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ELASTIC SCATTERING OF CHEMICALLY REACTIVE MOLECULES

D, R, Herschbachf and G, H. Kwei**

Department of Chemistry and Lawrence Radiation
Laboratory, University of California, Berkeley, California

Abstract

The angular distribution and the velocity dependence of the total elastic
scattering cross section are calculated for a potential which presents a deep
"chemical well" at small distances and a van der Waals well at large distances.,
A two-bodf central f;rce model and semiclassical mechanics are used., It is
found that the chemical well suppresses much of the wide angle scattering and
under suitable conditions may introduce several special effects, including
"multiple rainbows" and "chemical orbiting" in the ahgular distribution and

"beats" in the undulatory velocity dependence of the total cross section;
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Mo#t édilisions'of potentiallj‘reactive molecules do not leéd;to
reaction'bﬁt to elastic or inelastic scatfering. However, the nonreactive
and the reactive modes of scattering are usually governed by the same
potential energy surface, since most chemical reactions are "electronicélly
adiabatic® énd the lowest potential surface ordinarily lies far below those
for higher electronic states. The distribution in angle aﬁd energy of the
product molecules depends'upon both the entrance and the exit valley .of the
potential surface, whereas practically all the molecules scatﬁered without
reaction have sampled only the entrance valley. Thus we may expect that
‘often the nbnreacti;e scattering will offer more direct information‘about‘
thé initial conditions which favor reaction\than can be obtainea frém studies
of reactive scattering,

For exothermic reactions without appreciable activation energy, the
entrapnce valley presents an extended downhill slope through part of the
region that would comprise the repulsive core in collisions of moleculg; that
cannot react, The primary effect of‘this "sdftness" of the potential éhould
be to suppress much of the wide angie‘elastiC'scattering thét would appear
for a potential of the Lennard-Jones type. The small angle scattering should
be little affected, és it is almost solely determined by‘theblong—range
behavigr'of the potential.

A marked fall-off in the elastic scattering at large angles has been

: : : -4 .
observed in molecular beam studies of several reactive systems. This has
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previously been attributed to depletion by reaction and analyzed on the
"assumption that otherwisé the wide angle scattering coﬁld be predicted
from a Lennard-Jones or Exp-6 potential chosen to fit the small anglé
scattéring. However, for the five examples which have beeﬁ studied, this
interpfetétion is found to imply a reaction cross section from 5 to 50
times lé?ger than that estimated from diréct measurement of the product
distribution.

Iﬁ ofder to evaluate the fall-off in wide angie scattering and other
qualitative feafures which might prove useful for the experimehtal characteri-
zation of the entrance valley in the pdtential surfaée, we have calculated the
angular distribution and the velocity dependence of the total scattering
cross sectién fér several potentials which may be appropriate fd variéus
types of rgactioﬁs. This paper describes the results obtained for one of the
simplesthpossibilities, a poténtial with an outer van der Waals well that

blends. monotohically into an inner chemical well, and also considers 'brie:"fly

some aspects of the scattering from related types of two-well potentials.

THO-BODY HODEL
‘We shall treat the elastic scattering of reéctive molecules és a two-
body central force problem. This is, of céurse,'a drastic idealization.
However, the experimental data available at present can give only a quali-
tative piqture of the potential, énd in view of our ignorance of chemical
interactions the results would remain‘almost equally speculative even.if a
rigorous treatment of the mechanics were feasible. .Alsag as indicated below,

it can be plausibly argued that if solutions to the actyal multidimensional
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problem were available, the comparison with experiment would essentially
involve a pre-averaging over vibrational coordinates and a post-averaging
over rotational coordinates. Under ordinary conditiéns thé result is likely
to be practically equivalent to the use of a fictiti&us central force
potential.

This approach is very similar to the "optical potential' or "cloudy
crystal ball" model popular in nuclear physics.5 In molecular scattering, '
however, it should be possible to relate the fictitious central forece poten=-
tial derived from a two-body analysis of the experimental scattering data
to properties of the actual multidimensional potential surface. We hope
eventually to carry out a detailed'examination of this aspect of the optical
potential approach to inelastic molecular collisions; here we shall consider
only the most rudimentaly features.

In the scattering of an atom A by a diatomic molecule BC, the actual

~ potential is three dimensional, V(E,g,r), a function of the translational

coordinate.r (distance from A to center of mass of BC), the vibrational

coordinate § of the BC molecule, and the angle o between the vectors r, and
£+ A rough ideé of the dependence of the potential on r and £ may be
obtained from van der Waals parameters and vibrational frequencies, as illus-~
trated in Eigs. 1-3 for the K + HBr example. The relevant parameter; are
~given in Table I, in terms of the customary notation.6 The wvan der Waéls
parameters for K + HBr correspond to the Exp~-6, a = 12 potentia16 which Beck
employed in analyzing. his scaftering experiments.l’7 This potential is _ !
plotted in Fig. 1(d). There is as yet no experimental information on the
van der Waals parémeters for KBr + H. The estimates givén in Table I were

~ ) 1

obtained as follows: o was taken as the sum of the van der Waals radii for o
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. hydrogen (1.2 ) and bromine (1,95 g)'atoms as given by Pauling;8 r  was
"obtained from ém=@l;12250, the relation which holds for a‘LennarduJénes
ﬁotenfial? and ¢ was faken as the experimehtal_valueg for Kr + Li, which
might’be expected to be a rough upper limit for the Br + H interaction. The
vibrational potential parameters fof the HBr molecule were obtainéd from
- Herzberg's éompilafion;lo those for KBr from more recent experimental

11,12,13

results, The harmonic oscillator vibrational:potentials.plotted

‘in Fig. 1(b) are obtained from
V(s)/hwe = 0,01483 mwe(AE)2

where V(E) and hu_ are in kcal/mole; m is the reduced mass.of the moiecule
"in g/mole, W, thévyibrational frequency in cm-l,‘and AE the éisplacemen?

from the equilibrium bond distance in X units.

