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A comprehensive biomedical variant catalogue based on whole 
genome sequences of 582 dogs and eight wolves

V. Jagannathan, C. Drögemüller, T. Leeb, Dog Biomedical Variant Database Consortium 
(DBVDC)†

Institute of Genetics, Vetsuisse Faculty, University of Bern, Bern, Switzerland

Summary

The domestic dog serves as an excellent model to investigate the genetic basis of disease. More 

than 400 heritable traits analogous to human diseases have been described in dogs. To further 

canine medical genetics research, we established the Dog Biomedical Variant Database 

Consortium (DBVDC) and present a comprehensive list of functionally annotated genome variants 

that were identified with whole genome sequencing of 582 dogs from 126 breeds and eight 

wolves. The genomes used in the study have a minimum coverage of 10 × and an average 

coverage of ~24×. In total, we identified 23 133 692 single-nucleotide variants (SNVs) and 10 048 

038 short indels, including 93% undescribed variants. On average, each individual dog genome 

carried ~ 4.1 million single-nucleotide and ~1.4 million short-indel variants with respect to the 

reference genome assembly. About 2% of the variants were located in coding regions of annotated 

genes and loci. Variant effect classification showed 247 141 SNVs and 99 562 short indels having 

moderate or high impact on 11 267 protein-coding genes. On average, each genome contained 

heterozygous loss-of-function variants in 30 potentially embryonic lethal genes and 97 genes 

associated with developmental disorders. More than 50 inherited disorders and traits have been 

unravelled using the DBVDC variant catalogue, enabling genetic testing for breeding and 

diagnostics. This resource of annotated variants and their corresponding genotype frequencies 

constitutes a highly useful tool for the identification of potential variants causative for rare 

inherited disorders in dogs.
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Introduction

The domestic dog (Canis lupus familiaris or Cauls familiaris) was the first domesticated 

animal species. In the last few hundred years, more than 400 genetically isolated breeds of 

dogs have been created through human selection and breeding in closed populations. Dogs 

are the species with the greatest intra-species phenotypic diversity among vertebrates. Body 

size as well as limb and skull proportions differ noticeably among breeds, with Chihuahuas 

at one end of the spectrum measuring 20 cm in height and 2 kg in weight compared with 

Great Danes on the other end exceeding 76 cm in height and 90 kg weight. In addition to 

morphology, behavioural variation exists across breeds, with many breeds being highly 

specialized for single tasks such as herding, hunting, retrieving, guarding, detecting scent or 

providing companionship. The genetic bases for phenotypic variation among breeds have 

been reported, including body size (Sutter et al. 2007; Boyko et al. 2010; Vaysse et al. 2011; 

Rimbault & Ostrander 2012; Hayward et al. 2016), skull shape (Schoenebeck et al. 2012), 

short legs (Parker et al. 2009; Brown et al. 2017), hair morphology (Drögemüller et al. 2008; 

Cadieu et al. 2009; Hytönen & Lohi 2019) and aggression or fear (Zapata et al. 2016; 

Sarviaho et al. 2019). These studies provided important insights for understanding the 

genetic regulation of analogous traits in humans.

Many genetic diseases are analogous to those in humans, for example susceptibility to 

certain types of cancer and a large number of Mendelian diseases. The list of known diseases 

in dogs is greater than that in any other domestic animal species (Ostrander et al. 2017). The 

Online Mendelian Inheritance in Animal (OMIA) database lists 426 potential dog models 

for human diseases (https://omia.org; accessed 14 May 2019). Canine heritable diseases not 

only show the clinical and pathological features of their human counter-parts but also 

harbour underlying causative genetic variants in the same genes as in humans (Hytönen & 

Lohi 2016). In addition, the identification of disease-causing variants in previously 

uncharacterized genes provides novel candidates for rare human diseases. Examples include 

rare diseases like retinitis pigmentosa, osteogenesis imperfecta, congenital ichthyosis, nasal 

parakeratosis, footpad hyperkeratosis, neurodegenerative vacuolar storage disease, 

myoclonic epilepsy and lethal acrodermatitis (Zangerl et al. 2006; Drögemüller et al. 2009, 

2014a; Merveille et al. 2011; Grall et al. 2012; Jagannathan et al. 2013; Kyöstilä et al. 2015; 

Hytönen et al. 2016; Wielaender et al. 2017; Bauer et al. 2018a).

