.  

Sub-basin Elevation Extraction 

Sub-basin elevations were extracted from the Ban and Lettenmaier [2022] 1/16th degree 

elevation dataset aggregated from the GTOPO global 30 Arc Second (~1km) Elevation Data Set 

[Gesch et al., 1999], with the mask of subbasin shapefile boundaries delineated as described above 

in “Naturalized Flow Subbasin Delineations.” 

Data availability 

Historical naturalized flow data for CA were obtained from California Data Exchange 

Center (https://cdec.water.ca.gov/dynamicapp/QueryWY). UCRB natural flows were obtained 

from the Bureau of Reclamation 

(https://www.usbr.gov/lc/region/g4000/NaturalFlow/current.html). PNW flow was obtained from 

Bonneville Power Administration (https://www.bpa.gov/-/media/Aep/power/historical-

https://cdec.water.ca.gov/dynamicapp/QueryWY
https://www.usbr.gov/lc/region/g4000/NaturalFlow/current.html
https://www.bpa.gov/-/media/Aep/power/historical-streamflow-reports/historic-streamflow-nrni-flows-1929-2008-corrected-04-2017.csv
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streamflow-reports/historic-streamflow-nrni-flows-1929-2008-corrected-04-2017.csv). We also 

provide the sub-basin delineated shapefiles for the three major river basins (PNW, UCRB, and 

CA), UCRB historical VIC simulation outputs driven by H&L forcing, and sub-basin averaged 

GCM-VIC outputs, as source data provided with this paper, available in figshare.  
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Chapter 5 Conclusions 

This dissertation aims to provide a better understanding of the likely evolution of 

streamflow in the snow-affected regions of the western U.S. (WUS), as the climate warms.  My 

analyses are based on a combination of observations and land surface models. At the outset, I 

posed three scientific questions that guided my research:  

1) How does seasonal warming affect annual streamflow in different watersheds, and why?  

2) What composes runoff during water-scarce seasons, and how does the composition 

change under warming?  

3) What mechanism dominates annual runoff decline under warming in snow-affected 

areas, and how do its dynamics affect the evolution of runoff? 

To address these questions, I conducted controlled warming experiments using land surface 

models applied over the WUS. I developed customized algorithms to extract, from hydrologic 

models, information about snowmelt, infiltration, evapotranspiration, and streamflow generation. 

I also assembled observations of streamflow from multiple sources and projections of future 

climate change using CMIP6 downscaled climate dataset over the WUS [Ashfaq et al., 2022; 

Krantz et al., 2021; D W Pierce et al., 2022], all of which were used in my assessments of 

hydrologic process change under climate warming. 

In Chapter 2, I examined the spatial patterns of the relative response of annual streamflow 

to warm vs. cool season warming across the WUS. I found that the relative responses to seasonal 

warming (asymmetry) are similar for large and HUC-8 basins. My observation-based investigation 

suggests a smaller asymmetrical response pattern but a similar direction to model results.  

I also evaluated a) observation-based support for model-based sensitivity estimates; b) the 

impacts of different basin surface characteristics on the patterns of annual streamflow relative 
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response to seasonal warming; and c) the processes that contribute most to the annual streamflow 

response asymmetry across the 616 HUC-8 basins. I found that cooler inland basins are more 

sensitive to warm-season warming, and warmer coastal regions are more sensitive to cool-season 

warming. Considering the background of the projected warm season warming signal is stronger 

than cool season warming, this pattern implies that the cooler inland basins will experience 

stronger annual streamflow declines under projected warming. Furthermore, I showed that 

increased vegetation can enhance the asymmetrical response pattern between warmer and cooler 

basins.  

Finally, I conducted an attribution analysis and identified different warming-associated  

processes that dominate the asymmetry of annual streamflow response to seasonal warming across 

the WUS. In extremely cold basins, available radiation changes with reduced snow cover dominate 

the streamflow response asymmetry. In basins with intermediate temperatures, vapor pressure 

deficit changes dominate, and in basins with the warmest temperatures, surface resistance 

increases under warmer temperatures dominate. 

