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ARTICLE

End of Green Sahara amplified mid- to late
Holocene megadroughts in mainland
Southeast Asia
Michael L. Griffiths 1✉, Kathleen R. Johnson 2✉, Francesco S. R. Pausata3, Joyce C. White 4,5,

Gideon M. Henderson6, Christopher T. Wood 2, Hongying Yang2, Vasile Ersek 7, Cyler Conrad 8,9 &

Natasha Sekhon2,10

Between 5 and 4 thousand years ago, crippling megadroughts led to the disruption of ancient

civilizations across parts of Africa and Asia, yet the extent of these climate extremes in

mainland Southeast Asia (MSEA) has never been defined. This is despite archeological

evidence showing a shift in human settlement patterns across the region during this period.

We report evidence from stalagmite climate records indicating a major decrease of monsoon

rainfall in MSEA during the mid- to late Holocene, coincident with African monsoon failure

during the end of the Green Sahara. Through a set of modeling experiments, we show that

reduced vegetation and increased dust loads during the Green Sahara termination shifted the

Walker circulation eastward and cooled the Indian Ocean, causing a reduction in monsoon

rainfall in MSEA. Our results indicate that vegetation-dust climate feedbacks from Sahara

drying may have been the catalyst for societal shifts in MSEA via ocean-atmospheric

teleconnections.
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The Southeast Asian Monsoon provides critical water
resources to >600 million people each year. Even slight
variations in the strength and/or timing of the monsoon

can have profound societal and economic impacts on the region.
Paleoclimate records have significantly advanced our under-
standing of the broader Asian monsoon system, particularly on
orbital timescales1. However, due to a lack of paleoclimate
records from mainland Southeast Asia (MSEA), very little is
known about the range and mechanisms of Southeast Asian
monsoon variability, particularly on timescales more pertinent to
human occupation such as the Holocene.

The mid- to late Holocene, roughly 6 to 4 thousand years ago
(ka), was characterized by one of the largest climate shifts since
the last glacial termination—the end of the Green Sahara (also
referred to as the African Humid Period), when a once-vegetated
northern Africa transitioned to a hyper-arid desert landscape2–5.
'Both the nature and timing of this climate shift have been topics
of great interest because it overlaps with societal upheavals across
western Asia and the Middle East. Indeed, collapse of the
Akkadian Empire of Mesopotamia6,7, the de-urbanization of the
Indus Civilization8, and the spread of pastoralism along the Nile9,
are all examples of societal shifts that have been linked with
climate extremes (e.g., the “4.2 ka event”) during this period.
While it has been well established that the end of the Green
Sahara occurred as a result of orbital forcing amplified by vege-
tation/dust10,11 and sea-surface temperature (SST)12,13 feedbacks,
the extent to which the major climate turning point of the end of
the Green Sahara impacted rainfall patterns, and in turn societies,
across the Southeast Asian region, has not previously been
investigated.

It is particularly important to investigate Southeast Asian
monsoon variability during the mid- to late Holocene transition
because it overlaps with what has been termed the “missing
millennia” in interior MSEA, which refers to the paucity of
archeological evidence between ca. 6.0 and 4.0 ka14,15 relative to
the early and late Holocene. The Holocene prehistoric arche-
ological record of MSEA, although still in early stages of inves-
tigation, suggests two broad periods with relatively coherent
patterns: (1) an early Holocene period (ca. 9.0–6.0 ka) with
mobile small societies (bands) that employed flaked stone tools,
especially of river cobbles (termed “Hòabìnhian”), occupied
karsts and uplands, and subsisted primarily by hunting and
gathering; and (2) a late Holocene period (ca. 4.0–2.5 ka) during
which nucleated settlements appear away from karst areas,
including undulating lowlands, with human burials in or near the
settlements, ceramics usually of elaborated styles, and at least part
of their subsistence coming from domesticated plants and ani-
mals15. Some archeologists advocate a case of immigration of
farmers (with a debated chronology) who outnumber, out-
compete, and/or absorb indigenous hunter-gatherers16–18. How-
ever, with the exception of northern Vietnam coastal areas, there
is almost no archeological evidence from interior MSEA during
the millennium that immediately precedes the first appearance of
societies practicing cereal cultivation. That major climate change
may have been a driving factor in the societal shifts that occurred
during the mid- to late Holocene in MSEA has heretofore not
been considered. To this end, here we provide new insight into
the potential connection between prehistoric human occupation
and environmental changes in MSEA during the Holocene by
comparing settlement trends in archeological data with novel
paleoclimate proxy records and coupled general circulation model
(GCM) sensitivity experiments incorporating a range of forcings.
Our observational and model results show that weakening of the
African monsoon associated with the end of the Green Sahara
period amplified Holocene megadroughts in MSEA (and beyond)
via cooling Indian Ocean SSTs and an eastward shift in the

Walker circulation. Therefore, vegetation-dust climate feedbacks
played an important role in modulating hydroclimate variability
across East Asia, which may have in turn influenced human
settlement patterns across the region during the Holocene.