Fig. 2 shows a‘contour map for the Hér + K = KBr + H peaction.

This was constructed by ﬁsing %he parameters of Table I to plot the separate
potential wells (shown by aashed contours) which wéuldlobtaiﬁ for the reac-
tants and products if there were no chemicéi interaction but only van derv
Waals interactions,and then Smoofhiy interpolating (solid contour'lineé)
between these welis. The acfivation'energy was‘assumed to be negligible,
Thus, sin;e the classical dissociation energies De (measurgdifrom'the poten-' .
- tial minimum) are virtually identical, the canyon which- connects the‘reactantv
and product valleys has an almost flat floor and sides which flare out
rapidly ‘in the transition from the‘narrow HBr + K valley to the broad KBr + H

valley,

- The portion of the potential-surface'which governs the thermal energy

nonreactive scattering of HBr + K is shown in a magnified view in Fig. 3. Since

the H atom is so light, the translational coordinate r is essentially the Br -

K distance; the vibrational coordinate E is the H - Br distance. Again the

R T




Table I,

Potential parameters for the K + HBr = KBr + H system.

r(K - HBr)

r'(KBr - H)

£(HBr)

£' (KBr)

€
kcal/mole

. 0.55

0.18

DO
o

kcal/mole

86,4

90,2

Translational potentials

§m o C = Qerm6
R 10769 erg cn®
4.9 4,35 1035

3.5 3.15 47

Vibrational potentials

D (U r
‘ e e o€
kecal/mole kcal/mole A
cm=1
90,2 7.57 1,412
2650 '
90.5 0.61  2.821
213

The asymptotic form of the translational potential is V(r) = —C/rs, where

C = 0.139 epms, with C in units of 10~

60 erg‘cma, € in kcal/mole, and r in R.
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dashed contours give thé‘potential which would obtain if oﬁly the van der Waals
interaction were present.\ The repulsiQe wall of Fig. 1l(a) is seen to be-
‘considerably displaced and tilted backwards by the chemical interaction, -As
already noted, we expect this to account for the most importént gqualitative  dif=-

ferences.dn the:elastic scattering of reactive and nonreactive molecules.

‘Approximate Separability of Vibration

In the region r > ros the vibrational motion in £ is much more rapid than
the translational and rotational motions and therefore is practically separable.
For the sample trajectory shown on the right side of Fig. 3, the initial trans-
lational relative velocity is 105 em/sec, and thus the representative point
travels 1 & aiong the r;direction in 1513 sec; there are meanwhile about 8 cycles
of the g-vibration, however, since the zero-point vibraticnal period of Hﬁr is
only 0.126 X 10-13 sec. A procedure analogous to the Born-Oppenheimer approxi-
mation empléyed in molecular spectroscopqu’ls then yields an effective

Hamiltonian

Hep = T(r,a) + V(r,a), : - (1a)

which corresponds to an average of the complete Hamiltonian over the rapid
vibrational motions. The kinetic energy operator I(r,a) includes the original
translational terms, the rotational kinetic energy of a rigid HBr molecule, and

various.coupling terms, The effective potential energy is given by
V(r,a) = !V(E,a,r)lwg(ﬁ,a,r)lzdi (1b)

where Yy, is the vibrational wavefunction evaluated for fixed values of a and r;

€
the weighting factor thus varies parametrically with o and r, since the frequency
of the transverse £-vibrations varies somewhat along the entrance valley of the

potential surface, and there is also some perturbation via vibration-rotation
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'coupling%s For collisions of nonreactive molecules (dashed contours in Fig. 3),
Eqs§_(l).also hélq fo a good approximatioﬁlin the region r < T although the
weighting factor |W5l2 varies rapidly with r near the repulsive wall, and
additional terms omitted‘from the Hamiltonian (la) become large enough to induce
transitions betweea vibrational states.:® |

For elasfic collisions of reaétive-molecules Eqs..(l) will become progres-
sively poorer app#&ximations theideeper the trajectories penetrate within
r<r . In this region, however, the optimum choice of coordinétes cor?e3ponds
to "mixing" r and ¢ to give again a low frequency translational coordinate r¥*
(which more or.less parallels the equipofential cubves iﬁ Fig., 3) and a high-
frequency vibratiohal coordinate £% kapproximately transverse to the equipoten-

tials). In transition state theory,l7 r¥ is termed the "reaction coordinate",

and simple approximate procedures for constructing the transformations

r;.': = I’*(r,E) and €='=v = E*(T,E) . | v )

have been described.ls’lg

These are actually vector transforma;ionSﬂand of
course depend on the.shape of the pétential surface, In tefms of r¥, %,
and a* the averaging procedure indicated in Egs. (1) can be exfendéd well into '
the canyon which leads to the product valley, and should rémaih a good approxi? B
mation as long as the motion in<g* is much more rapid thén that.in r¥,

A precise formulation of the separability condition and related questions
- will not be aﬁtemptéd here, Many aspects of such a treatment would resemble:
closely the theory of Vibration-fotation interactions.lS

It should be noted'that the aVeragetfrequency of motion in the £* coordinate
actually may not &rop very much even'ﬁhen the system "turns the corner® and
entérs the flared-out portion of the entrancervalley. In Fig. 2, the zero-
point energy. and vibrational frequency associéied with the &% "coordinate aoes

drop by about a factor of 5 on going from an isolated HBr molecule to the

middle of the turn; that is, from E& = 3.8 kcal/molé, w = 2650 cm-l [see Fig. 1(b)]
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to Eo = 0.7 kcgl/male, w = 500 cm"'l at' r = 3.2 k., However, iﬁ is possible
that much of the original zero-point energy remains in the £* motion a§
vibrational excitation. In this case the weighting factor in Eq. (lb) should
be replaced by a sum of terms which account for the contributions from the

various_vibrational states.