In Chapter 3, I explicitly quantified the contributions from cool-season rainfall, warm-

season rainfall, and snowmelt to summer streamflow using a customized-period water tracking 

algorithm (details provided in Appendix B) that is an extension of a less flexible algorithm 

developed by Li et al. [2017]. I found that seasonal rainfall provides important volumetric 

contributions to summer streamflow for many streams in the WUS. Cool-season rainfall 

contributes the most in low-elevation coastal streams, while warm-season rainfall dominates in the 

southern interior of our WUS domain. As the climate continues to warm and snowmelt declines, 

seasonal rainfall's contribution to summer streamflow will increase. This increase will be mostly 

from warm-season rainfall, offsetting about two-thirds of the reduction in snowmelt contribution. 
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The other one-third will be offset by cool-season rainfall. The contribution increase from cool-

season rainfall is especially large in years with warm snow droughts and abnormally dry summers.  

I also found that seasonal rainfall dominates summer streamflow variability across about 

70% of the WUS. By incorporating cool-season and Apr-Jun rainfall as predictors, the loss of 

summer streamflow predictability due to reduced snowmelt contribution can be substantially 

mitigated. My findings in this chapter highlight the importance of alternative (to snowmelt) 

contributions to summer streamflow, which are especially important as snowpacks decline. 

In Chapter 4, I used a combination of naturalized streamflow records, LSM-based 

1°C/2°C warming experiments, and elevation-wise analysis of LSM-GCM output to study the 

evolving sensitivity of SWE loss, ET increase and runoff loss per unit (one degree C) warming as 

the reference climate warms. I discovered a hint of decelerated runoff decline rates in the historical 

record for UCRB. Furthermore, my analysis of LSM control warming experiments demonstrates 

a reduced sensitivity of snow and subsequent runoff changes per degree of warming as the climate 

warms when precipitation is fixed. In GCM-LSM results, despite the non-constant warming rate 

and changing precipitation obscuring the evolving runoff sensitivity, I detected a generally slower 

snow loss in sub-basins with lower elevations and/or less snow, which are analogs to a warmer 

future condition. Under near-linear (with time) warming (e.g., IPCC emissions scenario SSP245), 

there is also a hint of deceleration in runoff and runoff ratio decline, and the same for the changing 

rate in snow loss and related net radiation increase. Comparing SSP245 with a more rapid future 

warming scenario (SSP585), I found that the runoff evolution turns from increasing under SSP245 

to decreasing under SSP585, magnifying, or reversing the effect of differences in precipitation 

between the two warming scenarios. These findings suggest that the difference in runoff evolution 

is strongly affected by the different warming rates. If climate warming can be controlled to a stable 
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rate (like SSP245), there is a potential for decelerating (annual) runoff decline or even runoff 

increase if precipitation across the WUS were to increase (which is predicted by many IPCC 

CMIP6 models).   

The findings in this dissertation have important implications for understanding and 

managing the ongoing and future evolution of streamflow across the snow-affected WUS. The 

findings of all three chapters are consistent to the extent that cooler-inland basins are more 

sensitive to seasonal warming, and have larger runoff sensitivities to annual warming than warmer 

coastal basins. Stated otherwise, snow-affected inland mountainous regions will experience the 

strongest runoff declines in a warmer future. However, my findings in Chapter 4 also offer some 

optimism for WUS water supplies in that with less snowpack and increased precipitation (as 

predicted by many CMIP6 models (see Chapter 4 Fig. 3), reduced warming-sensitivity of runoff 

as the climate warms could result in streamflow increases in the WUS, leaving more time for 

human beings in the WUS to safely adapt to the future more rain-dominated runoff.  

The findings of my dissertation work should motivate continued research into the future 

evolution of water resources as WUS snowpacks further shrink. Further efforts related to this 

direction could involve further evaluation of mechanisms related to the decreasing sensitivity of 

snow loss and runoff to warming. Some examples of mechanisms include: i) The rate of snowline 

elevation increases with warming decrease at higher elevations. Under a warmer reference climate, 

snowlines are higher, leading to a slower snow loss per unit of temperature warming; ii) Earlier 

shift of the snowmelt season to a period with lower available energy could reduce the overall 

efficiency of energizing evapotranspiration by the snowmelt-radiation feedback; iii) less snow 

coverage under a warmer reference climate leads to less snow coverage and albedo change during 