Results
Multiproxy record of mainland Southeast Asian hydroclimate.
We have compiled a 9500-yr-long hydroclimate record using
oxygen (δ18O) and carbon (δ13C) isotopes measured in three
stalagmites (TM4, TM5 and TM11), along with radiocarbon
(14C) and Mg/Ca ratios in one stalagmite (TM5), from Tham
Doun Mai cave located in northern Laos (Fig. 1; 20°45’N, 102°
39’E), a region dominated by the Southeast Asian monsoon
(Supplementary Fig. 1) and influenced by the El Niño/Southern
Oscillation (ENSO) (Fig. 1). The stable isotope profiles for each
stalagmite were constrained in absolute time with 37 230Th-234U
ages (Supplementary Table 1), which were used to construct age
models employing the Intra-Site Correlation Age Modeling
(Iscam) algorithm (see “Methods” and Supplementary Fig. 2).

The composite TM δ18O record, constructed by averaging the
three speleothem isotope profiles for the periods of overlap,
displays an increasing trend through much of the Holocene
(Fig. 2a), with values increasing by ≈2‰ between the early and
late Holocene. The high degree of replication between the three
overlapping records (Fig. 2a, b), together with similarities with
lower-resolution proxy records from China (Supplementary
Fig. 3), lead us to conclude that our speleothem stable isotopes
were likely deposited under equilibrium conditions and therefore
reflect changes in precipitation δ18O (δ18Op) during the
Holocene. Isotope-enabled GCM simulations and observations
of δ18Op have shown that, on interannual to millennial
timescales, lower δ18Op values over East Asia primarily reflects
increased rainout over the Indian Ocean source region in
response to increased convection and monsoonal winds upstream
of the cave sites19. This factor is likely to dominate observed δ18O
signals, although other factors may also influence δ18Op over
MSEA, including rainfall amount and/or shifting moisture source
regions driven by various climate modes, such as ENSO19

(Supplementary Fig. 4). We interpret the overall increase in
speleothem δ18O during the Holocene to reflect an overall
weakening of the Southeast Asian monsoon in response to
decreasing summer insolation (Fig. 2a).

The most striking feature of our record is the abrupt
enrichment in 18O beginning at ≈5.10 ± 0.07 ka (2σ), which we
interpret to reflect a rapid reduction in regional monsoon
intensity (Fig. 2a). This increase in δ18O is coeval with an abrupt
≈5‰ two-step increase in δ13C beginning at ≈5.10 ± 0.07 ka (2σ)
and reaching a maximum value at 3.69 ± 0.13 ka (2σ) (Fig. 2b).
Specifically, TM5 δ13C exhibits a two-step transition between ca.
5 and 3.7 ka, where values increase by ~2.5‰ from ca. 5–4.6 ka,
followed by a brief ≈1‰ decrease that culminates with another
~2.5‰ increase that peaks between 3.4 and 3.8 ka. The most
likely explanation for this large δ13C enrichment in TM5 is prior
calcite precipitation (PCP) due to enhanced 12CO2 degassing in
the epikarst20, a contention supported by the covariation with
Mg/Ca ratios of the same specimen (Fig. 2c and Supplementary
Fig. 5; see “Methods”). Shifts in Mg/Ca ratios in speleothems have
often been tied to changes in local hydrology via PCP20,21, where
the enhanced precipitation of calcite upstream of the stalagmite
during drier periods increases the Mg/Ca of the remaining cave
drip water.

While it is difficult to attribute one single mechanism to
changes in calcite δ13C, additional support for the hydrological-
control on our δ13C record comes from the 14C-inferred dead
carbon proportion (DCP) in TM5 (Fig. 2c and Supplementary
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Table 3), which studies have shown to also be affected by karst
hydrology22. The DCP in speleothems, which reflects the degree
of depleted 14C due to radioactive decay, is modulated by
dissolution of the overlying 14C-free bedrock and/or less depleted
14C stocks in the soil and epikarst zones23. The relative change of
DCP over time is sometimes attributed to changes in open vs.
closed system dissolution, which are ultimately controlled by
hydrology and the amount of void space in the epikarst, thus
making DCP another effective hydrologic proxy22. Under this
control, drier conditions result in more open-system dissolution
and a lower DCP as the percolating groundwater continuously re-
equilibrates with the soil CO2 via air-filled voids in the epikarst.
While the higher resolution δ13C and Mg/Ca records show more
structural features, the increasing trend in these proxies from ≈5
ka is matched by a decreasing trend in DCP approaching 4 ka,
after which the trends are amplified until ≈3.7 ka. The period of
lowest DCP, interpreted as drier conditions due to more open-
system dissolution, is matched by the highest δ13C and Mg/Ca
values. These results thus support a hydrologic interpretation of
both δ13C and Mg/Ca variation affected by PCP and local
hydrology. Worth noting, however, is that the δ13C and Mg/Ca
records exhibit an abrupt return to values similar to 5.5 ka by
≈3.3 ka, while the final DCP data points suggest recovery in this
proxy may have been postponed up to ≈1000 years. This conflict
could be a result of the disparate sampling resolutions between
proxies and/or a delay in the response of the dissolution control
on DCP vs. δ13C and Mg/Ca controls.