Approximations for Rotational Coordinates

The proper treatment of the angle dependence of the potential and the
various rotational terms in the kinetic energy is complicated, and in general
the averaging will vary with the collision energy and angular momentum. There
is little information about the angular dependence of intermolecular for-ces.20
In Figs. 2 and 3 we have assumed a collinear configuration of the atoms,
although it is likely that for reactions involving atoms with p.orbitals a
bent configuration would be more stable,21 Also, a considerable fraction of
the nonreactive collisions may be rotationaily inelastic.22’23’2u

Theré are some-redeeming features. In most nonreactive collisions the
orbital angular momentum L associated with the relative motion of A and BC
about the center of mass is much larger than fhe rotational momentum J of the
BC molecule. The kinetic terms involving BC rctations then can only slightly
displace the trajectories from the plane perpendicular to L; thus the trajec-
'tories will at leasf qualitatiyely resemble those for a central force potential;
This should hold also for the fotationally inelastic collisions if, as seems
likely, the dominant transitions have AJ << L and the energy transferred is
small compared with the translational energy.

The potential energy fdnction pfobably is strongly directional, but this
also need not preclude the use of two-body cent?al force mechanics. The angle
of deflection in a collision is mainly determined by the inéeraction in the
vicinity of the distance of closest approach, and ordinarily this region is

traversed too quickly to permit much change in the relative orientation of A and
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BC, Thus it is a plausible apprc#imation to assume that in a giﬁen collision -
only one relative orientatidn is effectiye.and to evaluafe'the defleétion as

if the angle a were fixed thrqughouf the‘collis;ohgs The deflections calculatedb
for collisionsiwith different fixed orientations should;then be suitabiy |
averaged. For tufning points at éufficiently large r (corresponding to small
angle scattering), the various orientations may have almost equal weight, since
here the dependence of the potential energy on a is weak compared with the
average rotational energy;of BC, The effect of the noncentral parf of the
potential may pracfically vanish in the.uniform average over all orientations,
On the other hand, for turning points in the region corresponding to the onset
of chemical interéétion, only a small rénge of orientations may be significant,
if the dependence on '« becomes strong enough to draw thévBC molecule into the
most favorable orientation before it has reachéd the furning point. 1In this.
case, the scattering would again appear to come from a central pbtential.

It is hoped that>eventually these speculations may be tested by compariéon
with exact trajectory calculations for a three-body potential. Hith modern
computers such calculations are feasible, and some studies of reactive 5catteripg
have already .been rﬁade.26 At present, however, a rigorous computer aﬁalysis of
elastic scattering appears to be prohibifively expensiye. A computer study of
fhe elastic scattering of atoms from a rigid rotbf molecule is in progress.27

The scattering patterns which we shall calculate from two—bédy mechanics
would always be more or less blurred out if proper accaunt were taken of fota~
tional coordinates and inélastic and reactive scattering. Féf example, in the
three body problem only the total angulér momentum L + J is é constant of the’
motion, aﬁd this suggests that the blurring effect of the kinetic rotational terms
can be roughly estimated by averaging the two-body deflection function over a
range L + J t§ |L - J| about the nominal value of L. Classically, the orbital

angular, momentum (in units of h) is given by
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L
L = 4.558 (pE)’D, (@)
in terms of the reduced mass p (in gm/mole), relative kinetic energy E (in
kcal/mole) agd impact parameter b (in Angstrom units).. The range LE +‘£]
to I& - g! ié only aﬁout 3% in a collision of K + HBr with relative energy
E = 1 kcal/mole and impact parameter b = 6.3 % (which corresponds to the
"painbow" minimum at K = 2, 8 = 1,3 in Fig., 7) and becomes 10% at b = 2 R

¢

(or 8 = 0.4). Since the total reaction cross section is @ = § 32,lattenua—
. ' r

~ tion by reaction is not expected to become dominant until b 2 (Qr/")Q = 1.5 &

(or 8 2 0,3), The K + CH3Br and K + Br, systems are expected té be less

2
favorable cases, since for rainbow collisions under similar conditions the
range |& + JI to [& - gl becomes 12% and 35%, respectively., In fact, the

rainbow patternm is foundl’2 to be quite sharp for K + HBr, it is considerably

smeared out for K + CH3Br and it is not observed at all for X + Br2.

POTENTIAL FUNCTION

The central force potential chosen for this study is shown in Fig. 4,
together with severaliof the effective potential curves,.

L2

»
2ur2

U(r,L) = V(r) +

)

obtained by adding the "centrifugal repulsion”" term. The usual Lennard-
Jones potential is uséd outside the van der Waals minimum at r = o V(rm) =
e; Within r the potential falls monotonically and below 0.7 r joins an
inner, '"chemical" well, This also has the Lennard-Jones form; with a minimum
at r'm =z 6.56 r and €' = 5e¢, The ratio:r'm/rﬁ corresponds to the rati§ of
the bond length of KBr (2,82 2) and the radius of the van der Waals well for
K + HBr (5.1 &). The ratio €'/c was taken as 5 to facilitate the use of
available tables of deflection‘anglesQ This is somewhat less than the ratio

of the exothermicity of the K + HBr reaction (3.8 kcal/mole) to the van der
Waals well depth (0.52 kcal/mole).

]

o0
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The effective potential curves correspond to various values of a reduced

angular momentum parameter,
2 1
L= Ll = ks, B (5)

Here B = 2uerm2/ﬁ2 is the "capacity" parameter for the outer weli, K = E/e

is the reduced kinetic energy, and B = b/rm the reduced impact parametér.