the melt season under a warmer reference climate.  
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Besides the snowmelt-radiation feedback, the emerging mega-drought over the last two 

decades may also profoundly impact snowmelt-affected streamflow, which may be even more 

important than direct effects of warming. Droughts occurring in summer can consume soil 

moisture that remains to be recharged by snowmelt the following spring and reduce the generation 

of both cool and warm season streamflow. This could potentially lead to overestimation of 

streamflow forecasts in the post-drought years based on currently established snow-based 

relationships. Similar to the snow loss and snowmelt-radiation feedback, there could also be non-

stationarity in drought impacts. For example, soil in some parts of Arizona is already almost 

completely dessicated in the summer and thus becoming immune to drought-driven soil moisture 

deficits from the previous year (i.e., soil cannot get any drier). Considering the opportunity for soil 

moisture change in other regions, soil dryness could also be a very important factor affecting the 

runoff evolution. If the soil becomes drier with more severe drought and increasing temperature in 

the future, the following-year streamflow may have stronger declines. Still, if soil already becomes 

as dry as possible, the sensitivity of this soil dryness to temperature will shrink as well. We can 

envision that with progressively stronger droughts, the soil moisture deficit impact on streamflow 

may also show strong non-linearity, accompanied by drought-related wildfire and consequent 

change in vegetation evapotranspiration, the relationship could be further complicated. Possible 

future work to examine these drought-related ongoing changes (e.g., soil dryness) and its relative 

magnitude to control the streamflow compared to the evolving snowmelt-radiation feedback and 

changing precipitation could provide important insight into future streamflow evolution.  

Besides the change in soil dryness, the incoming water (i.e., precipitation) can also change. 

In the future climate, there is a high probability of a shift towards a stronger cold winter 

contribution to annual precipitation. The other (probably even more certain) result is the 
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seasonality that event scale precipitation will be more dominated by the heavier precipitation 

amounts occasionally occurring, e.g., atmospheric rivers become stronger. Changes in 

precipitation seasonality could further affect the seasonal rainfall contribution to streamflow. 

Further analysis could use a refined water source tracking algorithm (like the one I used in Chapter 

3) focused on the winter season, when precipitation from CMIP6 is emerging to be more 

concentrated in for the maritime parts of WUS, or even more narrowly focused on the event scale.  

In summary, more attention to runoff-climate response factors that have been ignored in 

past studies are in order. For example, the impact of increasing atmospheric opacity on radiation 

and thus evapotranspiration and streamflow loss (associated with atmospheric CO2 and water 

vapor increase) has been missing in many off-line climate changes studies. As shown in Ban et al. 

[2023b], including this effect can substantially affect estimates of streamflow sensitivity to 

warming. On the other hand, the quantitative analysis of how the impact of currently-known 

mechanisms (such as snowmelt-radiation feedback) on streamflow evolves under a warmer climate 

will enable us to predict the behavior of future streamflow more precisely. Moreover, more 

attention to vegetation dynamics and discrete events such as wildfire, droughts, and event scale 

precipitation are needed to better understand their aggregate effect on water resources [Williams et 

al., 2022]. Finally, higher resolution Earth System Models aided with the progress in data science, 

and better incorporation of satellite data could also help to understand the effects of the coupled 

atmosphere-land surface system at spatial scales relevant to hydrologic response. Through 

aforementioned explorations and collective effort to mitigate climate warming, human beings 

would be better equipped to handle future water crisis. 
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Appendix A 

A.1 A possible alternative index to define asymmetry in Chapter 2 

In the published version of Chapter 2, PrefQ is defined as a ratio with theoretical range (-

∞, +∞). This appendix discusses a possible alternative way to design the asymmetry-summarizing 

metric to better confine the range. Drawing on the history of the development of the Normalized 

Difference Vegetation Index (NDVI) in remote sensing, a normalized index of the original PrefQ 

can be defined in Eq. A1: 

 new index =
𝑎−𝑏

𝑎+𝑏
                                            (A1) 

where a= Qa,w1d
̅̅ ̅̅ ̅̅ ̅̅ − Qa,b

̅̅ ̅̅  ̅is the annual streamflow change in response to warm season-only 

warming, and b = Qa,c1d
̅̅ ̅̅ ̅̅ ̅̅ − Qa,b

̅̅ ̅̅ ̅ is the annual streamflow change in response to cool season-only 

warming. In a and b, Q refers to streamflow, and subscripts follow the definition used in Chapter 