Given the breeding history of dogs, with extreme genetic bottlenecks during breed formation 

and the subsequent maintenance of closed populations starting from a small number of 

founding animals, it is not surprising that individual breeds also exhibit breed-specific 

patterns of disease susceptibility. In the last 15 years, geneticists have mapped hundreds of 

Mendelian trait loci using smaller sample sizes than are required in human disease 

association studies. Instances include MITF, which is involved in white spotting, found with 

nine cases and 10 controls (Karlsson et al. 2007) and the epilepsy gene, LGI2, that was 

mapped with 11 cases and 11 controls (Seppälä et al. 2011). For simple Mendelian traits, 

only 15 000 informative single-nucleotide variants (SNVs) spanning the genome were 

reported as being adequate for successful genome-wide association studies, whereas for the 

same study in humans, 300 000 SNVs might be required (Lindblad-Toh et al. 2005). This is 

due mainly to long-ranging intra-breed linkage LD, which extends to roughly 1 Mb in dogs 
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compared with a few kb in humans (Sutter et al. 2004; Lindblad-Toh et al. 2005). Because of 

the long-ranging LD, the identification of association signals is easier in dogs compared with 

humans. However, fine mapping and the identification of the underlying causal variant(s) for 

a given association signal are often quite challenging in dogs. Within dog breeds, typically 

many variants close to the causal variant are in strong or even perfect LD and hence it may 

be difficult to discriminate among them.

With whole-genome sequencing (WGS), it has become feasible to at least comprehensively 

access the existing genome variation. Identification of causal variants for heritable traits in a 

WGS approach involves the mapping of case and control sequence reads to a reference 

genome sequence (Bourneuf et al. 2017). The currently used CanFam3.1 reference genome 

sequence is derived from a female Boxer with contig and scaffold N50 sizes of 180 kb and 

45 Mb respectively (Lindblad-Toh et al. 2005). Any given dog genome typically has several 

million variants compared with the reference genome. Therefore, a meticulous approach to 

reliable variant calling and hierarchical filtering strategies is required to reduce the millions 

of variants per sample to a manageable list of candidate genes and causative variants. Many 

heritable traits in dogs have been successfully solved using such a WGS approach for both 

diseases and morphological features; examples include a de novo variant in ASPRV1 for 

ichthyosis and variants in GJA9 for polyneuropathy, RBP4 in congenital eye disease and 

DVL2 in dogs with screw tails (Bauer et al. 2017a; Becker et al. 2017; Kaukonen et al. 2018; 

Mansour et al. 2018). More recently, Plassais et al. (2019) identified candidate causative 

variants for several phenotypes.

The cost of a mammalian WGS including data analysis and data storage is still above US

$1000. Hence, WGS experiments in individual research laboratories directed at identifying 

the causal variants for Mendelian traits are carried out with small numbers of cases and 

controls. The efficiency of such WGS approaches can be drastically improved by including 

variants from dogs sequenced for other projects from around the world. Comprehensive 

variant databases containing accurately called and genotyped variants from hundreds or 

thousands of dog genomes enable a straightforward filtering option based on allele and/or 

genotype frequencies within or across selected cohorts. This is a powerful approach to 

identifying and excluding common variants that are unlikely to cause rare inherited diseases. 

A comprehensive set of variants together with their allele and genotype frequencies can thus 

greatly help to distinguish functionally relevant from neutral variants. The use of such 

filtering strategies has become standard practice in human medical genetics, and for 

example, the gnomAD database (https://gnomad.broadinstitute.org/) has become 

indispensable for the identification of candidate pathogenic variants in human genetics (Lek 

et al. 2016). A similar approach is used within the cattle community and the 1000 Bull 

Genome project (Hayes & Daetwyler 2019).

Currently, the canine variations reported in the National Center for Biotechnology 

Information (NCBI) genetic variation database hosted at the European Variation Archive 

contain ~2.9 million SNVs. We submitted a comprehensive list of variants from 238 

purpose-bred dogs, containing 18 639 483 SNVs and 9 293 851 short indels, to the European 

Variation Archive in 2017 (PRJEB24066), but this dataset was not processed until May 

2019. Comprehensive variation data from 132 canids and 90 village dogs were reported 
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previously (Marsden et al. 2016; Taylor et al. 2016). The iDog database released a variation 

list from 127 individual dogs and grey wolves (Bai et al. 2015; Tang et al. 2019). Lastly, 

Plassais et al. (2019) reported the analysis of 722 canine whole-genome sequences to 

discover variants associated with 16 different phenotypes, including body weight variation 

observed across modern dog breeds but absent in wild canids.

