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INTRODUCTION

Modern neuroimaging is critical to the clinical management 
of patients with brain tumor. Noninvasive neuroimaging tech-
niques now offer the opportunity to incorporate functional, 
hemodynamic, metabolic, cellular, microstructural, and ge-
netic information into the assessment of brain tumor patients 
[1-3]. These imaging tools are being applied to diagnose and 
grade brain tumors preoperatively, to plan and navigate sur-
gery intra-operatively, to monitor and assess treatment response 
and patient prognosis, and to understand the effects of treat-
ment on the patients brain. Ongoing research in brain tumor 
imaging attempts to develop, validate, and clinically imple-
ment advanced neuroimaging techniques that can aid in the 
diagnosis and identification of any disease factors or clinical-
ly relevant risk factors specific to each patient, the selection 
and implementation of the appropriate treatment targeting the 
unique biology of the individual tumor, and the detection of 
early treatment failure and any early or late onset therapy relat-
ed complications.

This article provides an overview of the current state-of-the 
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art clinical brain tumor imaging in 2015. We will discuss gen-
eral magnetic resonance (MR) imaging methods and their ap-
plication to the diagnosis of, treatment planning and naviga-
tion, and disease monitoring in patients with brain tumor. We 
will review the strengths, limitations, and pitfalls of diffusion-
weighted imaging (DWI) techniques, MR spectroscopy (MRS), 
perfusion imaging, positron emission tomography (PET)/MR, 
and functional imaging. A detailed discussion of the underly-
ing MR physics is beyond the scope of this clinical review and 
will only be mentioned briefly when relevant. We intend to dis-
cuss the modern clinical application of these methods in the 
daily evaluation and treatment of patients with brain tumor.

BRAIN TUMOR BIOLOGY AND GENETICS

The World Health Organization (WHO) defines four grades 
of brain tumors based primarily upon tumor aggressiveness 
with grade I tumors being relatively non-aggressive and grade 
IV tumors being very aggressive [4]. Traditionally with the first 
edition in 1979, WHO grades were assigned on the basis of 
histologic features such as mitotic activity, necrosis, and infil-
tration [5]. The second edition, in 1993, incorporated immu-
nohistochemistry, and the third edition in 2000 incorporated 
genetic profiles into the definitions of brain tumors [6,7]. The 
most recent WHO central nervous system (CNS) tumor clas-
sification system was published in 2007 and continues to inte-
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grate genetic profiles into tumor definitions and histological 
variants [4]. Genetics and molecular profiles of brain tumors 
continue to be an active area of research with diagnostic, prog-
nostic, therapeutic, and imaging implications [2,8,9]. Here we 
review the main relevant molecular and genetic aberrations in 
brain tumors that are relevant to understanding individual 
variations in tumor biology, response to therapy, and progno-
sis. An overview is provided in Table 1.

TP53
The p53 tumor suppression pathway is commonly abnor-

mal in high-grade gliomas. The p53 gene (TP53) has been re-
ported to be mutated in approximately 30–40% and the over-
all pathway has been reported to be disrupted in more than 
80% of tumors [2,9-11]. The p53 protein is involved in DNA 
repair, arresting the cell cycle for DNA repair when there is 
DNA damage, and in initiating apoptosis. Abnormalities in the 
p53 tumor suppression pathway can lead to genetic instability, 
reduced apoptosis, and angiogenesis. The p53 tumor suppres-
sion pathway may be disrupted by mutation or deletion of the 
TP53 gene or by overexpression of inhibitors of p53 including 
murine double minute 2 which may result by direct mutation 
or by mutation of cyclin-dependent kinase inhibitor 2A (CD-
KN2A) [2,9,11].

RB1
The retinoblastoma 1 (RB1) tumor suppression pathway is 

commonly abnormal in glioblastoma, and is disrupted in more 
than 75% of tumors [2,9]. Rb1 is a protein that blocks cell cy-

cle progression and if the pathway is abnormal there may be 
unchecked cell cycle progression [2]. The Rb1 tumor suppres-
sion pathway may be disrupted by a direct mutation of the RB1 
gene or by overexpression of cyclin-dependent kinase 4 (CDK4). 
Overexpression of CDK4 may result from amplification or 
more commonly through deletion of an inhibitor of CDK4, 
CDKN2A [2,9,11].

EGFR and PTEN
The epidermal growth factor receptor (EGFR) is a trans-mem-

brane receptor in the receptor tyrosine kinase (RTK), phospha-
tase and tensin homolog (PTEN), phosphatidylinositol 3-ki-
nase (PI3K) cell proliferation pathway [2]. EGFRvIII, a mutated 
form of EGFR, plays a prominent role in tumorigenesis of glio-
blastoma, but the underlying mechanisms have remained elu-
sive. EGFRvIII amplification can lead to increased downstream 
activity resulting in proangiogenic signaling, increased prolif-
eration, increased tumor cell survival, and migration [2]. EGFR-
vIII amplifications have been reported in approximately 40% 
of primary glioblastomas [4,8,12]. EGFRvIII amplification has 
been reported to be a predictor of poor survival, however, oth-
er studies have failed to show this effect [4,8,13,14]. Studies have 
reported that EGFRvIII amplification can predict response to 
tyrosine kinase inhibitors, especially when PTEN expression 
is preserved [15].