Taken together, the concomitant shifts in the stable isotopes,
Mg/Ca, and DCP shows that the interval from 5.11 to 3.25 ka was
among the driest periods of the Holocene in northern MSEA. In
this vein, two of the three speleothem records in our compilation
cease [TM4: 5.31 ± 0.04 ka (2σ); TM11: 4.95 ± 0.08 ka (2σ)] and
resume [TM4: 2.50 ± 0.04 ka (2σ)] growing in parallel with the

large changes in the proxies (Fig. 2), adding further weight to our
interpretation. Moreover, these growth hiatuses and large
enrichments in TM5 δ13C also correspond with a depositional
hiatus (indicating dry conditions) in nearby Lake Kumphawapi24

located in Northeast Thailand (Supplementary Fig. 3), and are
generally matched by drier conditions inferred from other
regional proxy records (Fig. 1). It is worth pointing out though
that there are some noticeable differences in the trends between
our speleothem δ18O, and δ13C, Mg/Ca, and DCP curves,
particularly between 2.5 and 6 ka. These trend differences are
likely due to the fact that δ13C, Mg/Ca, and DCP are proxies for
local water balance, while δ18O is a proxy for atmospheric
circulation and convective processes upstream of our cave site.
For example, previously we demonstrated that the δ18O “amount
effect” does not dominate the modern rainfall isotope signal at
our site19, a pattern manifested in the proxy records from Tham
Doun Mai25.

Climate change and agrarian transitions in Southeast Asia.
Archeological records from MSEA suggest that the mid- to late
Holocene megadrought coincided with lifestyle changes in the
region (Fig. 2d). The first appearance of cultivated cereals so far
documented in MSEA, based on 14C dates from botanical
remains excavated from lowland village sites in the Mekong and
Chao Phraya drainage basins, was between 4.3 and 4.0 ka, with
millet in central Thailand (Non Pa Wai millet macrobotanicals)26

and rice in northeast Thailand (Ban Chiang phytoliths excavated
from inside a burial pot that contained rice)27. It is also inter-
esting to note that in the Yangtze River Basin, weakened mon-
soon rainfall ca. 5.3–4.2 ka has been linked to social and
technological changes, particularly the period 4.2–4.0 ka, when
major settlements and cities were abandoned due to “severe cli-
matic deterioration”28. Meanwhile, paleoclimate archives from

JJAS rainfall anomalies during strong El Niño events
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Fig. 1 Location of Tham Doun Mai cave (diamond) and other climate proxy sites mentioned in the text. Locations of climate proxy records across East
Asia showing relative hydroclimate changes at ≈4 ka as inferred from the synthesis in Supplementary Table 1. Background shading shows Global
Precipitation Climatology Project (GPCP) average June-September (JJAS) rainfall anomalies during the large 1982/1983, 1998/1999, and 2015/2016 El
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central-eastern China indicate pluvial conditions around this time
(Fig. 1 and Supplementary Table 2), concurrent with the estab-
lishment of the Xia dynasty that emerged after the so-called
“Great Flood”29,30. Recent evidence from ancient DNA sequen-
cing of human genomes also points to population changes in
MSEA ≈ 4 ka ago18, which the authors propose may be related to
societal movements in East Asia, including some emigration into
MSEA. The population movements may have been instigated in
part by mid-Holocene climate changes and those movements in
turn may have introduced cereal agriculture into MSEA31. The
establishment and initial proliferation of this nucleated village
agrarian lifeway in MSEA is remarkable in that it occurred during
a period of extreme climate variability across the broader East
Asian region. Whether or not this was a coincidence remains an
open question that demands more research.

Causes of monsoon failure during the mid- to late Holocene.
What may have triggered such a large and abrupt megadrought in
MSEA during this tumultuous time in human civilization? A
common mechanism to explain this widespread drought, parti-
cularly as it pertains to the regional drying of northeastern Africa

and the Middle East around 4 ka, has been the rapid cooling of
the North Atlantic32—the so-called “Holocene Event 3” char-
acterized by increased ice-rafted debris. Specifically, it has been
proposed that cooler North Atlantic SSTs led to deficits in
Mediterranean rainfall32, and potentially a southward shift of the
Intertropical Convergence Zone (ITCZ)33. However, as has pre-
viously been noted (e.g., ref. 34), the amplitude of this event was
superseded by numerous other Holocene ice-rafting events
(Supplementary Fig. 6), which do not coincide with large-scale
megadroughts. In addition, a recent review of northern North
Atlantic Holocene records showed inhomogeneous temperature
trends across the region at around 4 ka, which the authors suggest
is evidence that the North Atlantic did not play a critical role in
the lower-latitude climate extremes around this time35. Thus,
while we cannot completely discount the potential impact of the
North Atlantic, it is unlikely that it was the primary driver of
lower-latitude climate extremes at this time.