We report here a comprehensive list of high-quality variants from 590 genome sequences 

comprising 582 dogs from 126 different breeds and eight wolves (Table S1). We included 

178 sequences from public databases that had been produced by other groups, whereas the 

remaining 412 whole-genome sequences were produced and submitted to public databases 

by members of the Dog Biomedical Variant Database Consortium (DBVDC) from more 

than 20 institutions around the world. The DBVDC was established in 2013 to aggregate 

WGS data from a variety of projects examining dog biomedical and morphological 

phenotypes. The DBVDC proceeds in incremental ‘runs’, with a run taking place 

approximately every 3–6 months.

Materials and methods

Datasets

Whole genome sequences of 582 dogs and eight wolves available at the European 

Nucleotide Archive and the Short Read Archive were used for the analysis. See Table S1 for 

details of the project and sample accessions. The CanFam3.1 reference genome was 

downloaded from Ensembl (http://www.ensembl.org/Canis_familiaris/Info/Index) and was 

used for alignment of reads.

Samples, read filtering and alignment

A total of 590 individual genomes were sequenced with Illumina sequencing technology 

NextSeq, HiSeq or Nova-Seq. The 590 individuals consisted of 467 males and 123 females. 

The samples were selected based on their availability in public databases and with a 

minimum coverage of 10×. Raw sequencing reads were filtered for adaptors and trimmed 

based on the quality score using FASTP (Chen et al. 2018). Quality filtered reads in FASTQ 

format were then aligned with the reference genome assembly CanFam3.1 using BWA 

(version 0.7.13; Li & Durbin 2010). GATK CALLABLELOCI was used to collect statistics on 

callable, uncallable, poorly mapped and other parts of the genome. The following arguments 

were used --minBaseQuality 20, --minDepth 4 and --minMappingQuality 10.

Variant calling and filtering

Aligned reads stored in SAM format were co-ordinate sorted and converted to bam format 

using SAMTOOLS (version 0.1.18; Li et al. 2009). Duplicates were marked with PICARD tools 

(http://broadinstitute.github.io/picard). Best practices established for the GENOME ANALYSIS 

TOOLKIT (GATK version 3.8; DePristo et al. 2011) were used for calling SNVs and short 

indels. Base quality recalibration was performed using BaseRecalibrator from GATK, where 

the recalibration report was formed using the default setting for covariates and the NCBI 

dbSNP database (Build 151) as the database for known sites. For each sample, the 

HaplotypeCaller program was used to call variants from the recalibrated bam file. The 
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output, a GVCF file (with g.vcf extension), contained raw, unfiltered SNV and indel calls for 

all sites in the genome, variant or invariant. The GenotypeVCF tool was then used for 

performing joint genotyping on the per-sample GVCF files generated by HaplotypeCaller 

and produced a single VCF for the cohort. The single cohort VCF file was passed to the 

VariantFiltration tool for filtering based on several metrics provided by GenotypeVCF tool. 

Hard filtering was done using the following criteria, as suggested by GATK documentation: 

QUAL > 30.0, QD > 2.0, MQ > 40.0, FS < 60.0, HaplotypeScore < 13.0, MQRankSum > 

−12.5 and ReadPosRankSum > −8.0.

Annotation of variants

The filtered VCF file was annotated using SNPEFF (version 4.3; Cingolani et al. 2012) and 

NCBI annotation release 105 of the CanFam3.1 build. Analysis of ‘protein-changing’ 

variants included variants annotated by SNPEFF with the following sequence ontology terms: 

missense_variant, start_lost, stop_gained, stop_lost, stop_retained_variant, 

splice_acceptor_variant, splice_donor_variant, conservative_inframe_deletion, 

conservative_inframe_insertion, disruptive_inframe_deletion, disruptive_inframe_insertion, 

exon_loss_variant, frameshift_variant, and gene_fusion. SNPEFF classifies missense variants, 

conservative in-frame insertions and conservative in-frame deletions as having a ‘moderate 

impact’. ‘High-impact’ variants include all other protein-changing variants. SNPEFF predicts 

loss-of-function (LoF) variants that include stop-gains (nonsense), splice site-disrupting 

sNVs, frameshift indels in a coding sequence or larger deletions that remove coding exons. 

SNPEFF also filters putative LoF variants identified in the last 5% of the coding region. 

VCFTOOLS was used for studying the statistics of the variants (Danecek et al. 2011).

Phylogenetic tree

The phylogenetic tree was constructed using SNPHYLO (Lee et al. 2014). We used only exonic 

biallelic variants and used an LD threshold of 0.7 to remove redundancy owing to LD, 

leaving a total of 288 452 variants that were used for the tree construction.

