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* ELASTIC SCATTERING OF CHEMICALLY REACTIVE MOLECULES 

D. R. Herschbacht and G. H. Kweit* 
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Laboratory, University of California, Berkeley, California 

Abstract 

The angular distribution and the velocity dependence of the total elastic 

scattering cross section are calculated for a potential which presents a deep 

"chemical well" at small distances and a van der Waals well at large distances. 

A two-body central force model and semiclassical mechanics are used. It is 

found that the chemical well suppresses much of the wide angle scattering and 

under suitable conditions may introduce several special effects, including 

"multiple rainbows" and "chemical orbiting" in the angular distribution and 

"beats" in the undulatory velocity dependence of the total cross section~ 
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the Third International Conference on the Physics of Electronic and Atomic 
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Most collisions of potentially reactive molecules do not lead to 

reaction but to elastic or inelastic scattering. However, the nonreactive 

and the reactive modes of scattering are usually governed by the same 

potential energy surface, since most-chemical reactions are "electronically 

adiabatic" and the lowest. potential surface ordinarily lies far below those 

for higher electronic states. The distribution in angle and energy of the 

product molecules depends upon both the entrance and the exit valley.of the 

potential surface, whereas practically all the molecules scattered without 

reaction have sampled only the entrance valley. Thus we may expect that 

often the nonreactive scattering will offer more direct information about · 

the initial conditions which favor reaction than can be obtained from studies 

of reactive scattering. 

For exothermic reactions without appreciable activation energy, the 

entrance valley presents an extended downhill slope through part of the 

region that would comprise the repulsive core in collisions of molecules that 

cannot react. The primary effect of this "softness" of the potential should 

be to suppress much of the wide angle elastic scattering that would appear 

for a potential of the Lennard-Janes type. The small angle scattering should 

be little affected, as it is almost solely determined by the long-range 

behavior of the potential. 

A marked fall-off in the elastic scattering at large angles has been 

1-4 observed in molecular beam studies of several reactive systems. This has 
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previously been attributed to depletion by reaction and analyzed on the 

assumption that otherwise the wide angle scattering could be predicted 

from a Lennard-Jones or Exp-6 potential chosen to fit the small angle 

scattering. However 0 for the five examples which have been studied, this 

interpretation is found to imply a reaction cross section from 5 to 50 

times larger than that estimated from direct measurement of the product 

distribution. 

In order to evaluate the fall-off in wide angle scattering and other 

qualitative features which might prove useful for the experimental characteri­

zation of the entrance valley in the potential surface, we have calculated tpe 

angular distribution and the velocity dependence of the total scattering 

cross section for several potentials which may be appropriate to various 

types of reactions. This paper describes the results. obtained for one of the 

simplest. possibilities, a potential with an outer van der Waals well that 

blends monotonically into an inner chemical \-Tell, and also considers ·bri~fly 

some aspects of the scattering from re.lated types of two-well potentials. 

TWO-BODY l10DEL 

We shall treat the elastic scattering of reactive molecules as a two­

body central force problem. This is, of course, a drastic idealization. 

However, the experimental data available at present can give only a quali­

tative picture of the potential, and in view of our ignorance of chemical 

interactions the results would remain almost equally speculative even if a 

rigorous treatment of the mechanics were feasible. Alsa\~ as indicated below • 

it can be plausibly argued that if solutions to the actual multidimensional 
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problem were available, the comparison with experiment would essentially 

involve a pre-averaging over vibrational coordinates and a post-averaging 

over rotational coordinates. Under ordinary conditions the result is likely 

to be practically equivalent to the use of a fictitious central force 

potential • 

This approach is very similar to the "optical potential" or "cloudy 

crystal.ball" model popular in nuclear physics. 5 In molecular scatt7ring, 

however, it should be possible torelate the fictitious central force poten-

tial derived from a two-body analysis of the experimental scattering data 

to properties of the actual multidimensional potential surface. We hope 

eventually to carry out a detailed examination of this aspect of the optical 

potential approach to inelastic molecular collisions; here we shall consider· 

only the most rudimentaly features. 

In the scattering of an atom A by a diatomic molecule .BC, the actual 

potential is three dimensional, V(~,q,r), a function of the translational 

coordinate r (distance from A to center of mass of BC), the vibrational 

coordinate ~ of the BC molecule, and the angle a between the vectors~. and 

A rough idea of the dependence of the potential on r and ~ may be 

obtained from van der Waals parameters and vibrational frequencies, as illus-

trated in Figs. l-3 for the K + HBr example. The relevant parameters are 

given in Table I, in terms of the customary notation. 6 The van der Waals 

parameters for K + HBr correspond to the Exp-6, a = 12 potential6 \>thich Beck 

l d . l . h. . . 1, 7 emp oye ~n ana yz~ng ~s scatter~ng exper~ments. Thi~ potential is 

plotted in Fig. l(a). There is as yet no experimental information on the 

van der Waals parameters for l<Bll" +11. The estimates given in Table I were 

obtained as follows: a was taken as the sum of the van der Waals radii for 
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hydrogen (1.2 X> and bromine (1.95 ~) atoms as given by Pauling; 8 r 
m 

was 

obtained from rm='\l~l225a, the relation which holds for a Lennard-Jones 

potential~ and £ was taken as the experimental value9 for Kr + Li, which 

might be expected to be a rough upper limit for the Br + H interaction. The 

vibrational potential parameters for the HBrmolecule were obtained from 

·Herzberg's compilation; 10 those for KBr from more recent experimental 

results.
11

•
12 

'
13 

The harmonic oscillator vibrationaL:potentia:ls:,plotted 

in Fig. l(b) are obtained from 

V(~)fhw = 0.01483 mw (~C)2 e e 

where V(~) and hw are in kcal/mole, m is the reduced mass of the molecule e 

in g/mole, we the vibrational frequency 

from the equilibr-ium bond distance in ~ 

. -1 
~n em , and ~~ the displacement . 
units. 

Fig. 2 shows a contour map for the HBr + K -+ KBr· + H reaction. 