Alternatively, we hypothesize that amplifying feedbacks driven
by vegetation changes and atmospheric dust loads at the
termination of the Green Sahara may explain the magnitude
and non-linearity of the event with respect to the gradual changes
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in orbital forcing. The onset of severe drought conditions in
MSEA at 5.10 ± 0.07 ka (2σ) coincides with the abrupt increase in
dust emissions from the Sahara2,3,36,37. Specifically, the waning of
east (Fig. 3b–d) and west (Supplementary Fig. 7) African rainfall
inferred from the hydrogen isotopic composition of leaf waxes
(δDwax), and large increases in regional dust emissions centered
around ≈5.0 ka and ≈4.1 ka (Fig. 3e)7,33,36,38, generally corre-
sponds with two episodes of reduced rainfall in northern Laos
(Fig. 3a), and regional drying in the Mediterranean34 and Middle
East7.

To quantify the timing of these climate transitions in the
North/East African and MSEA records during the middle

Holocene, we applied a Bayesian change-point algorithm that uses
a probabilistic, least-squares approach to identify shifts in climate
regime39. Using the probability density function output from the
statistical model (Fig. 3), which provides the age and uncertainty
(2σ) on the position of the regime shifts, we performed a reduced
chi-square test to detect the statistical coherence between
the timing of monsoon failure across East Africa (i.e., Lake
Tanganyika, Lake Challa, and the Gulf of Aden)3,40,41 and MSEA
(i.e., Tham Doun Mai). Results show that the end of the Green
Sahara and onset of megadrought conditions in northern Laos
was likely synchronous (χ2= 0.44; P= 0.73) with an error-
weighted mean age of 4998 ± 76 (2σ) (Fig. 3); this value is in
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close alignment with prior estimates from both East [4960 ± 70
(2σ)]3 and West [4900 ± 400 (2σ)]36 African proxy records
(Supplementary Fig. 7). Similarly, the timing of peak mega-
drought conditions in northern Laos (based on TM5 δ13C) and
maximum Saharan dust loads (Fig. 3e, f)33,38,42 during the mid-
to late Holocene, were also likely synchronous (χ2= 1.54; P=
0.20).

It should be stressed, however, that factors other than Saharan
dust and vegetation may have also influenced rainfall in MSEA
during the mid- to late Holocene. For example, the observed
return to wetter conditions in MSEA between ≈3 and 2.2 ka
occurs despite the Sahara remaining generally dry. We note that
similar patterns are observed in the Western Pacific SSTs43

(Fig. 4b), whereby the mid- to late Holocene decreasing trend was
interrupted by a brief, but notable, increase at ~2.5 ka, suggesting
a possible shift to La Niña-like conditions. This brief hiatus in the
overall drying trend is also apparent in the Lake Challa41, and to a
lesser extent the Gulf of Aden3, δDwax records (Fig. 3b, c), further
suggesting that the momentary rebound to wetter conditions was
not restricted to MSEA. Furthermore, the dust records33,38,42

(Fig. 3e, f) show that atmospheric dust loads were significantly
higher between 4.2 and 3.5 ka compared with any other time
during the Holocene, despite East Africa exhibiting a continued
drying trend. While we can only speculate as to the driver(s) of
this return to wetter conditions in MSEA around 3 ka, we
hypothesize that the sudden abatement in dust loads after ≈3.5 ka
meant that other forcings and feedbacks (e.g., internal ENSO
variability, Northern Hemisphere summer insolation, Atlantic
Meridional Overturning Circulation) became more dominant.

Simulated dynamics of Asian monsoon hydroclimate. To
investigate the link between the desertification of a once-vegetated
Sahara and monsoon failure in MSEA, we examined a series of
idealized climate model simulations where prescribed Saharan
vegetation and dust concentrations were altered in a way that
allowed us to investigate the ocean-atmosphere feedbacks and
teleconnections associated with an abrupt shift in these boundary
conditions during the mid-Holocene (MH, 6 ka). Specifically, we
utilized the fully coupled GCM simulations (EC-Earth version
3.1)44 of Pausata et al.45 and Gaetani et al.46 to compare and
contrast two MH scenarios: (1) an experiment applying MH
insolation and greenhouse gases based on the Paleoclimate
Modeling Intercomparison Project Phase 3/Coupled Model
Intercomparison Project Phase 5 (PMIP3/CMIP5) protocol,
which employs preindustrial vegetation cover and dust con-
centrations (MHPMIP); and (2) an experiment in which Saharan
land cover is set to shrub, and dust concentrations are reduced by
up to 80% (MHGS+RD). For both experiments, we examined 100
years (see “Methods” for details). While a transient simulation
with interactive vegetation and dust emissions may be more
appropriate, climate models still struggle to properly capture the
abrupt transitions that occurred at the end of the Green Sahara
period, with some models showing a smooth and others a more
rapid ending of the Green Sahara47. On the other hand, the
idealized nature of the simulations adopted here does allow to
pinpoint the regional effect and large-scale teleconnections rela-
ted to dust and vegetation changes in North Africa48,49.

