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Abstract

From sim-to-real: learning and deploying autonomous vehicle controllers that improve
transportation metrics

by

Eugene Vinitsky

Doctor of Philosophy in Engineering - Mechanical Engineering

University of California, Berkeley

Professor Koushil Sreenath, Chair

The recent wide availability of semi-autonomous vehicles with distance and lane keep capabil-
ities have created an exciting opportunity to improve the throughput and energy efficiency of
the highway by deploying modified control strategies. However, even at current penetration
rates, the optimal mechanism for the design of these decentralized, cooperative strategies
is an open problem. In this work, we use Multi-Agent Reinforcement Learning (MARL)
to investigate, design, and deploy cooperative autonomous vehicles (CAVs) to achieve these
goals and demonstrate a field deployment of an RL-based traffic smoothing controller.

We focus on multi-agent reinforcement learning as a mechanism for handling the complexity
and non-linearity of large-scale traffic. We start by constructing a standardized suite of
benchmark tasks for evaluating the efficacy of learning algorithms in designing controllers
for CAVs; we evaluate these algorithms in the centralized setting where all CAVs are actuated
by a single controller. We then extend one of these benchmarks, regulation of the inflow
to a bottleneck via decentralized CAVs, to the multi-agent setting. We demonstrate that
from both low to high penetration rates, CAVs are capable of improving the throughput of a
scaled model of the San Francisco-Oakland Bay Bridge and investigate challenges in scaling
our methods in open-network settings where vehicles can enter and exit the system.

In preparation for a road test intended to demonstrate stop-and-go wave smoothing on large
scale networks, we next study energy optimization of a full-scale model of a section of the
I-210 in Los Angeles. Using Proximal Policy Optimization with an augmented value function
we demonstrate that we are able to sharply improve the miles-per-gallon of the system and
that the resultant controller is robust to likely variations of the system such as system speed
and CAV penetration rate. However, we observe that the resultant waves are very unrealistic
and additional calibration using higher resolution data is needed.

With the goal of designing a more calibrated simulator, we pursue two approaches: one
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approach focuses on designing new driver models using available data-sets from Waymo and
another approach focused on the use of collected data from the field deployment site. In
the first approach, we design a new simulator that 1) efficiently represents the partially
observable view-cone of human drivers and investigate whether learning safe driving policies
in the simulator yields human-like behavior 2) serves as a challenging MARL benchmark.
We observe promising signs of human-similarity from agents trained in the simulator. In the
more direct approach, we collect data from the deployment site and use it to design a new,
simplified simulator capable of using the collected data while maintaining a high simulation
speed. We design energy-improving CAVs in this simulator and demonstrate that these
CAVs can be successfully and safely used in a field deployment test.
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on the best parameters (cf. Sec A.2), after which the best seed was kept. The
universal controllers have been trained for 400, 1200 and 2000 iterations for re-
spectively the minimal, minimal + aggregate and radar + aggregate state spaces,
and no seed search was ran for these three experiments. The last line of the table
refers to the experiment that was trained without macroscopic information about
the bottleneck’s outflow (cf. Sec 4.4); it was trained for 1600 iterations and with-
out seed search. Only parameters that differ from the default RLlib configura-
tion for TD3 (https://docs.ray.io/en/releases-0.6.6/rllib-algorithms.
html#deep-deterministic-policy-gradients-ddpg-td3) are detailed here. . 123
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they worked). Joel Leibo and Raphael Köster were excellent mentors at DeepMind and
introduced me to a wide variety of literature on cultural knowledge and learning that I had
never heard about; if you happen to glance at the reference section of their papers, you will
immediately understand why they are basically encyclopedias of knowledge on these topics.
Finally, Brandon Amos was a wonderful host for the year I spent at FAIR; without his and
Jakob Foerster’s guidance and Xiaomeng Yang’s unbelievable programming skills, Nocturne
(our simulator for investigated partially observable driving) would likely never have seen the
light of day.

I also want to acknowledge an incredible amount support from the open-source commu-
nity. The SUMO community, in particular Jakob Erdmann’s help debugging issues, made
my PhD possible. Similarly, open-source RL libraries like RLlab, RLlib, Stable Baselines,
Sample Factory, and their eager-to-help authors, in particular Richard Liaw, Eric Liang, and
Aleksei Petrenko, prevented me from running into pitfalls that would have easily eaten years
of my time. This thesis could not exist without the commitment to open source science and
code made by so many folks over the years.

On the non-academic side, I’ve been blessed with a family that supports me even when
they think my life plans are ridiculous (it’s such a delicate balance to strike between being
supportive and wondering whether I might perhaps be happier getting a job instead of being
an academic). I certainly decided that academics could be fun after seeing how obsessed
my father was with his field of biochemistry or how late my mother would stay up every
day programming at her computer. As for my friends, it has been a joy to make endless,
excessively involved jokes with Emmett Goodman and Lan Nguyen (for example, spending
an evening in Stanford trying to catch a raccoon or elaborately engineering July 4th parties).
Alex Jose has been a wonderful conspirator and I assure you now that my PhD is over we’ll
finally get around to building some of those dumb robots we often talk about. My roommate
of many years, Jonathan Liu, was a steady source of support, piano music / singing, and
excellent cooking. Hanna Vinitsky, my wonderful sister, was always available on the phone
for absurdly long calls and jokes. Finally, Prastuti Singh, my wife, is the person for whom
the concept of agape was invented. I could not conceive of a better person to have spent the
PhD with, nor of someone funnier, more supportive, or loving. She is relentless in trying to
live a life that she is proud of and happy with and I get to tag along. Now that this Ph.D.
is over I promise we’ll travel everywhere we can.

Finally, this PhD is dedicated to my grandmother and grandfather, Irene and Yuri Gold-



xiii

stein, who passed away during the course of my PhD. If I have successfully learned to be
kind and enjoy my life, it was by imitating my grandmother. My grandfather always pushed
me to be the best version of myself (sometimes by asking every day if my thesis is done).
You are both loved dearly, missed, and never forgotten.



1

Chapter 1

Introduction

1.1 Possibilities of Cooperative Autonomy in Mixed

Autonomy Settings

We are at the precipice of a relatively unheralded transition in our transportation infras-
tructure. While fully autonomous vehicles (AVs), ride-share programs, and scooters have
dominated the headlines, there has been a quieter revolution in the level of control and
sensing available on city streets and highways. Of particular relevance to this thesis, level-2
cruise controllers that can safely keep distance and lane have gone from a luxury item to
an increasingly standard feature in vehicles. Given standardization of these features, it is
not a question of when cruise controllers will start to reshape the macro and microscopic
characteristics of our highways but how they are doing so and how we might use them to
achieve more socially desirable outcomes. Indeed, it is already well established both empiri-
cally [131] and theoretically [36, 166] that even at low penetration rates such as 5%, which
we are likely to hit in the coming decade (and indeed, may already have hit) it is possible
for particular cruise control behaviors to have significant impact on metrics such as energy
efficiency. We will refer to this low penetration rate regime as mixed-autonomy traffic.

What could we do with access to widely-deployed cruise controllers? This has been a
long-standing question in the cooperative autonomous vehicles (CAVs) community. CAVs
differ from human drivers in a wide number of ways that enable them to achieve outcomes
impossible without automation and cooperation. CAVs have lower reaction times and bet-
ter sensing capabilities of lead vehicle velocities via radar, enabling them to safely drive at
close distances to their lead vehicle and sharply increase the potential throughput of the
highway [127] or get energy improvements by minimizing wind resistance by platooning [3].
Since they are able to communicate with each other and potentially with sensing infras-
tructure like loop detectors and cameras, CAVs can avoid safety risks that are unavoidable
for human drivers [50]. Using information from surrounding vehicles they can improve the
smoothness of merges [35], adopt spacing patterns to minimize stop-and-go traffic, or as we
will discuss in Chapter 4, be used to replace non-safety critical traffic light infrastructure.
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Given these avenues of improvement and the potential to simply deploy new cruise con-
trollers using existing capabilities and infrastructure, the challenge becomes to how to design
the controllers. Even at low penetration rates of 1-10%, once the CAVs are deployed they
will constitute tens to thousands of controlled vehicles on any high-throughput roadway. The
massive number of vehicles in combination with the need for the vehicles to often cooperate
to achieve their goals makes this by necessity a multi-agent problem.

From the perspective of multi-agent controller design, this is an exciting opportunity
and an open challenge. Control and optimization of these systems correspond to massive,
cooperative, multi-agent problems where controllers that are closer to optimal correspond
to immediate improvements in societal welfare. However, as we shall establish throughout
this thesis, the problems posed and investigated in this work, due to high agent numbers
and their heavily partially observed nature, are difficult for current algorithms. Enabling
algorithms to scale to these settings and determining the appropriate algorithms to use is
an open challenge posed and partially investigated here.

In this thesis we will attempt to address this challenge, using multi-agent reinforcement
learning (MARL) to design new CAVs controllers with the goal of a field deployment of
some of the controllers. In particular, the core goal of this work is to field-deploy RL-based
controllers that are capable of smoothing stop-and-go waves at low penetration rate. In small-
scale studies on simple networks the ability of a single CAV has already been empirically
established [132, 65]: we aim to demonstrate that this approach can work at highway scale.
In this work we pursue this goal by approaching it in increasingly larger pieces, finding
ways to get MARL to work on increasingly larger road networks. While we have significant
success designing controllers using MARL in small networks, as we begin to scale we begin
to be bottlenecked by simulation speed and accuracy. We address this by replacing our
simulator by a data-driven approach in which the calibrated simulator is replaced with a
data-driven simulator using collected data from the deployment site. We train a controller
in this simulator and successfully deploy it and observe promising evidence of wave-reducing
behavior.

1.2 Overview

Chapter 2 provides a discussion of the relevant concepts for following subsequent chapters.
Following that, we begin in Chapter 3.2, where we provide an overview of reinforcement
learning concepts and necessary information on CAVs and tools for simulating CAVs. As
the task of controller design for CAVs is significantly distinct from the standard set of robotics
tasks that RL is applied to, we then investigate in Chapter 3 how different algorithms fare
on the type of tasks where control might be needed in transportation settings such as large
Manhattan-like grids of traffic lights, on-ramp merges, and traffic bottlenecks. This work is
a first step to establishing some standard benchmark values to compare methods against,
allowing us to estimate how our algorithms were performing. Since the methods used in this
work are centralized (i.e. all cars are controlled by a single controller), they also allow us to
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estimate the performance loss in moving from centralized to decentralized methods in later
pieces of the work.

Due to limitations of existing libraries at the time, the work covered in Chapter 3 is
focused on single-agent control setting. In Chapter 4 we extend one of these benchmarks
to the multi-agent setting, showing that on a model of the San Francisco-Oakland Bay
Bridge, we are able to improve throughput at even low penetration rates and equal the
performance of an installed traffic light at 40% penetration rates. Surprisingly, we find that
for this cooperative problem that use the of Centralized Training Decentralized Execution-
style algorithms like MADDPG [89], which use centralized components during training but
are fully decentralized at evaluation time, do not appear to be necessary and that independent
training works well at low penetration rates. We later reproduce this insight across a wide
variety of other benchmarks in [161] and show that independent algorithms appear to be
sufficient in many fully cooperative settings.

In Chapter 5, having established that these multi-agent methods work in small networks,
we begin to prepare for a field deployment on the I-24 in Tennessee in 2021; a site that has a
well-established regular source of stop-and-go waves. While we waited for data to be collected
on that network, we attempted to design a controller on a different network known for having
stop-and-go waves: the I-210 in Los Angeles. Using origin-destination pairs provided by the
Connected Corridors PATH project, we built a calibrated model of the I-210 and proceeded
to train controllers on it to optimize fuel efficiency using a calibrated energy model for the
vehicles. We demonstrated that we could use Proximal Policy Optimization [124] to design
controllers for this network and showed a sharp improvement in fuel efficiency for all vehicles
at likely penetration rates.

However, the aforementioned study alerted us to several challenges that would occur in
attempting to deploy vehicles on the I-24. First, while the network maintained flow-rates
consistent with the origin-demand pairs, the type of waves we observed in our simulation were
more frequent and significantly distinct from the types of waves observed on real highways.
Unfortunately, low frequency resolution data like vehicle counts, observed via loop detectors,
are insufficient to calibrate waves. Second, the I-24 network we intended to deploy on was
significantly larger than the chunk of the I-210 we had been working with; our I-210 model
ran in real-time despite being simulated and took 30 hours to train a controller. Simply
transferring our approach to the I-24 and hoping that the resultant controllers would work
in a field deployment seemed highly unlikely.

To address these challenges we take two different approaches. First, since the waves are
emergent from human driving behavior and our waves are miscalibrated, we focus on the in-
sufficiency of existing human driver models and worked to develop tools and benchmarks for
improving them. In Chapter 6, we describe our work on developing a simulator, Nocturne,
that can be used to build realistic models of human driving by appropriately accounting for
human perceptual limitations. Nocturne is built upon real world driving data and contains
fast implementations of visibility checking that enable the simulator to efficiently construct
visible state without resorting to rendering images. The intention of this simulator is to
investigate if human-like behavior such as cooperative merges, aggressive lane changes, etc.
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could be emergent from risk-minimization under uncertainty. While we do not resolve the
question entirely in the work, we do demonstrate that MARL agents, learning via asyn-
chronous PPO [108] and operating under human-like visibility, have quite high trajectory
similarity to the data despite being still quite sub-optimal with respect to the collision rate.
More effective agents might be sufficiently close to human-similar to generate accurate waves
in a simulator.

On a more direct approach, Chapter 7 proposes the data-driven method that made it into
a field deployment in August 2021. In this work we use data collected by a radar-equipped
vehicle to construct a simplified single-lane simulator in which an RL car, following behind
a leader replaying trajectory data, needs to smooth observed waves. We show that in this
simulator we are able to sharply improve the miles-per-gallon (MPG) of both the RL car
and the vehicles following behind it, particularly on the low-speed trajectories where the
observed waves tend to occur. We test this controller in a field-deployment test and observe
that the deployed behavior is quite similar to the simulated behavior, indicating that the
sim-to-real gap between our field deployment and the simulation has likely been bridged.
While there is insufficient data to determine conclusively that wave-smoothing has occurred,
this work serves as a validation of the simulation strategy and a roadmap to a larger scale
test intended to occur in Fall 2022.

Finally, in Chapter 8 we speculate on some open question unresolved by this work and
exciting directions for the future study and use of CAVs. While this work has investigated
some potential ways to design multi-agent controllers at scale, in the final step we find that
we are bottlenecked by both simulation and algorithmic speed as well as the challenges
of designing sufficiently calibrated simulators. Finding improved ways of overcoming these
challenges is an essential topic; we speculate on algorithmic, simulation, and data-centric
improvements that might help overcome these core difficulties.

To summarize, Chapter 2 provides an overview of relevant concepts in multi-agent vehic-
ular network simulation and MARL techniques. Chapter 3 discusses our work in designing
standard benchmarks for control of these networks using centralized controllers. Chapter 4
builds upon this work to design decentralized controllers for a scaled-up version of one of the
benchmarks. Chapter 5 describes initial progress in designing controllers that improve fuel ef-
ficiency by eliminating stop-and-go waves in large networks. Chapter 6 digresses slightly and
discusses our work on combining data-driven simulators, partial observability, and MARL
to design models of human driving that one day may be able to produce calibrated waves
as an emergent phenomenon. Finally, Chapter 7 is the capstone of this work, describing our
design of a traffic-smoothing controller using RL in a data-driven simulator and the field-
deployment of said controller. Chapter 8 wraps up the discussion by pointing out promising
areas of future work for the design of CAVs.

Finally, we close with a summary of the contributions of this thesis. In the course of this
work we:

• Release the first set of open-source benchmarks for reinforcement learning in mixed
autonomy traffic.
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• Use multi-agent reinforcement learning to design a fully decentralized, AV based con-
troller for traffic bottleneck optimization.

• Show that multi-agent reinforcement learning can be used at scale to optimize the
energy efficiency of a model of the I-210 in Los Angeles.

• Design, release, and test a data-driven simulator for partially observable control prob-
lems in driving scenarios.

• Show that the combination of a small amount of data and RL-designed controllers
could be used to drive a platoon of traffic-wave smoothing cars in a field deployment
test.
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Chapter 2

Background

Here I will provide a brief overview of some of the core concepts needed and used in this
thesis. In particular, I’ll provide a brief overview of microsimulators, describe the role of
Flow [154] (the library we built to interface between microsimulators, RL libraries, and the
cloud), car-following models used to model human behavior in the simulators, and multi-
agent reinforcement learning (MARL). Throughout this work we will frequently use the
following terms:

• ego vehicle: the reference vehicle that is being controlled.

• lead vehicle: the vehicle in front of the ego vehicle.

• headway or space gap: the distance between the ego and the lead vehicle.

2.1 Traffic micro-simulators and FLOW

To understand how a small set of autonomous vehicles could influence human behavioral
patterns at the trajectory level, it is necessary to be able to simulate human driving behavior
at a fine granularity. For this, microscopic simulators (micro-simulators), which step the
trajectories of individual vehicles at a fairly low time-step (on the order of 0.01 - 1.0 seconds)
are frequently used. These can be contrasted with macro-simulators which are used to
model flows, routing behavior, and route choice. Micro-simulators generally require the
specification of car-following models that describe how vehicles follow their lead vehicle,
lane-change, merge, and an imposition of an origin and destination for the vehicles (though
this latter component can be determined dynamically). While there are several ubiquitous
micro-simulation frameworks such as SUMO [88], AIMSUN [11], and VISSIM [45], in this
work we exclusively use SUMO as it is open source, free, and has a pythonic interface,
TRACI, that can be used to control the C++ code through a TCP connection.

Atop these micro-simulators we built FLOW [154], a python library that connects cloud
computing and RL libraries (RLlib [85] and RLlab [39]) to the micro-simulators SUMO and
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AIMSUN. Flow is intended to make it straightforward to construct new environments for
control of a system either by controlling a number of AVs or controlling some traffic lights.
At its core, an environment in flow is defined by the following features:

• A network. This defines the road architecture i.e. the connectivity between roads, the
types of merges that are allowed on particular roadways, etc.

• An initial distribution of vehicles and flows. Flow supports the imposition of flows of
vehicles per hour at the entrances of the network.

• A specification of which agents are controlled.

• A reward function to be optimized.

• A specification of how to apply actions to vehicles or traffic lights.

• A specification of what features of the environment are visible to controlled agents.

Given these specifications, FLOW constructs an environment that is compatible with the
available RL libraries.

FLOW comes with a pre-built set of extensible environments that represent expected
building blocks of standard large networks: a traffic bottleneck, a grid of traffic lights, an
on-ramp merge, and a roundabout. These networks are described in more detail in Chapter 3.
These environments can be pieced together like lego-blocks to build larger environments and
have been used as multi-agent benchmarks in a variety of works such as [136, 130, 160].

2.2 Microscopic Car Following Models

Our micro-simulations require a model of human driving used to update the position and
lanes of the vehicles. We will describe here models of acceleration i.e. following of the lead
car. There are also models for discrete decision making and lane changing, both of which we
will not describe here as both types of models are infrequently used in this work (a substantive
description of common lane-changing models can be found in [42]). In particular, there are
two acceleration models used in this work, the Intelligent Driver Model (IDM) [147] and
the Krauss Model [75]. For the majority of the work described we default to the intelligent
driver model though the Krauss Model is used in Chapter 4. These models are primarily
used as their merging behavior in SUMO is sensible1 and the IDM model can be made string
unstable i.e. capable of producing waves. For a good reference on other models and the
historical development of car-following models, see [21, 75].