For r > r o the U(r,L*) curves coincide with those for the usual Lennard-Jones
potential, of cOQrse, and in particular for any L* < 1,39 the outer region pre=-
sents a centrifugal barrier. For r < ros the chemical well pulls the curves
strongly downwards, and when L* < 1,99 there appears an inner centrifugal
barrier. The heavy dots in Fig. 4% (and Fig. 9) indicate the "triple points"

for the outer and inner wells, located at

Y
U=0.8¢, 8 =1.75, L = 1,39 ' (6)

and

0.87, L" = 1.99, )

5.16e, B

U
respectively, For K or L* above these critical values, the corresponding
portion of the effective potential curve is monotonic. At

U= 0,35, 8 =1.76, L' = 1.04 | (@
the inner and outer centrifugai barriers have the same height; above this
point the inner barrier is the higher, below it the outer barrier is the

higher,

SEMICLASSICAL ANALYSIS

The general features of a semiclassical description of scattering from
the two-well potential are illustrated in Figs. 5 -9, Our analysis is based
on the treatment outlined by Ford and Wheeler,28 in which the classical deflec-

tion function plays the principal role. The deflection angle is given by
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0(K,8) = 7 = 2b Jé i' b 'V(r)i°

r “de, (9)
» R _ 4
(o]

and depends only on the potential outside the distance of closest approach,

r= rc(see Figs. 5 and 6), which is given by

r_ = bi} - Yéféﬂ-l/z. | r | | (10) o
Thus, fpr impact parameters suchv%hat r < s the deflection is identical vv -
to that for the Lennard-Jones potential and can be obtained from published
tables.6 Also for turning ﬁoints near a steeply rising portion‘ of the?
effective potential curve, the dominant contribution to the deflection
comes from the vicinity of r = r.s since the ihtegrapd of (9) becomes véry
large there and is. small élsewhere. Therefore, when r, is well below r s
the deflection approaches that for a Lennard-Jones potential with the_inner
well paraﬁefers r'm and €', The contfibufion of the outér Qell can be
approximated‘by repiacing EbyE + €, as illustrated in Eq. (7), where the
upper triple point is found to be.:located near E = 5 (0;85) + € = Se;  Fdr
K 3 2 we simply‘integrated.Eq. (9) numerically f§r_one §r two of the impact
parameters which produce turning points within the intermediate range, 0,7 r
to r o and interpolaféd between the inner and outer portions of the curve
which were obtained from the tables. ‘For K < 2, the perturbation by the outer
well grows stronger and this treatment of the r < rm'region becomes unsatis-
factory because the integrand in (§) exhibits another large maximum well |

&

outside the turning point region. However, for K < 5.16, the inner well pro-

- duces orbiting and the form of the inner part of the deflection curve can be T

determined, without intégration; from the location and shape of the centri-

fugal barrier and the critical impact parameter for orbiting.5’28 Thus again

it was only necessary to locate two or three intermediate pointé By numerical

1

R i s

R, T, sk~ s
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integration. The reduced phase shift was derived from the semiclassical

relation,28

58 = (3n/3L). {11y S - (11)

L

Since n + 0 as L + =, this yields

w
37 %0(x,8) =% xl/zf o(K,B8)d8. (12)
B

The orbiting singularities in the deflection angle produce abrupt jumps
in the phase shift, whicﬁ were smoothed out by the use of an improved
approximation similar to Ford-ana Wheeler's "enlightened primitive JWKB
analysis”.

The most striking features of the scattering curves in Fig., 7 =v» tha
orbiting singularities, @here © becomes infinite, the "rainbows™,
has an extremum and n an inflection, and the "glory", where © passes through
zero and n has a maximum. The glory resembles that for the Lennard-Jones
potential but is shifted to smaller impact paraméfers and has a somewhat
different energy dependence. For K > 5.16 there are three rainbows. The
outer: minimum is identical to the rainbow of the Lennard-J;nes potential, and
the inner minimum is similar but deeper, in accord with the greater strength
of the chemical well. In the angular distribution, these produce the u§ual
"megative"™ rainbow; that is, they focus the intensity from the correspoﬁding
range‘Of impact parameters into angles smaller than the extremum angle. However,
the intermediate maximum in the deflection function produces a "positive" or
"inverted" rainbow, with its "dark side" toward small angles and its "bright
side" toward large angles. TFor K < 5,16, the inner negative rainbow is super=-
seded by an orbiting sipgularity, and for K < 0.8 the outer rainbow likeﬁise
gives way to érbiting. As K is decreased further, the inner and outer orbiting
singﬁlarities move closer together, with the positive rainbow squeezed between

them, until they merge for K < 0,35,
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The topology of the scattering as a function of relative kinetic energy
and impact parameter is shown in Fig. 8 for the Lennard-Jonés potential and
in Fig. 9 for the two-well potential. Below the glory scattering curve, repul-
sion predominétes and the deflection is positive, above it attraction predomin-
ates and the defleétion is negative. To the right of the "monotonic boundary",
centrifugal repulsion outweighs the attractive interaction and the effective
potential curve increases smoothly as r decreases, Within the doubly shaded
area there exist two-distinct, classically inaccessible regions, which can be
reached by tunnelling through one or both of the centrifugal barriers; within
the singly shaded areas there exists only one such region. Below the orbiting
curves, the kinetic energy in the collision exceeds the centrifugal barriers., The
dashed curves in Figs. 8 and 9 specify the conditions which produce turning points
at the indicated radii, It is seen that the loci of the negative rainbows occur
at roughly constant distances of closest approach, about 6% larger than those
corresponding to the minima of the potential wells, Similarly, the glory occurs

at a radius somewhat outside the repulsive core, where V(g) = 0.