This was constructed by using the parameters of Table I to plot the separate 

potential wells (shown by dashed contours) which would·obtain for the reac-

tants and produ~ts if there were no chemical interaction but only van der 

Waals interactions,and then smoothly interpolating (solid contour lines) 

between these wells. The activation energy was assumed to be negligible. 

Thus, since the classical dissociation energies D (measured from the poten-
e . 

~ial minimum) are virtually identical, the canyon which connects the reactant 

and product valleys has an almost flat floor and sides which flare out 

rapidly in the transition from the narrow HBr + K valley to the broad KBr + H 

valley. 

• 

.• 

The portion of the potential surface which governs the thermal energy ,' 

nonreactive scattering of HBr + K is shown in a magnified view in Fig. 3. Since 

the H atom is so light, the translational coordinate r is essentially the Br -

K distance; the vibrational coordinate ; is the H - Br distance. Again the 

J ., 
' ·}. 

fl 
~'~ 
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Table I. Potential parameters for the K + HBr ~ KBr + H system. 

Translational potentials 

c = 2e:r 6 
£ rm CJ 

keal/mole ~ ~ 10-60 
m 6 erg em 

r(K - HBr) . o. 55 4.9 4.35 1035 

r' (KBr - H) 0.18 3.5 3.15 47 

Vibrational 12otentials 

Do D· '. w r 
0 e e oe 

keal/mole keal/mole keal/mole A 
em-1 

E;(HBr) 86.4 90.2 7.57 1.412 
2650 

E;'(KBr) 90.2 90.5 0.61 2.821 
213 

6 The asymp.t.otie form of the translational potential is V( r) = -C/r t where 

6 "th c . . -so 6 . I . o C = 0.139 e:r , w~ ~n un~ts of 10 erg em , e: ~n keal mole, and r ~n Pl.. m m 

( 

' 



-Q) 

0 
E 

........ 

8 
_:y; 

....J 
<I 
1-z 
w 
1-
0 
Cl.. 

-Q.) 

0 
E 

......... 
0 
u 

.::£ 
~ 

_.1 
<! 
r-
z 
w 
r-
0 
0... 

5 

4 

-6-

K + HBr 
E = 0.52 kcal/mole 

rm = 4.9 A 
(j" = 4.35 A 

5 6 
TRANSLATION, r (Angstroms) 

7 

MU-33065 

VIBRATIONAL DISPLACEMENT (Angstroms) 

Fig. la 

Fig. 1 b 

MU-33064 
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dashed contours give the potential which would obtain if only the van der Waals 

interaction were present. The repulsive wall of Fig. l(a) is seen to be 

considerably displaced and tilted backwards by the chemica~ interaction. As 

already noted, we expect this to account for the most important qualitative·dif-

:fer.ences.>.in !the::e~:aatic scattering of reactive and nonreactive molecules. 

Approximate Separabili~£t Vibration 

In the region r > r , the vibrational motion in ~ is much more rapid than 
m 

the translational and rotational motions and therefore is practically separable. 

Tor the sample trajectory shown on the right side of Fig. 3, the initial trans­

lational relative velocity is 10
5 em/sec, and thus the representative point 

travels 1 ~ along the r-direction in 1013 sec; there are meanwhile about 8 cycles 

of the ~-vibration, however, since the zero-point vibrational period of HBr is 

-13 only 0.126 X 10 sec. A procedure analogous to the Born-Oppenheimer approxi-

14 15 mation employed in molecular spectroscopy • then yields an effective 

Hamiltonian 

~TR = J(r,a) + V(r,a), (la) 

which corresponds to an average of the complete Hamiltonian over the rapid 

vibrational motions. The kinetic energy operator J(r,a) includes the orieinal 

translational terms, the rotational kinetic energy of a rigid HBr molecule, and 

various coupling terms. The effective potential energy is given by 

(lb) 

where ~~ is ~he vibrational wavefunction evaluated for fixed values of a and r; 

the weighting factor thus varies parametrically with a and r, since the frequency 

of the t~ansverse ~-vibrations varies somewhat along the entrance valley of the 

potential surface, and there is also some perturbation via vibration-rotation 
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. 1' 15 coup J.ng. For collisions of nonreactive molecules (dashed contours in Fig. 3), 

Eqs. (l) also hold to a good approximation in the region r < r , although the 
m 

weighting factor varies rapidly with r near the.repulsive wall, and 

additional terms omitted from the Hamiltonian (la) become large enough to induce 

. . b t . . 'b . l 16 transJ.tl.ons e ween Vl. ratJ.ona states. 

For elastic collisions of reactive molecules Eqs. (1) will become progres-

.sively poorer approximations the,;deeper the trajectories penetrate within 

r < r • In this re·gion·, however t the optimum choice of coordinates corresponds m 

to "mixing" r and E; to give again a low frequency translational coordinate r* 

(which more or less parallels the equipotential curves in Fig. 3) and a high· 

frequency vibrational coordinate '* (approximately transverse to the equipoten­

tials). In transition state theory, 17 ric is termaJ the "reaction coordinate", 

and simple approximate procedures for constructing the transformations 

(2) 

have been descrl.'bed. 18 •19 Th 11 f · d f ese are actua y vector trans ormatJ.ons·an o 

course depend on the shape of the potential surface. In terms of r*, ~*, 

and a* the averaging procedure indicated in Eqs. (1) can be extended well into ' 

the canyon which leads to the produc~ valley, and should remain a good approxi-

mation as long as the motion in:-.t;~'c is much more rapid than that in r'~:~ 

A precise formulation of the separability condition and related questions 

will not be attempted here. Many aspects of such a treatment would resemble 

1 1 h h f 
'b . . . . . 15 c ose y t e t eory o ~l. ratJ.on-rotatJ.on J.nteractJ.ons. 

It should be noted that the average frequency of motion in the ~~·: coordinate 

actually may not drop very much even when the system "turns the corner• and 

enters the flared-out portion of the entrance valley. In Fig. 2, the zero-

point energy.· and vibrational frequency associated with the t;,:': ·coordinate does 

drop.by about a factor of 5 on going from an isolated HBr molecule to the 

middle of the turn; that is, from E = 3.8 kcal/mole, 
0 

w = 2650 cm-l (see Fig. l(b)] 
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-1 Q 
toE ~ 0.7 ~cal/mole, w = 500 em at r = 3.2 A. 

