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Abstract Theoretical analysis is made of an intense relativistic electron
beam. such as would be available from a linear collider, moving th rough a
plasma of increasing density, but density 'always less than that of the beam

(underdense). In this situation. the plasma electrons are expelled from the
beam channel and the electrons are subject to an ever-increasing focusing force

provided by the channel ions. Analysis is made on the beam radiation energy
loss in the classical, the transition, and the quantum regimes. It is shown that
the focuser is insensitive to the beam energy spread due to radiation loss. Fur­

thermore. because of the different scaling behaviors in the nonclassical regimes.
the radiation limit on lenses (the Oide limit) can be exceeded. The sensitivity
of the system to the optic mismatch and the nonlinearity is also analyzed.
Examples are given with SLC-type and TLC-type parameters.

INTRODUCTION

To avoid increasing energy loss through synchrotron radiation in storage rings. it

is generally agreed that future high energy e+e- colliders are necessarily linear.]

To compensate for the much lower collision rates in linear colliders, one is forced

to collide much tighter beams. For example, in the design of a TeV collider (TLC)

by Palmer.~ the beam sizes at the interaction point (IP) are as miniscule as O'r =

190 nm, O'y = 1 nm. For multi- TeV colliders in the far future, the beam size is

expected to be even smaller. This demanding requirement on the beam size imposes
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stringent constraints on the stability and tolerance in the final focusing beam optics

system. Furthermore, it was recently demonstrated by one of us (K. 0.)3 that the

chromatic effect due to the synchrotron radiation triggered at the final focusing lens

imposes a strong limitation on the minimal possible beam size.

In this paper, we present a different concept of beam focusing, called adiabat ic

focusing, which promises to evade the synchrotron radiation limit set by Oide. This

is achieved by implementing a beam optics system where the focusing gradient is

continuosly and slbwly increased along the direction of beam propagation, such that

the ,B-function decreases linearly along the lens. In such a focusing system, beam

particles with different energies would always oscillate within a definite envelope

and eventually be focused down to within the designated size. The problem of

chromatic aberration associated with conventional discrete focusing lenses can thus

be alleviated.

The insensitivity of this focusing scheme to the particle energy does not imply

that the system is entirely free from the constraint due to synchrotron radiation. For

high energy physics purposes, the focused beams should not suffer from significant

energy degradation. But as will be shown, the corresponding limitation on the

attainable beam size is much milder so long as the focusing is strong enough that

the synchrotron radiation enters into the nonclassical regime.

One possible way to realize the concept is to imploy an underdense plasma

column with a graded den"sity. When applied to the beam parameters similar to

those of the SLAC End Station, where the beam energy is 15 GeV, and those of the

Stanford Linear Collider (SLC), the necessary parameters for the plasma adiabatic

focuser are shown to be very reasonable; and, in principle, to yield a significant

increase in the luminosity for the SLC. To apply the scheme to TeV-range linear

colliders-in particular, the TLC considered at SLAC-we find it necessary to invoke

liquid or even solid-state materials. Although the necessary technology for the

focuser is yet to be developed, such a focuser should in principle be more compact

than the conventional focusing system. In particular, for a focuser relevant to the

SLAC End Station-type parameters, the requirements for the system seems to be

immediately realizable.
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ADIABATIC FOCUSING

We start by introducing the basic concept of what we call adiabatic focusing. In

this section, and throughout the paper, our discussions will be restricted to the one­

dimensional analysis in the dimension transverse to the beam propagation. This

treatment should be appropriate for fiat beams, where the transverse beam size in

one dimension is much smaller than that in the other dimension. In generaL in

a focusing (or defocusing) environment a particle with coordinate y satisfies the

equation of motion

d2y ,
ds 2 + 1\ (s)y

and the well-known solution is 4

o (1)

y(s) = p1/2(s)cos[w(s) + $]

where
dB

= -2o(s)
ds

$

J d'
7/-'(3) s

/3 (s' )

(2)

In an adiabatic focusing, we demand that the change in /3, occuring in a length

given by /3. is small compared to;3. For the sake of simplicity. we shall assume that
dB

= constant (3)
ds

Hence we take

p(s) = Po - 200s (4)

where 00 is the initial condition and a constant of the system that characterizes the

amount of adiabaticity.