To effectively examine the climate sensitivity of Saharan dust
and vegetation changes we compared the results from these two
MH experiments (i.e., MHPMIP minus MHGS+RD), which we refer
to ΔMHPMIP (Fig. 5). The model results are generally consistent
with the proxies, showing widespread drying across Eurasia under
reduced Saharan vegetation and increased dust emissions
(Fig. 5a). In particular, the largest extreme droughts during
summer (JJAS) occur in northern Africa, the Arabian Peninsula,

northern China, and the northern portions of both India and
MSEA. By contrast, areas south of ≈15°N in west Africa, along
with southern India and southern MSEA, exhibit increased
monsoon rainfall. Together, these patterns demonstrate a
significant redistribution of moisture equatorward in response
to rapid land cover changes and dust emissions over the Sahara.

Discussion
Recent modeling experiments have demonstrated that the
strengthening of the West African Monsoon (WAM) and the
consequent Sahara “greening” played a dominant role in sup-
pressing ENSO mean state and variability during the mid-
Holocene49, which might explain shifts in tropical hydroclimate
through the drying of the Sahara at the end of the Green Sahara.
While the ENSO phases peak in boreal winter, ENSO mode is
most sensitive to perturbations applied in boreal summer from
May through August50. Specifically, Pausata et al.49 demonstrated
that a strengthened WAM led to warm SST anomalies and a
reduction in SST variability over the equatorial Atlantic. This in
turn caused the Walker circulation to shift westward, which can
effectively influence ENSO activity and phases through changes in
the strength of the trade winds in the equatorial Pacific. As shown
in studies focusing on past49 and modern climate51, a westward
shift of the Walker circulation causes an anomalous divergent
flow during summer in the central-eastern Pacific, strengthening
easterly winds over the western equatorial Pacific, while weak-
ening them over the eastern side. The weaker trades reduce the
upwelling and deepen the thermocline in summer over the
eastern Pacific49, reducing the atmosphere-ocean coupling and
hence decreasing ENSO variability in agreement with modeling
studies52,53. On the other hand, the stronger trades in the central-
western part of the basin causes a shoaling of the thermocline in
the central Pacific during summer, leading to negative ocean
temperature anomalies that travel eastward (Kelvin wave),
reaching the eastern Pacific in boreal winter, and ultimately
favoring the development of La Niña conditions49,51.

We invoke a similar mechanism—albeit in the opposing
direction (i.e., WAM weakening)—to explain the abrupt hydro-
climate changes in MSEA observed in the proxies and model
simulations. Indeed, the drying of the Sahara (ΔMHPMIP)
(Fig. 5a) decreases the SSTs over the Indo-Pacific Warm Pool
(Fig. 5b), which are characteristic of El Niño conditions. More
precisely, weakening of the WAM decreases the intensity of the
westerly winds along the equatorial Atlantic, which leads to
increased upwelling in the eastern side of the basin (Atlantic
Niña) during summer. These changes in the mean state of the
Equatorial Atlantic abate and shift eastward the Walker Circu-
lation, with a weakened descending branch (divergence) over the
central Pacific eventually favoring El Niño conditions to develop
(Fig. 5c). The weakened WAM can also trigger an increase in the
variability of the Atlantic Equatorial mode48, which can enhance
ENSO activity as shown in previous studies (see Fig. 8 in Pausata
et al.48). This sequence of events, thus, favors the development of
cooler east Indian Ocean SSTs under the dry Sahara scenario
(Fig. 5b), which reduces convection over the Southeast Asian
monsoon moisture source region.

These climate model simulations are supported by the paleo-
climate archives, which show evidence for overall cooler east
Indian Ocean and western Pacific SSTs between 5 and 4 ka54

(Fig. 4b, c), and conversely, trends toward higher ENSO variance
(Fig. 4d–f)55–57. The synchronous shift to heavier δ18O at Tham
Doun Mai between 5 and 4 ka (Fig. 2a) is also consistent with
reduced AM intensity, and more locally sourced summer mon-
soon moisture and/or decreased upstream rainout from the Bay
of Bengal, which are all typical for El Niño events (Supplementary
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Fig. 4)19. What is more, modern climate dynamics suggest that
the Asian monsoon onset is generally delayed during El Niño
events due to an equatorward contraction of the ITCZ58, a result
that is manifested in the dry Sahara vs. wet Sahara model

experiments and paleoclimate records (Fig. 6). Notably, the
rainfall response in MSEA to a delayed northward migration of
the westerlies in the ΔMHPMIP scenario is similar to that in
northern China (i.e., drier conditions), but antiphased with
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central-eastern China (i.e., wetter conditions) (Figs. 5a and 6), a
result that bears some resemblance to the observed modern
rainfall anomalies during strong El Niño events (Fig. 1).