0 
However, it is possible 

that much of the original zet~o-point energy remains in the.E;.* motion as 

vibrational excitation. In this case the weighting factor in Eq. (lb) should 

be replaced by a sum of terms which account for the contributions from the 

various vibrational states. 

Approximations ~ Rotational Coordinates 

The proper treatment of the angle dependence of the potential and the 

various rotational terms in the kinetic energy is complicated, and in general 

the averaging will vary with the col'lision energy and angular momentum. There 

is little information about the angular dependence of intermolecular forces.
20 

In Figs. 2 and 3 we have assumed a collinear configuration of the atoms, 

although it is likely that for reactions involving atoms with p orbitals a 

bent configuration would be more stableG 21 Also, a considerable fraction of 

h . . 11". b .. 11. 1 . 22,23,24 t e nonreact~ve co ~s~ons may e rotat~ona y ~ne ast~c. 

There are some redeeming features. In most nonreactive collisions the 

orbital angular momentum L associated with the relative motion of A and BC 

about the center of mass is much larger than the rotational momentum J of the 

BC molecule. The kinetic terms involving BC rotations then can only slightly 

displace the trajectories from the plane perpendicular to l'; thus the trajec-

tories will at least qualitatively resemble those for a central force potential. 

This should hold also for the rotationally inelastic collisions if, as seems 

likely, the dominant transitions have 6J << L and the energy transferred is 

small compared with the translational energy. 

The potential energy function probably is strongly directional, but this 

also need not preclude the use of two-body central force mechanics. The angle 

of deflection in a collision is mainly determined by the interaction in the 

vicinity of the distance of closest approach, and ordinarily this region is 

traversed too quickly to permit much change in the relative orientation of A and 
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BC. Thus it.is a plausible approximation to assume that in a given collision 

only one relative orientation is effective and to evaluate the deflection as 

if the angle a were fixed throughout the collision~ 5 The deflections calculated 

for collisions with different fixed orientations should then be suitably 

averaged. For turning points at sufficiently large r (corresponding to small 

angle scattering), the various orientations may have almost equal weight
0 

since 

here the dependence of the potential energy on a is weak compared l-tith the 

average rotational energy of BC. The effect of the noncentral part of the 

potential may practically vanish in the uniform average over all orientations. 

On the other hand, for turning points in the region corresponding to the onset 

of chemical interaction, only a small range of orientations may be significant; 

if the dependence on·a becomes strong enough to draw the BC molecule into the 

most favorable orientation before it has reached the turning point. In this 

case, the scattering would again appear to come from a central potential. 

It is hoped that eventually these speculations may be tested by comparison 

with exact trajectory calculations for a three-body potential. Hith modern 

computers such calculations are feasible, and some studies of reactive scattering 
' 26 

have already been made. At present, however, a rigorous computer analysis of 

elastic scattering appears to be prohibitively expensive. A computer study of 

27 the elastic scattering of atoms from a rigid rotor molecule is in progress. 

The scattering patterns which we shall calculate from two-body mechanics 

would always be more or less. blurred out if proper account were taken of rota­

tional coordinates and inelastic and reactive scattering. For example, in the 

three body problem only the total angular momentum~+ dis a constant of the-

motion, and this suggests that the blurring effect of the kinetic rotational terms 

can be roughly estimated by averaging the two-body deflection function over a 

range L + J to jL - Jl about the nominal value of L• Classically, the orbital 

angular: momentum (in units of h) is given by 

.· 

.• 
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(3) 

in terms of the reduced mass ~ (in gm/mo1e), relative kinetic energy E (in 

kcal/mo1e) and impact parameter b (in Angstrom units). The range jL + Jj ""' ,_, 
; 

to IL- Jj is only about 3% in a collision of K + HBr with relative energy ...... ..... 

E = 1 kcal/mole and impact parameter b = 6.3 X (which corresponds to the 

"rainbow" minimum at K = 2, f3 = 1.3 in Fig. 7) and becomes 10% at b = 2 X 

( or 8 = 0.4). Since the total reaction cross section is 

tion by reaction is not expected to become dominant until 

Qr = 5 ~2 , 1attenua­
b ~ (Q /w)

2 = 1.5 ~ 
r 

(or 8 ~ 0.3). The K + CH3Br and K + Br2 systems are expected to be less 

favorable cases, since for rainbow collisions under similar conditions the 

range IL + Jl to IL- Jj becomes 12% and 35%, respectively. In fact, the 
""""" ....... ·~ """ 

rainbow pattern is found1 •2 to be quite sharp for K + HBr, it is considerably 

smeared out for K t CH 3Br and it is not observed at all forK + Br2 • 

POTENTIAL FUNCTION 

The central force.potential chosen for this study is shown in Fig. 4, 

together with several2of the effective potential curves, 

U(r,L) (4) 

obtaine9. by adding the "centrifugal repulsion" term. The usual Lennard-

Jones potential is used outside the van der Waals minimum at r = r , V(r ) = m m 

Within r the potential falls monotonically and below 0.7 r joins an m m 

inner, "chemical" well. This also has the Lennard-Jones form, with a minimum 

at r' = 0.56 r and £ 1 = 5€. The ratio:r' /r corresponds to the ratio of m m m m · 

the bond length of KBr (2.82 ~) and the radius of the van der Waals well for 

K + HBr (5.1 X). The ratio ~·~~ was taken as 5 to facilitate the use of 

available tables of deflection anglesQ This is somewhat less than the ratio 

of the exothermicity of the K + HBr reaction (3~8 kcal/mole) to the van der 

Waals well depth (0.52 kcal/mole). 
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The effective potential curves correspond to various values of a reduced 

angular momentum parameter, 

. l l 

L
1
: = L/hB2 = K2e. (5) 