Since a( s) = ao = constant, we have da/ ds = 0, and the focusing strength

along the channel varies as

K(s) 1 + a6 1 + a6
p2 (Po - 2aos)2

Notice that the focusing strength scales inverse quadratically with p(s).

advance, on the other hand, varies as

1 Po
w(s) = -In--­
. 2ao Po - 2aos

(.s )

The phase

(6 )

For a particle with less energy than the design energy Eo, i.e., E = (1-8)Eo ,

3
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where 0 « 1, the focusing force K is larger by an amount 1/(1 + 0). According

to Eq. (1), the matched :3-function for the lower-energy particle becomes 8(5) =

..;1="1:3(5), and the a-function is also reduced to &(5) = ..;1="1o(s). The mis­

matched :3-function can be shown to be

;3(s) = :3(5)[1 - 0 sin2 J;(s)] < ;3(5)

where 0( 5) == "l!-'( 5) /..;1="1.

(7)

Thus, the amplitude of the lower-energy particle never exceeds that of the

reference particle. If one chooses the design energy of the focuser at the maximum

energy of the incoming beam, the entire beam is expected to be focused. This

achromatic nature of the focuser will hold true for a particle which emits radiation

while traversing the focuser and is the very basis of the adiabatic focuser concept.

RADIATION LOSS

The rate of energy loss of a relativistic electron due to synchrotron radiation is

well known. s In order to perform simple analytic calculations, it is convenient to

approximate the exact formula by the following expressions in the classical. the

transition, and the quantum regimes 6 (see Fig. 1):

.-.. 0
~I~ 10

N ......---

1O'3 L.J..,j,LJ..llllL-U..llUIlll-.LLllllllL.....J-l..l..WllI..~l..J...Wlll

10.2 10.1 10 0 10' 10 3

T

FIGCRE 1 The rate of synchrotron radiation loss, in units of 20/3··()"c . as a function
of the dimensionless parameter T. The solid curve is from the exact expression. while
the dashed lines are from our approximate formulae.
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(8)~; --~ ~ {' :':1' ,
0.556y2/ 3

where 1 is the Lorentz factor of the electron,

y ~ 0.2

0.2 ~ T ~ 22

22 ;;;; Y
o the fine structure constant, and

(9)

27T-:\e the Compton wavelength. We see that the energy loss is uniquely determined

by the parameter Y, which is Lorentz invariant and defined as
B

T == , Be

Here Be = m Zc3len::: 4.4 x 1013 Gauss is the Schwinger critical field.

Since the external magnetic field induces a bending of the electron trajectory.

Y can also be expressed in terms of the instantaneous radius of curvature p of the

particle,

(10)
p mp

In the above equation and for the rest of the paper we adopt the convention of

natural units, i.e., c = n= 1.

(11 )

-, ....: .;./ -,Since ~7p = K(?9 and from Eg. (6), we have

,z 1 + 05
Y = - y

m (/30 - 200s)2

'With the help of the relation (T = (y'2) = /3f., where f. is the emittance of the beam.

and replacing 11m by Ae , we express the above equation as a function of s explicitly,

2 ,2(s)
Y(s) = AeJ£(l+OO)r pI" (12)

/30 - 2aos -
Notice that one essential character of synchrotron radiation is that the actual emit-

tance, not the normalized emittance (f. n = If.), is conserved, to an accuracy of the

order 0(1/1)' by the radiation process. Thus, the energy loss as a function of the

d,(s)

ds

Y(s);SO.2,

0.2;;;; Y(s) ~22 (1.3)

First, we assume that conditions are such that upon injection into the adiabatic



(15)

(14 )

( 1'i)

( 16)
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focuser one is in the classical regime of radiation. From Eq. (13):

.!- __1__ ~OA f(1 + (6)2 [~ __1_] (classical),t ,3(s) - 2 c 00 13g 13'2(s)

Assuming that the energy loss is small, i.e., ,(s) = ,0 (1 - 6) and 6 ~ 1, we find the

fractional energy loss to be

1 3 (1 + 05 )2 [1 1 ]
bc(s) = 60Acl'Of 00 /J2(s) - 135

If the condit,ions are such that upon injection into the adiabatic focuser one is

in the transition regime, the scaling for energy loss follows the second expression in

Eq. (13), and we find

_1 __1_ __ 2 r.. ;; (1 + (5) [_1_ _ 1 ]
<-<vt: (transition)