1There is no citation for this as this has been conveyed informally
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Intelligent Driver Model

The IDM model was first introduced in [144] as a low-parameter model capable of repro-
ducing different types of congestion observed in German freeways by simply assuming in-
homogeneities in the model parameters. The basic IDM equation for the acceleration is as
follow:

aidm = a

[
1−

(
v

v0

)δ

−
(
s∗(v,∆v)

h

)]
s∗(v,∆v) = s0 + vT +

v∆v

2
√
ab

where v is the ego speed, ∆v is the speed difference between the leader and the ego vehicle,
and s is the headway. The remaining parameters are hyperparameters whose interpretation
we will describe following [144]. If there is no lead vehicle or s is large, the second term
velocity will approach the desired free-flow speed v0 = 30m

s
with a maximum acceleration

of a = 0.73m
s2

when v = 0. The speed at which the acceleration falls off is controlled by the
exponential parameter δ = 4.

At equilibrium (i.e. aidm = 0, ∆v = 0) we can solve for the equilibrium headway se(v) and

get se(v) = (s0+vT )
[
1−

(
v
v0

δ
)]− 1

2
and at low speeds this reduces to se(v) = s0+vT so the

equilibrium spacing in congestion is a small distance s0 = 2m plus a distance corresponding
to a safe time-headway of T = 1.8s. For large approach velocities we get v∆v

2
√
ab

>> s0 + vT

and we can neglect those small terms to see that the acceleration becomes v̇ = (v∆v)2

4bs2
where

b = 1.67m
s2

can be interpreted as a gain on the magnitude of the braking response. For the
parameters of the model such as v0 we have used standard values from the original paper
but other values have been found and used in work explicitly fitting the model to human
driving data [67].

To break symmetries and add stochasticity, we use two components. First, SUMO enables
the setting of a Normal distribution over the desired free flow speed and others. Additionally,
we will generally perturb the dynamics of the IDM vehicles with Gaussian noise. We scale
the Gaussian noise by the square root of the time-step ∆t according to the Euler-Maruyama
method to get a noisy version of the IDM update. This version is used in all works that use
the IDM model though with varying noise levels from chapter to chapter:

anoise(v,∆v, s) = aIDM(v,∆v, s) +
√
∆tN(0, σ)

A key feature of the IDM model that is pertinent to this work is that it has regions of
parameter space that are conducive to the formation of the stop-and-go waves i.e. it can
be made string unstable using relatively simply conditions described in [36]. Finally, note
that the IDM model has mathematical problems, namely, there are a set of circumstances
under which its velocity can become unboundedly negative in finite time [4]. These problems
are often addressed heuristically by simply clipping the velocity at zero; the aforementioned
article [4] offers principled variants of the IDM model that do not require clipping.
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Integration and Fail-safes

In this section we briefly describe the particular reasons why most micro-simulators employ a
first-order update for integration the car-following dynamics, discuss the widely used ballistic
method, and describe the fail-safes needed to ensure micro-simulators are collision free.

The car following models described are in continuous time and must be approximated by
an integration scheme to be used in a microsimulator. While higher-order schemes such as
forth-order Runge-Kutta are frequently used in approximating the evolution of differential
equations in other fields of science, it is common in the microsimulation literature to use
either a first-order Euler step or a first order “ballistic” method (by first-order we mean that
the global error of the discretization is proportional to the step-size). This can be surprising
as first-order methods can incur high error at large-discretization steps. The particular
use of first-order methods in micro-simulation of driving systems stems from the discrete
nature of many traffic phenomena such as stops, lane-changes, or traffic lights as well as the
discontinuity of many car-following models (for example, IDM is not smooth at speed v = 0).
As a consequence, the first order methods can sometimes be as accurate while requiring fewer
evaluations of the acceleration [145], an important boon since computing the acceleration
can be an expensive component of the simulation time for some RL methods discussed in
this thesis.

Since the ballistic method is non-standard in other communities, we reproduce it below:

xt+1 = xt +∆vt +
1

2
∆t2at

vt+1 = vt +∆at

where xt, vt, at are the position, velocity, and acceleration of the vehicle at time t and ∆ is
the discretization step. This essentially corresponds to an Euler-step for the speeds and a
trapezoidal update for the position.

Unfortunately, at the simulation steps occasionally used in this work, the models are
not necessarily guaranteed to be collision-free. For this reason, they are often supplemented
with a fail-safe that clips the acceleration a vehicle takes based on presumed maximum
deceleration of its leader vehicle. In short, we compute the maximal velocity such that if
the lead vehicle starts braking with its maximum deceleration, the vehicle is still able to
safely brake despite the fact that it will start braking one time-step later. When updating
the speed we take the minimum between the new speed and the safe speed. Note that the
calculation of the brake distance in the safe speed must use the discrete brake distance rather
than the continuous brake distance v2

2b
where b is the maximum deceleration of the vehicle

under consideration.

2.3 Multi-Agent Reinforcement Learning

This thesis makes extensive use of multi-agent reinforcement learning as the tool for controller
design. In this section we describe a few of the problem formulations that are relevant to



2.3. MULTI-AGENT REINFORCEMENT LEARNING 10

this work as well as a brief overview of the algorithms used.
We will generally model our problem as either a Partially Observable Markov Decision

Process (POMDP) [7] or Decentralized Partially Observable Markov Decision Processes (Dec-
POMDP) [18] depending on whether the problem is multi-agent, partially observed, and
cooperative (DEC-POMDP), or single-agent and partially observed (POMDP).

Dec-POMDPs and POMDPs

We define a Dec-POMDP via the tuple

S× (A0,O0, γ0, T0)× · · · × (An,On, γn, Tn)× ρ× P × R× Z

where S is a set of world-states, Ai is a set of actions for agent i, Z : S× (A0 × · · · ×An) →
(O0, . . . ,On) describes how the world state is mapped into distributions over observations
of the agents, P : S × (A0 × · · · × An) → R≥0 is the transition probability distribution for
moving from one set of agent states s to the next set of states s′ given the set of actions
(a0, . . . , an), R : S× (A0 × · · · × An) → R is the reward function, ρ : S → R≥0 is the initial
state distribution, γi ∈ (0, 1] is the discount factor for agent i, and Ti is the horizon for agent
i which in some settings may be functions of the state (i.e. if the agents can ‘exit‘ the system
or ‘die‘). Note that there is one shared reward for all agents in this setting. The POMDP
setting is the same but with a single agents.

Reinforcement Learning

We provide a brief overview of the RL formalism; we use a single-agent MDP setting to
simplify the notation. Generically, RL studies the problem of how an agent can learn to
take actions in its environment to maximize its cumulative discounted reward. Specifically
it tries to find a controller π∗ that maximizes

Jπ∗
= argmax

π
Eρ0, p(st+1|st,at)

[
T∑
t=0

γtrt | π(at|st)

]
where rt is the reward at time t and the expectation is over the start state distribution,
the probabilistic dynamics, and the probabilistic controller π. While there are other for-
mulations of the quantity to be maximized such as average-reward or distributional RL,
colloquially reinforcement learning refers to the max-reward setting described. Note that we
have temporarily dropped the dependence on agent index for clarity. The goal in RL is to
use the observed data from the MDP to compute the controller π : S → A, mapping states
to actions, that maximizes Jπ.

It is increasingly ubiquitous to parametrize the controller as a neural network (though
not necessarily needed, see [114] for an argument that linear controllers are sufficient in
many cases). Throughout this work we will denote the parameters of this controller, in
this case the neural network weights, by θ and the controller by πθ. A neural net consists
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of a stacked set of affine linear transforms and non-linearities that the input is alternately
passed through. The presence of multiple stacked layers is the origin of the term “deep”
reinforcement learning. In this work in all multi-agent settings we will use a shared neural
network amongst all agents; in multi-agent settings each agent will act independently but
use a copy of the exact same controller.



12

Chapter 3

Benchmarks for reinforcement
learning in mixed-autonomy traffic

3.1 Introduction

In recent years, the success of Deep RL has been closely tied to benchmarks capable of
evaluating progress in algorithms and methods. The Arcade Learning Environment (ALE)
[14] has become a popular benchmark for evaluating algorithms designed for tasks with
high-dimensional state inputs and discrete actions. The benchmarks released with rllab
[39] contain 31 continuous control tasks, which range from simple tasks, such as cart-pole
balancing, to challenging tasks such as high-DOF locomotion, tasks with partial observations,
and hierarchically structured tasks. However, in mixed-autonomy traffic control, the study
of human drivers interacting with CAVs, the lack of a standardized and challenging testbed
for RL that is grounded in a real-world problem domain makes it difficult to quantify the
practicality of the proposed methods in the literature. Systematic evaluation and comparison
will not only further understanding of the strengths of existing algorithms, but also reveal
their limitations and suggest directions for future research.

We attempt to address this problem and present a benchmark consisting of four traffic
control tasks based in common, real-world traffic scenarios. Methods which solve these traffic
tasks can greatly impact traffic control in cities, the integration of automated vehicles, and
urban planning. We characterize a set of RL algorithms by their effectiveness in training
deep neural network policies.

In the traffic analysis and control community, the number of standardized benchmarks is
limited. For microscopic data on human driving behavior there is the NGSIM dataset [149],
the 100-car naturalistic driving study [37], and Mobile Millenium [57]. For traffic control,
there are a few recurring problems that are considered, including deriving controllers to
minimize propagation of shockwaves in traffic [135, 64], AV assisted merging [41, 109] and
energy minimization via platooning [16].

The work presented here constitutes the first set of standard set of benchmarks for traffic
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control in a micro-simulator nor a framework in which deep-RL can be applied to the control
task. The coming future likely will involve a mixture of AVs interacting with human drivers
and infrastructure, but there isn’t yet a framework for simultaneously learning control for
these interacting pieces. To this end, the present chapter presents four benchmark problems
representing four key traffic control problems: shockwave minimization, inflow management,
efficient merging, and intersection control. These tasks expose various RL-oriented prob-
lems, including exploration, partial observability, scaling in the state space, and scaling in
the action space. Additionally, each problem exposes some questions in RL that may pri-
marily arise in the context of transportation systems. By working on a standard set of
benchmarks, we hope to make it possible for the mixed-autonomy and RL community to
effectively compare their results, test new algorithms, and develop new techniques that are
able to take advantage of the underlying structures inherent in the state and action spaces
of transportation problems.

The key contributions of this article are:

• The description of a new set of benchmarks for mixed-autonomy traffic that expose
several key aspects of traffic control

• A characterization of the RL problems involved in each benchmark as well as an initial
description of the performance of a few gradient based and gradient free deep-RL
algorithms

• A summary of the key traffic improvements resulting from the application of deep-RL
algorithms

The article is organized as follows. In Sec. 3.4 we provide details on the released bench-
marks. In Sec. 3.5 we detail the results of the application of three deep-RL algorithms to
learning neural network-based policies and another deep-RL algorithm to learn purely linear
policies. Finally, in Sec. 3.6 we discuss the performance of the algorithms as well as open
questions and problems that can be tackled with these benchmarks.

3.2 Background

This section presents a brief overview into the reinforcement learning algorithms and traffic
models used for the remainder of this article. In addition, sec. 3.3 introduces the computa-
tional framework used to construct the benchmarks described in sec. 3.4.

Algorithms used

A broad range of RL algorithms have been designed to compute an optimal policy θ∗.
Gradient-based algorithms [125, 124] estimate a gradient for the policy from expected returns
achieved during simulation. Gradient-free algorithms [118], on the other hand, treat the re-
turn as a black box function to be optimized in terms of the policy parameters. In particular,
random search methods [94] training linear policies have recently been demonstrated to be
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a competitive alternative to gradient-based and gradient-free method in solving commonly
used RL benchmarks. The success of linear policies suggests that these benchmarks are not
as difficult as they were believed to be.

Mixed-autonomy traffic

The notion of using connected autonomous vehicles (CAVs) to improve traffic flow has an
extensive history stemming back to the 1960s. Early works focused on designing controllers
to direct a fleet of vehicles to form a dense, stable platoon [126, 19]. Among many others,
these works represent the significant progress that has been made in the paradigm of vehicle
platooning.

Recently, there has been a new emphasis on traffic control in the context of mixed-
autonomy, where only a fraction of vehicles are CAVs and are interacting with human-driven
vehicles. To this end, pioneering researchers proposed and tested several hand-designed
control laws [70, 151]. Notably, in 2015, an experimental test of a control strategy named
“slow-in, fast-out” strategy [102] was conducted by [141], which involved five vehicles in
a closed course. A larger scale experiment was later conducted in 2016, where two other
control methods were tested extensively with 21 humans drivers and one CAV in a circular
track [134, 156]. It was suggested from the previous works that traffic throughput can be
improved with a small percentage of autonomous vehicles.

Simulating mixed-autonomy performance

This article simulates the performance of mixed-autonomy traffic control policies through
the use of microscopic traffic simulators, in which the states, actions, and transition prop-
erties of a transportation network are modeled at the level of individual vehicles. Traffic
microsimulators have been broadly accepted in the transportation engineering community
as an acceptable prelude to the empirical evaluation of several complex automated tasks
such as cooperative adaptive cruise control (CACC) [95] and mixed-autonomy traffic flow
control [135]. This has spurred interest in the development of several frameworks dedicated
to accurate microscopic traffic reconstruction, with prominent simulators including propriety
software such as Aimsun [25] and VISSIM [45], and open-source libraries such as SUMO [74].
Traffic networks in this article are modeled using the latter.

In the context of traffic microsimulations, human-driver models are used to recreate the
lateral [113] and longitudinal [21] behavior of human-driven vehicles. For longitudinal, or
acceleration, dynamics, human-driven vehicles in all experiments presented in this article use
the Intelligent Driver Model [147], a state-of-the-art car-following model. Other behaviors,
such as lane changing, merging, right-of-way at intersections, and traffic light compliance,
are dictated by the simulator [74].
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3.3 FLOW : facilitating benchmark generation

The mixed-autonomy traffic benchmarks presented in this article are designed and devel-
oped in FLOW, a Python library that interfaces the RL libraries RLlib [83] and rllab [39]
with SUMO [74], a microscopic simulator for traffic and vehicle dynamics. Flow enables the
systematic creation of a variety of traffic-oriented RL tasks for the purpose of generating
control strategies for autonomous vehicles, traffic lights, etc. These environments are com-
patible with OpenAI Gym [22] in order to promote integration with the majority of training
algorithms currently being developed by the RL community. For details on the architecture
and on training autonomous vehicles to maximize system-level velocity, we refer the readers
to [155].

3.4 Benchmarks

In this section, we detail the network structure, controllable parameters, provided state
spaces, action spaces, and rewards of the benchmarks. The states and rewards associated
with each benchmark are normalized in accordance with common RL practices as well as to
minimize the amount of necessary hyperparameter tuning from benchmark to benchmark.
We stress that most aspects of the benchmark (network structure, reward, observation space,
etc.) can be easily modified if researchers are interested in doing so.

Figure eight: optimizing intersection capacity

The figure eight network (Fig 3.1a), previously presented in [152], acts as a closed representa-
tion of an intersection. In a figure eight network containing a total of 14 vehicles, we witness
the formation of queues resulting from vehicles arriving simultaneously at the intersection
and slowing down to obey right-of-way rules. This behavior significantly reduces the average
speed of vehicles in the network.

In a mixed-autonomy setting, a portion of vehicles are treated as CAVs with the objective
of regulating the flow of vehicles through the intersection in order to improve system-level
velocities. The components of the MDP for this benchmark are defined as follows:

• States: The state consists of a vector of velocities and positions for each vehicle in the
network, ordered by the position of each vehicle, s := (vi, xi)i=0:k−1 ∈ R2k, where k is
the number of vehicles in the network. Note that the position is defined relative to a
pre-specified starting point.

• Actions: The actions are a list of accelerations for each CAV, a ∈ Rn
[amin,amax]

, where n is
the number of CAVs, and amin and amax are the minimum and maximum accelerations,
respectively.
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• Reward: The objective of the learning agent is to achieve high speeds while penalizing
collisions. Accordingly, the reward function is defined as follows:

r := max
(
||vdes · 1k||2 − ||vdes − v||2, 0

)
/ ||vdes · 1k||2 (3.1)

where vdes is an arbitrary large velocity used to encourage high speeds and v ∈ Rk is
the velocities of all vehicles in the network.

This task was previously been studied in the context of mixed-autonomy traffic [152].
Replacing one vehicle in the network with an autonomous vehicle (AV), the article reveals
that the AV can (platooning behavior). A similar behavior is achieved when all vehicles are
replaced with a set of connected and autonomous vehicles (CAVs), with one CAV acting as
a leader and the other following it as closely as possible. However, if the reward function is
modified to excessively penalize small bumper-to-bumper gaps between consecutive vehicles,
the agent learns to space vehicles in such as way that (weaving behavior). This suggests
that in the absence of reward shaping, the agent cannot overcome certain local maxima
using vanilla gradient-based methods (in this case TRPO).

We explore varying levels of controllability by increasing the portion of CAVs within the
network. These tasks are parametrized as follows:

• figureeight0: 13 humans, 1 CAV (S ∈ R28, A ∈ R1, T = 1500).

• figureeight1: 7 humans, 7 CAVs (S ∈ R28, A ∈ R7, T = 1500).

• figureeight2: 0 human, 14 CAVs (S ∈ R28, A ∈ R14, T = 1500).

Merge: controlling shockwaves from on-ramp merges

The merge network (see Fig. 3.1c) highlights the effect of disturbances on vehicles in a high-
way network. This network consists of a single lane highway of inflow rate Fh = 2000 veh/hr
and a on-merge with inflow rate Fm = 100 veh/hr. Specifically, perturbations resulting from
vehicles arriving from the on-merge lead to the formation of backwards propagating stop-
and-go waves, thereby reducing the throughput of vehicles in the network. This phenomenon
is known as convective instability [146].

In a mixed-autonomy setting, a percentage of vehicles in the main highway are tasked
with the objective of dissipating the formation and propagation of stop-and-go waves from
locally observable information. Moreover, given the open nature of the network, the total
number of CAVs within the network may vary at any given time. Taking these into account,
we characterize our MDP as follows:

• States: The state consists of the speeds and bumper-to-bumper gaps of the vehicles
immediately preceding and following the CAVs, as well as the speed of the CAVs,
i.e. s := (vi,lead, vi,lag, hi,lag, hi,lag, vi) ∈ RnRL . In order to account for variability in
the number of CAVs (nCAV ), a constant nRL term is defined. When nCAV > nRL,
information from the extra CAVs are not included in the state. Moreover, if nCAV <
nRL the state is padded with zeros.
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• Actions: The actions consist of a list of bounded accelerations for each CAV, i.e.
a ∈ RnRL

[amin,amax]
One again, an nRL term is used to handle variable numbers of CAVs.

If nCAV > nRL the extra CAVs are treated as human-driven vehicles and their states
are updated using human driver models. Moreover, if nCAV < nRL, the extra actions
are ignored.

• Reward: The objective in this problem is, once again, improving mobility, either via
the speed of vehicles in the network or by maximizing the number of vehicles that pass
through the network. Accordingly, we use an augmented version of the reward function
presented in sec. 3.4.

r := max
(
||vdes·1k||2−||vdes−v||2, 0

)
/ ||vdes·1k||2−α

∑
i∈CAV

max
[
hmax−hi(t), 0

]
(3.2)

The added term penalizes small headways among the CAVs; it is minimal when all
CAVs are spaced at hmax. This discourages dense states that lead to the formation of
stop-and-go traffic.

We explore three levels of difficulty in the problem by increasing the percentage of vehicles
that are autonomous, thereby resulting in larger state/action spaces.

• merge0: 10% CAV penetration rate (S ∈ R25, A ∈ R5, T = 750).

• merge1: 25% CAV penetration rate (S ∈ R65, A ∈ R13, T = 750).

• merge2: 33.3% CAV penetration rate (S ∈ R85, A ∈ R17, T = 750).