Here B = 2)Je:r 2tn2 is the "capacity" parameter for the outer well, K = E/r:. 
m 

is the reduced kinetic energy, and a = b/r the reduced impact parameter. 
m 

i: 
For r > r , the U(r,L ) curves coincide with those for the usual Lennard-Jones 

m 
·'· potential, of course, and in particular for any L" < 1.39 the outer region pre-

sents a centrifugal barrier. For r < r , the chemical well pulls the curves 
m 

... , 
strongly dmmwards, and when L < 1. 99 there appears an inner centrifugal 

barrier. The heavy dots in Fig. 4 (and Fig. 9) indicate the "triple points" 

for the outer and inner wells, located at 

"' u ::: o.8e:, a = 1.75, L = 1.39 (6) 

and 

u = 5.16e:, e = 0.87, * L = 1.99, (7) 
;•: 

respectively. For K or L above these critical values, the corresponding 

portion of the effective potential curve is monotonic. At 

·'· u = o.3s, a = 1.76, L .. = 1.o4 (8) 

the inner and outer centrifugal barriers have the same height; above this 

point the inner barrier· is the higher, below it the outer barrier is the 

SEl'!ICLASSICAL ANALYSIS 

The general features of a semiclassical description of scattering from 

the two-well potential are illustrated in Figs. 5 - 9. Our analysis is based 

on the treatment c;>utlined by Ford and Wheeler, 28· in which the classical deflec­

tion function plays the principal role. The deflection angle is given by 
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·0(1<,13) = 'If - 2b 
b2 _ V(r}'l-l/2 · -2 

2 r dr, 
r E J 

(9) 

and depends only on the potential outside the distance of closest approach, 

r = r (see Figs. 5 and 6), which is given by c 

. -1/2 
V('t¢)1 
E • (10) 

'fhus, for impact parameters such that r < r , the deflection is identical m c 

to that for the Lennard-Jones potential and can be obtained from published 

tables. 6 Also for turning points near a steeply rising portion· of the'' 

effective potential curve, the dominant contribution to the deflection 

comes from the vicinity of r = r • since the integrand of (9) becomes very c ' 

large there and is. small elsewhere. Therefore, when r is well below r t 
c m 

the deflection approaches that for a Lennard-Jones potenti~l with the inner 

well parameters r'm and t 1 • The contribution of the outer well can be 

approximated by replacing E byE + t, as illustrated in Eq. (7), where·the 

upper triple point is found to be. located near E = 5 (0.8t) + t = St. For 

K > 2 we simply integrated.Eq. (9) numerically for one or two of the impact 

parameters which produce turning points within the intermediate range, 0.7 r 
m 

to r , and interpolated between the inner and outer portions of the curve 
m 

which were obtained from the tables. ForK < 2, the perturbation by the outer 

well grows stronger and this treatment of the r < r region becomes unsatis-c m 

factory because the integrand in (6) exhibits another large maximum weil 

outside the turning point region. Ho~~ver, for K < 5.16, the inner well pro-

duces orl:>iting and the form of the inner part of the deflection curve can be 

determined, without integration, from the location and shape of the centri-

1 b . ' d h . . 1 . f b. . 5,28 fuga arr~er an t e cr~t~ca ~mpact parameter or or ~t~ng. Thus again 

it was only necessary to locate two or three intermediate p~ints· by numerical 
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integration. The reduced phase shift was derived from the semiclassical 

1 
. 28 

re atl.on, 

Since n ~ 0 as L ~ ~. this yields 

B-l/2n(K,B) =-} K112J: e(K,B)dB. 

The orbiting singularities in the deflection angl~ produce abrupt jumps 

in the phase shift, which were smoothed out by the use of an improved 

approximation similar to Ford and Hheeler's "enlightened primitive JWKB 

analysis". 

(11) 

(12) 

The most striking features of the scattering curves in Fig. 7 :~'''' th::! 

' 
orbiting singularities, where 0 becomes infinite, the "rainbo;.;r.'·; 

has an extremum and nan inflection, and the "glory", where e passes through 

zero and n has a maximum. The glory resembles that for the Lennard-Jones 

potential but is shifted to smaller impact parameters and has a somewhat 

different energy dependence. For K > 5.16 there are three rainbows. The 

outer: .minimum is identical to the rainbow of the Lennard-Jones potential, and 

the inner minimum is similar but deeper, in accord with the greater strength 

of the chemical well. In the angular distribution, these produce the usual .. 

"neg~tivelf. rainbow; that is, they focus the intensity from the corresponding 

range of impact parameters into angles smaller than the extremum angle. However, 

the intermediate maximum in the deflection function produces a "positive" or 

"inverted" rainbow, with its "dark side" toward small angles and its "bright 

side" toward large angles. For K < 5.16 1 the inner negative rainbow is super-

sedec;l by an orbiting singularity, and for K < 0.8 the outer rainbow likewise 

gives way to orbiting. As K is decreased further, the inner and outer orbiting 

' singularities move closer together, with the positive rainbow squeezed between 

them, until they merge for K ~ 0.35. 
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The topology of the scattering as a function of relative kinetic energy 

and impact parameter is shown in Fig. 8 for the Lennard-Jones potential and 

in Fig. 9 for the two-well potential. Below the glory scattering curve, repul-

sion predominates and the deflection is positive, above it attraction predomin-

ates and the deflection is negative/ To the right· of the "monotonic boundary", 

centrifugal repulsion outweighs the attractive interaction and the effective 

potential curve increases smoothly as r decreases. Within the doubly shaded 

area there exist two·distinct, classically inaccessible regions, which can be 

reached by tunnelling through one or both of the centrifugal barri.ers; within 

the singly shaded areas there exists only one such region. Below the orbiting 

curves, the kinetic energy in the collision exceeds the centrifugal barriers. The 

dashed curves in Figs. 8 and 9 specify the conditions which produce turning points 

at the indicated radii. It is seen that the loci of the negative rainbows occur 

at roughly constant distances of closest approach, about 6% larger than those 

corresponding to the minima of the potential wells. Similarly, the glory occurs 

at a radius somewhat outside the repulsive core, where V( 0 ) = o. 