,0 ,(s) 15 00 v% .;7J(;)
Again, assuming small energy loss. we get

2 1 + oJ [1 1 ]bt(s) = -.o'oJ( --
10 00 )(3(s) ~

Finally, if the beam is injected directly into the quantum regime, then

_1__ 1 _ 0.556 0 (-=-)1/3(1+06)'2/3 1n (8(s)) (quantum)
1'~/3 _(1/3(s) - 9 Ac 00 130'

and the energy loss formula in this regime is

<5 (s) = 0.5.56 0[I'Of(1 + 06f] 1/3 In(~)
q 3 AcO~ 13( s)

(1 S)

(19)

In the situation where the focusing process continues across different regimes,

matching of boundary conditions is necessary. The boundary between the classical

and the transition regimes occurs at Y = 1/5. From Eq. (12), this corresponds to a

,B-function

(20)

By definition, the purpose of the focuser is to effectively reduce the ,B-function, i.e..

that 81 ~ Po. Thus, the total energy loss of the electron after traversing the entire

classical regime is

<5:::: 1 o [,Qf(l + (6)'2]1/3
c ·4/3 . 6 -t 3o AcOo

(21 )

The boundary condition at the transition-quantum interface is Y = 22, which

corresponds to

(22)
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The total energy loss within the transition regime is therefore

2 .221/ 3 r,1 £(1 + 06)2 1
1/ 3

0/ ::: 0 3
15 L "coo J

(23)

For an adiabatic focuser where the beam is further focused into the quantum

regime, the total energy loss throughout the focuser is then

6 ~+~+~ .

_ [ 1 ,1/3 2.221/3
1/3 O.5561/31n(B2)]0£1/3(1+06)2/3

- -4/3 6" 0 + 1- II + 3 12 B· ... 1/3.J .;) ,Ac 00

(24)

We now look for the optimal value of 00 for attaining a desired ,3-function

with minimum energy loss. From Eq. (15), Eq. (17), and Eq. (19). we see that

the dependence of energy loss on 00 is different in the three regimes. By imposing

(quantum)

(classical)

(transition)

do / doo = 0 on the three equations, we find the optimum 00 to be

00 = {q
.j3

(2.5)

It should, in principle. be possible to set up an adiabatic focuser where the

increase of its focusing strength varies in accordance with the three different opti­

mum values given above. But the focuser may be experimentally more convenient if

00 is fixed throughout the system. If a focuser covers all three regimes of radiation.

an obvious compromise would be 00 = 1. With this choice there will be about 15%

additional radiation in the classical regime and about 30% more in the quantum

regime. Alternatively. since the radiation loss occurs primarily near the end of an

adiabatic focuser. a choice of 00 according to the final regime is most advisable.

BEAM SIZE AND EMITTANCE LIMITS

In a conventional focusing of charged particle beams by discrete magnets, it has

recently been shown by one of us (K. Oide)3 that there exists a fundamental limit

on the minimal attainable beam size due to unvoidable synchrotron radiation that

the beam suffers during the passage through the final quadrupole. The fact that this

occurs at the last focusing element, and that the radiation is stochastic in character.

renders the induced aberration uncorrectable. This limit on beam size at the focus

7
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can be expressed as

(26)

in the vertical dimension for flat beams.

The situation is different in the case of a continous focusing environment such

as the adiabatic focuser. Off-momentum particles in this case would still be focused

down adiabatically within a certain beam envelope, as can be seen from the dis­

cussion at the en(i of Sec. 2. In so doing, the chromatic aberration is essentially

eliminated by avoiding any drift space. However, the adiabatic focuser is not free

from constraints.

Insensitive to the chromatic effect as it is, a beam would be useless if a substan­

tial amount of energy is lost. The ultimate limitation is certainly that the fractional

energy loss be less than unity. In the classical regime, from Eq. (15). this means

that

(28)

(27)

(classical)

(
1(1+02)2 3 )1/2

f3 ~ - 0 O:\CIOt:
6 00

where 1/;35 was neglected. Therefore, if the focuser is a purely classical one. then

the beam size is limited as

G (1(1+06)2 3)1/4
O'c = y;3t: ~ -6 r~t:n

00

where r e = a:\c, and the normalized emittance en = lot: has been restored. If we

take aD = 1, this gives O'y = 0.5 nm for en = 2.5 X 10-8 m. which is numerically

very close to the Oide limit with discrete focusing.

as above. the limit on beam size is

(29)(transi tion)

In the transition regime, the same constraint leads to a somewhat different

scaling. From Eq. (17), we have

2 1 + 06
. O't » -:- at:n

10 aD

\Vith the same normalized emittance and aD

relaxed to 0.05 nm in the transition regime, which is about one order-of-magnitude

smaller than the classical limi t.