PTEN is a tumor suppressor gene expressing a protein in-
volved in the same RTK/PTEN/PI3K cell proliferation path-
way as EGFR [2]. PTEN mutations are estimated to occur in 
15–40% of primary glioblastomas but up to 80% of glioblas-

Table 1. Genetic mutations in brain tumors with current clinical and imaging implications

Genetic mutations and clinical imaging implications/associations
Current implications/associations Imaging associations

IDH1/2 mutations Oligodendroglial tumors
Positive prognostic factor

Minimal or no contrast enhancement
Reported detection of 2-HG by MRS
Research into hyperpolarized C13 detection in 
  animal models

1p19q deletion Oligodendroglial tumors Reported more heterogeneous signal characteristics
Reported elevated perfusion 

MGMT promoter methylation Pseudo-progression more common
Alkylating agents

Pseudo-progression more common

ATRX deletion Astrocytic tumors
Not seen with 1p19q deletion

PTEN deletion Small cell phenotype of glioblastoma with EGFR 
  amplification and 10q loss

Reported increased perfusion in tumors with PTEN 
  mutation, EGFR amplification, unmethylated 
  MGMT promoter

EGFR amplification Reported in approximately 40% of glioblastomas Reported increased perfusion
Reported lower ADC values, higher enhancing/
  necrotic volume

ADC, apparent diffusion coefficient; ATRX, alpha thalassemia-mental retardation syndrome X-linked; C-13, carbon 13; EGFR, epidermal growth 
factor receptor; IDH, isocitrate dehydrogenase; MGMT, O6-methylguanine-DNA methyl-transferase; MRS, magnetic resonance spectroscopy; 
PTEN, phosphatase and tensin homolog; 2-HG, 2-hydroxyglutarate
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tomas have loss of chromosome 10q in the region where PTEN 
is located (10q23) [8,16]. Chromosome 10q loss, PTEN muta-
tions, and EGFR amplification are frequently seen together in 
the small cell phenotype of glioblastoma [4,8]. PTEN deletions 
have been reported to be a poor prognostic factor for pediat-
ric glioblastomas, however, this has not been found true in 
adult patients [8,17].

Several magnetic resonance imaging (MRI) parameters have 
been reported as predictive of EGFR amplification. A high ra-
tio of contrast enhancing tissue to necrotic tissue (≥1), lower 
apparent diffusion coefficient (ADC) values, increased T2 to 
contrast enhancing volume, and deceased T2 border sharpness 
have all been described with EGFR amplification [2,18-20]. In 
addition, increased normalized tumor blood volume has been 
reported in tumors with EGFR amplification, PTEN deletion, 
and normal unmethylated O6-methylguanine-DNA methyl-
transferase (MGMT) [21].

IDH1/IDH2
Isocitrate dehydrogenase 1 and 2 (IDH1 and IDH2) are en-

zymes involved in the citric acid cycle. IDH1 gene mutations 
are seen in about 5% of patients with primary glioblastoma but 
are seen in 70–80% of grade II–III gliomas and secondary 
glioblastomas (glioblastomas arising from low grade gliomas) 
[2,8,22-24]. IDH2 mutations are mostly seen in oligodendrog-
lial tumors [8,24]. Patients with IDH1/2 mutations have been 
reported to have better survival independent of therapy [23-26]. 
On imaging IDH1 mutated tumors are reported to be more 
likely to be multi-focal, invasive, and have minimal or no con-
trast enhancement [2,27,28]. The mutant IDH1 and 2 enzymes 
have shown neomorphic enzymatic capacity to covert alpha-
ketoglutarate into 2-hydroxy-glutarate (2-HG), a small onco-
metabolite. Detection and semi-quantitation of 2-HG by pro-
ton MRS has been reported and this noninvasive detection of 
2-HG oncometabolite may prove to be a valuable diagnostic 
and prognostic biomarker [29].

1p/19q
Co-deletion of chromosomes 1p and 19q results from an un-

balanced centromeric translocation and is considered indica-
tive of oligodendroglial lineage [8]. 1p/19q co-deletion is seen 
in approximately 80% of oligodendrogliomas, 60% of anaplas-
tic oligodendrogliomas, 30–50% of oligoastrocytomas, and 
20–30% of anaplastic oligoastrocytomas and is frequently seen 
with IDH1/2 mutations [8,30,31]. 1p/19q co-deletion has been 
reported as a favorable prognostic factor and to indicate pa-
tients who would benefit from chemoradiation although this 
significance may be complicated by the frequency of favorable 
IDH1/2 mutations and unfavorable additional chromosomal 
mutations [26,32-36]. This prognostic significance likely de-

pends on the type of 1p loss, with partial 1p losses being asso-
ciated with poorer survival than complete 1p losses [37]. 1p/19q 
co-deleted tumors have been reported to be more likely to have 
indistinct/irregular margins and more heterogeneous T1 and 
T2 signal characteristics than tumors of the same histology but 
with 1p/19q intact although the differences were modest and 
subjective [38]. Elevated perfusion has also been suggested in 
low-grade oligodendrogliomas with 1p/19q loss although in 
small studies [39,40].

MGMT
MGMT is a DNA repair protein involved in repairing dam-

age induced by alkylating agents [8,36]. Methylation of the 
MGMT gene promoter reduces binding of transcription fac-
tors and decreases gene expression [41]. Methylation thus the-
oretically increases sensitivity to alkylating chemotherapeutics 
[42]. MGMT promoter methylation is reported to be present 
in 35–75% of glioblastomas [8,42]. Multiple studies have shown 
a better prognosis and response for glioblastoma patients with 
MGMT promoter methylation receiving temozolamide [42-45]. 
Pseudo-progression after radiation and chemotherapy is more 
common in tumors with MGMT promoter methylation and 
MGMT promoter methylation should be this taken into ac-
count when interpreting follow-up MRIs [46,47].