Grid: improving traffic signal timing schedules

The grid (see Fig. 3.1(b)) is an idealized representation of a city with a grid-like structure such
as Manhattan. The purpose of this problem is to highlight issues that arise in coordination
of traffic light control, particularly questions of partial observability and the scaling of RL
algorithms with action dimension. Solutions to this problem will generate new traffic light
control schemes that minimize the average per-vehicle delay while inducing some measure of
fairness.

Vehicles enter at the corners of the grid. For simplicity of the problem, vehicles travel
straight on their path. Each intersection has a traffic light that allows vehicles to flow either
horizontally or vertically. If the light is green, it transitions to yellow for two seconds before
switching to red for the purpose of safety.

The gym environment has the following state space, action space, and reward:

• States: Speed, distance to intersection, and edge number of each vehicle. The edges of
the grid are uniquely numbered so the travel direction can be inferred. For the traffic
lights we return 0,1 corresponding to green or red for each light, a number between [0,
tswitch] indicating how long until a switch can occur, and 0,1 indicating if the light is
currently yellow. Finally, we return the average density and velocity of each edge.
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(a) Figure Eight (b) Grid (c) Merge

(d) Bottleneck

Figure 3.1: Network configurations for the various benchmarks presented in this article. In each of the
figures, vehicles in red are autonomous (controlled by the RL agent), in blue are human-driven and directly
observed in the state space, and in white are human-driven an unobserved.

• Actions: A list of numbers a = [−1, 1]n where n is the number of traffic lights. If ai > 0
for traffic light i it switches, otherwise no action is taken.

• Reward: The reward present in Eq. 3.4 is once again used for this benchmark. Here
the use of the 2-norm induces fairness, as a more equal distribution of speeds produces
a larger reward.

The versions of the benchmark are as follows:

• grid0: 3x3 grid (9 traffic lights), inflow = 300 veh/hour/lane (S ∈ R339,A ∈ R9,
T = 400)

• grid1: 5x5 grid (25 traffic lights), inflow = 300 veh/hour/lane (S ∈ R915,A ∈ R25,
T = 400)

Bottleneck: maximizing throughput in a bottleneck structure

The bottleneck is an idealized version of the Oakland-San Francisco Bay Bridge. On the Bay
Bridge, 16 non-HOV lanes narrow down to eight and subsequently to five. In our model,
the lanes reduce from 4N to 2N to N , where N is a scaling factor. This system exhibits
the phenomenon known as capacity drop [117], where the throughput, defined as number of
vehicles passing through the system per hour, experiences a sharp drop in magnitude after the
inflow increases past a critical value. While there are multiple proposed reasons underlying
the capacity drop, ranging from hysteresis in traffic flow [117] to velocity variance [148], this
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Figure 3.2: Inflow-outflow relation of the bottleneck. At an inflow of approximately 1500 veh/hour, the
outflow begins to dip. Past the drop the minimum represents the stable value the system would decay to if
run for sufficiently long.

phenomenon has been empirically observed and contributes to the inefficiency of highway
traffic (see fig. 3.2).

Given this inflow-outflow relation, the goal of this problem is to learn to avoid the capacity
drop and maximize the total outflow in a mixed-autonomy setting. In what follows, we term
each distinct segment of road an edge. For each edge, users can specify for each edge whether
it is observed and/or controlled, and how many segments it is divided into: we refer to this
as an edge-segment. Although the observation space, action space, and reward can easily be
modified, the provided environment operates on the following MDP:

• States: The mean positions and velocities of human drivers for each lane for each edge
segment. The mean positions and velocities of the CAVs on each segment. The outflow
of the system in vehicles per/hour over the last 5 seconds.

• Actions: For a given edge-segment and a given lane, the RL action shifts the maximum
speed of all the CAVs in the segment from their current value. By shifting the max-
speed to higher or lower values, the system indirectly controls the velocity of the RL
vehicles.

• Reward: rt =
∑i=t

i=t− 5
∆t

nexit(i)
5

∆t∗nlanes∗500
where nexit(i) is the number of vehicles that exited

the system at time-step i. Colloquially, this is the outflow over the last 5 seconds
normalized by the number of lanes, nlanes and a factor of 500. This is to keep the scale
of the reward in line with the other benchmarks.
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The three benchmark problems are as follows:

• bottleneck0: N = 1, inflow = 1900 veh/hour, 10% CAV penetration. No vehicles are
allowed to lane change. (S ∈ R141,A ∈ R20, T = 1000)

• bottleneck1: N = 1, inflow = 1900 veh/hour, 10% CAV penetration. The human
drivers follow the standard lane changing model in the simulator. (S ∈ R141,A ∈ R20,
T = 1000)

• bottleneck2: N = 3, inflow = 3800 veh/hour, 10% CAV penetration. No vehicles are
allowed to lane change. (S ∈ R281,A ∈ R40, T = 1000)

3.5 Experiments

In this section, we present preliminary results from running four reinforcement learning
algorithms on the benchmarks presented in sec. 3.4.

Candidate controllers

Experiments were conducted using gradient-based algorithms Trust Region Policy Optimiza-
tion (TRPO) [125] and Proximal Policy Optimization (PPO) [124] as well as the gradient-free
method Evolutionary Strategies (ES) [118] and an implementation of Augmented Random
Search (ARS) [94]. For ARS a linear policy is used. For ES we use a deterministic MLP
with hidden layers (100, 50, 25) and tanh non-linearity whereas for PPO and TRPO the
MLP is diagonal Gaussian. Moreover, in the PPO algorithm, a [256, 256] MLP with tanh
non-linearity is used to compute a value function baseline, whereas a linear feature baseline
is used for the TRPO algorithm. Other explored hyperparameters for each algorithm can be
found in Table A.1 in appendix section A.1. Results are reported over three random seeds
to account for stochasticity and to test training stability. Outside of the reported hyper-
paramters, we use the default parameters set in rllab and rllib as per the commits specified
in section 3.5.

Reproducibility

In the spirit of reproducibility, the controllers used to generate the following results are
stored as .pkl files and tensorflow checkpoints at s3://public.flow.results/corl_exps/
exps_final. We have frozen the code used to generate the results as Flow 0.3.0 and commit
number “bc44b21”. The commit number of SUMO, available at https://github.com/

eclipse/sumo used to run the results is “1d4338ab80”. The version of RLlib used to run
the code is available at https://github.com/eugenevinitsky/ray at commit “0f45f80”.

s3://public.flow.results/corl_exps/exps_final
s3://public.flow.results/corl_exps/exps_final
https://github.com/eclipse/sumo
https://github.com/eclipse/sumo
https://github.com/eugenevinitsky/ray
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Figure 3.3: Learning curves for each benchmark. A iteration of training in each algorithm consists of 50
rollouts/trajectories. The reported cumulative rewards correspond to undiscounted returns.

Algorithm performance

Fig. 3.3 presents the training performance of each of the algorithms presented in sec. 3.5. The
results suggest that gradient-based algorithms (TRPO and PPO) are more effective in merge
scenarios, while gradient-free algorithms (ES) are better in figure eight, grid, and bottleneck
benchmarks. This is likely due to the merge network reward providing richer feedback
with regards to which states are good/bad, thereby assisting gradient-based algorithms in
computing meaningful gradients. On the other hand, in environments populated with many
local extrema associated with poor rewards, more exploration-oriented algorithms (ARS or
ES) are less prone to being trapped in local optima.

Controller performance

We highlight the effectiveness of each learned policy on improving traffic performance. In
order to do so in terms of understandable values that are not cluttered by the reward design
process, simple scenario-specific performance metrics are defined for each benchmark. These
metrics are:

• Figure eight: Average speed of vehicles in the network (m/s).
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Table 3.1: Average optimal return and standard deviation based on performance metrics after 500 training
iterations; average is over 40 rollouts. “–” indicates that the experiment did not have a complete number of
seeds and thus was not reported.

Benchmark ARS ES TRPO PPO Human

Figure Eight 0 7.31± 0.54 6.87± 0.08 8.26± 0.10 – 4.18± 0.09
Figure Eight 1 6.43± 0.01 – 5.61± 0.55 – 4.18± 0.09
Figure Eight 2 5.70± 0.01 5.96± 0.00 5.03± 0.23 – 4.18± 0.09
Merge 0 11.3± 0.31 13.31± 0.54 14.95± 0.12 13.66± 0.40 7.39± 0.55
Merge 1 11.06± 0.32 17.29± 0.40 13.74± 0.23 14.61± 0.47 7.39± 0.55
Merge 2 11.5± 0.54 17.36± 0.48 14.14± 0.24 14.54± 0.31 7.39± 0.55
Grid 0 270.2± 0.2 271.7± 0.6 296.2± 2.5 296.8± 5.3 280.8± 1.5
Grid 1 274.7± 1.0 274.3± 1.1 296.0± 2.0 296.2± 2.0 276.8± 1.7
Bottleneck 0 1265± 263 1360± 200 1298± 268 1167± 264 1023± 263
Bottleneck 1 1350± 162 1378± 192 1375± 61 1258± 200 1135± 319
Bottleneck 2 2284± 231 2324± 264 2131± 190 2143± 208 1889± 252

• Merge: Average speed of vehicles in the network (m/s).

• Grid: Average delay of all vehicles in the network (s) relative to traveling at the speed
limit. In this case, smaller values are preferable.

• Bottleneck: Outflow over the last 500 seconds of a 1000 second rollout (veh/hr).

In order to get a sense of how well these policies are performing, we use an estimate
of human-level performance acquired by running simulations of each environment in the
absence of learning agents as a baseline. Note, for the grid we use the actuated traffic light
baseline available in SUMO with the default parameters for minimum duration of green
and red time; however, we set the yellow light to imitate our controller and switch every
two seconds. Table 3.1 highlights the performance of each algorithm within the context of
the above mentioned performance metrics. As we can see, the learned policy outperform
human-level dynamics in all task.

3.6 Conclusions and Future Work

Given the current performance of the different RL algorithms, there is an abundance of
open questions that remain for these benchmarks. For each of these problems, it remains to
characterize whether the optimal solution has been achieved. Towards this end, we provide
some intuition here that the optimal solution has not been achieved from the perspective of
speed/delay of the resultant traffic. For the figure eight, although it is a toy example, CAVs
in a fully autonomous setting do not succeed in coordinating themselves in a manner such
that they are evenly spaced and move through the intersection at the speed limit (30 m/s)
without collision. The likely existence of a more optimal designable control strategy suggests
that there is an exploration problem to be solved. For the bottleneck, the capacity diagram
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in Fig. 3.2 occasionally reaches a maximum of 1550 vehicles per hour, suggesting that it is
possible, at least over the observed horizon, to arrange vehicles so that they merge optimally
without the sharp decelerations that eventually give rise to the bottleneck. Furthermore, for
bottleneck2 the problem is two copies of bottleneck 0 stacked together; the optimal reward is
at least the value of bottleneck0, but that value is not achieved. For the merge, the trained
policies started to gradually degrade after certain iterations, suggesting that the problem is
difficult to solve with existing optimization methods. Finally, for the grid, the considered
inflows are 300 vehicles per hour per edge for both small and large grids. While we do not have
a proof that we have not discovered an optimal solution for the grid problems, visualizations
of the solutions do not show the platooning that is expected of optimal solutions to heavy
traffic inflows. This is a heuristic argument and further characterization of the optimum is
worth pursuing.

While only a partial list, we highlight several additional key challenges that emerge in
studying these problems. The first, apparent in the merge and the bottleneck, are the unfixed
action and state space. At any given time, the number of controlled and uncontrolled vehicles
vary. In the merge case, we resorted to throwing away extraneous actions when there were
too few vehicles and having the excess vehicles imitate a human driven vehicle when there
were too many. For the bottleneck, we chose to discretize, passing the same command to
every vehicle in a given segment of the bottleneck. Similarly for the state space, we turned
to aggregate statistics, simply recording the number of vehicles in a given segment rather
than more fine-grained statistics. While both of these solutions appear to partially work,
perhaps there is a more elegant solution that can adaptively scale to different sized-state
and action spaces. Possible candidates include treating this as a multi-agent problem and
just using local information for each agent, taking a giant space space that is mostly sparse
when vehicles are missing, or using a neural network with sets of input and output matrices
that can be selected from to accommodate the variations in size.

Several of these benchmarks admit problems similar to those experienced in video game
environments, namely sparsity/credit assignment of the reward and redundancies and sym-
metries in the state space. The rewards are averages across the performance of the vehicles;
because of the number of vehicles in the system for the larger problems like bottleneck and
grid, any given actions positive or negative effect can be offset by the opposite effect elsewhere
in the system. An equally interesting issue is the notion of symmetry; many transportation
systems, exemplified here by the bottleneck and the grid, contain a high degree of symmetry.
The symmetry affords a potential for a reduction in the dimension of the state space: ex-
ploring how to do this, whether via convolutional neural networks, graph neural networks,
or explicit orderings of the state space that remove the symmetries, is an open question.
Furthermore, many of the systems are clearly composed of distinct sub-units, suggesting
that hierarchical approaches could be viable.

A few more open questions that are not explored in this work include: fairness, decen-
tralization, generalization, and sample-efficiency. From the perspective of fairness, several
of our results achieve high scores by inducing negative outcomes on a subset of the vehicles.
For example, ARS on the bottleneck simply learn to block a lane. This reduces merge con-
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flicts and increases outflow but has extremely negative effects on some of the vehicles. Our
controllers are fully centralized; this is unlikely to be possible in real road networks and the
effects of decentralization remain unexplored. As to generalization, an interesting question
is whether any of the derived controllers will work well on networks or inflows that were
outside of their training set. Finally, many of our experiments take over 10 hours to perform
500 iterations; to scale to real-world transportation networks it will be necessary to identify
methods for increasing sample efficiency.

Finally, as evidenced by the large grid and bottleneck benchmarks on which we either do
not learn an optimal policy or see flat training curves for several algorithms, there remain
fundamental advances to be made in learning policies that can tackle the large action and
state spaces that arise in trying to control city-scale road networks. It is our hope that the
release of these benchmarks spur excitement and progress on these problems.
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Chapter 4

Optimizing Mixed Autonomy Traffic
Flow With Decentralized
Autonomous Vehicles and
Multi-Agent Reinforcement Learning

4.1 Introduction

In this chapter, we examine the usage of multi-agent RL (MARL) in many-vehicle decentral-
ized control. Using it as a tool, we demonstrate how level-2 AVs, equipped with standard
sensors like cameras and radars, can be used to improve the throughput of a simplified model
of the San Francisco-Oakland Bay Bridge and similar bottleneck structures. We focus on
using AVs to improve the throughput of a lane reduction, a road architecture where the
number of lanes suddenly decreases. We will refer to successive lane reductions as a traffic
bottleneck. Bottlenecks are believed to cause a phenomenon known as capacity drop [55, 31]
where the inflow-outflow relationship at the bottleneck is initially linear but above some crit-
ical inflow value experiences a hysteric transition where the outflow suddenly and sharply
drops (see Fig. 4.4 for an example). The imbalance between inflow and outflow leads to
congestion and a reduction in the throughput of the bottleneck.

To avoid this reduction, it is necessary to restrict the inflow so that it never exceeds the
critical value above which capacity drop occurs. One approach to tackling this is to introduce
traffic lights into the network that meter/restrict the inflow [106] but this would require the
installation of additional infrastructure. Instead, autonomous vehicles can be used as mobile
metering infrastructure, essentially distributed traffic lights, that intelligently select when to
meter and when to let the flow continue without restriction.

While there is work characterizing bottleneck control using vehicle-based control, it usu-
ally operates in the centralized regime where a single controller outputs commands to all
the AVs in the system either via variable speed limits [128, 158, 90, 60] or centrally coor-
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dinated platoons [32]. Here we consider the challenging multi-agent problem where each
AV operates in a fully decentralized fashion and control is applied at the level of individ-
ual vehicle accelerations. The AVs can still coordinate but only implicitly: they can only
use common knowledge to decide which AV should go next. While decentralization adds
additional difficulty in controller design, the resultant controllers should be realizable using
existing cruise control technology and can consequently be implemented without relying on
any improvements in vehicle-to-vehicle communication technology.

We investigate the potential impact of decentralized AV control on bottleneck throughput
by studying a scaled-down version of the post-tollbooth section (see Fig. 4.1) of the San
Francisco-Oakland Bay Bridge. In our scaled version, four lanes reduce to two which then
reduce down to one lane (as opposed to 15 to 8 to 5 in the bridge). While the lane numbers
differ, the overall road architecture is quite similar as each vehicle goes through two merges.
To design the controllers, we will use multi-agent reinforcement learning (MARL). Even at
a reduced scale, this problem is a difficult MARL challenge as it incorporates:

• a large number of agents, varying between 20-200 depending on the penetration rate.

• delayed reward structure. A given vehicle’s impact on outflow isn’t experienced until
many seconds later.

• challenging credit assignment. The outflow is a global signal and it is difficult to
disambiguate whose action led to the improved outcome.

This work tackles this challenging MARL problem and provides some initial characterization
of the performance of decentralized control in these settings. The main contributions of this
work are:

1. We introduce a challenging new benchmark in multi-agent reinforcement learning.

2. We demonstrate that appropriately chosen multi-agent RL algorithms can be used to
design decentralized control policies for maximizing bottleneck throughput.

3. We show that effective control can be performed in the fully local sensing setting where
vehicles do not have access to any macroscopic observations.

4. We demonstrate and formalize a challenging problem in open transportation networks
where the Nash equilibrium can deviate from the social equilibrium. We introduce a
simple trick to make the two equilibria align.

5. We design decentralized feedback control policies and show that, despite extensive
tuning, the RL policies sharply outperform our feedback baseline. Additionally, the
RL approach is able to equal the performance of a traffic-light baseline.

6. We demonstrate that the resultant control policies can be made robust to variations
in the penetration rate.
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4.2 Background

Off-Policy Reinforcement Learning

Here we briefly introduce off-policy reinforcement learning as well as some of the challenges in
their use in multi-agent settings. For a more thorough discussion of the underlying algorithms
see[48, 86] and for the particular challenges of multi-agent off-policy algorithms see[89].

Off-policy methods focus on using a buffer of data sampled from the environment to
construct the policy. While they can suffer from instability relative to policy gradient meth-
ods[2], they tend to be more sample efficient and can often be effectively run on a single
CPU. The basic idea is to periodically sample data from the buffer and compute an estimate
of the Bellman error

L =
1

N

N∑
i=1

(
Q(sit, a

i
t)− r(sit, a

i
t)− γ argmax

a
Q(sit+1, a)

)2

where i indexes a sample from the batch, γ is the discount factor, and Q is the Q-function

Qπ(st, at) = Eπ

[
T∑
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γi−trt(st, at)|st, at

]
i.e. the expected cumulative discounted reward of taking action at and thereafter following
policy π (we will use the terms policy and controller interchangeably in this section). The
sum r(sit, a

i
t) + γ argmax

a
Q(sit+1, a) is referred to as the target. The algorithms then perform

gradient descent on the loss L to learn an approximation of the Q-function. DDPG simul-
taneously learns a Q-function for estimating the values of states and a policy that selects
actions that maximize the Q-function. Both policy µ and Q-function are learned simultane-
ously: the Q-function is learned by minimizing the Bellman error over a batch of data using
gradient descent and the policy µ is learned by performing gradient ascent on the action
component of the Q-function.

TD3 creates an empirically stabler version of DDPG by adding three simple tricks:

• The target is estimated using two Q-functions instead of one and taking the minimum
of the two.

• The policy network is updated significantly less often than the value network.

• A small amount of noise is added to the action when estimating the value of the Q-
function. This is based on the assumption that similar actions should have similar
Q-values.