ANGULAR DISTRIBUTION

It is convenient to use the reduced polar cross section defined by

F (6) = 2m sin® I (8)/w x»-ﬁ-f.; | (13)

where I (8) = d(nb2)/dw is the customary differential cross section per unit
solid angle in the center-of-mass system. In the classical approximation,

F (8) = 28 (08)/]|30/238], : - ' (14)
and depends only on the reduced energy K once the form of the potential is
specified. The semicda.ssical approximation28 introduces quantum correction

factors which depend on the capacity parameter B as well as K, but ordinarily

T e e R s T T e




these are only significant for’the rainbow scattering_and sometimes for glory
scatteripg. .It-is convenient fo analyze separately ;arious éontributions to

" the angular'distribution which arise from ﬁarticﬁlar“portions of the ﬁlassical
deflection function, Table II gives'shch an analysis for fouﬁ branches of the
vdeflection func;ién which can be approximated by simpie functions. The complete
angular distribution is‘readily synthesized from these formulas plus the contri-
bution from the "repulsive brahch" of the defléction function (the regiéﬁ with
‘B < Sg in Fig. 7), which is evaluated numerically from Eq. (14). A summary of
notafion, units, and convenient working formulas is givén in Tablé I1I,

The contributions from-rainbow, orbiting, and'glory scatteringvall_consist
of a characteristic 'form factor" .which involves dimensionl;ss "width" and
"height" parameters, The derivation of these formuias'merely amounts to
rearranging the results of Ford and Wheelep.28 The form factors for rainbow
and glory scattering'are”given in Table IV and Fig. 10; tﬁé factor for orbiting
is just a simple exponential_function.v Reduced forms of‘thé various width and
height parameters that depend oniy on the reduced kinetiﬁ'energy ére plotted in’
Figs. 11 - 13 over the range K = 0,1 to’loo;v: | |

As indicated in Table II, these paramete?é depend on-the form of the
potential function via the following prOpebtiesxof.the ciassicai deflection
function: o . | .‘ |

For rainbow scaftering,'
0 03 s, = Koo nen,
For orbiting,v

B Qo’ and.ao

o’
For glory scattering,

and a = (30/38) .
.Bg_anvlgg S /,B oy

¥
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These quantities were evaluated by numerical analysi;. For the two-well
potential, the abﬁroximate deflection functions illustrated in Fig. 7 were
used, and for the LennardsJones potential the extensive tabulation of Hirsch-
felder, Curtiss, aﬁd Bird.6 Simple analytic expressiocns can be obtained in

the high energy region, where Eq. (12) reduces to the Born approximation

reéult, . _ ,
| o[ . phty2
RS fb V(r){ "7 gr. : (15)
. r o

For a potential of the form V(r) = C/r°, this yields

- C F(s) : v
n = -5 ;E?T .. | (16)
where
F(s) = (s =~ 3)(s - S5) ...1 %1 for s even _ (17a)
(S - 2)(5 -~ l") 0002 '
- (S - 3)(3 - 5) .0002 . .
i e Y ey s ) for s odd | (17b)

At the high energy limit, the deflection angle © = 2dn/d% and its derivatives

are thus given by
C (s = LIF(s) |

0 = (l8a)
E bs
36 _ ¢ s(s - 1)F(s) ,
®IET s vl - (18b)
320 C s(s2 - 1)F(s)
3 CE < 7 (18¢)

where the identity fiv = 2XE:has been used. Table V gives the limiting formulas

‘obtained by appiying'these approximations to the Lennard-Jones potential,
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Table II,

Semiclassical analysis of angular distribution

- Deflection Function

Reduced Polar Cross Section

'~ Parameters

Attractive branch:

0 = -(15n/8)Ke° 0.759K ™2/ 3g™4/3
‘Rainbdw bfaﬁch:

"0=6_+al(B-8 )2 H (B K)Ai2(x)

T r r r’ r
" Orbiting branch:

_' G :90 + aORnI(-B - Bo)/BQ' ,HO(K).echv-e/lAeo)

Gléfy-bréﬁcﬁ:'
 é=e:+a(3—B) ) H (K)G(y)
SRR - - g - g ely

|

(i

G(y

AB

)

uie ]

A =
r

"W

1]

(o - er)/Aer

§1/3,-1/3_ 1/3
r
l/GKS/BB a 2/3

3.60B
rr

=gz-

a
(o]

(2802/a°)exp(-90/ao)

in6 /A8
ISIP / .gl

vyJoz(y)

Bf%f?xfllzg -1
- g

‘48 fa
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Table III.

Notation, units, and handy numerical formulas'

E = relative kinetic energy = %-uvz, kcal/mole
L = orbital angular momentum = pvb = (2 + %Jﬁ
v = relative velocity, lOu cm/sec
b = i o 1 2

= impact parameter = (2% + 50%,
u = rgdpced mass = mlmz/(ml + m2), gm/mole
€ = potential well depth, kcal/mole
v, = radius of potential minimum, R
A= /% = (8)? = K
B = 2usrm2/h2 = AD = D2K
D = 2erm/hv = B/A = A/K = (B/K)l/2

2 2

K=E/e = A/D= A"/B = B/D

- _ 1
B = b[rm = (2 + —2°)/A
L = L/ﬂBl/2 - K1/2B

= 1,2897 (T/M)l/z, most probable velocity in oven

& =
v = 28,95 (E/u)Y/?

E = 1,195 X 107° pv?

x = 6.3522/uv = 0,2196 (y£)™/2 .

% 4 %-: 0.15743 uvb = 4,558 (uE)*/?b

v = 21/60=zl;12250 for Lennard-Jones potential

8 (radians) = 57,2958 6 (degrees), scattering angle

'
N
~3

)
A = 0,15743 wve = 4,558 (uE)l/zrm
B = 21,3 uper 2
‘ m
D =

135.5 erm/v




Table IV, qum factors for

28~

contributions,

the rainbow‘and glory:

X Aiz(x) a y ’G(Y)b
0.50 0.195 0.0 0,000
0,00 0.438 0.1 0.308
-1.02 1.000 0.2 - 0.630
-1.75 0.438 0.3 0.918

2,34 0.000 0.4 1,155
-3.25 - 0.612 0.5 1,493
-4,09 0.000 0.6  1.565
-4,82 0,505 0.7 1.710