2 Eq. 1. As a comparison, the original PrefQ is a/b.  

The new index maps the infinite range to (-1, 1) for basins with a and b of the same sign 

(i.e., with a positive PrefQ). The effect is illustrated in Figure A1, where only basins with positive 

PrefQ are plotted. In Figure A1a, the original PrefQ is saturated when PrefQ is larger than 2. In 

contrast, in Figure A1b, the new index can smoothly stretch the value of asymmetry with better 

spatial details and spatial variation consistent with Figure A1a.  

For basins with positive PrefQ, the new index also maintains the relative order of PrefQ, as 

shown in Figures A2c-A2d: the new index is negative when PrefQ is less than one (Figure A2c), 

corresponds to a stronger annual streamflow response under cool season-only warming; the index 

becomes positive where PrefQ is larger than one (Figure A2d), corresponds to a stronger annual 

streamflow response under warm season-only warming.  
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Figure A1. Comparison of spatial maps between PrefQ (a) and the new index (b). Only basins with 

positive PrefQ are plotted. Values for basins with negative PrefQ are not plotted because the new 

index does not map the value boundary to a finite range for such cases. Please refer to Figure A2a-

A2b and the following paragraph for details.  

The new index's value range becomes infinite for basins with a and b of opposite signs. 

This limitation comes from the mathematical form of the new index, which is equivalent to (a/b-

1)/(a/b+1) and is only within a finite range when a/b > 0. As shown by Figures A2a-A2b, when 

PrefQ is less than zero (i.e., a/b < 0), the value range of the new index becomes (-∞, +∞) again. 

Therefore, this new index is only useful for positive PrefQ, the most frequent case for streamflow 

response in the WUS but cannot maintain the idealized finite range in other basins. 
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Figure A2. Comparison of the original PrefQ (x-axis) and the new index across all four different 

value ranges of PrefQ.  
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Appendix B 

B.1 Details of the custom-period water tracking algorithm in Chapter 3 

I refined the snowmelt-tracking algorithm of Li et al. [2017] so as to allow tracking of the sources 

of a custom period’s runoff (summer in our case) from specified sources (e.g., snowmelt, winter 

rainfall, and summer rainfall). The original algorithm had as its target total annual runoff, and the 

sole source was annual snowmelt and rainfall. The custom tracking separates the contributions 

from cool and warm season rainfall (in addition to snowmelt) to soil moisture temporally by the 

time the rainfall occurs. This separation can be specified for temporal periods such as seasonal, 

monthly, or other finer periods larger than the input data step. This modification does not affect 

the partitioning of snowmelt from rainfall, which is the same as the original algorithm in Li et al. 

[2017], for which the snowmelt contribution showed good agreement with isotope measurements.  

The algorithm requires the following land surface model outputs as input: Snowfall (snow), 

Rainfall (rain), Evapotranspiration (ET), soil moisture (W), snow water equivalent (SWE), 

snowmelt (M), runoff (R), and baseflow (B) at every model output step. All variables’ units are in 

mm. Hereafter, the same notation is used in Eqs. B1-B20 below. With these variables available, 

the algorithm should be applicable to any land surface hydrology model.  

For the application in Chapter 3, I use three variables: 𝑓𝑊,𝑟𝑎𝑖𝑛𝑤,𝑡, 𝑓𝑊,𝑟𝑎𝑖𝑛𝑐,𝑡, and 𝑓𝑊,𝑠𝑛𝑜𝑤 ,𝑡, which 

represent the fractions of soil moisture at every time step coming from the warm season rainfall, 

cool season rainfall, and snowmelt, respectively. The corresponding terms in the main text (F_rainc, 

F_rainw, and F_snow) are in Eqs. B18-B20.  The algorithm is summarized as follows: 

  

When t=0, initialization: 

       𝑓𝑊,𝑟𝑎𝑖𝑛𝑤,𝑡 = 𝑓𝑊,𝑟𝑎𝑖𝑛𝑐,𝑡 = 𝑓𝑊,𝑠𝑛𝑜𝑤 ,𝑡 = 0           (B1) 
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After spin-up:  

𝑓𝑊,𝑟𝑎𝑖𝑛𝑤,𝑡 + 𝑓𝑊,𝑟𝑎𝑖𝑛𝑐 ,𝑡 + 𝑓𝑊 ,𝑠𝑛𝑜𝑤𝑐 ,𝑡 = 1    (B2) 

 

The following subsections include details of the algorithm. In all the following equations, subscript 

𝑡 means current timestep, 𝑡 − 1 means the previous time step, ∆𝑡 is the length of the timestep.  