ANGULAR DISTRIBUTION 

It is convenient to use the reduced polar cross section defined by 

F (6) = 211' sinS I (6)/11' 2 (13) l:'' ,' .; 
m 

where I (e) = d(1Tb2 )/dw is the customary differential cross section per unit 

solid angle in the center-of-mass system. In the classical approximation, 

r (6) = 2B (6)/lae/aBI, (14) 

and depends only on the reduced energy K once the form of the potential is 

specified. The semicla.ssical approximation28 introduces quantum correction 

factors which depend on the capacity parameter B as well as K, but ordinarily 

f, 
t 
j 
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these are only significant for the rainbow scattering and sometimes for glory 

scattering. It·is convenient to analyze separately various contributions to 

the angular distribution which arise from particularportions of the classical 

deflection function. Table II gives such an analysis for four branches of the 

deflection function which can be approximated by simple functions. The complete 

angular distribution is readily synthesized from these formulas plus the contri-

bution ft~om the "repulsive brahch" of the deflection function (the region with 

B < B in Fig. 7), ~hich is evaluated numerically from Eq. (14). A summary of 
g 

notation, units, and convenient working formulas is given in Table III. 

The contributions from rainbow, orbiting, and glory scattering all consist 

of a characteristic 'form factor" which involves dimensionl~ss "width" and 

"height" parameters. The derivation of these formulas merely amounts to 

rearranging the results of Ford and Wheeler. 28 The form factors for rainbow 

and glory scattering are given in Table IV and Fig. 10; the factor for orbiting 

is just a simple exponential function. Reduced forms of the various width and 

height parameters that depend only on the reduced kinetic energy are plotted in 

Figs. ll - 13 over the range K = 0.1 to 100. 

As indicated in Table II, these parameters depend on the form of the 

potential function via the following properties of the classical deflection 

function: 

For rainbow scattering, 

Sf• e;;, and ar = ¥ a20 ;ae2>r 

For orbiting, 

e • e , and a 
0 0 0 

For glory scattering, 

e and a . = ( ae;ae> • 
g; g g 
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These quantities were evaluated by numerical analysis. For the two-well 

potential, the approximate deflection functions illustrated in Fig. 7 were 

used, and for the Lennard•Jones potential the extensive tabulation of Hirsch­

felder, Curtiss, and Bird.6 Simple analytic expressions can be obtained in 

the high energy region, where Eq. (12) reduces to the Born approximation 

result, 
b~;-l/2 

-~ 
dr. 

For a potential of the form V(r) = C/rs, this yields 

where 

C F(s) 
n = -1W bs-1 

F(s) = (s - 3)(s - 5) 

(s - 2)(s - 4) 

(s - 3)(s - 5) 
= (s - 2Hs - 4) 

• • e 1 'If for s even 2' ••• 2 

••• 2 for s odd ••• 3. 

(15) 

(16) 

(17a) 

(17b) 

At the high energy limit, the deflection angle 0 = 2dn/di and its derivatives 

are thus given by 

0 = ~ (s - l)F(s) 
E 

ae C s(s - l)F(s) 
ab = -·E bs i' l 

where the identity nv = 2XE::has .been used. 

(18a) 

(18b) 

(lBc) 

Table V gives the limiting formulas 

obtained by applying-these approximations to the Lennard-Jones potential, 



Table II. Semiclassical analysis of angular distribution 

Deflection Function 

Attractive branch: 

6 · e = -(15n/B)KS 

· Rainbow branch: 
•. 

. 2 e = e + a (S - B ) r r r 

~biting b~anch: 

0 = e + a R.n I ( B . - e ) I B I 
. 0 0 0 0 

Glory branch: 

e = e + a <s - e } g g g 

Reduced Polar Cross Section 

o.759K-l/36-4/3 

H (B.K)Ai2(x) r 

H (K)exp(-6/ll.e ) 
0 . 0 

H (K)G(y) 
g 

Parameters 

x = (e - e )/M r r 

M = B-l/3K-l/3a 1/3 
r r 

H .: 3.60Bl/GKS/G B a 213 
. r r r 

I ._, 
m 
I 

M = a 
0 0 

2 H = (28 /a )exp(-e /a ) 
0 0 0 0 0 

y = lsin6/M I 
g 

2 G(y) = nyJ . (y) 
0 

' 

Ml = :B·~~j2K-l/2S -l 
g . •. g 

H = 4!3 /a 
g g g 

---~---- ·-~----- . ....,...~.~~ •-~ ·?-6·-..--.,.,._M-~.}!~.7~~~~-;~,...;;·.'.;.o.~ 
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Table III. Notation, units, and handy numerical formulas· 

E =relative kinetic energy=~ ~v2 , kcal/mole 

L = orbital angular momentum = pvb = (1 + }>~ 

v = relative velocity, 104 em/sec 

b = impact parameter = (1 t ;)~, ~ 

~ = reduced mass = m1m2/(m1 + m2 ), gm/mole 

£ = potential well depth, kcal/mole 

r = radius of potential minimum, ~ m 

A = r IX = (BK)1/ 2 = DK 
m 

2 2 2 B = 2~e:r /b · = AD = D K 
m 

D = 2e:r /fiv = B/A = A/K = (B/K)1/ 2 
m 

·2 2 
K = E/e: = A/D = A /B = BID 

1 6 = b/r = (1 +-)/A m 2 

L* = L/nB1/2 = Kl/2S 

+ ------

a = 1.2897. (T/M)l/2 
t 

v = 28.95 (E/~)1/2 

-3 2 E = 1.195 X 10 ~v 

most probable velocity in oven 

X = 6.3522/~v = 0.2196 (~E)-1/2 

1 
1 + 2 = 0.15743 ~vb = 4.558 (~E)l/2b 

r = 21 /
6 o=,:1.e.J.22~o for Lennard-Jones potential 

m 

e (radians) = 57.2958 e (degrees), scattering angle 

1/2 
A = 0.15743 ~vr = 4.558 (~E) r m m 

B = 21.3 ~e:r 
2 

m 

D = 135.5 e:r /v m 

I 
"-> 
-.J 
I 



a Square of the Airy integral. normalized to unity 
r at its maximum. 

hSquare of the zero order Bessel function multiplied 
by ny and smoothly joined to unity in the region 
1.5 < y < 2. 
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Table V. Small angle scattering approximation for 

the Lennard-Jones (6,12) potential. 