(30)(quantum)

In the quantum regime, the same constraint on Eq. (19) leads to the condition

{ r a~ :\c ]1/3}
O'q » 0'0 exp -3 , .),') -7­

L(l + ( 0)- aVen

In order that the beam penetrates down to the quantum regIme. there is.

however, a requirement on the initial normalized emittance. Recall that the first

8
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boundary condition at the classical-transition interface is given by {31 in Eq. (20).

where the Lorentz factor -11 is related to be by be == ('0 - 'I )/'0. Inserting these

relations into Eq. (1.5), and demanding that be « 1, we find that

546A 0 3
f n « __e 0 (classical) (31 )

0(1+06)2

This is the condition for the beam to penetrate through the classical regime. Taking

00 == 1/ V3, we find f n « 3.76 x 1Q1O;'e = 0.014 m.

One may go :through a similar analysis on the condition for penetrate through

the transition regime. With the help of the second boundary condition for {32 in

Eq. (22).

(32)(transition)
153 Ae o~

f
n « 232203 (1 + 06)2

this condition requires that f n « 4.7 x 10-6 m, in order to enter theFor 00 == 1,

quantum regime.

(33 )

vVhen this condition on the emittance is satisfied, we replace the initial ;3­

function in Eq. (19) by the second boundary condition and obtain

[
1 2 , 2] 1/3 { [ O~ Ac ] 1/3}

a q » -Ae f n (1 -r- 00) exp -3 () ') 3
22 1+06)-ofn

Notice that the limits on the emittance in Eq. (31) and Eq. (32) depend only

on fundamental physical parameters and the adiabaticity of the system. In both

equations, the dependence on 00 has a maximum value at 00 = V3. At this value

of ao . the contraints on the emittance are least stringent. In fact, 0'0 = V3 is also

the condition for least radiation in the quantum regime. 'A'e thus call [from Eq. (32)]

the quantity

_ 6.17 X 10-6 m (3-1 )

the critical emittance.

The actual normalized emittance in the system can then be represented by the

parameter

( = C:)1/3
In terms of ~, Eq. (33) can be rewri tten as

a q » 1.39 x 10-8 eexp{ -1.12 (-I} m

(3.5 )

(36)

9
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where, agam, 0:0 = v"3 has been assumed. For an emittance €n

that CTg » 2.68 x 10-9 m.

SENSITIVITIES

Optical Mismatch

€c/lO. we find

One essential issue for an optical element is to estimate the sensitivity of the element

to the less than ideal initial condition caused by errors of other optical elements

upstream. Since ~)Ur consideration here on the adiabatic focuser is about its linear

optics, one expects the sensitivity to be essentially the same as that from the linear

analysis of the conventional optics.

In the conventional discrete optics. consider the final focusing quadrupole to

have an error £:1k in its focusing strength, and an error £:1s in its position. Let the

phase advance from the quadrupole to the interaction point (IP) be '!i" and the Twiss

parameters at the quadrupole and the IP be (0:0,130) and (0:*,;3*), respectively. The

induced degradation ,j.S* from the designed value, B.., at the focus can be shown to

be

and

68*

3*
(~k error) (37)

error)

D.;3*

p*
£:1s

- - 2-(3 (cos "Ii' + 0:0 sin w) (sin 7j.; - 0:0 cos "i')
'0

(
.6.S) 2 ') 2+ /30 (1 + 0:0) cos 7j.;

(38)

respectively. Since the phase advance, 7j.;, is generally determined by diverse elements

upstream, it is not possible in practice to choose "i' to minimize the effect of ~k and

£:1 s erro rs .

Consider now the situation for an adiabatic focuser. The degradation due to

the errors in focusing strength along the focuser should have the same effect as that

in Eq. (37), except that the error .6.k should be acquired from a cumulation over

the entire length of th.e focuser. On the other hand, the injection of an optically

mismatched beam, with the actual Twiss parameters (0:0 + .6.0:, /30 + .6.13), into a

perfect focuser results in a degradation on the final 13*:

-£:10: sin 27j.; + (cos 27j.; + 0:0 sin 2l!-') .6.:

10
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where the phase advance through the focuser is determined by

1 (30
lj; - -log-

200 (3-
(40 )

We see from the above two equations that when the adiabaticity 00 is large,

the phase advance 'l/J becomes small, and the contribution to the degradation is

dominated by the t:.f3j:3o term. On the contrary, if 0'0 is small then t' gets large.

and the contributions from the first and last terms in Eq. (39) dominate. Thus. the

situation is not much different than that of the conventional case.