BRAF
BRAF is a proto-oncogene that encodes the protein B-Raf, 

which is involved in the mitogen-activated protein kinase  
pathway [8,48]. This pathway is involved in cell proliferation, 
differentiation, survival, and apoptosis. Activating BRAF mu-
tations are seen in numerous malignancies, most frequently 
however in melanoma [49]. Pilocytic astrocytomas have been 
shown to have BRAF mutations with a specific duplication/fu-
sion mutation occurring in 65–80% of pilocytic astrocytomas 
[50,51]. A separate specific point mutation (V600E) is seen in 
up to 80% of pleomorphic xanthoastrocytomas and 25% of 
gangliogliomas [8,52].

ATRX 
The alpha thalassemia-mental retardation syndrome X-linked 

(ATRX) gene encodes a protein that is involved in telomere 
maintenance in a mechanism that does not involve telomeras-
es known as alternative lengthening of telomeres  [36,53,54]. 
ATRX mutations have been reported in tumors of astrocytic 
lineage [55,56]. ATRX mutations are associated with TP53 and 
IDH1 mutations and are generally not seen with 1p/19q co-de-
letions and are thus useful in distinguishing from tumors of oli-
godendroglial origin [55-58]. ATRX loss has been reported as 
a favorable prognostic indicator in patients whose tumors also 
had IDH1 mutations [59].
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Histone H3 
Histones are proteins involved in the packaging of DNA. 

Recently, mutations have been identified in the gene encoding 
histone 3 (H3F3A) in pediatric patients with glioblastomas and 
pontine gliomas [36,58,60]. These mutations have been re-
ported at distinct locations in the histone variants H3.1 and 
H3.3, one involving a Lysine (Lys27) in H3.1 and H3.3 and one 
involving a glycine in H3.3 (Gly34) [58,60,61]. The H3F3A 
Lys27 mutation is reported to have a particularly poor prog-
nosis [57]. These mutations are generally not seen together 
with IDH1 mutations and thus represent an alternative group 
of tumors with distinct molecular aberrations [61]. 

STRUCTURAL AND HIGH RESOLUTION 
IMAGING

Computed tomography (CT) may be the first modality em-
ployed in a patient presenting with a brain tumor but for the 
most part MRI is the primary imaging modality in brain tu-
mor patients. The role of CT is largely relegated to emergent 
imaging in the detection of hemorrhage, herniation, and hy-
drocephalus but mass effect from brain tumors and calcifica-
tion within brain tumors such as oligodendrogliomas or me-
nigiomas can potentially be detected (Fig. 1) [62,63].

Structural MRI sequences play a major role in the evalua-
tion of and treatment planning of brain tumors. Standard se-
quences performed utilizing spin-echo techniques include T2 
fluid-attenuated inversion recovery (FLAIR), pre-gadolini-
um T1, and post-gadolinium T1. These sequences are prefer-
ably performed in at least 2-orthogonal planes or obtained with 
a 3-dimensional (3D) sequence that is reformatted into orthog-
onal planes (i.e., 3D-T2 FLAIR). High-resolution iso-volumet-
ric sequences such as high-resolution 3D T2 sequences and post-
gadolinium T1 spoiled gradient recalled acquisition (SPGR) or 
similar sequences are generally performed preoperatively with 
fiducials in place for use with intraoperative navigational soft-
ware [64,65]. Similarly, post-gadolinium T1 SPGR sequences 
are performed with a stereotactic head frame in place prior to 
stereotactic radiosurgery [66,67]. High-resolution 3D T2* gra-
dient echo sequences such as susceptibility weighted imaging 
(SWI) are also routinely performed. These susceptibility sen-
sitive sequences are very sensitive to blood products and calci-
fication and may be helpful to depict post-radiotherapy micro-
hemorrhages [68-70].

The primary roles of structural MRI in initial brain tumor 
evaluation includes determining the location of the lesion (i.e., 
intra-axial vs. extra-axial), establishing the specific location 
within the brain for treatment/biopsy planning, evaluating mass 

A D

G H

B

E F

C

Fig. 1. 57-year-old male patient who presented with loss of consciousness and seizure and who initially had a non-contrast CT (A) performed 
that demonstrated a partially calcified mass in the left frontal lobe. Preoperative MR images include axial T2 FLAIR (B), axial T1 post-contrast 
(C), axial SWI (D), coronal T2 FLAIR (E), axial DWI (F), axial ADC map (G), and DTI tractography of the left corticospinal tract superimposed on 
axial T2 (H). This T2/FLAIR hyperintense (B, E, and H), non-enhancing mass (C), with internal calcifications visible on CT (A) and as suscepti-
bility on SWI (D) was a grade II oligoastrocytoma (TP53 mutation negative, IDH1 mutation positive, 1p19q co-deletion positive). A gross total re-
section was performed and the patient remains alive. ADC, apparent diffusion coefficient; CT, computed tomography; DTI, diffusion-tensor 
imaging; DWI, diffusion weighted imaging; FLAIR, fluid attenuated inversion recovery; MR, magnetic resonance; SWI, susceptibility weight-
ed imaging.
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effect on the brain, ventricular system, and vasculature, and 
along with physiologic MRI sequences suggesting a possible 
diagnosis. Extra-axial tumors such as meningiomas, schwan-
nomas, and skull base tumors can generally but not always be 
differentiated from intra-axial tumors. The differential diagno-
sis for intra-axial tumors depends on patient age and the pres-
ence of another primary malignancy [71,72].