For more details, please refer to[48].
In this work we use Twin-Delayed Deep Deterministic Policy Gradient (TD3)[48] a variant

of Deep Deterministic Policy Gradient (DDPG)[86]. It is important to note that TD3 is a
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single-agent algorithm and that in multi-agent settings, there is additional instability induced
by the changing policies of the other agents in the environment. Essentially, because the
other agents in the environment have also changed, samples inside the buffer are stale, they
no longer correctly represent either the rewards that would be received for taking an action
in a given state nor is the subsequent state after taking that action the state that we would
likely transition to. Algorithms that fail to address this issue and simply perform Q-learning
while ignoring it are referred to as Independent Learners. This challenge can be addressed
by algorithms like Multi-agent DDPG[89] which use a Q-function that sees the states and
actions of all active agents.

In this work, we simply use Independent Learners with a shared policy: all of our agents
use the same neural network to compute their actions. Surprisingly, we find this to be
effective despite the issue of stale buffer samples discussed above.

Car-Following Models

For our model of the driving dynamics, we use the default car-following model and lane-
changing models in SUMO.We use SUMO 1.1.0 which has the Krauss car-following model[75].
For the parameters of the model, we use the default values in the aforementioned SUMO
version. The lane-changing model is also the default model described in[43].

Flow

We run our experiments in Flow[153], a library that provides an interface between the traf-
fic microsimulators SUMO[88] and AIMSUN[11], and RLlib[85], a distributed reinforce-
ment learning library. Flow enables users to create new traffic networks via a python
interface, introduce autonomous controllers into the networks, and then train the con-
trollers on many-CPU machines on the cloud via AWS EC2. To make it easier to re-
produce our experiments or to try and improve on our results, our fork of Flow, scripts
for running our experiments, reproducing our results, and tutorials can be found at https:
//github.com/eugenevinitsky/decentralized_bottlenecks.

Feedback Control and ALINEA

As our baseline for the performance of our RL controllers, we implement the traffic light
controller from[106] (referred to here as ALINEA) and additionally design a decentralized
variant of ALINEA that can be performed using AVs. The basic idea underlying ALINEA
is to select an optimal bottleneck vehicle density and then perform feedback control around
that optimal value using the ratio of red-time to green-time of the traffic light as the control
parameter. We use the particular scheme outlined in[129] with some slight modifications.

Instead of operating around density, we feedback around a desired number of vehicles in
the bottleneck which we denote as ncrit, a hyperparameter that we will empirically determine

https://github.com/eugenevinitsky/decentralized_bottlenecks
https://github.com/eugenevinitsky/decentralized_bottlenecks
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for our network. We update the desired inflow q as

q̃k+1 = qk +K(ncrit − n̂)

qk+1 = max(qmin,min(q̃k+1, qmax))

where K is the gain of the proportional feedback controller, n̂ is the average number of vehicles
in the bottleneck over the last T seconds, and qmin and qmax are minima and maxima of q
to prevent issues with wind-up. We set T = 25, qmin = 200, qmax = 14400, and perform
hyperparameter searches over K,ncrit, q0. This desired inflow is then converted into a red-
green cycle time via

ck = r + g =
7200 ∗ L

qk

where r is the red time, g is a fixed green time, and L is the maximum number of lanes. In
this work, we set g to 4 which we empirically determined to be the amount of time needed to
let two vehicles pass into the bottleneck. We perform this feedback update every 30 seconds.
Finally, we initialize each of the traffic lights to have a cycle that is offset from each other
by 2 seconds to prevent the traffic lights from being completely in sync. Further details are
provided in the code.

Fortunately, we can apply the exact same strategy using autonomous vehicles instead
of traffic lights where ck is now the amount of time that an AV will wait at the bottleneck
entrance before entering. However, the hyper-parameters will differ sharply as a function of
the penetration rate. For a given penetration rate percentage, p, the expected length of the
human platoon behind a given AV will be 1

p
− 1. Whereas in the traffic light case we can set

arbitrary inflows, here every time an AV goes, 1
p
− 1 vehicles will follow it on average. As a

consequence, to avoid congestion at lower penetration rates, the inflow needs to be a good
deal lower. As we will discuss in Section 4.4, this leads to the decentralized control scheme
under-performing traffic-light based control. For the exact hyper-parameters swept, see the
appendix.

4.3 Experiments

Experiment Setup

We attempt to improve the outflow of the bottleneck depicted in Fig. 4.2, in which a long
straight segment is followed by two zipper merges sending four lanes to two, and then another
zipper merge sending two lanes to one. This is a simplified model of the post-ramp meter
bottleneck on the Oakland-San Francisco Bay Bridge depicted in Fig. 4.1. Once congestion
forms, as in Fig. 4.3, the congestion does not dissipate due to lower outflow than inflow and
begins to extend upstream.

An important point to note is that in this work lane-changing is disabled for all the
vehicles in this system. As we discuss in Sec. 4.4, this enables higher throughput but would
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Figure 4.1: Bay bridge merge. The equivalent subsection that we study in this work is
highlighted in a white square. Traffic travels from right to left.

Figure 4.2: Long entering segment followed by two zipper merges, a long segment, and then
another zipper merge. Scale is distorted to make visible relevant merge sections.

Figure 4.3: Congestion forming in the bottleneck. Congestion starts at the left (downstream)
and propagates right (upstream). Red vehicles are automated, human drivers are in white.

require the imposition of new road rules at the bottleneck. Fortunately, this would only
require painting some new lines that restrict lane-changing which should be relatively cheap.

Capacity Diagrams

Fig. 4.4 presents the inflow-outflow relationship of the uncontrolled bottleneck model. To
compute this, we swept over inflows from 400 to 3500 vehicles per hour in steps of 100,
ran 20 runs for each inflow value, and took the outflow as the average outflow over the last
500 seconds. Fig. 4.4 presents the average value and 1 std-deviation from the average across
these 20 runs. Below an inflow of 2300 vehicles per hour congestion does not occur; above
2500 vehicles per hour congestion will form with high certainty. A key point is that once
the congestion forms at these high inflows, at values upwards of 2500 vehicles per hour, it
does not dissolve unless inflow is reduced for a long period of time. Identical inflow-outflow
behavior is observed when lane-changing is enabled so a similar graph with lane-changing is
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Figure 4.4: Inflow vs. outflow for the uncontrolled bottleneck. The solid line represents
the average over 20 runs at each inflow value and the darker transparent section is the one
standard deviation from the mean.

omitted.

Partially Observed Markov Decision Process Structure

Here we outline the definition of the action space, observation function, reward function,
and transition dynamics of the POMDP that is used in our controllers. We distinguish
three cases that depend on the type of sensing infrastructure that will be available to the
controller. The central concern is that the observations must give some way of identifying
the state of the bottleneck (speed and density) to allow the AVs to intelligently regulate
the inflow. Without some estimate of the bottleneck state, the AVs must be extremely
conservative to ensure that the bottleneck does not enter congestion. The estimation can be
done explicitly by acquiring the bottleneck state with loop detectors/overhead cameras or
implicitly, by observing the behavior of vehicles around the bottleneck and inferring what
the state of the bottleneck must be.

Figure. 4.5 provides a rough overview of our considered state spaces. We call the first
state set the radar state as the required states would be readily available via onboard radar,
cameras, and GPS. This is the state space that would be most easily implemented using
existing technology on an autonomous vehicle and does not use any macroscopic information.
In Fig. 4.5, radar state would consist of the distances and speeds of the blue and green
vehicles. These observable vehicles correspond to one vehicle ahead and one vehicle behind
in each of the lanes. For instance, if the vehicle is on a segment with four lanes, it will see
up to 8 vehicles in its state, with padding for missing vehicles. We also note that although
AVs are only controlled in a congested regime on edge 3 (cf. Fig. 4.2), in which leader and
follower vehicles in all lanes are usually close by, a current limitation of our work is that we
assume our ego vehicle has an infinite, unobstructed sensing range. However, we study the
effect of restricting the sensing range in Sec. 4.4.



4.3. EXPERIMENTS 32

Figure 4.5: Diagram representing the different state spaces. The red vehicles can see the
green vehicles in the minimal state space, and the blue and green vehicles in the radar
state space. In the minimal and aggregate state spaces, the red vehicle also has access
to information about the vehicle count in the bottleneck which we represent as a tower
communicating information about the highlighted red segment. In addition to the states
indicated here, the aggregate state space also contains the average speeds of edges 3, 4, and
5 (see Fig. 4.2).

We also provide a smaller state space we call the minimal state space which essentially
consists of the speed and distance of only the green vehicle in Fig. 4.5 as well as the vehicle
counts in the bottleneck. This is a small state space intended for fast learning; we have
significantly pruned it by hand-picking what we believe to be a minimal set of states with
which the task can be accomplished. We also investigate an aggregate state that provides
macroscopic data about the bottleneck and can be added to any existing state space. The
aggregate state consists of the number of vehicles in the bottleneck and the average speeds
of vehicles on edges 3, 4, and 5 (see Fig. 4.2 for the numbering). These states would be
available given appropriate loop sensing infrastructure or a sufficient number of overhead
cameras distributed throughout the bottleneck.

We note that every state space contains the ego vehicle speed, its GPS position on the
network, and a counter indicating how long the vehicle has stopped. This counter is used
to enable the controller to track how long it has waited to enter the bottleneck. For a more
detailed breakdown of which observations are available in the three previously defined states,
see Appendix Sec. A.2

From these three potential sets of states, we form three combined state spaces that we
study: radar + aggregate, minimal + aggregate, and minimal alone. Each of these repre-
sents a different set of assumptions on what sensing technology will be available ranging
from full decentralization (radar alone) to having access to macroscopic information (mini-
mal, aggregate). We characterize the relative performance of these different state spaces in
Sec. 4.4. Note that each of these state spaces has some information about the state of the
bottleneck, which we found critical for getting good performances; for this reason, we do not
include state spaces that include no information about the bottleneck, such as radar alone
or minimal without bottleneck counts.

The action space is simply a 1-dimensional acceleration. While we could include lane
changes as a possible action, we leave this to future work. To prevent the vehicles from
forming unusual patterns at the entrance of the bottleneck, control is only applied on edge 3
(edges numbered according to Fig. 4.2). However, states and rewards are received at every
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time-step and consequently, actions are computed at each time-step: we simply ignore the
controller output and use the output of the car-following model unless we are on edge 3.

We are trying to optimize throughput, so for our reward function we simply use the
number of vehicles that have exited in the previous time-step as a reward

rt(st, at) = nt/N

where nt is the number of vehicles that have exited in that time-step and N is a normalization
term that was used to keep the cumulative reward at reasonable values. We use N = 50 in
this work. Since the outflow is exactly the quantity we are trying to optimize, optimizing
our global reward function should result in the desired improvement. This is a global reward
function that is shared by every agent in the network.

However, we note a few challenges that make this a difficult reward function to optimize.
First, the reward is global which causes difficulties in credit assignment. Namely, it is not
clear which vehicle’s action contributed to the reward at any given time-step. Secondly,
there is a large gap between when an action is taken and when the reward is received for
that action. That is, a vehicle choosing to enter the bottleneck does not receive any reward
directly attributable to that decision for upwards of 20 steps. Finally, the bottleneck being
fully congested is likely a local minimum that is hard to escape. Once congestion has set,
it cannot be removed without a temporary period where the inflow into the bottleneck
is reduced. However, a single vehicle choosing to not enter the bottleneck would have a
negligible effect on the inflow, making it difficult for vehicles to learn that decongestion is
even possible.

Divergence Between Nash Equilibrium and Social Optimum

Here we provide a simple illustrative example of how, despite having a single, global reward
function, open networks can lead to non-cooperative behavior. In the case where every vehicle
receives the same reward at every time-step, it is simple to see that the Nash Equilibrium will
be the same as the social optimum. However, vehicles sharing the same reward function but
optimizing over different horizons can cause a divergence between the two equilibria. The key
intuition is that although all of the vehicles are trying to optimize the same quantity, they
only receive rewards while they are in the system as their trajectory terminates once they go
through the exit. This creates a perverse incentive to remain in the system for longer than is
socially desirable, leading to a divergence from the social optimum. Consider the following
simplified, single-step variant of the bottleneck in which there are simply two vehicles. The
problem has the following reward structure before we introduce the open-endedness:

• If both vehicles go, congestion occurs and they receive a reward of 1.

• If one vehicle goes and the other doesn’t, no congestion occurs. Both vehicles receive
a reward of 2.

• If both vehicles do not go, no outflow occurs and they receive a reward of 0.
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Table 4.1: One time-step model of the bottleneck reward structure. Here we make sure to
reward the vehicle that exited the system, even though in an MDP its trajectory would have
ended and no reward would have been given.

Vehicle 2

Go No Go

Vehicle 1
Go (1, 1) (2, 2)

No Go (2, 2) (0, 0)

Table 4.2: One time-step model of the bottleneck reward structure where vehicles do not
receive reward after they exit.

Vehicle 2

Go No Go

Vehicle 1
Go (1, 1) (0, 2)

No Go (2, 0) (0, 0)

This problem mimics the structure of the bottleneck where it is necessary to restrict the
inflow to maximize the outflow. It is straightforward to see that the optimum is achieved
when one vehicle goes and the other doesn’t and that this is both the social optimum and a
Nash equilibrium. The game is depicted in Table 4.1 where it can visually be verified that
(No-Go, Go) and (Go, No-Go) are Nash Equilibria but (No Go, No Go) is not an equilibrium
point.

Open networks modify the problem in that once a vehicle exits it ceases to receive any
reward. Therefore, the vehicle that goes does not actually observe any outflow and will
receive a reward of zero.

• If both vehicles go, congestion occurs and they receive a reward of 1.

• If one vehicle goes and the other doesn’t, no congestion occurs. The vehicle that went
receives a reward of 0 while the other one receives a reward of 2.

• If both vehicles do not go, they receive a reward of 0.

In this setting, depicted in Table. 4.2, (No Go, No Go) is now a weak Nash Equilibrium. From
the perspective of learning, this is a ubiquitous equilibrium as the vehicles that chose not to
go will tend to accumulate a lot of reward. An easy solution to remove this equilibrium is
to adopt the perspective of the game in Table 4.1 and continue to reward vehicles even after
they leave the system. However, this would create a very noisy reward function as agents
that exit the system earlier would receive a lot of reward from states and actions that they
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did not particularly influence. An alternative variant is to keep all the agents persistently
in the system: run the system for some warm-up time to accumulate a starting number of
vehicles and after that, any vehicle that exits is rerouted back to the entrance. We adopt
this choice and reroute the vehicles during the training. However, this could lead to vehicles
manipulating the bottleneck across reroutes and so we turn this rerouting behavior off when
testing the policies after training.

Experiment Details

For the training parameters for TD3, we primarily used the default parameters set in RLlib
[84] version 0.8.0, a distributed deep RL library. The percentage of autonomous vehicles
varies among 5%, 10%, 20%, and 40%. During each training rollout, we keep a fixed inflow
of 2400 vehicles per hour over the whole horizon. At each time-step, a random number
of vehicles are emitted from the start edge. Thus, the number of vehicles in each platoon
behind the AVs will be of variable length and it is possible that at any time-step any given
lane may have zero AVs in it. To populate the simulation fully with vehicles, we allow the
experiment to run uncontrolled for 300 seconds as a warm-up. After that, we run an RL
rollout for 1000 seconds.

We use the traffic micro-simulator SUMO[88] for running our simulations. At training
time, we use the re-routing technique discussed in Sec. 4.3 where vehicles are simply placed
back at the beginning of the network after exiting. It is essential to note that for the multi-
agent experiments we used a shared controller, all of the agents operate in a decentralized
fashion but share the same controller.

For more details, see the Appendix.

4.4 Results

In this section, we attempt to provide experimental results that answer the following ques-
tions:

1. How does the ability to improve bottleneck throughput scale with available sensing
infrastructure? With penetration rate?

2. Is there a single controller that will work effectively across all penetration rates?

3. Can we construct an effective controller that uses purely local observations?

Effect of Sensing

Here we compare the relative performance of the different sensing options across different
penetration rates. Fig. 4.6 compares the evolution of the inflow-outflow curve of the three
state spaces to the uncontrolled case (labeled human), the traffic light baseline (labeled
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ALINEA), and the hand-designed feedback controller operating at a 40% penetration rate.
Each of the state spaces outperforms the hand-designed feedback controller at every pene-
tration rate and provides a 15% improvement in the outflow even at the 5% penetration rate.
To study the evolution of the outflow with penetration rate, Fig. 4.7 illustrates the outflow
at an inflow of 2400 as a function of penetration rate. Only the radar + aggregate state
space is able to consistently take advantage of increasing penetration rate. Excitingly, its
performance at a 40% penetration equals the performance of a traffic light-based controller.
Table 4.3 summarizes the values of each of the different state spaces at an inflow of 3500
vehicles per hour.

Table 4.3: Average outflow and its variance at an inflow of 3500 vehicles per hour, as a
function of the penetration and the state space.

minimal minimal + aggregate radar + aggregate

5% 1803 ± 83 1813 ± 114 1817 ± 80
10% 1829 ± 46 1863 ± 76 1888 ± 47
20% 1811 ± 29 1897 ± 46 1980 ± 48
40% 1878 ± 40 1910 ± 46 2034 ± 45

Is There a Universal Controller?

In Sec. 4.4 we train a separate controller for each penetration rate. Atop the additional com-
putational expense needed to train a new controller for each data-point, having one controller
per penetration rate might require an accurate online estimation of current penetration rates
so as to switch to the appropriate control scheme. Here we point out (see Fig. 4.8) that at
least for the controllers studied here, this concern is justified: a controller trained at one
penetration rate and evaluated at another will underperform a controller trained at the lat-
ter penetration rate. We also investigate a simple dynamics randomization strategy where
we randomly sample a new penetration rate at each rollout and confirm that this can yield
a controller that performs effectively across penetration rates albeit with some small loss of
performance.

The key challenge is that the appropriate amount of time needed to wait before entering
the bottleneck is a function of the penetration rate. As a simplified model to generate
intuition, imagine that the bottleneck deterministically congests if more than 11 vehicles
enter it. We will refer to an AV with N vehicles behind it as a platoon of length N. At a
penetration rate of 10%, the average platoon length is 9. If we have two AV platoons ready
to enter the bottleneck, one of the platoons must wait until the other platoon is almost
completely into the bottleneck or else it will congest. At a 20% penetration rate (a platoon
of average length 4), however, two platoons can go at once without worrying about running
into congestion.
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As a result, a controller trained at low penetration rates may be too conservative when
deployed at higher penetration rates while a controller trained at high penetration rates
may not be conservative enough at low penetration rates. As demonstrated in Fig. 4.8, a
controller trained at a 10% penetration rate does significantly worse when deployed at a 40%
penetration rate. Thus, if we use the controllers trained in Sec. 4.4, it will be necessary to
use either infrastructure or historical data to identify the current penetration rate and de-
ploy the appropriate controller. This motivates our attempt to find a single controller that is
stable across penetration rates. We demonstrate that in return for some small degradation in
performance, we can construct a single controller that performs robustly across penetration
rates. To achieve this, we use dynamics randomization and for each trajectory we sample
a new penetration rate p uniformly from p ∼ U(0.05, 0.4). We refer to these as universal
controllers and the controllers trained at individual penetration rates in Sec. 4.4 as indepen-
dent controllers. Fig. 4.9 shows the performance of the universal controllers compared to
the controllers trained at a penetration rate and evaluated at the same penetration rate for
each of the three state spaces we are using.

From Fig. 4.9, we can see that the results do not have a consistent trend as the universal
controllers both over-perform and underperform at different penetration rates. For example,
the minimal + aggregate controller gives up 100 vehicles per hour at a 5% penetration rate
but outperforms the independent controller by 250 vehicles per hour at high penetration
rates. However, we note that even the worst outcome at low penetration rates, the universal
minimal controller, outperforms the uncontrolled baseline of 1550 vehicles per hour. Addi-
tionally, the universal radar + aggregate controller consistently provides an outflow of 1850
vehicles per hour which achieves the desired goal of an effective controller independent of
penetration rate.