311' D ( 21 l ) 
n=--11---1 

16 e5 t 64 s6J 

a 
l [l 

1<(36 

231 1 1 
---1 

32o a6 J 
e = 151T 

= -31511' _!__ [l 429 1 ' 
4 K8 8 - 160 -;rJ 

(3 = 0.947 
g ar = 1.056 

1'1 = 0.422D 
g nr = 0.306D 

a 
g 

• -52.0/K e = r -2.04/K 

a = 63.5/K r 
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together with the parameters for rainbow and glory scattering obtained from 

the conditions (o0/oS)r = 0 and eg = o. For the two-well potential. similar 

formulas can .be·:· obtained by suitable adjustment. of the scale factors, but 

the limiting forms will not hold until correspondingly higher energies are 

reached. 

. 
Fig. 14 shows the angular distributions which correspond to the deflection 

functions of Fig. 7. The rainbow contributions are evaluated for B = 5000, a 

value roughly appropriate to both the K + HBr and the K + CH3Br cases. For 

smaller values of·B, the rainbow bumps would be weaker and broader. (The glory 

effect form factor is unity except at very small angles and hence will be 

ignored.) 

The fall-off in intensity at wide angles (for the moment, ignore the rain-

bow bumps) is seen to be considerably more rapid than that for the Lennard-

Jones potential. At K = 8, the wide angle scattering comes entirely from the 

repulsive branch of the deflection function. For K < 5.16 there is also a 

contribution from inner orbiting; this falls off more rapidly but is roughly 

'comparable in total intensity. ForK <· 0.8 there is a further contribution 

from outer orbiting. The fall-off in the total wide angle sca~tering is not 

quite as rapid and its onset is less abrupt than observed in the scattering of 

K + HBr and K + CH3Br. The calculated distributions are found to change in this 

fashion when the repulsive wall is moved back further and the inner potential 

well is made deeper or broader. Thus it is not necessary to assume that the 

depletion by reaction is unexpectedly large, as these calculations indicate that' 

the observed fall-off in wide angle scattering can be accounted for by a tHo-well 

potential with reasonable dimensions. 

In principle the complicated rainbow structure can offer a sensitive test 

of the form of the potential. At K = 8, the inner positive rainbow (RB+) and the 

outer rainbow (RBO) patterns have comparable intensity and overlap near 12°. The 

" i! 
i 
l 
J 
:; 

' ~ 
! 
J 
l 
; 

;j 
d 
~; 
~ 

·l 

.• 
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inner negative rainbow (RB-) gives rise to a principal maximum at 83° and a 

secondary maximum at 42°. The latter appears because the minimum in the 

deflection curve (see Fig. 7) is deep and sufficiently symmetrical to maintain 

28 the Airy interference pattern over a wide angular range. At K = 2, the RB+ 

also produces two lobes, the principal one at 38°, the secondary one at 52°. 

These are considerably more intense than the RBO lobe at 61° 1 since in this 

energy rw~ge the maximum in the deflection function (see Fig. 7) is quite broad 

as a consequence of the extended "pause" in V(r) just below r = r • 
m 

The RB-

has disappeared, as it has passed through 180° and gone over to orbiting at 

K = 5.16. At K = 0.6, the RBO has also vanished and the RB+ pattern is 

smearing out as it moves to wide angles. 

No evidence of the RB+ or RB- rainbow features has been found for the 

1 2 examples studied thus far. • The absence of anRB- pattern in the thermal 

·energy range is not surprising, as the chemical well probably should be 

relatively deeper and broader than assumed here, and the triple point (7) moves 

rapidly to higher energy as the volume of the well is increased. Thus, in the 

thermal range the inner well ·should produce "chemical orbiting" rather than an 

RB- pattern. Enlarging the inner well also squeezes the RB+ patte:r'n closer to 

the RBQ pattern, since the inner dip in the deflection function (see Fig. 7) 

then sets in at larger impact parameters. This extends considerably the range 

of reduced energy over which the RB+ and RBO patterns cannot be separately 

resolved and likewise delays the appearance of "an&:malous" intensity in the RB+ 

rainbow. For the experiments so far :r'eported, K ~ 3 1 and the observation of 

only a single rainbow bump is compatible with a potential qualitatively similar 

to that of Fig. 4 but with the volume of the inner \'Tell increased by about SO%. 

A decisive test of the multiple rainbow features implied by this form of the 

potential can only be obtained by experiments at energies which are either some-

what below the convenient thermal range (K small enough to permit the anomalous 
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RB+ pattern to emerge as the RBO broadens into orbiting) or well above it 

(K large enough to produce the RB- rainbow at wide angles). 

TOTAL CROSS SECTION 

The semiclassical treatment yields simple analytic formulas for the velocity 

dependence of the total elastic cross section. For thermal energy scattering 

from potentials qualitatively similar to the Lennard-Jones potential, the cross 

section may be resolved into two terms: Q(v) = Q + AQ • The main termt Q , is 
0 0 0 

a monotoni~ally decreasing function of velocity and depends essentially only on 

. 29 30 the form of the interatomic potential at large d~stances. ' The AQ term gives 

an undulatory fine structure and depends primarily on the size and shape of the 

attractive potential well. Bernstein has evaluated the functional dependence of 

AQ for a Lennard•Jones potential; however, his method required an extensive 

. . 31 
numerical analys~s. 

General semiclassical approximations for both Q and AQ are readily obtained 
0 

32 from the optical theorem. The theorem gives 

Q(r) = 41TUmf(O), (19) 

where f(O) is the forward scattering amplitude. In the semiclassical ·approximation,28 

f(O) = (i/X) r~(l -e 2 in)bdb. . (20) 
0 

2in The net contribution from the oscillatory e factor is only appreciable when 

the phase shift remains almost constant over a significant range of impact 

parameters. For thermal scattering from simple one-well potentials, this occurs 

in two regions: (a) for "soft" collisions at large b, where only the weak 

attractive dispersion forces are significant and n becomes very small; and (b) 

for glory scattering near b = b , where the attractive and repulsive forces 
g 

become comparable, the classical deflection angle passes through zero~ and the 

phase shift passes through an extremum. 