Making a diagnosis of a specific tumor type can be challeng-
ing but often the correct diagnosis can be suggested in a short 
list of likely possibilities. Contrast-enhancement signifies local 
breakdown of the blood brain barrier and is a key feature seen 
in many brain tumors and other mass lesions (Fig. 2-6). With-
in gliomas, contrast enhancement is generally considered to 
be associated with high-grade tumor (Fig. 2, 3) although cer-
tain low-grade gliomas such as pilocytic astrocytomas in chil-
dren generally enhance and certain high-grade gliomas may 
not enhance [73-77]. Peri-tumoral edema is generally T2/FLAIR 
hyperintense signal abnormality surrounding the main mass 
lesion (Fig. 2-4). This may in some instances such as with me-
tastasis (Fig. 4) represent predominately vasogenic edema sur-
rounding the lesion, however with gliomas the peri-tumoral 
edema generally also represents infiltrative edema with tumor 
cells infiltrating into the regions of non-enhancing T2/FLAIR 
signal abnormality [1,78-81]. The number of lesions is an im-
portant factor to consider as a large number of lesions may sig-
nify certain pathologies such as metastases; however, metasta-

sis can be solitary, as can tumor mimics such as demyelinating 
lesions or cerebral abscesses [82-87]. Other potentially distin-
guishing features to note include a cyst and mural nodule mor-
phology (seen with the lower grade tumors hemangioblasto-
ma, pilocytic astrocytoma, ganglioglioma, and pleomorphic 
xanthoastrocytoma), calcification (Fig. 1) (generally seen with 
oligodendrogliomas), and necrosis and hemorrhage (general-
ly seen in higher grade gliomas and hemorrhage also in certain 
metastases) [62,88-90].

Many of the same features are important in the ongoing eval-
uation of patients with known brain tumors. Per the updated 
Response Assesment in Neuro-Oncology working group a 
complete response to therapy for high-grade gliomas is de-
fined as complete resolution of contrast enhancing disease with 
stable or decreased T2/FLAIR signal abnormality while not on 
corticosteroids; a partial response is defined as no new lesions, 
a ≥50% reduction in contrast enhancing disease, and stable or 
decreased T2/FLAIR abnormality while on stable or decreased 
dose of corticosteroids; stable disease is defined as no new le-
sions, <50% decrease but <25% increase in contrast enhancing 
disease, and stable or decreased T2/FLAIR abnormality while 
on stable or decreased dose of corticosteroids; and progressive 
disease is defined as any new lesion, a ≥25% increase in con-
trast enhancing disease, or increased T2/FLAIR abnormality 
[91]. These assessment criteria provide a framework for eval-
uation but do not account for some of the subtleties and nu-

Fig. 2. 78-year-old female patient with a glioblastoma who presented with gait instability, dizziness, and dysarthria for 6–8 weeks. Preoperative 
MR images include axial T1 post-contrast (A), coronal T1 post-contrast (B), axial T2 FLAIR (C), axial DWI (D), axial ADC map (E), axial DSC per-
fusion (F), and corresponding perfusion curve (G). Post-contrast T1 images (A and B) demonstrate irregular rim enhancement and central ne-
crosis of this tumor centered in the right frontal lobe. Surrounding the enhancing component is T2 FLAIR hyperintensity (C) which is likely in-
filtrative cellular edema. The lesion demonstrates restricted diffusion with low ADC values (D and E) and increased relative cerebral blood 
volume compared to the contralateral side (F and G) with return to baseline of the perfusion curve consistent with a primary glial tumor. ADC, ap-
parent diffusion coefficient; DSC, dynamic susceptibility contrast-enhanced; DWI, diffusion weighted imaging; FLAIR, fluid attenuated inver-
sion recovery; MRI, magnetic resonance image.

A
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B C D
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ances of evaluation of the post-treatment brain. A pseudo-re-
sponse may be seen with a marked decrease in contrast en-
hancement following treatment with bevacizumab, an antian-
giogenic agent uside in recurrent glioblastoma [91-94]. On the 
other hand, pseudo-progression may be seen as an increase in 
the contrast enhancing tumor and T2/FLAIR signal abnor-
mality. Pseudo-progression is often associated with radiother-
apy and temozolamide where it is seen in around 20% of pa-
tients (approximately 1/2 of the patients who initially “progress” 

on imaging) and may be seen more frequently in tumors with 
MGMT promoter methylation [46,47,91,95,96]. Follow-up 
studies and physiologic MRI sequences may be useful in the 
evaluation of pseudo-response and pseudo-progression. T2* 
based susceptibility sequences such as SWI may show small 
micro-hemorrhages develop over time in patients who have 
received radiation therapy [70,97,98]. These small micro-hem-
orrhages likely indicate delayed toxicity of radiation on the mi-
crovasculature of the brain. An overview of imaging techniques 