Controllers Without Macroscopic Observations

The three state spaces studied earlier, minimal, minimal + aggregate, radar + aggregate,
all contain the number of vehicles in the bottleneck (edge 4 in Fig. 4.2) in the state space as
well as average speed data on edges 3, 4, 5 in the aggregate cases. Acquiring this information
consistently (rather than through a lucky LIDAR or radar bounce picking up many vehicles
ahead of the ego vehicle) would require either camera or loop sensing infrastructure. We
would like to understand whether efficient control can be done without access to the number
of vehicles in the bottleneck, a quantity we refer to as congest number. This would enable
us to perform control that is fully decentralized in both action and observation, allowing us
to deploy these systems with no additional infrastructure cost.

We attempt to answer this question by using the radar state space alone without any
aggregate information. Thus, the vehicle only has access to the speeds and distances of the
vehicles directly ahead of and behind it in each lane. Although it is not obvious how the
controller will accomplish inference of the congest number, a few possible options:

1. There exists a scheme that does not actually depend on the number of vehicles in the
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bottleneck.

2. The number of vehicles in the bottleneck can be inferred from the distance to the
visible vehicles or the speed of the visible vehicles. For example, if a vehicle observed
in the bottleneck is stopped that likely indicates congestion while high velocities would
indicate free flow.

3. Vehicles can learn to communicate through motion by adopting vehicle spacing and
velocities that observing vehicles can use to infer the congest number. For example, a
velocity between 2 and 3 m/s could indicate 0-5 vehicles in the bottleneck, between 3
and 4 m/s could indicate 6-10 vehicles, and so on.

While we are not able to conclusively establish which of the above hypotheses are active,
Fig. 4.10 demonstrates the effect of removing any macroscopic information from the state
space. The radar state space with no macroscopic data, marked in orange, deviates from
the aggregate state space by about 100 vehicles per hour but still sharply outperforms an
uncontrolled baseline (marked human). Since radar sensors are now standard features on
level 2 vehicles, this suggests that a fully decentralized controller can be deployed using
available technology.

Robustness of Simplifications

In this section, we attempt to relax some of the simplifying assumptions made in the design
of our problem. Specifically, we investigate the effects of the following changes:

• Lane-changing. In the prior results, we have disabled lane-changing. We now study
whether our best controllers are able to handle adding lane-changing to the human
driver dynamics without retraining the RL controller.

• Simplifications in the “radar” model. Our “radar” state space does not take into
account occlusions and can return a vehicle an arbitrary distance away.

In Fig. 4.11, we enable lane-changing and examine how effective our controllers are as the
penetration rate evolves. Unsurprisingly, at low penetration rates, there is a sharp reduction
in outflow relative to the lane-changing disabled setting. The challenge is that when one of
the AVs goes, other vehicles will rapidly lane-change into its lane which prevents the AV
from restricting the inflow. As the penetration rate increases, when an AV at the front of the
queue goes, a new AV rapidly arrives to replace it which consequently minimizes the impact
of lane-changing. However, we note that when vehicles lane-change in SUMO, they instantly
change lanes which may enable more aggressive lane-changing than is physically possible.
Hence, the degradation in outflow might be lower in reality than it is in our simulator.
Furthermore, disabling lane-changing at a bottleneck by painting new road lines should be
relatively cheap.
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As for the question of a more “realistic” radar model, Fig. 4.12 presents our attempt to
restrict the range beyond which vehicles cease to become visible. We take a trained policy
and cap how far it is allowed to see as an approximation of a restricted radar range. We
try two restrictions, not seeing past 20 meters and not seeing past 140 meters. If there
is no vehicle within that range, we set a default state with a distance of 20 or 140 meters
respectively, a speed of 5 meters per second, and treat it as a human vehicle by passing a zero
to the boolean that indicates whether a vehicle is human or autonomous. Other replacements
in the state for vehicles that are too far away to see are possible, we could instead replace the
missing states with a vector of −1’s but found empirically that the replacement discussed
led to better performance. We find that the universal controllers are relatively robust to
this replacement which suggests that their controller is more independent of actual vehicle
sensing and more dependent on macroscopic states. This ablation, simply ignoring vehicles
that are too far away, is an extremely approximate model of how radar might work, and
replacing it with more accurate radar models is a topic for future work.

Instability of Reward Curve

For purposes of reproducibility, we provide a few representative reward curves from some
of the training runs. These should help establish a sense of what the expected reward is as
well as provide a calibrated sense of what fraction of training runs are expected to succeed.
Since we use 36 CPU machines and each training run requires 1 CPU, we are able to train 35
random seeds in parallel (1 CPU is used to manage all the trainings) and we keep the best
performing one. The following figure presents the results of 9 of these random seed trials
(for better visibility) from one of the training runs.

Fig. 4.13 and Fig. 4.14 represent reward curves from low penetration rate runs (10%) and
high penetration rate runs (40%) respectively. A high-scoring run corresponds to an average
agent reward of around 10, a reward slightly above eight corresponds to all the vehicles
just zooming into the bottleneck without pausing, and a reward below 2 corresponds to
the vehicles mostly coming to a full stop. As is clear from the figures, at low penetration
rates the training is relatively stable and converges quickly. However, as the penetration
rate increases the reward curves become extremely unstable, with rapid oscillations in the
expected reward. This instability is not due to variations in the outflow as the std. deviation
of the outflow is low but is likely the outcome of applying independent Q-learning in a multi-
agent system, leading to non-stationarity in the environment. Methods that explicitly handle
this non-stationarity by using a centralized critic such as MADDPG[89] may help reduce the
instability in the training.

4.5 Conclusions and Future work

In this work, we demonstrated that low levels of autonomous penetration, in this case 5%,
are sufficient to learn an effective flow regulation strategy for a severe bottleneck. We demon-
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strate that even at low autonomous vehicle penetration rates, the controller is able to improve
the outflow by 300 vehicles per hour. Furthermore, we are able to use additional availability
of AVs and at a 40% penetration rate get equal performance to actually installing a new
traffic light to regulate the inflow.

However, many open questions remain. In this work, we use an independent Q-learning
algorithm which leads to serious instability in the training. As discussed in Sec. 4.4, at high
penetration rates many of the training runs become unstable, which makes it unclear if we
are near to the optimal policy for those penetration rates. This is a challenging multi-agent
RL task and it would be interesting to see whether multi-agent RL algorithms that use
a centralized critic like MADDPG[89] and QMIX[116] would lead to more stable training.
Furthermore, the training procedure takes 24 hours so finding algorithms that can perform
with higher sample efficiency is critical.

One possible direction to pursue in future work is to increase the level of realism, adding
both lane-changing and an accurate radar model that correctly accounts for obscurity. In
preliminary investigations in Sec. 4.4, we found that lane-changing degrades the performance
of our controllers as vehicles simply lane-change into the lane that is currently moving and
thus avoid inflow restriction. It may be the case that this behavior can be avoided by more
complex coordination between the AVs in which they explicitly arrange themselves to block
this lane-changing behavior. Preliminary experiments we ran in which training was done
with lane-changing enabled did not yield particularly strong results but this may be an
artifact of our choice of the training algorithm.

Another open question is to investigate the effects of coordination between the vehicles.
In the decentralized case, we still do not know the extent to which the AVs are coordinating
in their choice of action. While implicit coordination is possible due to vehicles being aware
of which nearby vehicles are also autonomous, we have only provided circumstantial evidence
that this is actually occurring. In the case of lane-changing, such coordination may be needed
to prevent human drivers from skipping lanes and decreasing the total outflow. Additionally,
we do not use memory in any of our models which may be limiting the effectiveness of our
controllers. Using memory-based networks such as LSTMs could be an interesting direction
for future work.

One approach we intend to explore to explicitly enable coordination is to allow the AVs
to communicate amongst themselves. Perhaps by broadcasting signals to nearby vehicles,
the AVs can learn to coordinate platoons in such a way that changing lanes no longer
appears advantageous to the human driver and they will remain in their lane. Furthermore,
if communication proves useful, it is possible that the AVs may develop a “language” that
they use for coordination. Examining whether such a “language” emerges is a future thread
of work.

Finally, an exciting potential consequence of these results, given that they’re decentralized
and only use local information available via vision, is that human drivers could potentially
implement these behaviors. Investigating whether this scheme could be deployed via human
driving, whether by constructing a mobile app that provides instructions or by teaching a
new driving behavior, is a direction we hope to explore in the future.
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Figure 4.6: From top to bottom, the evolution of the inflow vs. outflow curve as penetration
rates evolve for minimal, minimal + aggregate, and radar + aggregate. Within each figure we
plot the performance of our controllers trained at four different penetration rates, the traffic
light baseline ALINEA, the performance of our feedback controllers at a 40% penetration
rate, and the uncontrolled curve marked “human”.
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Figure 4.7: Evolution of the outflow as a function of the penetration rate for the three state
spaces we are using. We also plot the uncontrolled human baseline for reference.

Figure 4.8: The inflow vs. outflow curve for a controller trained at 10% penetration on the
minimal + aggregate state space, and evaluated at 5%, 10%, 20%, and 40% penetration. We
also plot the uncontrolled human baseline for reference.
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Figure 4.9: Evolution of the outflow as a function of the penetration rate for the three state
spaces we are using. For each state space, we compare the universal controller trained using
dynamics randomization and evaluated at different penetration rates, to the four independent
controllers trained and evaluated at their own penetrations rate of respectively 5%, 10%, 20%
and 40%. We also plot the uncontrolled human baseline for reference.

Figure 4.10: Evolution of the inflow vs. outflow curve for controllers trained at a penetration
rate of 10%. We compare a controller trained on the full radar + aggregate state space to
a controller only trained on the radar state space, which means it doesn’t have access to
the number of vehicles in the bottleneck. We also plot the performance of the traffic light
baseline ALINEA, of our feedback controller at 40%, and of the uncontrolled curve marked
“human”.
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Figure 4.11: Evolution of the outflow as a function of the penetration rate for controllers
trained on the radar + aggregate state space. We compare controllers that have been trained
with lane-changing disabled, to those sames controllers when lane-changing is enabled at
evaluation time. We compare both controllers trained on a fixed penetration rate of 5%,
10%, 20% or 40%, referred to as “separate”, and controllers trained at a random penetration
rate between 5% and 40% as explained in 4.4, referred to as “universal”. We also plot the
uncontrolled human baseline for reference.

Figure 4.12: Evolution of the outflow as a function of the penetration rate for controllers
trained on the radar + aggregate state space. We compare controllers that have been trained
with the (normal) entire radar state space, to those same controllers when the radar is
restricted to seeing only vehicles up to a distance of 20 meters or 140 meters at evaluation
time. We compare both controllers trained on a fixed penetration rate of 5%, 10%, 20% or
40%, referred to as “separate”, and controllers trained at a random penetration rate between
5% and 40% as explained in 4.4, referred to as “universal”. We also plot the uncontrolled
human baseline for reference.
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Figure 4.13: A sample of runs from a seed sweep at a penetration rate of 10%. Most of the
seeds converge to a good policy.

Figure 4.14: A sample of runs from a seed sweep at a penetration rate of 40%. There is
significant instability that is expected from using single-agent algorithms in a multi-agent
problem.
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Chapter 5

Deep Reinforcement Learning for Fuel
Consumption Reduction in
Multi-Lane Road Networks

5.1 Introduction

Designing controllers and analyzing their energy impact is difficult due to the complexity of
traffic: non-linear driving dynamics, lane changes, merges, etc. Hence, controllers are often
designed and analyzed in simple settings whose relationship to actual highway networks is
not entirely clear. For example, a significant fraction of recent traffic smoothing controllers
are designed and analyzed with respect to a closed circular ring of dense traffic, a setting in
which energy-consuming waves form spontaneously and persist throughout the network [138].
While this network is amenable to analysis and can model a single lane of traffic as it becomes
infinitely long, the simplicity of the network makes it unclear how controllers designed in
these settings will perform as complexity increases. Furthermore, these simple systems often
have pernicious optimal solutions like slowing to a stop and gradually accelerating up to the
equilibrium speed of the ring.

In this chapter, we focus on developing robust, traffic smoothing controllers for a system
containing both traffic waves as well as lane changes. We build a multi-lane model (shown
in Fig. 5.1) of a section of the Ventura Freeway in Los Angeles containing both on-ramps
and lane drops. This system contains approximately one thousand vehicles and stretches
about one mile, allowing us to see any possible long-range interactions between AVs, waves,
and lane changing behavior. Using on-policy multi-agent reinforcement learning, we design
traffic smoothing controllers that create a sharp increase in the energy efficiency of the traffic
flow; these controllers also outperform a variety of available baseline controllers. The state
input to our controller is easily implementable using radar or cameras, making it an easy
add on to existing cruise controllers.

Since it is highly likely that our simulator is not accurate in a variety of ways (imperfect
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Figure 5.1: The I-210 network simulated within SUMO. Yellow areas represent the uncon-
trolled ghost cells, while the blue rectangle shows where control is applied and where metrics
are computed.

model of human driving dynamics, vehicle dynamics, etc.), we demonstrate that our con-
troller is a good candidate for deployment by performing a set of robustness tests. We sweep
over a wide variety of the parameters that define driving behavior and system dynamics in
our simulator and show that our controller maintains good performance under these changes.
As we demonstrate, our controller appears robust to all these axes of variation.

The contributions we include in this chapter are as follows:

• We build and release a new, large-scale traffic network for investigating the effect and
potential of traffic-smoothing autonomous vehicles.

• We use multi-agent reinforcement learning to construct controllers that sharply improve
the energy efficiency of highway traffic. We demonstrate that our controllers generalize
outside their training distribution and act like controllers that know the equilibrium
speed of the system.

• We perform a variety of robustness checks and demonstrate that our controller is robust
to a wide range of potential driving conditions.

5.2 Related Work

In the seminal work of [138] it was experimentally shown for the first time that traffic
streams can exhibit what are known as ’phantom-jams’ in which a moving traffic jam can
form without any outside prompts, such as lane-reductions or accidents. Following work
in [132] empirically showed that under the same setup the phantom-jams that form could
be effectively dissipated using a single automated vehicle running a control algorithm. In
addition to increasing the average speed, and reducing the speed variance of the system, a
significant increase in fuel efficiency for the vehicles was also found [133, 157]. These result
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established the potential of mixed-autonomy control to improve throughput and energy
efficiency in relatively simplified settings.

Extensive work has been done to find new mechanisms by which mixed-autonomy can be
used to improve transportation systems. [66, 33], consider the use of platoons of autonomous
vehicles operating as moving bottlenecks to both dampen stop-and-go waves and minimize
the effects of capacity drop. Other works consider the potential of vehicle-to-infrastructure
coordination as a tool for eco-driving, a concept in which a controlled vehicle modifies its
speed and acceleration profile to realize energy gains. [9] demonstrates the deployment from
simulation to the roadway of coordination between a vehicle and a signalized intersection
and shows marked improvements in energy efficiency albeit at the cost of travel time. [6]
demonstrates in a physical experiment with ghost cars that a CAV using prediction of the
lead vehicle trajectory or communicating with AVs further ahead in the string can sharply
improve the energy efficacy of a drive.

Recently, many controllers for mixed autonomy settings have been generated using tech-
niques from Reinforcement Learning. Reinforcement learning has been used in [153] to
demonstrate that a vehicle equipped with memory could equilibrate the system for a wide
range of ring densities. Other works have focused on the potential of reinforcement learn-
ing to improve traffic at scale. In [35, 164, 98, 142], multi-agent RL was used to optimize
merges in a fully decentralized fashion. Both [54] and [150] concurrently used decentralized
multi-agent RL for optimizing a scaled model of the San Francisco-Oakland Bay Bridge. Re-
inforcement learning has also seen significant use in traffic light pattern optimization [163,
26] as well as to develop traffic light controllers that could quickly adapt to new settings
using Meta-RL [162].

5.3 Smoothing in Multi-Lane Systems

Our goal is to study traffic smoothing in a setting with large numbers of vehicles, ubiquitous
lane changes and multiple possible sources of onset mechanisms for wave formation. We
choose a segment of the Ventura Freeway, or Interstate 210 (I-210), in California. This
segment is approximately one mile long and can hold up to 2000 vehicles. It varies between
five and six lanes over its length and has an on-ramp that can serve as a possible source of
congestion formation; however, this on-ramp is disabled in this work since we use a different
mechanism to generate congestion, as explained in Sec. 5.4. Due to the combination of the
multi-lane nature and its high capacity, this network serves as an effective testbed for the
complexity of realistic wave smoothing.

The challenge in this network is to improve the energy efficiency by eliminating traffic
shockwaves that occur along this system, which we will refer to as phantom jams. These
shockwaves are known to appear in real systems [123] and decrease the energy efficiency
of travel by leading to patterns of braking and acceleration. By eliminating the phantom
jams, we improve the energy efficiency of the system. As we will demonstrate, an interesting
feature of these phantom jams is that they can be removed with minimal effect on the traffic
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flow: decreasing the fuel consumption of the roadway is something that can be achieved
without any trade-offs on the system throughput.

5.4 Problem Formulation

I-210 model with phantom jams

The I-210 network has been imported from Open Street Maps into the microscopic traffic
simulator SUMO [88]. The network is shown in Fig. 5.1. Traditionally, traffic congestion is
hypothesized to be caused by ’bottlenecks’ in which a road network cannot support as much
flow through a downstream section as is being sent from the upstream. This discrepancy in
capacity to receive compared to amount sent subsequently creates traffic congestion in which
vehicles are forced to drive closer together and at a lower speed than they would otherwise.

One of the benefits of the ring-road as a well-posed traffic simulation environment is
that congested regimes can be set directly by choosing a number of vehicles for a given ring
length (i.e. the density is set directly). However, the ring lacks crucial components of realistic
traffic such as lane-changing and routing choice. In order to allow for such traffic maneuvers
the multi-lane, multi-edge, network present in the I-210 network is used. In addition, a
subsequent downstream flow condition is imposed directly in the form of a decreased speed
limit along a small portion of the end of the network. We refer to this speed limit as the
downstream speed. By doing so, the congested regime for the traffic can be set in a very
similar manner to the ring road. This downstream condition can then be varied to allow
more or less flow through the end of the network, which allows for testing the proposed
control framework across a number of traffic regimes.

Human controllers

An important component of micro-simulation is the car-following and lane-changing logic
that individual vehicles in the simulation adhere to. Car-following refers to how vehicles
manage their longitudinal motion within a lane as opposed to their lateral, lane-changing
behavior.

For the lane-changing logic, we use the default model provided in SUMO [88], the traffic
micro-simulator that we use. The dominant cause of lane-changing in this model mostly
consists of a vehicle lane-changing for speed gain, i.e. it will lane-change if it can drive faster
in the other lane.

As for the car-following logic, it is generally modeled as ordinary differential equations
that dictate an ego vehicle’s motion based on the state of the vehicle ahead of it. In this
work a first-order discretization of the Intelligent Driver Model (IDM) [68] is used, which
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dictates a vehicle’s longitudinal acceleration, and is of the form:

vt+1 = vt +∆t× a

[
1−

(
vt
v0

)δ

−
(
s∗ (vt,∆vt)

st

)2
]

+
√
∆tN (0, σ)

(5.1)

with

s∗ (vt,∆vt) = s0 + vtT +
max{0, vt∆vt}

2
√
ab
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(5.2)

where vt is the ego vehicle speed at time t, ∆vt is the difference between the leading vehi-
cle’s speed and the ego vehicle’s speed, st is the distance to the lead vehicle, and a, b, s0, T, v0
and δ are all parameters of the model. t indexes the time-step and ∆t refers to the size of
the simulation step. N (0, σ) is zero-mean Gaussian noise used to perturb the accelerations
at each time-step and is intended to represent both aleatoric and epistemic noise.