 

B1.1 Calculate infiltration 𝒊 

𝑖𝑡 = 𝑟𝑎𝑖𝑛𝑡 + 𝑀𝑡 − 𝑅𝑡              (B3) 

where raint, Mt, and Rt are the t-th time step rainfall, snowmelt, and runoff which comes from 

model (VIC or Noah-MP in our case) output.  

 

B1.2 Full mixing assumption 

I use the assumption that snowmelt and rainfall are fully mixed (as in the original paper by Li et 

al. [2017]) to calculate the fraction of infiltration coming from snowmelt and rainfall: 

𝑖𝑠𝑛𝑜𝑤,𝑡 =
𝑀𝑡

𝑀𝑡 +𝑟𝑎𝑖𝑛𝑡
𝑖𝑡          (B4) 

𝑖𝑟𝑎𝑖𝑛,𝑡 =
𝑟𝑎𝑖𝑛𝑡

𝑀𝑡+𝑟𝑎𝑖𝑛𝑡
𝑖𝑡          (B5) 

 

B1.3 Runoff calculation 

The runoff generated by snow (𝑅𝑠𝑛𝑜𝑤 ,𝑡) and rain (𝑅𝑟𝑎𝑖𝑛,𝑡) is separately calculated by subtracting 

the snow-driven infiltration (𝑖𝑠𝑛𝑜𝑤,𝑡, calculated from Eq. B4) and rain-driven infiltration (𝑖𝑟𝑎𝑖𝑛,𝑡, 

calculated from Eq. B5) from model output snowmelt (𝑀𝑡) and rainfall (𝑟𝑎𝑖𝑛𝑡): 

𝑅𝑠𝑛𝑜𝑤 ,𝑡 = 𝑀𝑡 − 𝑖𝑠𝑛𝑜𝑤,𝑡     (B6) 



110 

 

𝑅𝑟𝑎𝑖𝑛,𝑡 = 𝑟𝑎𝑖𝑛𝑡 − 𝑖𝑟𝑎𝑖𝑛,𝑡                 (B7) 

B1.4 Sublimation calculation 

The sublimation at each time step can be backed out from the model output snowfall (𝑠𝑛𝑜𝑤𝑡), 

model output snowmelt (𝑀𝑡), and change of model output SWE (𝑆𝑊𝐸𝑡−1 − 𝑆𝑊𝐸𝑡): 

𝑠𝑢𝑏𝑡 = 𝑆𝑊𝐸𝑡 −1 + 𝑠𝑛𝑜𝑤𝑡 − 𝑀𝑡 − 𝑆𝑊𝐸𝑡          (B8) 

B1.5 Baseflow, ET, and sublimation partitioning 

I use the assumption of Li et al. [2017] that the fraction of baseflow derived from snow equals the 

fraction of soil moisture that originated from snow (𝑓𝑊 ,𝑠𝑛𝑜𝑤,𝑡); the fraction of baseflow derived 

from cool-season rainfall equals the fraction of soil moisture that originated from cool-season 

rainfall (𝑓𝑊,𝑟𝑎𝑖𝑛𝑐,𝑡 ); the fraction of baseflow derived from warm-season rainfall equals the fraction 

of soil moisture that originated from warm-season rainfall (𝑓𝑊,𝑟𝑎𝑖𝑛𝑤,𝑡): 

       𝐵𝑠𝑛𝑜𝑤 ,𝑡 = 𝑓𝑊 ,𝑠𝑛𝑜𝑤 ,𝑡𝐵𝑡             (B9) 