A

E

I J

F G H

B C D

Fig. 3. 33-year-old female patient with a left insular glioblastoma (19q deletion, 1p intact, IDH1 mutation, PTEN and EGFR mutation negative) 
who presented with syncope and seizure. Preoperative MR images include axial T1 post-contrast (A), axial T2 FLAIR (B), axial DWI (C), axial 
ADC map (D), spectroscopy with choline to NAA ratio overlay on axial T1 post-contrast (E), corresponding spectroscopy and choline to NAA ra-
tios (F), axial DSC perfusion (G), corresponding perfusion curve (H), and DTI tractography of the left corticospinal tract (I) and left arcuate fas-
ciculus (J) superimposed on axial T2. Post-contrast T1 image (A) demonstrate irregular patchy partial enhancement within the tumor. T2 FLAIR 
(B) shows the extent of non-enhancing T2 FLAIR hyperintense tumor. The lesion demonstrates areas of restricted diffusion with low ADC val-
ues (C and D) and increased relative cerebral blood volume compared to the contralateral side (G and H) with return to baseline of the perfusion 
curve consistent with a primary glial tumor. Spectroscopy (E and F) demonstrates elevated choline relative to NAA, consistent with a glioma. 
ADC, apparent diffusion coefficient; DSC, dynamic susceptibility contrast-enhanced; DTI, diffusion tensor imaging; DWI, diffusion weighted imag-
ing; EGFR, epidermal growth factor receptor; FLAIR, fluid attenuated inversion recovery; IDH, isocitrate dehydrogenase; MRI, magnetic resonance 
image; NAA, N-acetylaspartate; PTEN, phosphatase and tensin homolog.
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and general major utility is presented in Table 2.

DIFFUSION-WEIGHTED IMAGING

DWI offers insight into the diffusion of water molecules in tis-
sues and can be used to calculate the ADC. DWI is a routine se-

quence that has become indispensable in the evaluation of stroke 
but also offers value in the evaluation of brain tumors. ADC 
values derived from DWI have been shown to be decreas-ed in 
highly cellular tumors such as CNS lymphoma, medulloblasto-
ma, and high-grade glioma and to be deceased in highly viscous 
materials such as that within cerebral abscesses [84-87,99-102]. 

A B C D
Fig. 4. 49-year-old female patient with two months of headaches and falls and a remote history of right lung lobectomy for reported benign tu-
mor with MR imaging demonstrating a solitary mass in the right cingulate gyrus which upon resection was metastatic adenocarcinoma (ulti-
mately metastatic non-small cell lung cancer). Preoperative MR images include axial T1 post-contrast (A), axial T2 FLAIR (B), axial DSC per-
fusion (C), and corresponding perfusion curve (D). Post-contrast T1 image (A) demonstrates the solitary enhancing mass. T2 FLAIR (B) shows 
the large amount of peri-tumoral vasogenic edema. DSC perfusion (C and D) shows elevated cerebral blood volume relative to the contralateral 
side without return of the curve to baseline, suggesting a solitary metastasis as opposed to a glioma. DSC, dynamic susceptibility contrast-en-
hanced; FLAIR, fluid attenuated inversion recovery; MRI, magnetic resonance image.

A

D E F

B C

Fig. 5. 64-year-old male patient who presented with expressive aphasia and dysarthria and ultimately was diagnosed with glioblastoma (IDH1 
non-mutated, PTEN deleted, EGFR amplification negative) and underwent a subtotal resection. Preoperative MR images include axial T1 
post-contrast (A) demonstrating a peripherally enhancing mass, and task based BOLD-fMRI functional maps superimposed on anatomic im-
ages (B-F) (courtesy of Pratik Mukherjee, MD, PhD). A tongue movement paradigm (B and C) demonstrated bilateral supra-sylvian peri-rolan-
dic activation, which on the left abuts the posterior aspect of the tumor anteriorly as demonstrated on axial (B) and sagittal (C) images. A covert 
visual verb generation paradigm localized expressive language function to the left (D and E), which was anterior to the tumor but approached 
the anterior inferior aspect of the tumor (not pictured). A passive listening paradigm localized receptive language function to the left (F), sepa-
rate from the tumor. EGFR, epidermal growth factor receptor; fMRI, functional magnetic resonance image; IDH, isocitrate dehydrogenase; 
MRI, magnetic resonance image; PTEN, phosphatase and tensin homolog.
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With regards to gliomas, lower ADC values have been report-
ed in higher-grade gliomas than lower-grade gliomas and low-
er ADC values have been reported to have a poorer prognosis 
independent of tumor grade [103-105]. Similarly in primary 
CNS lymphoma lower ADC values have been reported to be 
associated with a poorer prognosis [99,106]. ADC values have 
also been reported to be higher in the vasogenic peritumoral 
edema T2/FLAIR abnormality surrounding metastases than 
in the more cellular infiltrative peritumoral edema T2/FLAIR 
abnormality seen in glioblastoma although this has not been 
found consistently in all studies [105,107-109].

In the immediate post-operative setting it is common to see 
small areas of reduced diffusion at the surgical bed indicating 
areas of devitalized tumor tissue or ischemic brain tissue dur-
ing surgery [110]. These small areas of postoperative injury 
may be caused by a variety of reasons including direct surgical 
trauma, retraction, vascular injury, and devascularization. The 
clinical implication of this finding is in the knowledge that 
these areas may be expected to develop contrast enhancement 

and normalization of ADC on subsequent imaging as a cere-
bral infarction would be expected to and that the contrast en-
hancement should not be mistaken for tumor progression [110].

DWI and quantitative ADC measurements may also be help-
ful in the setting of pseudo-response and pseudo-progression. 
In pseudo-response to bevacizumab, DWI may be useful to 
demonstrate persistent or progressive tumor despite the lack 
of contrast enhancement caused by the antiangiogenic effects 
of bevacizumab [111]. Histogram analysis of ADC maps has 
also been used to demonstrate poorer survival in patients with 
recurrent glioblastoma being treated with bevacizumab [112]. 
In the setting of possible pseudo-progression DWI/ADC may 
potentially offer some utility. Lower ADC values have been re-
ported in tumor progression than in pseudo-progression, pre-
sumably due to the cellular nature of true tumor and the ede-
ma associated with the inflammatory response in pseudo-pro-
gression [113,114].