The simulated antiphased character of rainfall across East Asia
can likely be tied to a shift in the instraseasonal stages of East
Asian summer monsoon (EASM) evolution akin to the dominant
“tripole” pattern of modern interannual rainfall variability59,60.
Specifically, recent studies of both modern60 and past59 EASM
variability hypothesize that rainfall changes over East Asia can
occur from shifts in the timing and duration of the EASM
instraseasonal stages (i.e., spring, pre-Meiyu, Meiyu, and mid-
summer), which are ultimately linked with the south-north dis-
placement of the westerlies relative to the Tibetan Plateau. Recent
work by Zhang et al.59 showed that a seasonal delay in the
northward migrating westerlies during spring/summer—similar
to the results of this study (Fig. 6a)—is what led to overall higher
rainfall anomalies in central-eastern China during the deglacial
cooling events (i.e., Heinrich Stadial 1 and the Younger Dryas),
which they showed was due to a lengthened Meiyu and shortened
midsummer stage. We propose a similar mechanism here for the
antiphase behavior of EASM rainfall under the ΔMHPMIP sce-
nario. Dust-source paleoclimate records from the Japan Sea61

support our model simulations, showing that the westerlies were
indeed shifted southward between 4 and 5 ka (Fig. 6c), resulting
in extreme drought conditions in Northern China and MSEA,
coincident with an equatorward contraction of the ITCZ (Fig. 6c).

To conclude, we have provided the first evidence for a link
between the termination of the Green Sahara and widespread
declines in monsoon rainfall across interior MSEA. This work
highlights the sensitivity of Southeast Asian hydroclimate to large
and abrupt shifts in Earth’s boundary conditions, and in parti-
cular, demonstrates the potential for densely populated regions of
East Asia to rapidly switch between wet and dry background
climate states. The long-term and sub-regional societal responses

to these profound and at times abrupt climate shifts remain to be
elucidated through archeological investigations.

Methods
Cave location and speleothem samples. Tham Doun Mai Cave is located in
northeastern Laos (20°45’N, 102°39’E, 360 m a.s.l.) adjacent to the Nam Ou River,
close to the border of Vietnam. This ~3745 m long cave is extremely well-suited for
paleoclimate reconstruction as it is hydrologically active, has a stable temperature
and high relative humidity (Ave. Temp.= 22 ± 0.38 °C; RH= > 95%), contains
numerous actively forming stalagmites, and has only one known small entrance.
The three speleothems used in this study (TM4, TM5, and TM11) were collected
from Tham Doun Mai in 2010 (Supplementary Fig. 1). TM4 and TM5 were col-
lected from the cave passage ~150 m from the entrance, while TM11 was collected
from an upper chamber of the cave located slightly closer to the cave entrance. X-
ray diffraction reveals that all specimens are composed of 100% calcite. Prior to
analysis, each stalagmite was sectioned in half along the growth axis, and later
polished to help identify the central growth axis.

Stable isotopes. Samples for isotope ratio measurements were drilled along the
stalagmite’s central growth axis. Stalagmite surfaces and drill bit were cleaned with
ethanol prior to sampling. The older portion (pre-hiatus, 5.3 to 9.4 ka) of TM4 was
sampled at 250 µm resolution (~10 years) using a Sherline micromill and the
younger portion was sampled at an average resolution of 76 µm (~3 years) using a
New Wave MicroMill drill at the University of California Irvine (UCI). The
younger portion (0.75 to 5.30 ka) of TM5 was sampled at 500 µm resolution
(~17 years), while the older portion (5.30 to 9.30 ka) was sampled at 1 mm reso-
lution (~38 years). Stalagmite TM11 was sampled at 500 µm resolution (~9 years).

Powdered calcite samples (~30–70 mg) were analyzed for stable isotope
composition utilizing a Kiel IV carbonate device coupled with a Thermofinnigan
Delta V Plus isotope ratio mass spectrometer at UCI. A total of 16 standards (NBS-
19, NBS-18, and OX, an in-house quality control standard) were analyzed during
each run of 30 unknown samples. Results of the isotopic analysis are expressed in
per mill (‰) relative to Vienna Pee Dee Belemnite (V-PDB) standard using the
delta notation, defined as: δ18O= [(18O/16O)sample/(18O/16O)standard – 1] * 1000.
The standard deviation (i.e., analytical precision) of repeated NBS-19
measurements is 0.06‰ for δ18O and 0.03‰ for δ13C. A total of 2152 oxygen and
carbon isotope measurements were conducted, comprising 1022, 388, and 742
analyses for stalagmites TM4, TM5, and TM11, respectively. However, large age
reversals in the U-series dates of TM11 for the middle and lower portion of the
stalagmite (10.31–6.68 ka), which we believe is due to the presence of microsparite
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which could indicate diagenesis, precluded us from constructing a reliable age
model for the lower-middle sections of the record. Hence, only 191 analyses were
included in the composite record. Omission of these 551 isotope values from the
composite record has no impact on the overall conclusions of the paper given that
the focus is on the 5–4 ka period. Moreover, the most interesting aspect of the
TM11 record is the stoppage in growth at around the same time as TM4, which is
coincident with the large δ13C and δ18O enrichments of TM5, interpreted to reflect
a large reduction in cave recharge and monsoon weakening respectively.