For this model, we select values of a, b such that the resultant dynamics are string-
unstable. When a car-following model is string-unstable [140], small disturbances can grow
in magnitude into large disturbances that propagate along a string of vehicles, allowing the
phantom jam to propagate rather than dissipate. In this work, the criteria by which a and
b are set is drawn from [36] due to their simplicity of the polynomial condition therein for
determining string instability. All other parameters are chosen as being the default IDM
values specified in [68].

Finally, since discretized car-following models can lead to collisions, we clip the output
acceleration values such that collisions are not possible. The condition we use for safety is
maximally conservative: an acceleration is unsafe if the lead car, braking at its maximum
deceleration, will unavoidably collide with the ego vehicle. The exact implementation of this
condition can be found in [88]. On top of that safe velocity failsafe, we also clip the output
acceleration to respect the road speed limit and the acceleration bounds of the vehicle.

Energy model

As our calibrated energy model, we use a polynomial fit to a black box model of a Midsize
Sedan model provided by Toyota. The calibrated model is shown in Fig. 5.3, and is a function
of the instantaneous speed and acceleration. This model assumes a constant vehicle mass of
1743 kg.

The model shown here is fitted with a third-order polynomial, effectively smoothing out
the effects of gear shifting that might otherwise be present. We do not attempt to fit this
as it would require excessively large polynomial coefficients and the particular positions of
the jumps due to gear shifting will vary sharply from vehicle to vehicle. For the derivation,
coefficients of the polynomials, and full model details see [78].

However, it is not obvious that optimizing the energy model we use will translate the
heterogeneous traffic. We argue that minimizing the energy model is equivalent to regulating



5.5. CONTROLLER DESIGN 51

around an optimal speed. While that optimal speed will vary from engine model to engine
model, as long as that optimal speed is greater than the downstream speed, the optimal
behavior is irrespective of engine type. For the Midsize Sedan model, the optimal operating
speed is around 16.7m/s, which is well above any congestion speeds that might occur. A
survey of the energy models available in Autonomie [1] suggests that the optimal speed for
most engines is above this value. Since the downstream speed sets a system speed limit, the
optimal solution for most engines will consequently be elimination of the waves and so we
expect our results to hold generally across different energy models.

Multi-agent reinforcement learning

In this section, we discuss the notation and describe in brief the key ideas used in rein-
forcement learning. The system described in this article solves tasks which conform to the
standard structure of a finite-horizon, discounted, decentralized multi-agent POMDP (Dec-
POMDP) [103], an abstraction in which groups of agents with partial access to the true
world state seek to optimize a discounted reward function across time. The Dec-POMDP
is defined by the tuple (S0,A0,O0, r0, ρ0, γ0, T0)× · · · × (Sn,An,On, rn, ρn, γn, Tn)××P × Z,
where n is the number of agents, Si is a (possibly infinite) set of states for agent i, Ai

is a set of actions for agent i, Z : (S0 × A0) × · · · × (Sn × An) → (O0, . . . ,On) is a
function describing how the world state is mapped into the observations of the POMDP,
P : (S0 × A0 × S0) × · · · × (Sn × An × Sn) → R≥0 is the transition probability distribution
for moving from one set of agent states s to the next set of states s′ given the set of ac-
tions (a0, . . . , an), ri : (S0 × A0) × · · · × (Sn × An) → R is the reward function for agent i,
ρi : Si → R≥0 is the initial state distribution for agent i, γi ∈ (0, 1] is the discount factor for
agent i, and Ti is the horizon for agent i.

The goal for a given agent i is to find a controller πi that optimizes

Jπi = Eρ0, p(st+1|st,at)

[
T∑
t=0

γtrt | π(at|st)

]
where rit is the reward of agent i at time t and the expectation is over the start state
distribution, the probabilistic dynamics, and the probabilistic controller π.

5.5 Controller design

Optimization criterion

Our goal is to reduce the average energy consumption of the system. However, the energy
minimizing solution is for all vehicles to come to a full stop. To avoid this degenerate
solution, we will impose the constraint that all vehicles exit the system. In this section, we
describe how this constraint is converted into a reward function so that our desired optimized
quantity can be used in a standard reinforcement learning procedure.
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Let L be the length of the controlled portion of the network and E(vt, at) the instan-
taneous energy consumption at time-step t, vt and at being the velocity and acceleration
respectively. For notation simplicity, we will only consider the trajectory of one AV, as
the reward for each AV is computed independently of the others, and we assume that the
trajectory starts at time t = 0 and ends at time t = H.

Ideally, we would like to maximize the cumulative miles per gallon value for each AV

L∑H
t=0E (vt, at)

(5.3)

Unfortunately, that quantity cannot be computed until the end of a trajectory, making the
reward sparse. Sparse rewards are generally difficult to optimize so we propose a simple
heuristic that approximates this quantity.

We attempt to turn the sparse cumulative miles per gallon reward into a per-step reward
by noticing that since L, is a constant, maximizing Eq. 5.3 is equivalent to maximizing∑H

t=0 −E(vt, at) as long as energy consumption is positive. We can thus give the agent a
reward r(st, at) = −E(vt, at) at time-step t.

However, the issue that the optimum consists in coming to a full stop will still persist
here. Amongst options considered, we observed that giving the agent a semi-sparse reward
for making forwards progress achieved the largest improvement in fuel efficiency.

r(st, at) =

{
−E(vt, at) if ct < M

−E(vt, at) +B if ct ≥ M
(5.4)

Here ct is a counter of the total distance that we have travelled since receiving the last
bonus and B is a bonus for completing M meters. ct is reset back to zero every M meters.
Essentially, every time the vehicle completes M meters, it receives a bonus for doing so. We
can think of this as approximately distributing a penalty for failing to exit the network across
the spatial extent of the network but we note that the exact equivalence to the cumulative
miles per gallon objective (Eq. 5.3) is now lost.

Finally, since the goal is still to optimize the energy consumption for the whole system, we
also add the energy consumption of the N vehicles following the AV to its reward function,
which are the vehicles that it has the most impact on.

r(st, at) = −E(v0t , a
0
t )−

N∑
i=1

E(vit, a
i
t) +Bt (5.5)

with

Bt =

{
0 if ct < M

B if ct >= M

where we index the velocities and accelerations of the vehicles, 0 being the AV, 1 the
vehicle following it, and N its nth follower. Although this requires non-local information at
training time, the reward is not part of the controller state and thus the controller will still
only rely on local information.
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Dec-POMDP design

We focused on picking controller inputs that could tractably and easily be placed onto a
vehicle equipped with standard level-2 technology such as forwards facing radar, cameras,
and GPS. The careful design of the state space is essential as the state space choice will
have strong consequences for the generalization capabilities of the agents. As an example,
consider an agent that has GPS coordinates as part of its input. This agent now has two
potential generalization failure modes: 1) it may use the GPS position to block the network
entrance and artificially reduce the inflow 2) it will adjust its behavior to perfectly optimize
the particular network architecture that the agent is trained in and may be less likely work
for different road network architectures.

Based on the criteria of maximizing likely generalization, we adopt the following Dec-
POMDP:

• State space / Observation function: [v, h, vlead, c] where v is the ego speed, h is the
distance to the leader, vlead is the speed of the vehicle directly in front of the AV, and c
is the distance travelled which is reset every m meters. This state space can be used in
arbitrary networks and allows us to easily transfer learnt controllers between different
network architectures. It is also easily implemented with radar and cameras.

• Action space: accelerations bounded between [−2.6, 4.5]. We do not allow the AVs to
lane change.

• The reward function is described in Sec. 5.5.

Algorithm / Controller

As our training algorithm, we use Independent Proximal Policy Optimization [124], a ubiq-
uitous policy gradient algorithm. All agents are homogeneous, that is, there is one controller
that is duplicated across all agents although actions are still computed locally. The con-
troller is a two layer fully connected neural network with 64 hidden units at each layer and
a hyperbolic tangent non-linearity.

We make one small modification to the standard PPO algorithm and provide the total
distance traveled by the agent at time t as an input to the value function. The value function
is used exclusively during training for variance reduction (see [124] for details) and so non-
local information can be used. The value V π function estimates the reward-to-go from a
given state st

V π(st) = E

[
T∑
j=t

γir(sj, aj)|sj

]
(5.6)

and since the reward-to-go strongly depends on the total distance remaining to the exit, it
is difficult to estimate without this information.
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Experimental setup

We ran the reinforcement learning training using the PPO implementation provided in RLlib
[84]1 version 2.0.0.dev0, a distributed deep RL library. We use a learning rate of 3 · 10−4, a
training batch size and SGD minibatch size both equal to 500000, a number of SGD iterations
of 5 and run the simulations for 220 iterations, each with 19 workers running in parallel with
a horizon of 500 environment steps. Importantly, we set multiagent/count steps by to
agent steps so that steps are counted by agent step and not environment step. We also
set batch mode to complete episodes, gamma to 0.995, lambda to 0.97 and kl target to
0.02. The other RLlib and PPO parameters are left to their default value. Training for 220
iterations took about 2 days, running on a machine with 20 Intel Xeon E5-2670 v2 CPUs.
The evolution of the reward function during training can be seen in Fig. 5.4.

Both the controller (policy network) and the value function network are feedforward neu-
ral networks (MLP) with two fully-connected hidden layers of size 64, and tanh activations.
For our reward function, we used parameters M = 50m, N = 5 vehicles and B = 2.5.

We use the traffic micro-simulator SUMO [88] for running our simulations. To populate
the simulation fully with vehicles, we allow a warmup period of 720 seconds during which the
experiment runs uncontrolled after which 10% of the vehicles are turned into AVs. We keep
a fixed inflow of 2050 vehicles per hour over the whole horizon. 90% of these vehicles are
humans with an IDM controller, and the remaining 10% are AVs. The downstream speed
limit is fixed to 5m/s. The IDM controller is used with parameters a = 1.3, b = 2, v0 = 30,
T = 1, δ = 4 and s0 = 2. Finally, taking note that the standard benchmark for ATARI
games repeats each action four times [13], agent actions are actually sampled once for every 3
time-steps and the same action is applied for all 3 time-steps. We use an individual time step
size of 0.4s. This means that a horizon of 500 environment steps will run for 10 simulated
minutes.

5.6 Results

Evaluation procedure

In this section we evaluate the performance of our trained controller and perform sweeps
around its training distribution in order to assess its generalization capabilities. For each
sweep value, we run from 30 to 60 simulations using that sweep value and compute the mean
and standard deviation of the results obtained during each rollout, both of which are shown
in the plots below. Metrics are computed from averaging data collected over all vehicles (or
AVs) post warm-up time, except those located in the ghost cells (see Fig. 5.1). For time-
space diagrams, we use the 2nd lane from the left as the plotted lane; this lane runs through
the whole network.

1https://github.com/ray-project/ray/python/ray/rllib

https://github.com/ray-project/ray/python/ray/rllib
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We benchmark our RL controller against the FollowerStopper (FS) [132], a control algo-
rithm that achieved wave smoothing in a physical experiment. FS aims to drive at exactly a
desired velocity vdes whenever safe (i.e., as in a standard cruise controller), but will command
a suitable lower velocity vcmd < vdes whenever safety requires. Importantly, it attempts to
smoothly transition between those objectives. We keep the desired speed constant over each
simulation, and use the same hyperparameters for other portions of the controller as in [132].

We compare the results obtained by our RL controller to the uncontrolled human baseline
where all vehicles are IDM, to the FS controller (with different desired speeds vdes), and to
a variant of the FS that has vdes set to the downstream speed. We refer to the latter as
cheating FS as the downstream speed is non-local information that would not be available
using on-board sensors; external infrastructure would be needed to observe the downstream
speed.

Controller performance and robustness

Figure 5.5 shows the effect of the introduction of the RL controller on the time-space diagram
of the system. Without control, at speeds of both 3 and 5 m/s, waves are visible as dark
lines slopping from top-left to bottom-right. When RL control is introduced, the waves
become markedly lessin number and occasionally completely dissipate. Gaps formed by the
RL agents can be seen as white lines sloping from bottom-left to top-right. These gaps
terminate near the boundaries of waves as they dissipate the wave and are consumed in the
process of doing so.

Figure 5.6 examines the effects of the wave reduction on the average fuel efficiency (in
Miles per Gallon i.e. mpg) of the system. For a fair comparison, we sweep the desired velocity
of the FS controller over all possible values of the downstream speed. As can be observed,
the RL controller improves markedly on the fuel efficiency of the system and achieves the
best performance of each of the FS controllers up until 7 m/s. Essentially, up until 7 m/s, the
RL controller acts almost as effectively as a controller that knows what the downstream speed
is. Figure 5.6 shows these same results as a percentage improvement over the uncontrolled
baseline. Here the cheating FS is added as an additional baseline, showing the close match
in performance between the RL and the non-local controller.

Finally, we investigate potential robustness issues with our controller. Figure 5.8 provides
a sanity check that the improvement in fuel consumption does not come at the cost of
reduced outflow up until 7 m/s. As this reduction in outflow is potentially undesirable,
the controller could be switched off around this boundary. Additionally, in Figure 5.9,
we investigate the effects of changing penetration rate on the controller. Our controller is
trained at a fixed penetration of 10%, shown as the yellow line in the Figure. Since at any
time, randomness could cause the penetration rate to vary from this value, it is important
that controller performance be preserved away from the training regime. The RL controller
performance, shown in th red, indicates that performance improvements are maintained
outside of the training distribution, with values close to 10% performing almost identically.
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Additionally, there is generalization outside of this value and energy improvements are seen
at all penetrations.

Behavior analysis

In this section, we provide both qualitative and quantitative analysis to explain the energy
improvements induced by the RL controller. In Figure 5.10, we plot the acceleration profile
of the different controllers as a function of the speed of the lead vehicle and the space gap
i.e. distance to the lead car. Since the acceleration profile is 3-dimensional, we show slices
of the acceleration at 3, 5, and 7 m/s for the speed of the controller car. Note that these
acceleration profiles are the output after post-processing of the desired output with the safety
controller discussed in Sec. 5.4. As can be observed in the lower-half of the plots, the RL
controller has a wide region where it accelerates at an almost fixed acceleration rate, and a
vanishingly small region where it brakes. The RL controller is slowly accelerating at a fixed
rate, with the magnitude of positive acceleration decreasing as the AV speed passes from 3 to
7 m/s. Above 7 m/s, the RL controller only brakes, which explains the reduction in outflow
at downstream speeds above 7 m/s observed in Figure 5.8. Essentially, the RL controller is
accelerating most of the time and then relying on the safety controller to brake sharply at
the appropriate moment.

Finally, Figure 5.11, examines the net acceleration of the controllers. As can be seen,
the RL controller has a consistently higher amount of acceleration than the cheating FS but
is able to outperform it in MPG at both 5 and 6 m/s despite the higher accelerations at
those values. This is possible due to an asymmetry in the energy function; braking incurs
zero energy cost while the energy cost increases super-linearly with increasing acceleration.
By maintaining low accelerations and braking sharply at the last possible second, the RL
controller is able to reduce energy expenditure while maintaining reasonable speeds.

5.7 Conclusions and Future Work

In this work we set forth a challenging new network for phantom jam smoothing and demon-
strate that multi-agent reinforcement learning could be used to design effective controllers
for optimizing the network. We find that controllers designed in this way are remarkably
robust and, despite having no memory with which to perform system-identification, have
the same efficacy as controllers that know the system equilibrium across a wide range of
potential wave-inducing conditions. We qualitatively analyze the characteristics of these
controllers relative to a standard baseline and additionally demonstrate that our controller
functions effectively across varied penetration rates. Future work will investigate how well
these controllers transfer to new networks as well as their robustness to a larger range of
potential human driving dynamics.
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Figure 5.2: Time-space diagram of one lane of the I-210, showing the average velocity of the
network as a function of time and position. The shaded areas correspond to the warm-up
period and the ghost cells, and represent times and positions that are not considered in
control or evaluation. Waves are visible as the downwards-sloping black lines.
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Figure 5.3: Polynomial fit of power consumption as a function of velocity and instantaenous
acceleration from a Midsize Sedan model provided by Toyota. This model was made for a
vehicle of mass 1743kg, and we assume a constant road grade of 0. We use the conversion 1
gallon/hour = 33430 watt.
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Figure 5.4: Evolution of the reward for an agent over two days of training; the reward
depicted here is averaged across all the agents. The policy is close to converged approximately
25% of the way into training. Note that this represents the average sum of all rewards received
by an agent, and not the discounted return.
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Figure 5.5: Left: time-space diagram of the I-210 simulation with no control applied, for
a downstream speed of 3m/s (top) and 5m/s (bottom). Right: time-space diagram of the
I-210 simulation when 10% of vehicles are AVs using our RL controller, for a downstream
speed of 3m/s (top) and 5m/s (bottom). Time-space diagrams show the (average) vehicles
velocities as a function of their position on the highway and simulation time. Ghost edges
and warm-up time are not shown in these graphs.
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Figure 5.6: Average fuel efficiency of the RL controller on its training downstream speed
of 5m/s (highlighted in yellow), and generalization to speeds outside that range. Miles per
gallon fuel consumption is also shown for the FS controller with desired speed ranging from
1m/s to 8m/s and for the uncontrolled human baseline, as a function of the downstream
speed. All plots are computed using a fixed penetration rate of 10% and using the energy
model presented in Sec. 5.4.
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Figure 5.7: Fuel efficiency improvement of the RL controller on its training downstream speed
of 5m/s (highlighted in yellow) over the uncontrolled human baseline, and generalization to
speeds outside that range. Fuel improvement is also shown for the FS controller with a
desired speed of 3m/s, 5m/s and 8m/s as well as for the cheating FS. All plots are computed
using a fixed penetration rate of 10% and using the energy model presented in Sec. 5.4.
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Figure 5.8: System outflow as a function of the downstream speed, shown for the RL con-
troller, the FS controller with desired speed equal to 5m/s, and the uncontrolled human
baseline. The yellow area highlights the downstream speed which the RL controller was
trained on, outside of which it is acting in complete generalization. All plots are computed
using a fixed penetration rate of 10%.
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Figure 5.9: Fuel efficiency improvement of the RL controller on its training penetration rate
of 10% (highlighted in yellow) over the uncontrolled human baseline, and generalization to
penetration rates outside that range. Fuel improvement is also shown for the FS controller
with a desired speed of 5m/s. Both plots are computed using a fixed downstream speed of
5m/s and using the energy model presented in Sec. 5.4.
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Figure 5.10: This figure demonstrates the difference in acceleration profile between our
RL controller (bottom) and the FS controller set with a desired speed of 5m/s (top). The
instantaneous acceleration output of both controllers is plotted as a function of the AV speed
(left: 3m/s; middle: 5m/s; right: 7m/s), the leader speed and the space gap to the leader.