  𝐵𝑟𝑎𝑖𝑛𝑐,𝑡 = 𝑓𝑊,𝑟𝑎𝑖𝑛𝑐 ,𝑡𝐵𝑡              (B10) 

𝐵𝑟𝑎𝑖𝑛𝑤,𝑡 = 𝑓𝑊,𝑟𝑎𝑖𝑛𝑤,𝑡𝐵𝑡             (B11) 

Similar to baseflow, the ET and sublimation calculation follows the same fractional scaling using 

𝑓𝑊 ,𝑠𝑛𝑜𝑤 ,𝑡, 𝑓𝑊,𝑟𝑎𝑖𝑛𝑐 ,𝑡, and 𝑓𝑊,𝑟𝑎𝑖𝑛𝑤,𝑡, see Eqs. B13-B17 for details. Baseflow, soil moisture, and ET 

all come from model output, and sublimation is backed out from model outputs according to Eq. 

B8.  Since in Eq. B2, the sum of 𝑓𝑊,𝑠𝑛𝑜𝑤 ,𝑡, 𝑓𝑊,𝑟𝑎𝑖𝑛𝑐,𝑡, and 𝑓𝑊,𝑟𝑎𝑖𝑛𝑤,𝑡 equals one, the sum of the 

partitioned three sources’ baseflow (or ET, or sublimation) equals the original model output 

baseflow (or ET, or sublimation).  

B1.6 Soil water mass balance and time propagation 

According to soil water mass balance, the soil moisture storage change is a result of water gain/loss 

from infiltration, sublimation, evapotranspiration, and baseflow: 



111 

 

𝑊𝑡 = 𝑊𝑡−1 + 𝑖𝑡∆𝑡 − (𝐸𝑇𝑡 − 𝑠𝑢𝑏𝑡)∆𝑡 − 𝐵𝑡∆𝑡        (B12) 

Taking the assumption used in S1.5, only the snowmelt-related part of evapotranspiration, 

infiltration, sublimation, and baseflow affect the part of soil moisture coming from snowmelt. 

Similarly, only the warm-season rainfall (cool-season rainfall) related parts of evapotranspiration, 

infiltration, sublimation, and baseflow can affect the part of the soil moisture coming from warm-

season rainfall (cool-season rainfall).  As a result, Eq. B12 can be split into Eqs. B13-B17 for the 

separation of snowmelt, cool-season rainfall, and warm-season rainfall. 

In the warm season, the tracking process for warm and cool-season rainfall is:  

𝑓𝑊,𝑟𝑎𝑖𝑛𝑤,𝑡𝑊𝑡 = 𝑓𝑊,𝑟𝑎𝑖𝑛𝑤,𝑡−1𝑊𝑡−1 +
𝑟𝑎𝑖𝑛𝑡

𝑀𝑡 +𝑟𝑎𝑖𝑛𝑡
𝑖𝑡∆𝑡 − 𝑓𝑊,𝑟𝑎𝑖𝑛𝑤,𝑡−1(𝐸𝑇𝑡 − 𝑆𝑢𝑏𝑡)∆𝑡 − 𝑓𝑊,𝑟𝑎𝑖𝑛𝑤,𝑡−1𝐵𝑡∆𝑡      (B13) 

𝑓𝑊,𝑟𝑎𝑖𝑛𝑐,𝑡𝑊𝑡 = 𝑓𝑊,𝑟𝑎𝑖𝑛𝑐,𝑡−1𝑊𝑡−1 − 𝑓𝑊,𝑟𝑎𝑖𝑛𝑐,𝑡−1(𝐸𝑇𝑡 − 𝑆𝑢𝑏𝑡)∆𝑡 − 𝑓𝑊,𝑟𝑎𝑖𝑛𝑐,𝑡−1𝐵𝑡∆𝑡                                  (B14) 

In the cool season, the tracking process is:  

𝑓𝑊,𝑟𝑎𝑖𝑛𝑤,𝑡𝑊𝑡 = 𝑓𝑊,𝑟𝑎𝑖𝑛𝑤,𝑡−1𝑊𝑡−1 − 𝑓𝑊,𝑟𝑎𝑖𝑛𝑤,𝑡−1(𝐸𝑇𝑡 − 𝑆𝑢𝑏𝑡 )∆𝑡 − 𝑓𝑊,𝑟𝑎𝑖𝑛𝑤,𝑡−1𝐵𝑡∆𝑡              (B15) 