Diffusion-tensor imaging (DTI) involves more directions 
of interrogation than standard DWI but provides additional 

A B C
Fig. 6. Single modality FMISO PET/MR imaging in a 65-year-old man with recurrent left temporal lobe WHO grade III anaplastic astrocytoma. 
Simultaneously obtained, axial FMISO PET (A), post contrast T1-weighted (B), and fused T1 post contrast FMISO (C) PET/MR demonstrates 
recurrence of disease evidenced by contrast enhancing focus bordering the posterior margin of an anterior left temporal lobe resection cavity. 
This region demonstrates increased FMISO uptake. FMISO, 18F-flouromisoidazole; MR, magnetic resonance; PET, positron emission tomog-
raphy; WHO, World Health Organization.

Table 2. Imaging methods and the major utility in brain tumor imaging

Imaging technique Major utility in brain tumor imaging
CT Mass effect, herniation, hydrocephalus, hemorrhage, calcifications
Pre and post-contrast T1 Enhancement characteristics, necrosis, extent of the enhancing portion of the tumor
T2/T2 FLAIR Peri-tumoral edema (vasogenic and infiltrative), non-enhancing tumor
T2* susceptibility sequence (SWI) Blood products, calcifications, radiation induced chronic micro-hemorrhages
DWI/ADC Reduced in highly cellular portions of tumor, post-operative injury
DTI Tractography for surgical planning/navigation
Perfusion (generally DSC) Tumor/tissue vascularity
MR spectroscopy Metabolic profile
fMRI Pre-operative functional mapping, research into treatment effects
PET/MR Potential new radiotracers 

ADC, apparent diffusion coefficient; CT, computed tomography; DSC, dynamic susceptibility contrast-enhanced; DTI, diffusion tensor imag-
ing; DWI, diffusion weighted imaging; FLAIR, fluid attenuated inversion recovery; fMRI, functional magnetic resonance imaging; PET, posi-
tron emission tomography; SWI, susceptibility weighted imaging
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parameters and abilities over DWI. DTI provides information 
on anisotropic diffusion characterized by eigenvectors (direc-
tion) and eigenvalues (magnitude), which can be used to de-
rive numerous parameters. DTI and other similar advanced 
predominately research techniques such as diffusion-spectrum 
imaging, diffusion-kurtosis imaging, tract-density imaging, 
and numerous others provide additional insight beyond DWI 
into the microstructure and integrity of the white matter. Frac-
tional anisotropy (FA), mean diffusivity, track density, neuro-
nal density and multiple other measures derived from these 
techniques offer additional means to study brain tumors and 
the effects of treatment. DTI is currently most relevant clini-
cally as DTI-tractography where white matter fiber tracts can 
be displayed three-dimensionally for navigational purposes 
(Fig. 1-3) [65,115]. Tractography of the corticospinal tract is 
routinely displayed superimposed on high-resolution 3D T2-
weighted and post-gadolinium SPGR images for intraopera-
tive navigational purposes in order to avoid injuring the corti-
cospinal tracts. FA derived from DTI is a measure of the directional 
nature of water diffusivity and has been used as a marker of 
white matter integrity in multiple conditions. FA has been shown 
to decrease in normal appearing white matter following radia-
tion therapy and thus offers insight into the effects of radiation 
damage to the brains of brain tumors patients [116,117]. FA 
has also been reported to be increased in the infiltrative peri-
tumoral edema surrounding high-grade gliomas as compared 
to the vasogenic edema surrounding metastases, presumably 
due to the more ordered nature of the more cellular edema as-
sociated with gliomas [79].

PERFUSION IMAGING 

The two main methods of MR perfusion imaging include 
T2*-weighted dynamic susceptibility contrast-enhanced (DSC) 
perfusion and T1-weighted dynamic contrast-enhanced (DCE) 
perfusion. DSC is a first-pass bolus tracking blood volume tech-
nique and DCE is a steady state permeability technique. Both 
can be used to derive multiple perfusion parameters such as 
cerebral blood volume (CBV) and endothelial transfer coeffi-
cient (Ktrans). Arterial spin labeling is a non-contrast perfusion 
technique, which may prove useful in the future but has not yet 
been as well studied or established in the evaluation of brain 
tumors. The complexity of perfusion data sets, which consist 
of hemodynamic parameters calculated on a pixel-by-pixel ba-
sis, and the heterogeneity of brain tumors make reliable inter-
pretation of these studies challenging.