5.7. CONCLUSIONS AND FUTURE WORK 66

Figure 5.11: Average AV acceleration (absolute value of the instantaneous acceleration)
using the RL controller at its training downstream speed of 5m/s (highlighted in yellow) and
generalization to speeds outside that range. It is also plotted for the uncontrolled human
baseline, the FS controller with a desired speed of 5m/s, and the cheating FS controller. All
plots are computed using a fixed penetration rate of 10%.
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Figure 5.12: Acceleration, velocity and time gap profiles of an AV using the RL controller,
following a leader trajectory that has a sinusoidal velocity centered around 6m/s with an
amplitude of 1m/s and a period of 40s, whose velocity and acceleration profiles are also
plotted.
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Chapter 6

Nocturne: a scalable driving
benchmark for bringing multi-agent
learning one step closer to the real
world

6.1 Introduction

This chapter presents Nocturne, a new simulator and benchmark for multi-agent driving un-
der human-like sensor uncertainty that is intended to aid the process of studying real-world
multi-agent coordination and learning. Instead of combining the challenges of coordination
with feature extraction from images, Nocturne is a 2D simulator that generates vector repre-
sentations of the set of objects and road points that would be visible to an idealized human
driver (see Fig. 6.1 for an example) and supports head-tilt to acquire additional information
about blind spots. In contrast to driving benchmarks that achieve partial-observability by
using a camera input, Nocturne uses efficient visibility-checking methods and a C++ back-
end to construct observations and step the dynamics of a single agent at 2000 to 4000 steps
per second. This speed is key to its use in multi-agent learning settings where frequently
billions of environment interactions are needed to learn expert agents [12, 79]. In contrast
to many existing multi-agent learning benchmarks, Nocturne is neither zero-sum nor fully-
cooperative but mixed-motive, combining the challenges of coordination and cooperation.

Crucially, Nocturne is not just a simulator. Instead, it is built upon open-source driving
data and features a diverse set of real-world scenes (see Fig. 6.2) that probe the ability of
agents to safely navigate and coordinate in complex scenes such as intersections, round-
abouts, parking lots, and highways. We use this data as a source of experts for imitation,
to flexibly vary the number of controlled agents in the scene, or as a train-test split for
validating the generalization ability of a human-driver model.

The challenge we propose is to learn (or otherwise design) policies that achieve the same
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Figure 6.1: A visual depiction of the obstruction model used to represent objects that are
visible to the agents. (Left) Obstructed view with the viewing yellow agent in the center of
the cone. (Right) Original scene centered on the cone agent with an unobstructed view.

set of final states as human experts (throughout this work we will call this the goal rate and
the final state the goal position) while achieving a 0% collision rate. Achieving a high goal rate
alongside a negligible collision rate is challenging for any policy design scheme (both learning
and non-learning) due to the combination of the high-dimensional state space, the partial
observability of the scene, the large number of interacting agents, and the decentralization of
the policies at test time. The secondary challenge in Nocturne is to find policies that closely
mimic human behavior at the trajectory level. To facilitate these goals, on top of the human
data we provide an evaluation scheme and off-the-shelf baseline implementations including
evaluations.

We provide a guide to the benchmark as well as some preliminary work on using Noc-
turne to design agents and test their capabilities and human-similarity. We demonstrate that
learning effective agents in Nocturne is challenging; tuned RL and imitation learning base-
lines struggle to successfully complete the highly interactive scenes. Finally, we demonstrate
that the agents achieve relatively low distance to the expert trajectories and that there does
not appear to be a zero-shot coordination problem [58] at this level of agent capability.

6.2 Related Work

Multi-agent traffic simulation tools and benchmarks:
In terms of multi-agent driving benchmarks that require both acceleration and steering
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(a) A four-way stop. (b) A straight road with merging vehicles.

(c) Unprotected turns with conflicting routes. (d) A crowded parking lot.

Figure 6.2: Four scenes demonstrating the diversity of the navigable scenes in Nocturne.
Colored circles represent the goal position of the corresponding colored agent. Dots represent
the trajectory of the agent, with opacity increasing as time goes on. Links to videos of experts
negotiating these scenes can be found at nathanlct.com/research/nocturne.

https://www.nathanlct.com/research/nocturne
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Table 6.1: Comparison of representative driving simulators. State-based partial observability
refers to whether the set of visible objects can be queried. Expert data refers to whether
expert human data is available for the scenes. Baseline human models refers to whether
pre-existing human driver models are available to drive agents in the scene.

Simulator
Multi-agent
Support

2D/3D
State-Based

Partial
Observability

Expert
Data

Baseline
Human
Models

CARLA [38] 3D ✓
SUMMIT [24] ✓ 3D ✓
MACAD [105] ✓ 3D ✓

Highway-env [80] 2D ✓
Sim4CV [97] 3D

Duckietown [107] 3D
SMARTS [167] ✓ 2D ✓
MADRaS [120] ✓ 2D ✓
DriverGym [72] 2D ✓ ✓

DeepDrive-Zero [111] ✓ 2D
MetaDrive [81] ✓ 3D ✓ ✓
VISTA [81] ✓ 3D ✓ ✓
Nocturne ✓ 2D ✓ ✓

control, there are several closely related benchmarks which differ in terms of ease of imple-
menting multi-agent interaction, being data-driven, 2D vs. 3D, or the mechanism by which
they support partial observability. We summarize these differentiating features in Table 6.1.

The closest works to ours are BARK [17], SMARTS [167], and MetaDrive [81]. SMARTS [167]
supports multi-agent driving in a wide variety of interactive driving scenarios and offers
a wide array of default human driving behaviors to use for testing autonomous vehicles.
BARK [17], like Nocturne, is a 2D goal-driven simulator with support for external datasets
and contains a wide variety of large-scale scenarios and multi-agent support. Finally, MetaDrive [81]
also supports real-world data and multi-agent interaction and is able to achieve 300 FPS im-
age rendering by rendering lower fidelity images. The main differentiating feature from
these works is the support for acquiring the set of objects that are visible without requiring
the rendering of camera images; to our knowledge Nocturne is the only available simulator
that can compute an agent’s visible objects and step the agents dynamics at above 2000+
steps-per-second. Additional simulators are summarized in Table 6.1.
Partially observed multi-agent benchmarks:
There are a wide variety of partially-observable multi-agent benchmarks not focused on driv-
ing that differ from our work along the axes of underlying game structure, level of partial
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observability, and accessibility of expert data. Within the card-playing domain, Hanabi [12]
is frequently used to investigate coordination under partial observability, is fully coopeartive,
and features between 2-5 agents. The Starcraft multi-agent benchmark (SMAC) [119], per-
haps the most ubiquitous MARL benchmark, features many agents and high-dimensional
observations but does not come with human data, is mostly fully-observed, and many al-
gorithms now achieve perfect performance in this challenge [161]. Melting Pot [79] features
a huge diversity of many-agent mixed-motive challenges but does not have available ex-
pert data. Google Research Football [76] provides a few zero-sum multi-agent environments
featuring two teams consisting of several agents.

6.3 Benchmark construction

Defining a Nocturne Scene

In the following sections, we will refer to objects that can move (vehicles, pedestrians, cy-
clists) as road objects and anything that cannot move (lane lines, road edges, stop signs,
etc.) as road points. Road points are connected together to form a polyline. We will refer to
the type of road polyline that should not be crossed by vehicles as a road edge.

Nocturne scenes require a map consisting of polylines, a set of initial and final road
object positions, and optionally a set of trajectories for the road objects. Nocturne currently
acquires its scenes, goals, and expert trajectories from the Waymo Motion Dataset [44]
but can be configured to support any dataset that represents its road features as points or
polylines and that contains start and end position coordinates for any road objects. The
Waymo Motion dataset consists of 487004 nine-second trajectory snippets discretized at a
rate of 0.1 Hz with the first second intended to be used as context and the latter eight
seconds to be used for prediction.

One challenge of selecting and constructing the scenarios for Nocturne is that these
trajectories are collected by labeling the vehicles observed by a Waymo car as it drives.
Consequently, we do not have a complete birds-eye view of the scene. Hence, there are cars
that may have been in the scene that were not visible to the Waymo vehicle and therefore are
not included in the dataset; for the same reason, the expert trajectories are also incomplete
and may not persist throughout the entire duration of the rollout. In other words, the expert
trajectories contain agents that unpredictably flicker in and out of existence. Similarly, the
set of traffic lights that were visible to the Waymo vehicle may be insufficient to uniquely
determine the underlying traffic light state. For this reason, this first version of the Nocturne
benchmark comes with a few restrictions: we do not use traffic lights due to the incomplete
state and for the posed challenges we do not include pedestrians or cyclists as replaying the
expert trajectories may cause them to unpredictably appear on top of a vehicle trajectory
and cause an unavoidable collision. We also filter out scenes that contain traffic lights
which leaves the majority of the remaining scenes as roundabouts, unsignalized intersections,
arterial roads, and parking lots. This leaves the benchmark consisting of 134453 snippets.
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Partial Observability Model and Collision Handling

To support investigation into coordination under partial observability, agents in Nocturne
come with a configurable view-cone as is shown in Fig. 6.1. An element (road object or road
point) is considered observable if there is a single ray in the cone that intersects with that
element that does not pass through any road object on its path to the element. Stop signs
are always visible if they are within the agent view-cone even if they would be otherwise
obscured on the assumption that they would be raised at a sufficiently high level. We select
the angle of the cone to be 120 degrees (approximately the range of binocular vision) and
80 meters radius. We note that this does not perfectly mimic a human visual model which
has additional complexities such as dynamic variations in the functional field of view [34],
phenomena relating to interactions between visible objects such as crowding [20], and the
occasionally necessary ability to pay attention to objects further than 80 meters away at
high speeds.

The primary challenge in computing which road points and objects are observable is
their relatively large number: a scene contains 30 vehicles and 4700 road edge points on
average. We use a Bounding Volume Hierarchy (BVH) to maintain the road objects and
select candidates for potentially observed vehicles. We build the BVH using approximate
agglomerative clustering [51] to generate a high-quality BVH. When computing the observed
objects, we first use the BVH to select the candidates that lie in the axis-aligned bounding
box (AABB) of the conic view field. Since there are a comparatively larger number of all
types of road points (order of 15000 on average), we use a 2D range tree [15] to maintain all
of the road points. When computing the observed road points, we do a range search in the
2D range tree to select the candidates that lie in the AABB of the conic view field. For both
vehicles and road points, once we have the candidates in the conic view-field, we perform a
brute-force visibility check for the object and road points respectively by ray-casting from
the viewing agent to all the candidate vertices; an object or road point is visible if there is a
ray reaching any point of it that does not pass through any road object. We accelerate this
procedure using the auto-vectorization property of compilers which gives a 500% speed-up
to this step.

We use a similar procedure to the visibility checking to accelerate our collision detection
of vehicle-vehicle and vehicle-road collisions. For vehicle-road collisions, we consider a vehicle
to have collided if its body intersects with any line segment of the polylines that constitute
the road edges. A vehicle-vehicle collision occurs if the vehicle rectangles intersect. For both
vehicle-vehicle and vehicle-road collision detection, we query the road object BVH and a
separate road line segment BVH (formed once at the beginning of the episode) to generate
candidates that are then evaluated for collision.
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Construction of the Partially Observable Stochastic Game

Definition of the state space

Nocturne supports two possible state representations: a rasterized image and a vectorized
representation of that image. While we provide default state representations, we consider
it fair game on the benchmark to use any other representation as long as only objects that
are visible under the conditions in Sec. 6.3 are presented to the agent. Conforming to these
consistent rules about visibility allows for a fair comparison between different algorithmic
approaches.

For the default vectorized representation, we adopt a fully descriptive set of features
(speed, angle, width, length, etc.) for the road objects and use the VectorNet [49] represen-
tation for the road points. We will refer to the vehicle whose observation is being returned as
the ego vehicle. Note that by default all features that can be placed into relative coordinates
are returned in relative coordinates to the ego vehicle (e.g. speed is relative speed, heading
is relative heading, etc). The agent goal is set to be the final position, speed, and heading
of the expert agent. An agent is considered to have achieved its goal if it is within 1 meter
of the final position, within 1 m

s
of the final speed of the agent, and .3 radians of the final

heading.
The features of the ego object are:

– The speed of the object.
– The distance and angle to the goal.
– Its width and length.
– The relative speed and heading to the target speed and heading.

Road object features are:

– The speed of the object.
– The angle between the velocity vectors of the object and the ego vehicle.
– Its width and length.
– The angle and distance to the road object’s position relative to the ego vehicle.
– Its heading relative to the ego vehicle.
– A one-hot vector indicating whether the object is a vehicle, pedestrian, or cyclist.

As per the VectorNet representation, each road point is part of a discretized poly-line
with an approximate discretization size of 0.5m (though cross-walks and speed-bumps are
discretized with a much larger spacing). To ensure that any vehicle is able to discern which
road points are connected to each other, we include a vector pointing to the neighbor of the
point in the polyline. As with the road object representation, all points are in the frame of
the observing vehicle. Road point features are:

– The angle and distance to the road point’s position relative to the ego vehicle.
– A 2D element representing the vector pointing from the current road-point to its neigh-
bor in the polyline.
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– A one-hot vector indicating whether the road point is a lane-center, a road line, a
road-edge that can be collided with, a stop-sign, a crosswalk, a speed-bump, or is of
unknown type.

Since likely control architectures require the input vector to be of a fixed size, we select a
fixed-size subset of visible road points and objects if there are too many and pad with a vector
of 0.0 if there are too few. We sort both the road points, objects, and stop signs by distance
and return the 500, 16, 4 closest ones respectively where all three values are configurable by
user. We note that this leads to a fairly high dimensional state and intentionally do not
prune it to be smaller: dealing with this high dimensional input is a meaningful part of
the benchmark. However, since we expect that users will likely want to construct their own
state vectors, utility functions are also provided to allow users to directly query the set of of
observed road points and objects.

Action Space

Vehicles are driven by acceleration and steering commands that are passed to a bicycle
model to update the vehicle state. The angle at which the human driver views the scene is
controlled by the agent head-tilt. In the experiments used in this paper we use 6 discrete
actions for acceleration, 21 discrete actions for steering, and 5 discrete actions for head
tilt with the acceleration actions uniformly splitting [−3, 2] m

s2
, the steering actions between

[−0.7, 0.7] radians, and the head tilt between [−1.6, 1.6] radians. All these bounds on the
actions are configurable.

Environment Dynamics and Goals

The total length of the expert data is 9 seconds, discretized into steps of size 0.1 seconds.
For the first 1 second of the episode, all vehicles obey the expert policy. This is used to
construct a history of observations for each agent that can be used to initialize or warm up
the policy. After this transitory period, the episode continues for a fixed length of T = 80
steps. Agents are provided with a target position, speed, and heading that are taken from
the final position, speed, and heading of the expert trajectories. If an agent achieves their
goal within an environment specified tolerance they receive a reward of T and are removed
from the system. A vehicle will also be removed if it collides with any road edge or object.

In addition, there is a process for selecting the set of vehicles that are controlled in the
environment. First, we only control vehicles that at some point have a speed above 0.05 m

s

and that are more than 0.2m from their goal; in general, these are vehicles that need to move
to get to their goal. From this set of vehicles, we remove all vehicles that are already at their
goal. Next, a small number of vehicles that have infeasible goals are also set to be experts
(see Sec. 6.3 for how we compute this). Finally, of the remaining vehicles, we randomly select
up to a maximum of 20 of them and set the remainder to replay expert trajectories. On
average there are 10 vehicles in a scene so this generally leaves most vehicles as controlled.
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Unusual features of the Benchmark

Finally, for completeness we note a few oddities of the benchmark that we believe are critical
for potential solution designers to be aware of. These challenges are mostly properties of
labeling noise and the egocentric view under which the data was collected.

Filtered out pedestrians, cyclists, and traffic lights

While the dataset contains scenes with traffic lights, pedestrians, and cyclists, the first set
of Nocturne environments, NocturneV1, operates solely on scenes that have been filtered to
not include traffic lights. Additionally, when constructing the environment, we remove all
pedestrians and cyclists from the scene. Future versions of the benchmark will consider joint
learning of pedestrians, cyclists, and vehicles but for NocturneV1 we only consider vehicles
as appropriate modeling of pedestrian and cyclist dynamics is left for future work.

Egocentric data collection

The Waymo dataset that forms the basis of the first version of Nocturne is collected by
driving a sensor-equipped car and recording the trajectories of all visible vehicles. Thus, in
the original data, vehicles may have trajectories that are shorter than the full 9 seconds and
may only appear midway through the trajectory or appear and disappear throughout the
trajectory when they are obscured from the view of the sensing car. Rather than suddenly
teleport cars into the scene midway through an episode, we choose to only use cars that were
visible to the sensing car at the beginning of the episode (at the conclusion of the 1 second
of expert replay described in Sec. 6.3). This reduces the total number of vehicles that might
appear in the episode but does not change the feasibility of any of the agent goals.

Infeasible goals

Roughly 3% of the vehicles in the dataset have an expert trajectory that crosses an impassible
road. This is due to labeling error in the dataset where, for example, small gaps in road
edges are occasionally missed that make the road edge crossable. To ensure a benchmark
where all goals are achievable, we compute all trajectories where crossing a road edge was
necessary to achieve the goal and set these vehicles to replay their expert trajectory rather
than be controlled; this corresponds to 3% of all vehicles. Finally, 2% of vehicles in the
dataset are initialized in a colliding state. This primarily occurs in parking lot scenes where
a vehicle slightly overlaps with the boundary of a parking spot or a nearby vehicle. These
vehicles are also removed.

For computing the percentage of vehicles that must cross a road edge to get to their
goal, we use the following procedure. We take the vehicles and shrink their width by 0.1
and their length by 0.3. These vehicles are very thin and so do not accidentally collide with
a road edge due to small errors in their position. The scaling of the length ensures that the
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vehicles are not placed in a starting position where they have collided. Using this procedure
we calculate the 3% statistic.

Illogical goals

Occasionally, agents may have goals that seem unlikely; for example, agents may be asked
to come to a full stop in the middle of a highway. While these goals may seem odd, they are
actual states that were achieved by humans driving on the roadways. These odd goals are
likely a consequence of unobserved objects that were not observed by the egocentric data
collection process. For example, a stop in the middle of an arterial road is likely caused by
a queue of unobserved vehicles.

Rules of the Benchmark

We outline here a few rules that we expect solvers to respect to ensure consistency between
solutions.

– The size of the view cone is fixed to 120 degrees and a distance of 80 meters. This en-
sures consistency between the level of partial-observability each controller must handle.
Users can also tilt the head of the driver by 90 degrees in either direction to acquire
more information.

– Only the first 1 second of the trajectory can be used as context or to warm-start
a memory-based controller; control of the vehicles must start at 1 second into the
trajectory.

– A trajectory that successfully reaches the goal is only considered valid if it reaches
the goal within the 8 second time-window. All the scenes are easily solved without a
time-constraint by simply creeping forwards slowly.

– The environment comes with default rewards and observations but any amount of
reward-shaping or observation sharing at training time as valid. However, at test time
only information that is directly observable to the agent can be used as input to the
policy. For example, sharing information about other agents’ goals would be valid at
train time but not at test time.

– Adding additional map information to the agent state space beyond the information
provided by default is valid.

– The bounds on the action space should respected: the acceleration should be bounded
between [−6, 6] m

s2
, the change in heading should not be faster than 40 degrees per

second, and driver head tilt should be maintained within 90 degrees in either direction.
This rules out solutions that rapidly get to goal by using accelerations that are outside
of possible vehicle speed bounds or excessively sharp turns.
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We note that these rules may make some of the scenes unsolvable. For example, real human
drivers are not randomly initialized into a scene with a maximum of 1 second of prior
context; this context may be critical to safely navigating the scene under the time constraints.
Additionally, our model of human perception is not an exact match for true human perception
which can extend well beyond 80 meters under certain circumstances. It is possible that
there may be missing context at this viewing distance that is crucial for safe navigation. We
view these constraints as similar to the challenge of label noise in supervised datasets; our
constraints may place an currently undetermined upper limit on the percentage of goals that
can be achieved but the benchmark still constitutes a valid comparison between methods as
long as the constraints are respected.

6.4 Experimental Results

We run several learning methods to demonstrate that these tasks do not appear to be easily
solved even at billions of steps and have a train-test generalization gap. We also briefly
investigate whether the policies appear to have a zero-shot coordination challenge wherein
policies perform well when paired with agents from their seed but are incompatible with
policies from a different training run. Finally, we examine the human-similarity of our
trained agents.