𝑓𝑊,𝑟𝑎𝑖𝑛𝑐,𝑡𝑊𝑡 = 𝑓𝑊,𝑟𝑎𝑖𝑛𝑐,𝑡−1𝑊𝑡−1 +
𝑟𝑎𝑖𝑛𝑡

𝑀𝑡+𝑟𝑎𝑖𝑛𝑡
𝑖𝑡∆𝑡 − 𝑓𝑊,𝑟𝑎𝑖𝑛𝑐,𝑡−1(𝐸𝑇𝑡 − 𝑆𝑢𝑏𝑡)∆𝑡 − 𝑓𝑊,𝑟𝑎𝑖𝑛𝑐,𝑡−1𝐵𝑡∆𝑡(B16)  

In both seasons, the snowmelt tracking process is:  

𝑓𝑊,𝑠𝑛𝑜𝑤,𝑡𝑊𝑡 = 𝑓𝑊,𝑠𝑛𝑜𝑤,𝑡−1𝑊𝑡−1 +
𝑀𝑡

𝑀𝑡+𝑟𝑎𝑖𝑛𝑡
𝑖𝑡∆𝑡 − 𝑓𝑊,𝑠𝑛𝑜𝑤,𝑡−1(𝐸𝑇𝑡 − 𝑆𝑢𝑏𝑡)∆𝑡 − 𝑓𝑊,𝑠𝑛𝑜𝑤,𝑡−1𝐵𝑡∆𝑡  (B17) 

B1.7 Calculation of contribution to summer streamflow 

The contribution to summer streamflow (Q) from the three sources (cool season rainfall, warm 

season rainfall, and snowmelt) is calculated as follows:  

𝐹_𝑟𝑎𝑖𝑛𝑐 = [∑ (𝐵𝑟𝑎𝑖𝑛𝑐,𝑡)𝑡=𝑆𝑒𝑝30𝑡ℎ
𝑡=𝐽𝑢𝑙1𝑠𝑡 ]/[∑ 𝑄𝑡

𝑡=𝑆𝑒𝑝30𝑡ℎ
𝑡=𝐽𝑢𝑙1𝑠𝑡 ]         (B18) 

𝐹_𝑟𝑎𝑖𝑛𝑤 = [∑ (𝐵𝑟𝑎𝑖𝑛𝑤,𝑡 + 𝑅𝑟𝑎𝑖𝑛,𝑡)𝑡=𝑆𝑒𝑝30𝑡ℎ
𝑡=𝐽𝑢𝑙1𝑠𝑡 ]/[∑ 𝑄𝑡

𝑡=𝑆𝑒𝑝30𝑡ℎ
𝑡=𝐽𝑢𝑙1𝑠𝑡 ]            (B19) 

𝐹_𝑠𝑛𝑜𝑤 = [∑ (𝐵𝑠𝑛𝑜𝑤 ,𝑡 + 𝑅𝑠𝑛𝑜𝑤 ,𝑡)𝑡=𝑆𝑒𝑝30𝑡ℎ
𝑡=𝐽𝑢𝑙1𝑠𝑡 ]/[∑ 𝑄𝑡

𝑡=𝑆𝑒𝑝30𝑡ℎ
𝑡=𝐽𝑢𝑙1𝑠𝑡 ]                      (B20) 
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Appendix C 

C.1 Tables 

Table C1. Three major river basins and corresponding station IDs for flows.  

Domain Station_ID 

PNW SKHI (Snake River at King Hill) 
HCD (Snake River at Hells Canyon Dam Id-Or State Line) 

BON (Columbia River below Bonneville Dam) 
IHR (Snake River below Ice Harbor Dam) 
PRD (Columbia River Below Priest Rapids Dam) 

YAK (Yakima River at KIONA) 
LLK (Spokane River at Long Lake) 

BRI (Brilliant, right downstream of Kootenay River near. Glade) 
WAT (Waneta) 

CA SRS (Salmon R at Somes Bar) 

SIS (Sacto Inflow-Shasta) 
TNL (Trinity River at Lewiston) 
SBB (Sacramento River above Bend Bridge) 