Enrichment analysis

The genes carrying tolerant LoF variants were used for enrichment analysis using the 

Database for Annotation, Visualization and Integrated Discovery (DAVID) functional 

annotation tool (Huang et al. 2009). The DAVID functional annotation clustering uses an 

algorithm to explore relationships among the annotation terms from various annotation 

sources and then presents a score for an enriched group of terms. In the current version of 

DAVID, the annotation tool includes more than 40 annotation categories including GO 

terms, KEGG Pathways and UniProt.

Identification of potential embryonic lethal alleles

To identify and prioritize LoF variants in putative embryonic lethal (EL) genes, we used data 

from recent publications on genome-wide screens for genes that cause embryonic lethality in 

mouse (Dickinson et al. 2016), cattle (Agerholm et al. 2001, 2006; Charlier et al. 2012; Fritz 

et al. 2013, 2018; Sonstegard et al. 2013; Cooper et al. 2014; Daetwyler et al. 2014; 

Venhoranta et al. 2014; Adams et al. 2016; Schütz et al. 2016; Schwarzenbacher et al. 2016; 
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Michot et al. 2017), pig (Derks et al. 2019) and human (Shamseldin et al. 2015; Lord et al. 

2019). The non-redundant curated list of EL genes from each of the studies was used to 

obtain orthologous gene ids from the NCBI dog genome CanFam3.1 annotation release 105 

(Table S2). Biallelic variants in these orthologous genes were considered to cause potential 

EL alleles, if annotated by SNPEFF as high impact and not present in the homozygous variant 

state in any of the individuals. Additionally, we restricted our list to variants with an average 

sequencing depth of more than 5 using the GATK variant filter ‘select DP>’. DP values in 

the VCF file represent the number of reads passing quality control used to calculate the 

genotype at a specific site in a specific sample, with higher values for DP generally leading 

to more accurate genotype calls.

Identification of potential developmental disorder alleles

We also used the developmental disorder (DD) genes included in the DDG2P panel (https://

decipher.sanger.ac.uk/ddd; accessed 25 March 2019) (Deciphering Developmental Disorders 

Study 2015) . This included 1846 unique genes. Mapping them onto CanFam3.1 NCBI 

Annotation release 105 found 1809 orthologous genes. Variants in these 1809 genes were 

filtered in the same manner as explained above (Table S2).

Results and discussion

We analysed short-read whole genome sequencing data from 582 dogs and 8 wolves. The 

read coverage for the 590 genomes ranged between 10× and 66× with a mean coverage of 

24× (Table S1). The exclusive usage of genomes with relatively high coverage improved the 

accuracy of variant detection and the assignment of correct genotype calls in each analysed 

dog genome. All WGS data available in the DBVDC collection are processed through the 

DBVDC pipeline, which detects sequence variants in the form of SNVs and short indels 

from alignments of the sequences. Each animal with a whole genome sequence is genotyped 

for all variants detected. The aim of the consortium is to make summary data and variant 

(VCF) flies available to the wider scientific community.

Diploid calls were confidently made for an average 94.0% of the autosomai bases in the 

reference genome, with a range of 80–97% across the 590 genomes. These numbers are 

similar to those reported in 132 individuals from five canid species (Taylor et al. 2016). 

After filtering, a total of >33 million variants were identified consisting of 23 133 692 high-

confidence SNVs and 10 048 038 indels (Table 1). Only 7% of these variants were contained 

in the NCBI dbSNP database (Build 151). The average SNV transition-to-transversion ratio 

was 2.08, and the SNV heterozygote-to-homozygote ratios were in the range of 0.5–3.3 

(average 1.2). We identified 6 297 746 distinct short insertions (range 1–704 bp) and 3 750 

292 distinct short deietions (range 1–329 bp), with an average of 1 42 7 335 indel variants 

per individuai genome. The estimated heterozygote-to-homozygote ratios were 0.4–2.5 for 

short indels (average 1.02).

We used NCBI Annotation Release 105 to functionally annotate the variants (Appendix S1) 

and identified SNVs in 29 413 genes and indels in 29 440 genes out of a total of 29 831. As 

expected, only 2% of the variants were located within protein-coding regions/exonic 

sequences. The number of homozygous and heterozygous variants varied greatiy between 
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individual genomes. We speculate that this may reflect in part the different levels of 

inbreeding (Table 1).

Phylogenetic tree

A total of 288 452 biallelic exonic variants were used to construct a phylogenetic tree of the 

590 genomes analysed. This confirmed the expected breed clustering (Fig. S1) as reported in 

other studies (Plassais et al. 2019). Subtle differences include a single Dalmatian which was 

closer to the English Pointer in our tree, whereas Dalmatians were closer to Curly Coated 

Retrievers and Dachshunds in Plassais et al. (2019). Also, Greyhounds in our tree were 

closer to the Terriers, whereas in Plassais et al. (2019), they were closer to Borzoi and 

Bouvier des Flandres.