Trace elements (Mg/Ca). Mg/Ca was analyzed in TM5 calcite powders using
splits from the material originally drilled for stable isotope analyses. Samples were
run on a Nu Instruments Attom High-Resolution Inductively Coupled Plasma
Mass Spectrometer (HR-ICP-MS) at the Center for Isotope Tracers in Earth Sci-
ence (CITIES) laboratory at the University of California, Irvine. Raw intensities
were converted to concentrations utilizing an external calibration curve con-
structed via analysis of five standards of known concentration and a blank. All
samples, standards, and blanks were spiked with an internal Sc-Ge standard prior
to analysis to allow for instrument drift correction. One-hundred eighty-four total
samples were analyzed for Mg and Ca with an average uncertainty in the Mg/Ca
ratio of 3% (1σ). Samples were run at higher resolution during the period of
interest (5.5 to 2.5 ka). δ13C and Mg/Ca in TM5 covary (R2= 0.55) across the time
series (Supplementary Fig. 5), suggesting a similar control on both proxies in this
sample. Increases in δ13C (less negative) coincide with increases in the Mg/Ca ratio,
behavior that matches the potential effect of PCP. Therefore, the Mg/Ca data
provides additional evidence for a hydrologic interpretation of δ13C variability in
TM5. An unmatched negative excursion in Mg/Ca during the long-term increase in
both proxies around 4 ka may suggest a separate control or shorter response time
active for Mg/Ca during this dry period.

Radiocarbon (14C). Fifteen samples from TM5 were analyzed for 14C at the W.M.
Keck Carbon Cycle Accelerator Mass Spectrometer at the University of California,
Irvine, and the resulting data was used in conjunction with previously acquired
U–Th dates to determine the DCP (Supplementary Table 3). Small pieces of calcite
were extracted from the central growth laminae of TM5 using a rotary Dremel drill.
Carbonate subsamples were leached in 10% HCL, and then hydrolyzed in 85%
H3PO4. Following conversion to CO2, samples were graphitized via iron catalyzed
hydrogen reduction62. 14C measurements were made on an NEC Compact (1.5
SDH) AMS system, using six aliquots of Oxalic Acid I as the normalizing standard.
DCP was calculated following methods described by ref. 63, utilizing IntCal13 data
for the atmospheric 14C activity at the time of formation64. The resulting time
series is compared with the δ13C and Mg/Ca data in Fig. 2, which shows similar
trends in all three proxies from ≈5–3.5 ka. Specifically, the increase in δ13C and
Mg/Ca from ≈5 ka is matched by a decreasing trend in the DCP record. The period
of lowest DCP, interpreted as drier conditions due to more open-system dissolu-
tion, is matched by the highest values of δ18O, δ13C, and Mg/Ca. These results
support a hydrologic interpretation of δ13C variation affected by PCP via shifts in
local hydrology.

230Th-234U dating and age models. Thirty-nine subsamples for dating were
obtained by cutting out solid chunks parallel to speleothem growth bands with a
Dremel rotary tool with a diamond bur. For U–Th analysis, 0.1–0.2 g samples were
extracted every 1–2 cm along the growth axes for each stalagmite, including above
and below any suspected hiatuses. Samples were cleaned in an ultrasonic bath with
isopropanol and Milli-Q water, dried in oven on foil, and stored samples in clean
1.5 mL Eppendorf microcentrifuge tubes. The U–Th dating was conducted at the
University of Oxford on a Nu instruments multi-collector inductively coupled
plasma mass spectrometer (MC-ICP-MS). Calcite samples were dissolved, spiked
with a mixed 229Th-236U spike, and purified by ion-exchange chemistry; these
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procedures for chemical separation and purification are similar to those adopted in
ref. 65, and the chemical and mass spectrometric approaches broadly follow the
techniques described in refs. 66,67. U–Th ages were corrected for the presence of
small amounts of initial Th utilizing the average crustal (230Th/232Th) value of 1.21.
The uncertainties corresponding to this initial Th correction are arbitrarily
assigned to be 50% of the (230Th/232Th) ratio.