FTO (Feather River at Oroville) 
YRS (Yuba River near Smartville) 

TRF (Truckee River at Farad) 
WFC (West Fork Carson River at Woodfords) 
AMF (American River at Folsom) 

RRH (Russian River near Healdsberg) 
CSN (Cosumnes River at Michigan Bar) 
NPH (Napa River near St Helena) 

EFC (East Fork Carson River near Gardnerville) 
MKM (Mokelumne-Mokelumne Hill) 

WWR (West Walker River near Coleville) 
EWR (East Walker River near Bridgeport) 
SNS (Stanislaus River-Goodwin) 

TLG (Tuolumne River-La Grange Dam) 
MRC (Merced River near Merced Falls) 

OWL (Owens River-Long Valley) 
SJF (San Joaquin River below Friant) 
KGF (Kings River-Pine Flat Dam) 

KWT (Kaweah River-Terminus Dam) 
ASS (Arroyo Seco near Soledad) 

SCC (Tule River-Success Dam) 
NCD (Nacimiento River below Dam) 
KRI (Kern River-Below Isabella) 

KRB (Kern River-Bakersfield) 
SSP (Sespe Creek near Fillmore) 

ANM (Santa Ana River near Mentone) 
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ERS (Eel River at Scotia) 

UCRB 09072500 (Colorado River at Glenwood Springs, CO) 

09095500 (Colorado River near Cameo, CO) 
09109000 (Taylor River below Taylor Park Reservoir, CO) 

09124700 (Gunnison River above Blue Mesa Reservoir, CO) 
09127800 (Gunnison River at Crystal Reservoir, CO) 
09152500 (Gunnison River near Grand Junction, CO) 

09180000 (Dolores River near Cisco, UT) 
09180500 (Colorado River near Cisco UT) 

09211200 (Green River below Fontenelle Reservoir, WY) 
09217000 (Green River near Green River, WY) 
09234500 (Green River near Greendale, UT) 

09251000 (Yampa River near Maybell, CO) 
09260000 (Little Snake River near Lily, CO) 

09302000 (Duchesne River near Randlett, UT) 
09306500 (White River near Watson, UT) 
09315000 (Green River at Green River, UT) 

09328500 (San Rafael River near Green River, UT) 
09355500 (San Juan River near Archuleta, NM) 

09379500 (San Juan River near Bluff, UT) 
09380000 (Colorado River at Lees Ferry, AZ) 
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C.2 Figures 

 

Figure C1. (a) Maps of ∆Q (mm/yr) from 1°C to 2°C warming experiment minus ∆Q (mm/yr) 

from 0°C to 1°C warming experiment. Similarly, (b) for ∆ET (mm/yr), and (c) for ∆SWE (mm/yr). 

In (a), grid cells with a positive value have a smaller Q decrease under 1~2°C warming than 0~1°C 

warming. In (b), grid cells with a negative value have a smaller ET increase under 1~2°C warming. 

In (c), grid cells with a positive value have a smaller SWE decrease under 1~2°C warming. All 

values are averaged over the historical period (water years 1951-2018). The basin average values 

for PNW, UCRB, and CA correspond to the basins’ 1~2°C column minus 0~1°C column in Chapter 

4 Table 1.  
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Figure C2. Time series of SSP245-driven VIC output SWE in sub-basins with naturalized flow 

records, averaged by a 30-year moving window over water years 1951 to 2100 in (a) PNW, (b) 

UCRB, and (c) CA. Colors indicate the elevation, with blue indicating higher elevation and red 

indicating lower elevation.  
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Figure C3. (a) Ratios of annual ET, melt-period (mp, Mar-May) ET, and non-melt-period (nmp, 

Jun-Feb) to annual precipitation (P) as a function of temperature, derived from the pooled GCM-

driven VIC outputs for water years 1951 to 2100; (b) same as (a), but for net radiation averaged 

over annual period, melt-period, and non-melt-period; (c) same as (b), but for snow cover ratio 

(fraction of area covered by snow). Note that our definition of melt period (Mar-May) did not 

consider the timing shift caused by earlier snowmelt. Results are for SSP245 scenario. 

Corresponding SSP585 results are in Chapter 4 Figure 5.  
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