-38-

In region (a), the Born approximation of Eq. (16) may be used (with s > 3) 

and this gives 

f(O) - (p2/2X)f[(s- 3)/(s- l)]eici<, 

where 

p = [(2.1 Cj ~hv)F(s) ]l/(s - l) 

and the phase angle is 

a =!.. + .2.... (C/Icl) 2 s-1 

Thus we obtain 

Q = 2np2r[(s - 3)/(s - l)] cos [n/(s - 1)]. 
0 

(2la) 

(2lb) 

(2lc) 

(22) 

This resul,t differs somewhat from the original Massey.:.Mohr approximation29 

but is &dentical to that obtained from the Schiff-Schlier and Landau-

L . f - . . th d 30 
l. ~'i~-tz: ;:. me o s • 

In region (b), the deflection function is approximately linear (see Table 

II) with impact parameter, 

e = a (!3 - a ), 
g . g 

(23a) 

and since 0 = 2dn/di = (2/A)dn/dS, the phase shift is approximately quadratic, 

28 Thus, as shown by Ford and Wheeler, 

where 

f (0) = b (2nA/Ia I >112 eiag 
.g g g . 

a = 2n + 41~(a /Ia I>- -21~. g g g g 

Hence the· undulatory contribution is 

. 1/2 . 
6Q = 4nlb (2nA/Ia I> cos 2nN 

g . g 
where 

3 
N = (ag + ~)/2n 

(23b) 

(24a) 

(24b) 

(25) 

(26) 
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is introduced as a convenient index for the extrema. N = 1, 2, 3, ••• for 

maxima and N = 3/2,5/2, ••• for minima. From the definition of a , the condition 
. g 

for an extrema is 

3 = 1r(N - -) 
8 

(27a) 

if n and a are opposite in sign (~'negative" glory scattering, the usual case), 
g g 

and 

(27b) 

if ng and ag have the·same sign ("positive" glory scattering). 

In terms of the dimensionless parameters of Tables II and III, we have 

Q /nr o m 
2 = 2.,54 D2/5 = 2.54 (B/K)1/5 (28) 

bQ/rrr 2 10.03 A-112 a Ia ,-112cos 2rrN (29a) = m g g 

= 10.03 D-112 S jKa l-112cos 2nN 
g g (29b) 

10.03 -l/4 S K-114 ia l-l/2cos 21TN (29c) = B 

5.015 
g l/2 g 

(29d) = S (H bS ) cos 2nN g g g . 

We shall use the forms involving the velocity independent parameter B. The 

amplitude of the undulatory contribution ·is readily determined from the glory 

scattering parameters of Table II and Fig. 13. The glory phase shift, ng, 

which governs the wavelength of the undulations, is evaluated from Eq. (12) 

-1/2 and Table V. Fig. 15 gives the reduced phase shift, B · ng' and the reduced 

relative amplitude, B9120u, where 

~Q/Q = U cos 21TN (30) 
0 

and 

(31) 

For the Lennard-Janes potential, Eqs. (28) and (30) approximate the 

31 results of exact'partial wave calculations within a few percent. They become 

inapplicable in the "high velocity" region where n is very small and repulsive 
g 
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phase shifts dominate, and they are at best incomplete in the "orbiting" region 

·where the usual semiclassical procedures are inadequate. 28 Thus their range of 

application is roughly 

2 ~ D ~ Bl/2• (32) 

About half of the maximum number of undulations permitted by Levinson's theorem31 

will occur in the orbiting region. r 

B . 31 h d . d ' . 1 . 1 . . h · ernste~n as er~ve two sem~c ass~ca approx~mat~ons for 6Q; t e first 

agrees with the undulation amplitude in Eq. (29) but has ! instead of -~ in ~he 

extrema condition of Eq. (27a); the second gives amplitudes about 35% too large. 

For the two-well potential the wavelength of the undulations (spacing between 

the velocities corresponding to extrema in AQ)is less than that for the Lennard-

Jones ootential in roughly the ratio £r /£ 1 r 1 ::: 1/3. 
• m m 

The amplitude is also 

less by a factor of about r' /r ::: 1/2. As the glory effect appears at rather m m 

small impact parameters, it may prove to be drastically weakened by rotational 

blurring. Otherwise~ however, the measurement of 6Q(v) should provide a direct 

test for the presence of the inner chemical well. Such measurements have not yet 

been reported for the scattering of reactive molecules, although AQ(v) has been 

33 determined for several atom-atom systems. 

OTHER TWO WELL POTENTIALS 

If the repulsive wall in Fig. ~ is removed and the inner well given a broad, 

flat bottom, then for impact parameters inside the rainbow region the deflection 

angle approaches zero again and the phase shift becomes practically constant. 

This. further suppresses the wide angle scattering but does not qualitatively 

change the rainbow structure of the angular distribution. Despite the absence 

of a glory, if the region of constant phase is sufficiently broad Q(y) can show 

an undulatory velocity dependence that is markedly larger in amplitude than for 

a Lennard-Janes potential. 
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If the inner and outer wells are separated by a potential barrier, the 

scattering at energies below the barrier top is essentially the same as that' 

from a Lennard-~ones potential. At higher energies, the inner well produces 

a strong downw~rd dip in the deflection function and thus introduces a glory 

with positive slope (a2 > 0) in addition to the usual glory (with al < 0) 

present for Lennard-Jones scattering. Each of these gives an oscillatory 

contribution to the total cross section, 

(33) 

Thus the velocity dependence may show a "beat" pattern in which the wavelength 

increment essentially measures the difference in the area of the van der Waals 

well and the area of the activation energy barrier. 

DISCUSSION 

The main point illustrated by these calculations is that the fall-off in 

wide-angle elastic scattering which has been observed for several reactive 

1-4 systems may arise primarily from the "softness" of the potential. Comparison 

with the experimental.reaction cross sections indicates that depletion by reaction· 

is a much less significant factor. Since we have had to use two-body central 

force mechanics in order to carry out any detailed analysis, the various special 

features we have predicted are quite dubious and may turn out to be unobservable. 

However, even if this occurs, it should be possible to obtain at least a quali-

tative experimental characterization of the potential inside the region which 

would be excluded by the repulsive core in collisions of nonreactive molecules. 