©-5,52 10,000 0.8 1.806
-6.16 0446 0.9 1.848
-6.79 0,000 . 0.92 1,855
1.0 1.835
L1 'b'l.783>
1.2 ’:1.700»
1 1,582
| l.b e 1.350 _,; '
 1.6' 1,130
1.8 1,050
2;0 1,000

e e ety i 23

e e

‘aSquare of the Airy'integral,'normalized to unity
"at its maximum, v S

bSquare of the zero order Bessel function multiplied
by ‘ny and smoothly joined to unity in the region
.5 <y <2,
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Table V. Small angle scattering approximation for

the Lennard-Jones (6,12) potential,

(p 12 (r }
Vir) = ¢ tuﬂ- -2 mJ
by
J
o ! \
n=l 222
16 87 { 64 B7j
)
o= . 87 ,ls 281 ;% |
8 KB 320 B~
' [ 3
20038 = 457 17 ) - 28 ;%
4 KB 160 B
- \
320/3p2 = ~3L5T 18 1 - 429 :%
, 4 K8 160 8" j
B = 0,947 B_ = 1,056
g : r
n_ = 0.,422D n_ = 0.306D
g ' r
a, = =52.0/K | | 8, = =2.04/K
a_ = 63,5/K
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together with the pgrameters for rainbow and glory scattering obtainéd from
~ the conditions (ae/as)r = b.and eg = 03 For the two-well potential, similar
formulas can,Sé*obtained by suitable adjustment of the scale factors; bﬁt |
'_vthe limiting forﬁs will not hold until correspondingly higher energies are
reached,

Fig. 14 shows the angular distributions.which corresﬁbnd to the deflection
functions of Fig, 7. The rainbow contributions are evaluated for B = 5000, a
value roughly_appropriate to:both the K + HBr and the K + CHSBr cases. For
smaller values of B, the rainbow bumps would be weaker and bréader. (The glofy

effect form factor is unity except at very small angles and hence will be

ignored.)

The fall-off in intensity at wide angles (for the moment, ignore the rain-
bow bumps) is seen to be considerably more rapid than that for the Lennard-
Jones potential. At K = 8, the wide angle séattering comes entirely from the
repulsive branch of the deflection function. For K $v5.16_there-is also a
contribution from inner orbiting; this falls off more rapidly but isvroughly
 c6mparable in total intensity. For K <0.8 there is a further contribution
from outer orbiting. The fall-off in thevtotal'wide.angle sca;féring is not
quite as rapid and its onset is less abrupt than observed’in the scattering §f |
K + HBr and K +'CﬁsBr. The calculated aistributions are found to change in this
fashion when fhe rebulsive wall is moved back further and the ipner potential
well is made deeper or broader. fhus it is not necessary to assume that the
depletion by reaction isjﬁnexéectedlyblafée; as these calculations ind@cate that'
the observed fall-bff in wide angle scéttering can bé:accounted for by a two-well
. potential with reasonable dimenéions.

In principle the cgmplicated:rainbow structure can offer a sensitive test '
ofbthe foﬁm of the potential.v At K_§-8, tﬁé inner positive rainbow (RB+) and the

outer rainbow (RBO) patterns have comparable intensity and overlap near 12°., The
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inner negative réinbow (RB-) gives rise to a principal maximum at 83° and a
secondary maximum at 42°, The latter appears because the minimum in the
deflection curve (see Fig. 7) is deeﬁ and suffigieﬁtly symmetrical to maintain
the Airy interferénce pattern28 over a wide angular range. At K = 2, the RB+
also produces two lobes, the principal one at 38°, the secondary one at 52°,
These are considerably more intense than the RBO lobe at 61°, since in this
energy range the maximum in the deflection funcfion (see Fig. 7) is quife broad
as a consequence of the extended "pause" in V(r) just below r = r The RB-
has disappeared, as it has passed through 180° and gone over to orbiting at
K = 5,16, At X = 0,6, the RBO has also vanished and the RB+ pattern is
smearing out as it moves to wide angles.

No evidence of the RB+ or RB- rainbow features has been found for the

1,2 The absenée of a1 RB- pattern in the thermal

examples studied thus far.,
-energy range is not surprising, as the chemical well probably should be
relatively deeper and broader than assumed here, and the triple point (7) moves
rapidly to higher energy as the volume of the well is increased., Thus, in the
thermal range thé inner well should produce "chemical orbiting" rather than an
RB- pattern. Enlarging the inner well also aqueezes the RB+ pattern closer to
the RBO ﬁattern, since the inner dip in fhe deflection function (see Fig. 7)
then sets in at larger impact parameters, This extends considerably thé range
of reduced energy over which the RB+ and RBO patterns cannot be separately
resolved and likewise delays the appearance of "anomalous" intensity in the RB+
rainbow, For the experiments so far reported, K 3 3, and the observation of
only a single rainbow bump is compatible with a potential qualitatively similar
to that of Fig. 4 but with the volume of the inner well increased by about 50%.
A decisive test of the multiple rainbow features implied by this form of the

potential can only be obtained by experiments at energies which are either some-

what below the convenient thermal range (K small enough to permit the anomalous
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RB+ pattern to emerge as the RBO broadens into orbiting) or well above it

(K large enough to produce the RB=- rainbow at wide angles).

TOTAL CROSS SECTION

The semiclassical treatment yields simble analytic formulas for the velocity
depgndence of the total elastic cross section. For thermal energy scattering
from potentials qualitatively similar to the Lennard-Jones potential, the cross
section may be resolved into two terms: Q(v) = Qo + AQO. The main ferm, Qo’ is
a monotonically decreasing function of velocity and depends essentially only on
the form of the interatomic potential at large distances.2g’30 The 4AQ term gives
an unduldtory fine structure and depends primarily on the size and shape of the
attractive potential well., Bernstein has evaluated the functicnal dependence of
AQ for a Lennard=Jones potential; however, his method required an extensive
numerical aﬁalysis.31
General semiclassical approximations for both'Qo and AQ are readily obtained

from the optical ‘cheorem.32 The theorem gives

Q(r) = umxIm£(0), (19)

where f(0) is the forward scattering amplitude. In the semiclassical'approximation,28