Relative cerebral blood volume (rCBV), which is the calcu-
lated CBV relative to the contralateral side, is the most widely 
used parameter derived from DSC and is considered a mark-
er of angiogenesis. rCBV may be helpful in distinguishing high-

grade from low-grade gliomas as high-grade gliomas have been 
found to have higher rCBV than low-grade gliomas, however 
this should be used with caution as oligodendrogliomas can 
have high rCBVs [118-122]. Metastases can have high rCBV 
similar to high-grade gliomas however they tend to have very 
leaky capillaries in the tumors and as a result may demonstrate 
leakage of contrast in the bolus phase and as a result the signal 
intensity curve may not return to baseline (Fig. 4) [1,82]. A simi-
lar pattern resulting from highly leaky capillaries has been seen 
with choroid plexus tumors [1,123]. rCBV has also been re-
ported to more elevated in the infiltrate more cellular peritu-
moral T2/FLAIR abnormality surrounding high-grade glio-
mas as compared to the vasogenic peritumoral T2/FLAIR 
abnormality surrounding metastases [80]. DSC may also be 
useful in distinguishing tumefactive demyelinating lesions 
from high-grade gliomas as tumefactive demyelinating lesions 
generally have a lower rCBV [83]. DSC may also be helpful in 
the ongoing evaluation of patients with known brain tumors, 
as recurrent or residual tumor has been shown to have higher 
rCBV than pseudo-progression or radiation necrosis in the 
setting of gliomas and metastases [47,124,125].

The main metric derived from DCE perfusion MRI is Ktrans. 
considered a measure of microvascular permeability. DCE per-
fusion imaging is less frequently used than DSC but offers some 
theoretical advantages including better spatial resolution and 
less susceptibility artifact [1]. DCE may potentially be used to 
distinguish low-grade from high-grade gliomas with higher 
Ktrans presumably due to greater capillary permeability seen in 
higher-grade gliomas [126-129]. DCE has not been as exten-
sively studied in the evaluation of treatment response as DSC 
but has been reported to be able to distinguish recurrent or 
progressive tumor from pseudo-progression using the maxi-
mum slope of initial enhancement [130]. DCE perfusion im-
aging offers potential advantage over DSC perfusion imaging 
due to its resilience to susceptibility artifact, higher spatial res-
olution, and 3D acquisition.

MR SPECTROSCOPY

MRS provides insight into the metabolic profile of interro-
gated tissue. The most recognizable metabolites on 1H-MRS, 
which are of primary interest in the evaluation of brain tumors, 
include N-acetylaspartate (NAA) at approximately 2.0 parts 
per million (ppm), creatine (Cr) at approximately 3.0 ppm, and 
choline (Cho) at approximately 3.2 ppm [131]. NAA is consid-
ered a neuronal marker, Cr a marker for cellular metabolism, 
and Cho a marker for cell membrane turnover. Additional me-
tabolites of interest include lipid and lactate peaks at approxi-
mately 1.3 ppm and myo-inositol at approximately 3.5 ppm. 
Lipids and lactate are considered markers of necrosis and hy-
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poxia, respectively, and myo-inositol is considered to be related 
to astrocytic integrity and regulation of brain osmosis [131-134].

The MRS profile of gliomas is generally considered elevated 
Cho and decreased NAA [135-137]. Cho is not a marker of tu-
mor but reflects increase in cell membrane turnover and NAA 
represents a neuronal marker. Absolute heights of the MRS 
peaks are generally not used and the metabolic peaks are gen-
erally analyzed as ratios including Cho-NAA and Cho-Cr (Fig. 
3). MRS can potentially be used to differentiate high-grade gli-
omas from low-grade gliomas as high-grade gliomas have been 
found to have higher Cho-NAA and Cho-Cr ratios than low-
er-grade gliomas [137,138]. Furthermore, an elevated myo-
inositol/Cr ratio (myo-inositol is best identified with a short 
echo time of 35 ms) is associated with lower-grade gliomas 
[132]. Elevated Cho-NAA and Cho-Cr ratios in the peritu-
moral T2/FLAIR adjacent to an enhancing lesion can also be 
used to distinguish the peritumoral infiltrative edema of high-
grade gliomas, which has elevated Cho-NAA and Cho-Cr ra-
tios reflecting the cellular nature of the signal abnormality, 
from the peritumoral vasogenic edema surrounding metasta-
ses [80,139]. MRS may also useful in the ongoing evaluation of 
patients with known brain tumors. In the situation of possible 
pseudo-progression or radiation necrosis, elevated Cho-NAA 
or Cho-Cr have been reported to be suggestive of tumor while 
non-elevated ratios are suggestive of pseudo-progression or 
radiation necrosis, however, in practice this may be a challeng-
ing distinction to make on MRS [140-144].

The lipid and lactate peaks overlap on standard MRS and 
may be interpreted as one metabolite even through they pro-
vide different and unique information or potentially cancel 
each other’s signal on lactate-edited MRS is a technique which 
can reliable separate the lactate doublet peak from lipid peaks 
[145]. Lactate-edited MRS is of interest as lactate reflecting hy-
poxia and anaerobic metabolism is encountered in high and 
low-grade gliomas whereas lipid, representing necrosis is seen 
in high-grade gliomas [146]. Higher levels of lactate and lipids 
in patients with glioblastoma have also been associated with 
worse overall survival [147].

A related emerging method currently confined to research 
use is hyperpolarized 13C MR. Hyperpolarized 13C agents have 
a dramatically increased signal, which provides the opportu-
nity to follow a substance such as pyruvate through its bio-
chemical pathways as it is converted to alanine, lactate, and bi-
carbonate [148,149]. In animal brain tumor models hyperpo-
larized 13C labeled lactate has been demonstrated within tu-
mors with a reduction in lactate following treatment with te-
mozolamide [150]. Hyperpolarized 13C MRS has also been 
shown to be able to detect IDH1 mutation status by analyzing 
the metabolites of hyperpolarized 13C alpha ketoglutarate in 
an animal tumor model [151].