Loss-of-function-tolerant genes

The entire DBVCD dataset comprising 590 genomes contained 32 240 loss-of-function 

(LoF) variants (5614 SNVs and 26 626 indels). LoFs represent a more stringently filtered 

subset of high-impact variants, based on previously suggested parameters (MacArthur et al. 

2012). Only 181 of these LoF variants were found in dbSNP (Build 151). The LoF variants 

were found in 40 847 RefSeq protein-coding transcripts (including XM xenoRefs) belonging 

to 8109 genes.

In order to look for LoF-tolerant genes, i.e. genes that are not essential for survival and 

reproduction, we subjected the putative LoF variants to a series of filtering criteria. The 

exclusion criteria were as follows: (i) LoF variants not occurring in homozygous variant 

state in at least one of the individuals, (ii) LoF variants for which all protein-coding 

transcripts of the gene were not affected, (iii) LoF variants that overlapped any repetitive 

sequences, (iv) variants affecting non-canonical splice sites, (v) indel variants affecting 

splice sites and (vi) known OMIA gene variants published in OMIA. After performing these 

filtering steps, we obtained 1897 genes harbouring LoF variants (Table S2) from a total of 

13 603 genes annotated to contain LoF variants. Enrichment analysis (Appendix S1) 

revealed that the olfactory receptor genes are the only large class of functionally related 

genes that are tolerant of LoF variants.

Potential embryonic lethal and developmental disorder variants

We used our dataset to identify and prioritize variants that could potentially give rise to 

recessive alleles causing embryonic lethality (EL) in dogs. We obtained 528 dog orthologues 

to genes with published evidence for EL alleles in other species. After filtering for variants 

as detailed in Appendix S1, we identified 247 genes where a single or a small number of 

dogs were heterozygous whereas none of the 590 genomes were homozygous for the mutant 

allele (Table S2). Across the 590 genomes, each genome carried on average 30 potential EL 

alleles (range 6–181). This is slightly higher than what has been reported for 624 cattle 

(Charlier et al. 2016).

Loss-of-function variants were also analysed for 2211 dog orthologues to DD genes. We 

found potentially deleterious variants in 894 DD genes (Table S2). Across the 590 genomes, 

each genome carried on average 97 potential DD alleles (range 21–583).
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The numbers of identified potential EL and DD alleles are probably overestimated, as the 

current NCBI Annotation Release 105 of the CanFam3.1 reference genome is still imperfect, 

resulting in erroneous SNPEFF functional effect predictions. Future improvements in the 

reference genome assembly and its functional annotation will further increase the accuracy 

of the variant catalogue. We also acknowledge that our catalogue lacks most of the structural 

variation, which may be assessed by the use of third-generation long-read sequencing 

technologies.

Relevance for biomedical research

Work based on the DBVDC variant catalogue has already resulted in the identification of 

more than 50 causative variants for various inherited traits in dogs (Tables 2 & S2). These 

included many canine homologues of known human hereditary disorders, but also identified 

several novel genes not previously known to be associated with human diseases, thus 

providing new candidate genes for those homologous human diseases.

Conclusion

The variant analysis of 590 canine genomes identified ~33 million functionally annotated 

variants. We made an effort to include only genome sequences with high coverage and 

applied stringent filtering criteria to ensure the high quality of the variant and genotype calls. 

This dataset should help to identify causative variants for monogenic disorders more 

efficiently. The addition of more genomes will eventually also aid in the identification of 

causal variants for complex traits.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Table 1

Variants in a typical dog genome

Average Median Range

SNVs

 Homozygous 1 950 938 1 957 262 1 127 141–3 073 757

 Heterozygous 2189 278 2 153 775 311 003–3 912 095

Indels

 Homozygous 800 793 816 114 324 094–1 388 497

 Heterozygous 803 006 791 225 170 327–1 122 579

High-impact variants
1

 SNVs 1371 1379 527–2200

 Indels 4553 4709 1778–12 710

Moderate impact variants
1

 SNVs 36 315 36 810 10 460–53 789

 Indels 1808 1838 515–3525

SNV, single-nucleotide variant.

Note: The table gives average numbers and ranges of identified variants and their predicted effects in an individual as calculated from the 
comprehensive analysis of 590 genomes.

1
Variant impact classification as provided by the SNPEFF output (see Appendix S1).
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