£(0) = (i/x)f (1 - 2 M)bap, . (20)
[s]

The net contribution from the oscillatory eQin factor is only appreciable when’
the phase shift remains almost constant over a significant range of impact
parameters. For thermal scattering from simple one=-well potentials, this occurs
in two regions: (a) for "soft" collisions at large b, where on}y the weak
attfactive dispersion forces are significant and n becomes very small; and (b)
for glory scattering near b = bg’ where the attractive and repulsive forces
becohe comparable, the classical deflection angle passes through zero, and the

phase shift passes through an extremum,
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In region (a), the Bornm approximation of Eq. (16) may be used (with s > 3)

and this gives "

£(0) < (p2/20)TL(s = 8)/(s = 1)]e™

where
o= [(21¢|{ﬁv)p(s)]l/(s - 1)
and the phase angle is ‘
= X 7
a =5+ —(c/]ch

Thus we obtain

Qo = 2mp2r[(s - 3)/(s ~ 1)] cos [n/(s - 1.

(21a)

(21b)

(21c)

(22)

This result differs somewhat from the original Massey<Mohr approximation29

but is identical to that obtainéd from the Sghiff-Schlier and Landau- '

Lifsgits methods.30

In region (b), the deflection function is approximately linear (see Table

II) with impact parameter,

0

a(B»"B),
g .8

and since ©

IS SIS 2
=n_ +=aA(8 - o
n g “‘ag (8. ‘Bg)

Thus, as shown by Ford and Wheeler,28
1/2 iog

£ (0) = b (2nA/}a |) e 8

g8 8 I,gl ’ ,

where

2

a = 2n_ + —=n(a_/|a D S
g g 4 g/' g]) o

Hence the undulatory contribution is
' L 1/2
AQ = 4wib _(27mA/l|a_|)
wmis (e la
where

- 3 v,
. N.' (ag + 5«)/2n

cos'2nN'v

(23a)

2dn/d% = (2/A)dn/dB, the phase éhiftvis_approximately quadratic,

© (28b)

- (zué)v B

(2ub)

(25)

(26)
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is introduced as a convenient index for the extrema. N = 1, 2, 3,,,. for
- maxima and N = 3/2,5/2,,.. for minima. From the definition of ag, the condition

for an extrema is

. 3 .
Ing! = 7N - 2) (27a)
if ng and a are opposite in sign ('negative" glory scattering, the usual case),
g - .
and
In | = o = 2) © (27b)
g 8 ' =

if ng and ég have the -same sign ("positive" glory scattering).

In terms of the dimensionless parameters of Tables II and III, we have

o /mr % = 2,54 D*/° = 2,54 (8/K)Y° (28)
AQ/wrm2 = 10,03 4~%/2 Bglagi"l/2cos 27N : (29a)
= 10,08 D72 Bglxagi'l/zcos 2N ' (29b)
= 10,03 B™/% sgx’l/“la |72/ 2c0s 20N | (29¢)
= 5,015 Bg(HgAég)l/zcos 2nN . (294)

We shall use the forms involving the velocity independent parameter B. The
amplitude of the undulatory contribution 'is readily determined from the glory
scattering parameters of Table II and Fig. 13, The glory phase shift, ng'

which governs the wavelength of the undulations, is evaluated from Eq. (12)

and Table V. Fig. 15 gives the reduced phase shift, B-l/zng,-and the reduced
relative amplitude, Bg/on, where
8Q/Q_ = U cos 2mN | (30)

and

—9/208 K--l/20Ia |~l/2.
g g

U= 3,958 (31)

For the Lennard-Jones potential, Eqs. (28) and (30) approximate the
results of exact partial wave calculations within a few percent.31 They become

inapplicable in the "high velocity" region where ng is very small and repulsive
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phase shifts dominate, and they are at best incomplete in the "orbiting" region
" where the usual semiclassical procedures are inadequa’ce.28 Thus their range of
application is roughly
23D 2 31/2. ‘ (32)
About half of the maximum number of undulations permitted by Levinsonts thecremSl
will occur in the orbiting region, ! ‘
‘BernsteinSl has derived twq semiclassical épproximations for AQ; the first
agrees with the undulation amplitude in Eq. (29) but has %-instead of %-in fhe
extrema condition of Eq. (27a); the second gives amplitudes about 35% too large.
For the two-well potential the wavelength of the undulations (séacing between
the velocities corresponding to extrema in AQ)is less than fhat:for the Lennard-
Jones potential in roughly the ratio Erm/e'r'm = 1/3, The amplitude is also
less by a factor of about r'm/rm = 1/2, ‘As the glory effect appears at rather
small impact parameters, it may prove to be drastically weakened by rotational
blurring. Otherwise, howevef, the measurement of AQ(v) should ﬁrovide a direct
test for the presenc; of the inner chemical well. Such measu;ements have not yet

been reported for the scattering of reactive molecules, although AQ(v) has been

determined for several atom-atom systems.33

OTHER TWO WELL POTENTIALS

If the repulsive wall in Fig. 4 is removed and the inner well given a broad,
flat bottom, then for impact parameters inside the rainbow region the deflection
angle approaches zero again and the phase shift becomes‘practically constant.,
This further suppresses the wide angle scattering but does not gqualitatively
change the rainbow structure of the angular distribution. Despite the absence
of a glory, if the region of constaﬁt phase is sufficiently broad Q(y) can show
an undulatory velocity dependence that is markedly larger in amplitude than for

a Lennard-Jones potential.
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If the inner and outer we%ls are separated by a potential barrier, the
scattering at energies below the barrier.top is essentially the same as that'
from a Lennard-Jones potential, At higher‘energies, the inner well produées
a strong downward dip in the deflection function.and thus introduces a glory
with positive slope (a2 > 0) in addition to the usual glory (with a; < 0)
present for Lennard-Jones scattering. Each of these gives an oscillatory
contribution to thé total cross section,

cos 2N, + U. cos 21N (33)

8 =10 1t Y%

2°
Thus the velocity dépendence may show -a "heat" pattern in which the wavelength

increment essentially measures the difference in the area of the van der Waals

well and the area of the activation energy barrier,

 DISCUSSION

The main point illustrated by these calculations is that the fall-off in

wide-angle elastic scattering which has been observed for several reactive

systems may arise primarily from the "softness" of the potential., Comparison

with the experimental reaction cross sections indicates that depletion by reaction’

is a much less significant factor. Since we have had to use two-body central:

~ force mechanics in order to carry out any detailed analysis, the vapious special

features we have predicted are quite dubious and may turn out to be unobservable.