Nonlinearity

Next, we examine the effects due to the nonlinear force in the focuser. To elucidate

the issue, we consider a sextupole-like nonlinear force which increases adiabatically

as a fixed proportion of the linear force. The equation of motion is now

d2y a} '( ) T.'(s)_y2-d,) + \ S Y - n
s- ~

(41 )

where ~ = v1Jf-, K(s) is g]\!en III Eq. (.5), and the dimensionless parameter a

characterizes the degree of nonlinearity of the force.

From particle tracking in the phase-space of such a Hamiltonian system, and

from the direct particle-in-cell computer simulations, we find that a nonlinearity as

large as a = 0.12 is still tolerable with no significant loss of beam particles.

FOCUSER EXAMPLES

Vie have generated, and checked with numerical simulations, three examples of the

adiabatic focuser. The first is a proof-of-principle case using the beam in the SLA C

End Station. The second involves the use of a focuser on the SLC, and the third is a

foeuser on a TLC being considered at SLAC. Parameters of the beam, the focuser.

and the expected performance are displayed in Table 1. In the first. two cases, round

beams, i.e., o-y = ~x, are assumed, whereas in the third case for the TLC, the beam

is assumed to be flat (~y ~ ~x).

In the End Station Focuser, we have a rather long device which employs dif­

ferential pumping to form the variation in plasma density, ramping from the initial

11
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TABLE I Three examples of the adiabatic focuser.

SLAC End Station SLC TLC

Ini tial Beam Properties

Eo [GeV} 15 50 500

t:n [m] 1x 10-4 3 X 10-5 1 X 10-8

0'0 [11m} 20 3 5 X 10-3

130 [ern} 12 3 0.2.5

Focuser Properties

0'0 5 xl0-2 1/V3 v'3
L [ern} 119 2.6 O.Oi

no [cm-3) 1.2xl014 8.4x10 J5 l.Sx1019

n * [cm- 3 ] 1.2x1018 8.4x1019 1.8xI023

Final Beam Properties

b Negligible 3% 1%

0'* [11 m) 2 0.3 0.5x10-3

value. no, to the final value. n*, over a length L. Such a device appears to be

possible to construct according to preliminary engineering estimates. The other two

focusers require higher densities (ranging up to solid density), with variation over

shorter distances.

'We have not studied how to realize these focusers. ~ote, however, that they

result in significantly involved luminosity in the colliders.

DISCUSSIONS

The concept of an adiabatic focuser has been proposed and analyzed. The device has

a number of advantageous properties, but requires a plasma with very high density

near the interaction point. This plasma will cause scattering of the beam and hence

emittance blowup. The effect has been analyzed by ~Iontagueand Schnell.' It can be

verified that the growth of emittance is negligibly small in all three examples which

we discussed in the last section. In addition, the plasma will create background

events. Two outstanding possible backgrounds are the inelastic scattering between

the high energy electrons and the protons in the focuser,8 and the e+e- pair creation

by the radiated photons traversing the strong field in the focuser. 9 \Ve have not

analyzed the effect of these events on the design of a detector.

12
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In this paper, we also have not analyzed the second synchrotron radiation

limit given in Ref. 3, which has to do with the limitation on beam size due to the

constraint on the rms energy spread of the beam. Presumably, since the focuser is

insensitive to the deviations of beam particle energies, one expects that the situation

be somewhat similar regarding the rms energy spread. In addition, our discussion

has been concentrated on electron beams only. It is known that underdense plasmas

generally respond rather differently to positron beams,s thus it awaits further efforts

to see how our co'ncept can be applied to positrons.

Most important, a focuser needs to be fabricated and, as has been seen. the

required density demands for materials in the liquid, or even solid, states. \Ve believe

that for focusers in the gaseous state, a smooth increase of density (and therefore

focusing strength) should be possible using differential pumping. In the extreme

condition involving solids, multiple layers of different density solids, similar to those

existing in microelectronics, may be invoked. Evidently. many more studies are

necessary before one can realize the adiabatic focusing scheme.

Finally, experimental verification of the concept is required. A first test in the

SLAC End Station would be most appropriate.
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