FUNCTIONAL MRI

Functional MRI (fMRI) utilizes relative changes in the blood 
oxygen level dependent (BOLD) signal to infer brain activity 
[152]. fMRI can be either task-based where the sequence is per-
formed during the performance of a task or during exposure 
to a stimulus, or non-task based where the sequence is per-
formed at rest and termed resting-state fMRI (RS-fMRI). RS-
fMRI uses spontaneous low frequency fluctuations (<0.1 Hz) 
in the BOLD signal to pick out areas of correlation and anti-
correlation, which form the basis for defining resting-state net-
works, the most widely studied of which is the default mode 
network [152-155]. Vascular tumors can potentially affect the 
BOLD signal, however, both task based and RS-fMRI have 
been effectively applied in patients with brain tumors.

Task based fMRI can be used for pre-operative localization 
of eloquent cortex with identification of language and somato-
motor function with similar accuracy to more invasive tech-
niques (Fig. 5) [156-158]. Task based fMRI has thus been used 
for preoperative planning in order to identify the relationship 
of eloquent functional cortex to brain tumors [159]. The dis-
tance from the tumor to functional area depicted on task-based 
fMRI has been shown to be related to the degree of postoper-
ative loss of function with a small margin (<1 cm) predicting 
a poorer neurologic outcome [159].

RS-fMRI has also been used to identify eloquent cortex as 
part of pre-surgical planning in brain tumor patients although 
the experience is more limited [160]. RS-fMRI carries some 
distinct advantages over task based fMRI including not hav-
ing to administer a paradigm, the ability to study patients who 
may not be able cooperate with a paradigm (children, patients 
with altered mental status, etc.), and the ability to detect many 
networks retrospectively from one sequence. Although the ex-
perience is more limited, several studies have demonstrated the 
ability to localize somatosensory cortex in relationship to brain 
tumors [161,162]. RS-fMRI offers the ability to study functional 
connectivity of the brain and is thus a potentially powerful se-
quence for studying the healthy and diseased brain. RS-fMRI 
may potentially be used in the future to study not only the ef-
fects of brain tumors on the brain, but also the effects of treat-
ment. To date there have been several small studies which have 
demonstrated decreased functional connectivity in resting 
state networks in brain tumor patients but this will likely be an 
area of active research in the future [163-165].

PET MRI 

Integrated PET/MRI systems offers the ability to perform 
state of the art structural MR imaging simultaneously with 
physiologic PET imaging and is an area of active research 
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[166,167]. The ideal radiotracer has robust uptake in the tar-
geted lesion with minimal physiological uptake in normal 
background tissues. The high glucose metabolic activity of the 
brain and gliomas limits the utility of 18F-fluorodeoxyglucose 
PET imaging due to the poor tumor to background contrast 
[168,169].

New PET tracers however may offer additional insight into 
brain tumor physiology. The amino acid PET tracers 11C-me-
thionine (MET) and 18F-flouroethyltyrosine (FET) demon-
strate increased uptake in gliomas as compared to normal brain 
and elevated uptake in high-grade gliomas as compared to low-
grade gliomas [170-173]. Furthermore these agents may offer 
prognostic information as poorer survival has been associated 
in low-grade glioma patients with elevated MET [170]. These 
amino acid PET tracers may also be useful for distinguishing 
recurrent/progressive tumor from pseudo-progression/treat-
ment effect with both relative elevated MET and FET suggest-
ing tumor [174,175]. However, the clinical utility of MET is 
limited by it’s short half-life of 20.3 minutes and need for an 
onsite cyclotron. 18F-flouro-L-dopa (FDOPA) is additional mark-
er of amino acid synthesis. FDOPA uptake has been shown to 
correlate with regions of high proliferation and demonstrate 
uptake in low and high-grade gliomas [176,177]. FDOPA has 
also been reported to be elevated in recurrent/progressive tu-
mor as compared to radiation necrosis [176,178].

18F-flouromisoidazole (FMISO) PET is a non-invasive meth-
od that can physiologically estimate tissue hypoxia (Fig. 6) 
[179-183]. Several studies have validated FMISO uptake as a 
robust measure of tissue hypoxia, and established methodol-
ogy for FMISO PET imaging [179-183]. A preliminary study of 
22 participants with glioblastoma demonstrated an associa-
tion with both the pre-radiation volume and degree of tumor 
hypoxia measured by FMISO PET and a shorter time to tu-
mor progression and survival [183]. Consequently, knowledge 
of the amount and distribution of tumor hypoxia may provide 
prognostic information as well as useful information to guide 
therapy for patients with glioblastoma. The use of hypoxia im-
aging markers could serve as early biomarkers of radiation re-
sistant areas and provide insight into patient prognosis prior to 
anti-angiogenic therapy. 

CONCLUSION

The imaging and clinical management of patients with brain 
tumor continue to evolve over time and now heavily relies on 
physiologic imaging in addition to high-resolution structural 
imaging. As our understanding of the biology of brain tumors 
and our imaging abilities increase there is a great opportunity 
to positively impact the care of brain tumor patients. Ongoing 
research is required to understand the interactions of our mod-

ern neuroimaging techniques with advancements in tumor 
genetics, therapeutics, and neuroscience. Many of the estab-
lished and developing imaging techniques discussed in this 
review may offer additional insight into genetic, prognostic, 
and predictive information that may be further elucidated in 
the future. The current state of brain tumor imaging contrib-
utes greatly to improving preoperative diagnosis, predicting 
tumor grading and patient prognosis, planning surgery and 
radiation therapy, and assessing treatment response. Imaging 
remains a powerful noninvasive tool to positively impact the 
management of patients with brain tumor.
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