For this purpose, even experiments without velocity selection will be useful, 

especially for systems in which the chemical well is deep compared with thermal 

energies. In terms of experimental mo~ivation, this is an important contrast i·lith 

l-3 the interpretation based on depletion; the latter requires velocity selection, 

to permit an impact parameter to be assigned to each scattering angle. 

I 

I -, I . .• . 

i 
! 
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Perhaps we should emphasize that despite our frequent reference to the 

K + HBr system, the potential we have used is not likely to be appropriate 

for this system. The observed threshold for chemical reaction of 0.4 kcal/ 

mole indicates the presence .of a positive potential barrier. 1 Also, as 
·' 

( 

·. 
mentioned already, in the region of the potential surface which is important 

for elastic scattering most of the initial zero point vibrational energy of 

HBr may remain associated with the ~* coordinate rather than entering the 

reaction coordinate. In this case, the effective potential for elastic scat-

tering would not display a chemical well nearly as deep as that of Fig. 4. If 

there is an appreciable potential drop beyond the barrier, however, the K + HBr 

scattering should possess a chemical glory of strength comparable to the usual 

van der Waals glory. Hence this appears to be a promising system with which to 

look for a beat pattern in the velocity dependence of the total cross section. 
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FIGURE CAPTIONS 

Fig. 1 - (a) Exp-6 (~ = 12) potential function for K + HBr. The potential 

vanishes at r = a and has its minimum, -E 1 at r = r • 
m 

(b) Harmonic oscillator vibrational potentials for HBr and KBr. 

Dotted lines indicate the zero-point vibrational levels. 

Fig. 2 - Contour map of potential energy surface for linear configurations 

of the HBr + K system. Dashed contours indicate the potential 

surface (derived from Table I) which would obtain if there were 

no chemical interaction but only van der Waals interaction. 

Arrows show location of van der Waals minima at r = r and equili­
m 

brium bond lengths at r = r e 

Fig. 3 - Magnified view of the HBr + K entrance valley in the potential surface 

of Fig. 2. The translational coordinate is the K - Br distance, the 

vibrational coordinate is the H - Br distance. Trajectory shown at 

right corresponds to an initial relative velocity of HBr and K of 

105 cm/sec 1 with HBr in the ground vibrational state. Arrows at 

left indicate the zero-point vibrational amplitude. 

Fig. 4 - Two-well potential and effective potential energy curves for various 

values of the reduced angular momentum. The corresponding curves 

for the Lennard-Janes potential are shown dashed. 

Fig. 5 - Distance of closest approach as a function of initial impact parameter 

for various values of the reduced kinetic energy K, for the Lennard- . 

Jones potential. 

Fig. 6 - Distance of closest approach for the two-well potential. The light 

dashed. curves give the loci of turning points for the various types 

of rainbow and glory scattering·. 

Fig. 7 - Semiclassical deflection angle and phase shift for the two-well 

potential, at various values of the reduced kinetic energy. 

curves refer to the Lennard-Janes potential. 

Fig. 8 - Topology of scattering for the Lennard-Janes potential. 

Fig. 9 - Topology of scattering for the two-well potential. The inner 

orbiting curve, which extends from K = 0.35 to K = 5.16, was 

inadvertently left unlabelled. 
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Fig. 10 -

Fig. 11 -

Fig. 12 -

Fig. 13 -

Fig. 14 -

Fig. 15 -

Form factors for (a) rainbow scattering and (b) glory scattering) 

as defined in Tables II and III. 

1/3 -1/6 Plots of dimentionless parameters e J B ~ J and B H for r r r 
rainbow scattering (see Table II) versus reduced kinetic energy. 

The "outer" rainbow of Fig. 7 (which is identical to that for 

the Lennard-Jones potential) is labelled "o"; the 11inner 11 

negative and positive. rainbows are labelled 

spectively. 

II II and II+ II 
) re-

Dimensionless parameters ~ and H for orbiting (see Table II) 
0 0 

versus reduced. kinetic energy. 110utside" and 11 Inside" refer to 

the two branches of the deflection function (see Fig. 7)J with 

. positive and negative slopes, respectively. Below K = 0.8 the 

curves refer to 11 van der Waals orbiting 11
J and the dashed :portion 

of the 11 Inside 11 curves applies to the Lennard-Jones potential. 

Above K = 0.8 the curves refer to "chemical orbiting11 associated 

with the innter centrifugal barrier of Fig. 4. The dot-dashed 

:portion of the 110utside" curves indicates the region excluded 

because the outer :part of the chemical orbiting deflection func­

tion gives way to the van der Waals orbiting or rainbovr scattering 

(see Fig. 7). 

Dimensionless parameters B1/2~ and H for glory scattering versus 
g g 

reduced kinetic energy (see Table II). Dashed. curves refer to the 

Lennard-Jones potential, solid curves to the two-well :potential. 

Angular d.istributions corresponding to the deflection functions 

shown in Fig. 7. The ordinates of the K = 2 and. K = 0.6 curves 

should be multiplied by factors of 25 and. 250, respectively. 

Dimensionless glory scattering :phase shift, B-1/2~ ) and relative 

amplitude, B9/20uJ versus reduced kinetic energy. gDashed curves 

refer to the Lennard-Jones :potential; solid curves to the two-well 

potential. 
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This report was prepared as an account of Government 
sponsored work. Neither the United States, nor the Com­
mission, nor any person acting on behalf of the Commission: 

A. Makes any warranty or representation, expressed or 
implied, with respect to the accuracy, completeness, 
or usefulness of the information contained in this 
report, or that the use of any information, appa­
ratus, method, or process disclosed in this report 
may not infringe privately owned rights; or 

B. Assumes any liabilities with respect to the use of, 
or for damages resulting from the use of any infor­
mation, apparatus, method, or process disclosed in 
this report. 

As used in the above, "person acting on behalf of the 
Commission" includes any employee or contractor of the Com­
mission, or employee of such contractor, to the extent that 
such employee or contractor of the Commission, or employee 
of such contractor prepares, disseminates, or provides access 
to, any information pursuant to his employment or contract 
with the Commission, or his employment with such contractor . 
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