However, even if this occurs, it should be possible to obtain at least a quali-
tative experimental chéracterizatibn of the poteﬁtial inside the region which.v
would be excluded by the'repulsive core in collisions of nonreactive molecules.
For this purpose, even experiménts.without velocity_seleétion will be useful,

especially for systems in which the chemical well is deep compared with thermal

energies. In terms of experimental motivation, this is an important contrast with

the interpretation based on deple‘t:ion;l-3 the latter requires velocity selection,

to permit an impact parameter to be'assigned to each scattering angle.
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Perhaps we should emphasize that despite our frequent reference to the
K + HBr system, the potential we hawve used is not likely to be appropriate
. for this system. The observed threshold for chemical reaction of 0.4 kecal/
mole indicates the presence of a positive potential barrier.l Also, as
mentioned already, in the region of the potential surface which is important
for elastic scattering most of the initial zero point vibrational energy of
HBr may remain associated with the &% coordinate rather than entering the
reaction coordinate. In this case, the effective potential for elastic scat-
tefiﬁg would not display a chemical well nearly as deep as that of Fig. 4. If
there is aﬁ appreciable potehtial drop beyond the barrier, however, the K + HBr
scattering should possess a chemical glory of strength comparable to the usual
van der Waals glory. Hence this appears to be a promising system with which to

look for a beat pattern in the velocity dependence of the total cross section.
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Fig. i -

Fig. 2 -

Figo 3 -

Fig. 4 -

Figo 5 -
Figo 6 -
Fig. 7 -

Figo 8 -

Figo 9 -

Y .

FIGURE CAPTIONS

(a) Exp-6 (a = 12) potential function for K + HBr. The potential
vanishes at r = ¢ and has its minimum, -€, at r = r -
(b) Harmonic oscillator vibrational potentials for HBr and KBr.

Dotted lines indicate the gzero-point vibrational levels.

Contour map of potential energy surface for linear configurations
of the HBr + K system. Dashed contours indicate the potential
surface (derived from Table I) which would obtain if there were
no chemical interaction but only van der Waals interaction.

Arrows show location of van der Waals migima at r = rm and equili-

brium bond lengths at r = Tge

Magnified view of the HBr + K entrance valley in the potential surface
of Fig. 2. The translational coordinate. is the K ~ Br distance, the
vibrational coordinate is the H - Br distance. Trajectofy shown at
right corresponds to an initial relative velocity of HBr and K of

_lO5 cm/sec,vwith HBr in the ground vibrational state. Arrows ét

left indicate the zero-point vibrational amplitude.

Two-Well' potential and effective potential energy curves for varioils
values of the reduced angular momentum. The corresponding curves

for the Lennard-Jones potential are shown dashed.

Distance of closest approach as a function of initial impact parameter:

for various values of the reduced kinetic energy K, for the Lennard—p

Jones potential.

Distance of closest approach for the two-well potential. The light
dashed curves give the loci of turning points for the various types

of rainbow and glory scattering.

Semiclassical deflection angle_and phasebshift for the twofweil

potential, at various values of the reduced kinetic energy. Dashed'

' Curves refer to the Lennard-Jones pOténtial.v

Topology. of scattering for the Lennard-Jones potential.

Topclogy of scattering for the two-well pobential. The inner
orbiting curve, which extends from K ='O‘35 to K = 5.16, was
inadvertently left unlabelled.



Figb lO -

Fig. 11 =~

Figo 12 -

Fig- 13 -

Fig~ lll' -

¥Fig. 15 -

Form factors for (a) rainbow scattering and (b) glory scattering,
as defined in Tables II and III. '

Plots of dimentionless parameters er, Bl/séﬁr, and.Bnl/6H£ for
rainbow scattering (see Table II) versus reduced kinetic Energy.
The "outer" rainbow of Fig. 7 (which is identical to that for
the Lennard-Jones poténtial) is labelled "O"; the "inner"

non 1. nu

negative and positive rainbows are labelled and + , rTe-~

'spectively. _ '

Dimensionless parameters A9 and H_ for orbiting (see Table II)
versus reduced kinetic energy. "Outside"” and "Inside" refer to

the two branches 6f the deflection function (see Fig. T), with

. positive and negative slopes, respectively. Below K = 0.8 the

curves refer to "van der Waals orbiting', and the dashed portion
of the "Inside" curves applies to the Lennard-Jones potential.
Above K = 0.8 the curves refer to 'chemical orbiting" associated
with the innter centrifugal barrier of Fig. 4. The dot-dashed
portion of the "Outside" curves indicates the region excluded
because the outer part of the chemical orbiting deflection func-

tion gives way to the van der Waals orbiting or rainbow scattering

" (see Fig. 7).

1/

reduced kinetic energy (see Table II), lDashed,curves refer to the

Dimensionless parameters B 2A® and H_ for glory scattering versus

Lennard-Jones potential, solid curves to the two-well potential.

Angular distributions corresponding to the deflection functions
shown in Fig. 7. The ordinates of the K = 2 and K = 0.6 curves .
should be multiplied by factors of 25 and 250, respectively.

1/2

U, versus reduced kinetic energy. Dashed curves

Dimensionless glory scattering phase shift, B~

/ By and relative
9/20
B

amplitude,
refer to the Lennard-Jones potential; solid curves to the two-well

potential.
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