The age models for all depth-isotope series were calculated using Iscam68

“Intra-Site Correlation Age Modeling”). This method calculates a point-wise linear
interpolation between adjacent dates based on the highest correlation obtained
between multiple δ13C or δ18O time series (within their age uncertainties)
calculated from 100,000 Monte-Carlo (MC) simulations; given that our δ13C
records exhibit more variability than the δ18O for the Holocene, we used the δ13C
records for the Iscam analysis, as there were more “tie points” to help align each
series within their age uncertainties. Age model uncertainty (i.e., 68%, 95%, or 99%
confidence intervals) was performed against a red-noise background using 2000
pairs of artificially simulated first-order autoregressive time series (AR1). For a
more detailed description of the age model algorithm and age model uncertainty
calculation, we refer the reader to ref. 68. As the three stalagmites (TM4, TM5, and
TM11) were collected from nearby locations within Tham Doun Mai, it is highly
likely that the common geochemical excursions between the different records
reflect climate variability. The likely reason for slight differences in the three
records is that they formed under different drips, and δ13C is controlled by PCP
and therefore drip/flow rate. The fact that two of the stalagmites (TM4 and TM11)
stopped growing for a period of time while the other (TM5) continued to grow,
clearly suggests that they have different local hydrology, which will lead to
differences in the details of their δ13C.

Climate model simulations. We adopted the simulations performed in Pausata
et al.49 and Gaetani et al.46 who used the Earth system model EC-Earth44 version
3 to perform a set of numerical simulations of the middle Holocene. The
motivation for employing such a set of simulations arises from the fact that more
traditional modeling experiments, such as the PMIP MH experiments, greatly
underestimate the magnitude and scale of rainfall amount during the Green
Sahara. Specifically, as shown by Tierney et al.2, it is only when dust and
vegetation feedbacks are included in the model45, can it most accurately simulate
Green Sahara conditions as indicated from the proxies. Thus, in order to
robustly simulate the ocean-atmospheric teleconnections, it is necessary to use
the modeling framework that best captures the climate response to these forcings
and feedback processes.

The atmospheric model is based on the Integrated Forecast System (IFS cycle
36r4) developed by the European Center for Medium-range Weather Forecasts,
including the H-TESSEL land model. The simulations were run at T159 horizontal
spectral resolution, corresponding to roughly 1.125° by 1.125° and at a vertical
resolution of 62 vertical levels. The ocean model is the Ocean General Circulation
Model —NEMO version 3.3.169. It solves the primitive equations discretized on a
curvilinear horizontal mesh with a horizontal resolution of about 1° 1° and 46
vertical levels. At the surface, the model is coupled every model hour with the
Louvain-la-Neuve Ice Model—LIM370 having the same horizontal resolution as
NEMO. EC-Earth has been extensively used for simulating past, historical and
future climate contributing to the Fifth Assessment Report of the Intergovernmental
Panel on Climate Change and to the Paleoclimate Modeling Intercomparison
Project. EC-Earth has shown good skills in representing monsoonal precipitation
both temporally and spatially in present day climate45. Boundary conditions for the
middle Holocene experiments were set at preindustrial values according to the
PMIP/CMIP5 protocol with the exception of the orbital forcing that was set at 6 ka
values and computed internally using the method of Berger71, and the greenhouse
gases that follow the PMIP3/CMIP5 protocol. Vegetation cover and properties,
and dust concentrations were prescribed. In the MHPMIP experiment, the dust
climatology is based on the long-term monthly mean (1980–2015) of the
MERRAero data as the Community Atmosphere Model (CAM)72, which is used in
the CMIP5 and has biased dust emissions over the Sahara region46; see
Supplementary Fig. 1 in Gaetani et al.46 for more details. Additional information on
the MERRAero dataset can be found at https://gmao.gsfc.nasa.gov/reanalysis/merra/
MERRAero/. In the MHGH+RD experiment, the vegetation type over the Sahara
domain (11°–33° N and 15° W–35° E) is set to shrub (MHGS) and the dust amount
is also reduced by up to 80% (Fig. 1 and Extended Data Fig. 1 in Pausata et al.49,
based on recent estimates of Saharan dust flux reduction during the MH36. The
change in vegetation cover from shrub (MHGS+RD) to desert (MHPMIP) corresponds
to an increase in the surface albedo from 0.15 to 0.30 and a decrease in the leaf area
index from 2.6 to 0.2 (see Table 1 in ref. 49). The dust changes from the MHGH+ RD

to the MHPMIP correspond to an increase in the global total AOD of 0.02 (Fig. 1 in
ref. 49). The changes in dust concentration and vegetation cover were not meant to
provide a faithful representation of the MH conditions over the Sahara and nearby
regions, but to provide insight on their potential feedbacks.

Data availability
Data from this article can be downloaded from the cave section of the National Oceanic
and Atmospheric Administration National Centers for Environmental Information
Paleoclimatology archive: https://www.ncdc.noaa.gov/paleo/study/.

Code availability
We used the Matlab code by Ruggieri (ref. 39) for the Bayesian change-point detection in
our records and those from East Africa. The composited rainfall map displayed in Fig. 1
was provided by the NOAA/OAR/ESRL PSD, Boulder, Colorado, USA, from their Web
site at https://www.esrl.noaa.gov/psd/. The Matlab script to produce Fig. 1 is available
from the authors upon request. We used the Matlab code of Fohlmeister (ref. 68) to
generate the U–Th age models.
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