We test the following methods:

• APPO [108] trained in multi-agent mode with a shared policy i.e. every agent is
controlled by the same policy but in a decentralized fashion.

• Behavior Cloning [10, 121].

For the RL method, in addition to the fixed-bonus for achieving the goal, we add the following
dense reward to encourage the agent to make progress towards the target position, speed,
and heading:

rt = 0.2×
(
1− ||xt − xg||2

||x0 − xg||2

)
+ 0.2×

(
1− ||vt − vg||2

40

)
+ 0.2×

(
1− f(ht, hg)

2π

)
(6.1)

where xt is the position at time-step t, xg is the goal position, vt is the speed at time-step t
and vg is the target speed, ht and hg are the current and target heading in world coordinates
(i.e. not in a relative frame). f(ht, hg) returns the minimum angle between ht and hg. Since
coordinates are in a relative frame and the agent cannot observe the world frame, note that
f(ht, hg) is an observation provided to the agent. Note that there are values for the discount
factor for which the optimal policy under the dense reward will hover near the goal and
then only reach the goal at the terminal step instead of achieving it as soon as possible:
the addition of the dense reward will affect the trajectory the agent will take. The use of
this dense reward is not a necessary component of the benchmark and here is just used to
generate good policies.
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The APPO experiments are each run for two days on 1 V100 GPU and 10 CPUs (Intel
Xeon CPU E5-2698 v4 @ 2.20GHz) and each experiment is run for 5 seeds. For the RL
experiments we run 5 conditions over 5 seeds for 2 days leading to a total of 1200 GPU
hours and 12000 CPU hours. For the Imitation Learning experiments we run 5 seeds for
three hours leading to 15 GPU hours and 100 CPU hours.

The architecture for the APPO agent is a two-layer neural network with 256 hidden units
and Tanh non-linearities followed by a Gated Recurrent Unit [28] with 256 hidden states.
The Behavior Cloning experiment is run on a single GPU for five seeds, trained on 1000
files, for 600 gradient steps with a batch size of 512. Here instead of using a recurrent neural
network we stack the current state and the prior 4 states as an input and pass this through a
three-layer (1025, 256, 128) neural network that then outputs two categorical heads, one for
acceleration and one for steering. The acceleration head is binned into 15 bins equally spaced
between [−6, 6] m

s2
and steering to 43 equally spaced bins between [−0.7,−0.7] radians. As

there is no corresponding head tilt in the expert actions we extend the angle of the visibility
cone to π radians. Note that this violates a rule on the cone shape set forth in Sec. 6.3;
figuring out how to add head tilt to imitation agents remains an open question.

For APPO we use almost all the default hyperparameters of SampleFactory [108] at
commit aed6cc92a7eb3510c4d4bcfac083ced07b5222f9. However, we use a batch size of 7168
and scale the observations by 10.0. For Imitation Learning we use a learning rate of 3 · 10−4,
a batch size of 512, and stack a total of 5 states together to endow the agents with memory.

6.5 Analysis

Success rate of baselines

Fig. 6.3 shows the performance of the agents on the training set after 3e9 steps which takes
approximately two days. Each line corresponds to a policy trained on a fixed subset of the
training scenes. We score our policies in two primary ways: the fraction of vehicles that
achieve their goal (goal rate) and the fraction of vehicles that collide with another vehicle
or road edge (collision rate). Note that this use of collision rate differs from its use in
papers such as [59, 139] which compute collision rate as the fraction of scenes that contain
a vehicle-vehicle collision and do not count a vehicle-road intersection as a collision.

We investigate the effect of the size of the dataset on the train and test performance. In
the right half of Fig. 6.3 we can see that the inclusion of a larger training dataset decreases
the performance of the algorithms up to 1000 files as they struggle with the diversity of the
data. However, the inclusion of additional data narrows the magnitude of the train and test
gap and closes it fully at 10000 files. However, it is still possible that a divergence between
train and test might re-emerge as agents become more capable on the train set and approach
a 100% goal rate.

Finally, Table 6.2 compares the APPO and BC agents. For the APPO agent, we include
the results for the agent trained on 10000 training files. The expert playback row refers to
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Figure 6.3: (Left) Success at getting to the specified goal on the training data as a function
of number of environment steps. Files=X means the agent was trained on X fixed scenes
sampled from the training dataset. (Middle) Percent of agents that achieved their goals.
(Right) Percent of agents that collided. The logarithmic scale is base 10.

replay of the expert trajectories.

Table 6.2: Overview of metrics across methods for an 8 second rollout.

Algorithm Collision Rate (%) Goal Rate (%) ADE (m) FDE (m)
Expert Playback 4.9 100 0 0

APPO 20.3± 0.8 71.7± 0.7 3.1± 0.2 6.1± 0.3
BC 38.2± .1 25.3± 0.1 5.6± 0.1 9.2± 0.1

Human-agent trajectory similarity

We analyze the results of our experiments with respect to how human-like the resultant poli-
cies are using displacement error between expert and agent trajectories as our metric (i.e.
L2 distance between the agent and expert trajectories). To align with the definition used
in other works [59, 139] we disable the removal of vehicles upon collision / reaching goal.
However, we note a few dissimilarities that make comparisons with other works difficult.
First, agents are provided with a goal position, a feature that is often not available to other
predictive methods. Second, our experts are stepped in scenes that may contain pedestri-
ans or cyclists but our agents are replayed in the same scene without the corresponding
pedestrians or cyclists. This can make the magnitude of the displacement error not directly
comparable to the values in other works; the low value of the displacement error may simply
indicate that a majority of the scenes have unique optima. Fig. 6.4 examines the average
difference in position between the agent and expert trajectories averaged across 5 training
runs and demonstrates that the influence of more training data on displacement error is flat
after 1000 files.
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Figure 6.4: (Left) Average displacement error (mean l2-distance between an agent and an
expert at each time-step). (Right) Final displacement error (l2-distance between an agent
and an expert at the final time-step that an expert has a valid state). The logarithmic scale
is base 10.

Policy Failure Modes

Here we investigate the mechanisms under which our policies fail to achieve their goals and
collide to shine a light on potential avenues for improvement. The key failure mode we
qualitatively observe are failures in scenes in which agents are required to interact with
another agent either by waiting or merging. While we cannot measure interactivity directly,
we measure a proxy by looking at the intersection of the expert trajectories. We play the
experts forwards, record their trajectory as polylines, and consider a vehicle to have as many
interactions as there are intersections of the vehicle’s expert trajectory polyline with other
vehicle’s expert trajectory polylines (i.e. if two vehicles’ trajectories in time cross at a point,
that’s an interaction). This captures interactions such as crossing at a four-way stop, merges,
and others but also may unintentionally pick up interactions such as driving behind another
vehicle. Close to 25% of vehicles have at least one interaction. The collision and goal rates as
a function of interactions are plotted in Fig. 6.5 and demonstrate that the goal rate declines
precipitously and the collision rate increases sharply as the number of interactions increase.
This suggests that our agents have learned to get to their goals but perform poorly in settings
where getting to the goal requires coordination with another agent.

Zero-shot coordination

We investigate whether the agents are learning incompatible conventions across seeds (ZSC)
by taking the seeds from our best performing agent on the test set (this is the training run
where we trained the agent on all files) and sampling half the agents from one seed and
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Figure 6.5: Goal rate (left) and collision rate (right) of vehicles as a function of the number of
times that their corresponding expert trajectory intersected with another expert trajectory
(intersections). As more than 3 interactions are rare, creating noisy statistics, the results
are placed into the 3 interaction bin. The logarithmic scale is base 10.

half from another. We then perform this procedure across all 5 seeds, running each pair
on the same set of 100 files. The results of this are summarized in Fig. 6.6 and appear to
indicate that at the current level of agent performance there does not appear to be a zero-shot
coordination issue. However, it is still possible that one might emerge as the agents become
more capable and learn arbitrary symmetry-breaking conventions that are not compatible
across agents. This argument lines up with the results of Sec. 6.5 which shows that the
agents fail at high rates in interactive scenes; it may be necessary to get to lower failure
rates in such settings for ZSC issues to emerge.

6.6 Conclusions and Future Work

We have introduced Nocturne, a simulator and benchmark intended to aid in the study
of human-like decentralized coordination for driving systems. We present results on the
applications of RL and imitation to this system, however, there still remains work to be
done to build agents that operate with the collision and goal rate that humans achieve as
well as how to learn these agents efficiently. Given better agents, human-like rules and
conventions may be emergent properties of driving safely in these settings [104].

There is also ample remaining work to be done on new benchmarks. Due to the ego-
centric data collection, we are forced to remove vehicles once they achieve their goal (i.e. the
last observed position of the driver in the data). However, it may be possible to use generative
models or other generative mechanisms to sample new goals for the agents to continue their
trajectory once they achieve the goals set out in the data. Similarly, generative models could
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Figure 6.6: Goal rate (left) and collision rate (right) of agents when 50% are sampled from
one side and 50% from another. The diagonal represents the baseline performance of the
seed while element i, j represents seed i playing vs. seed j.

be used to complete the traffic light states and enable the inclusion of the traffic light scenes.
Finally, one open question is how to use Nocturne agents as predictive models of human

driving. At the moment a Nocturne agent requires a goal to which it is driving. To use
Nocturne agents for prediction (say for an autonomous vehicle trying to predict the motion
of agents in the scene), a method for inferring goals from the 1-second context needs to be
implemented. A topic for future work is to use supervised methods to predict the goals and
enable fully decentralized prediction of Nocturne agents from egocentric observations.

6.7 Reproducibility and Ethical Statement

We do not release trained models as the Waymo Motion dataset restricts the release of trained
models. While the dataset contains images that have been anonymized, only trajectory data
is used in this work. The benchmark and all files needed to run it are publicly available at
https://github.com/facebookresearch/nocturne.

https://github.com/facebookresearch/nocturne
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Chapter 7

From Sim to Real: A Pipeline for
Deploying Traffic Smoothing Cruise
Controllers

7.1 Introduction

This chapter synthesizes the work of previous sections, modifying it to be amenable to syn-
thesizing controllers that we are able to use in a field deployment. Prior work [132] has
shown that even at current low penetration rates of less than 4%, empirical and theoret-
ical evidence suggests that AVs can significantly reduce stop-and-go traffic, a pernicious
transitory phenomenon in which vehicles alternate between starting and stopping, consum-
ing extra fuel in the process. However, prior approaches have a unifying limitation: they
are developed and analyzed in simplistic settings such as vehicles traveling around a closed
ring or hand-designed input perturbations. Testing on more complex settings is difficult as:
1) real-world highway sensor data are sparse and lack required resolution and detail needed
for accurate modeling; 2) developing simulators that properly reproduce emergent traffic
phenomena from many-vehicle-interactions is challenging.

Even leaving aside the software engineering challenge of designing large, calibrated micro-
simulations, building complex models of a highway is heavily data constrained. Loop de-
tectors only yield macroscopic statistics such as the number of vehicles crossing them and
their speed, while cameras tend to cover only a small portion of the roadway. This lack of
available data is a fundamental issue as the trajectories of vehicles traveling through waves
depends on the wave speed [46], and yet the wave speed and constituent frequencies are
difficult to estimate with available stationary sensors. However, without an accurate means
of reconstructing the stop-and-go traffic that is likely to occur on a particular highway, it is
difficult to validate how a controller will perform when deployed on that highway. Conse-
quently, it is unclear whether progress on control design for real-world smoothing is being
made.
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The contribution of this contribution of this chapter is a pipeline which avoids these
aforementioned modeling challenges by using field-deployment data to accurately reproduce
the distribution of waves observed on the I-24 in Tennessee. Instead of attempting to build a
high fidelity simulation, we evaluate and train our controllers on collected highway trajectory
data, ensuring that our controllers are designed to smooth a realistic representation of waves
from the particular highway on which we intend to deploy AVs. We construct a simplified
controller evaluation procedure in which a simulated mixed platoon of AVs and human drivers
follows directly behind trajectories collected by a human driver on I-24, an interstate highway
in Tennessee. We score controllers by their ability to improve energy consumption while
maintaining traffic throughput. This approach sidesteps the aforementioned difficulties in
calibrating both the waves and the microscopic car following dynamics. Given this simulator,
we can then begin to design and evaluate controllers to test their efficacy in smoothing
realistic waves.

In this chapter, we focus on designing controllers that are able to smooth waves using
only local information that would be accessible via radar. Note that this precludes us from
smoothing low-frequency waves that are distributed over a wide spatial distance; these waves
are likely not observable via radar alone and would require the inclusion of downstream in-
formation from loop sensors or cameras. Using Proximal Policy Optimization [124], an RL
policy gradient algorithm, we learn a controller that decreases the fuel consumption of the
platoon in simulation by 16% for the AV and 10% on average for the platoon vehicles. Finally,
we deploy the controller on real vehicles in highway traffic, showing that the resultant con-
trollers exhibit behaviors that are robust to potential mismatches between field-deployment
and our simplified simulator.

The rest of this paper is organized as follows: in Section 7.2 we discuss related work, in
Section 7.3 we discuss the data collection, cleaning, and analysis, in Section 7.4 we discuss
the design of the RL environment, algorithm, and training details. Section 7.5 describes
the technical details required to port our controller to the physical vehicle and associated
procedure for testing the controller for safety properties. In section 7.6 we discuss the
simulation results, controller analysis, and experimental results from the field deployment.
Finally in Section 7.7 we discuss and provide practical considerations to be considered in
future work.

7.2 Related Work

Prior work has investigated the efficacy of traffic smoothing controllers on settings such as
rings or hand-designed input perturbations. The most closely related works are [132, 65, 91,
62]. In [132], the authors showed that a single AV could be used to dampen stop-and-go
waves on a ring with 21 human drivers, yielding sharply improved fuel efficiency. The work
in [65] studies traffic smoothing with connected AVs and demonstrates that the connectivity
can be used for more effective dampening of waves on a single-lane, eight-mile-long public
road. The work in [91] conducted an experiment in which three control vehicles were lined
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up across three highway lanes and their preferred speed is selected by an external centralized
controller with the goal of smoothing traffic flow. Finally, [62] uses a similar approach as
this work, using the highD dataset [73] to generate realistic waves that are then dampened
by an following RL-controlled vehicle. The primary distinction between this work and [62]
is the use of a calibrated energy model and the physical deployment of our system onto the
roadway.

Other works have considered the wave dampening properties of existing commercially-
available cruise controllers, with [93],[69],[53] all observing that the vehicles they tested
were string unstable (see [30] for a definition of string instability). Finally, [61] has stud-
ied some of the sim-to-real challenges in deploying RL-learned cruise controllers into more
realistic settings. Prior work has also studied the use of reinforcement learning (RL) and
optimal control for developing micro-level controllers that optimize mixed autonomy traf-
fic. [154] learns memory-based policies that infer ring densities and consequently outputs
near-optimal policies for the ring, [35] uses multi-agent reinforcement learning (MARL) to
optimize the throughput of a merging region, and [142] employs MARL to investigate the
potential impacts of altruistic autonomous driving on a merge scenario. At a network level,
RL has been used to learn routing behaviors for AVs that induce the human drivers to select
paths that lead to decreased congestion [77].

7.3 Training Set

Here we detail the procedure that was used to collect data from human drivers. The data
serves as the basis upon which we train wave smoothing controllers. We then briefly describe
the data cleaning process and analyze the distribution of trajectories collected.

Data Collection

We collect data by recording trajectory data on a 14.5-kilometer-long segment (displayed in
Fig. 7.1) of the I-24 located southeast of Nashville, Tennessee. Each drive is conducted in an
instrumented vehicle that logs CAN data via libpanda [23] and GPS data from an onboard
receiver. Collected measurements from the vehicle CAN data include the velocity of the ego
vehicle (the vehicle being driven), the relative velocity of the lead vehicle (the vehicle in front
of the ego vehicle), the instantaneous acceleration, and the space-gap (bumper-to-bumper
distance). GPS data are recorded in parallel.

The drives are varied in the time of day, day of the week, direction of travel on the
highway, and level of congestion. Each drive is made up of one or more passes through the
highway stretch of interest. The data used to train the algorithm in this work are made
publicly available at [100], along with more details on the data. The data used in this work
is a subset of the total available data at [100].
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Figure 7.1: Portion of the I-24 highway on which we collected most of the dataset (section
7.3) and where we ran the experiments described in section 7.6.

Data Cleaning

The raw data for a given drive were recorded in two files: a CAN data file and a GPS file.
The pertinent data are pulled from the CAN data and interpolated to the GPS time, which
is measured at 10 Hz. High-frequency CAN data are down-sampled and linearly interpolated
to match the GPS time, and low-frequency CAN data undergo linear interpolation to match
the 10 Hz GPS time as well. Distance traveled and direction of travel are computed using the
GPS position data. We observe that the westbound data contains a more regular congestion
so we focus on westbound data in this work. The westbound data contain 60 trajectories,
representing 8.8 hours and 772.3 kilometers of driving.

Dataset Analysis

The data are collected over a wide range of traffic conditions ranging from congested traffic
that is nearly stopped to free-flow, max-speed traffic and includes many acceleration and
deceleration patterns corresponding to stop-and-go traffic. Fig. 7.2 shows an example velocity
and space-gap profile from a trajectory in the dataset, where we can observe the ego vehicle
going quite rapidly from low to high speeds. While our main interest is in smoothing high-
frequency waves, the distribution of speeds in the training dataset, shown in Fig. 7.3, tends
towards higher speeds. While we could filter the dataset to only contain low speeds, likely
making the learning problem simpler, Fig. 7.2 suggests that regions of congestion are often
quickly followed by regions of high speed. To ensure our controller behaves appropriately at
high speeds and in transitions between high and low speed regions, we keep both low and
high velocities in the training dataset.
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Figure 7.2: Velocity of the ego vehicle (blue) and space-gap to the lead vehicle (red) for a
single trajectory in the dataset, containing sharp variations in both velocity and space-gap.

Figure 7.3: Histogram showing the distribution of velocities of the ego vehicle in the dataset.

Constructing the Training Environment

In order to use the collected data, we build a one-lane training environment where the AV
follows behind the trajectory collected from the human drivers. The human driver is placed
at the front of a simulated platoon, followed by the AV, followed by five vehicles driving
according to the Intelligent Driver Model (IDM) [68] with a set of parameters that are string

Figure 7.4: Vehicle formation used in simulation. A trajectory leader (in green) driving a
speed profile drawn from the dataset is placed in front of an AV (in red) which is followed
by a platoon of 5 human vehicles (in white), modeled using the Intelligent Driver Model.
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unstable below 18m
s
. Although having a full micro-simulation of the I-24 would allow for

training on a model with complex long-range interactions between the vehicles, the simulator
proposed here allows us to train on realistic driving dynamics that are representative of
both the types of waves on this highway and how drivers react to wave formation. As
an additional benefit, this single-lane simulation using half a dozen vehicles achieved 2000
steps per-second while a comparable micro-simulation of the full 14 kilometer road section
would have thousands of vehicles in congestion and would be very computationally costly to
evaluate.

Our collected dataset contains both the trajectory of our drivers and the vehicles in front
of them (via space-gap and relative velocity data logged on the CAN). We discard the lead
trajectories and do not use them for simulation for two reasons. First, the lead trajectories
contain both cut-ins (a vehicle cuts in between the lead vehicle and the ego driver) and cut-
outs (the lead vehicle changes lanes). While cut-outs are likely unaffected by the behavior of
the ego driver, cut-ins are likely a function of the spacing between ego driver and lead vehicle.
Since our trained controller will have different space-gap keeping patterns, it is possible that
the observed cut-outs would not occur given the controller’s choice of space-gaps. Secondly,
since the lane changes cause sudden variations in the spacing to the leader vehicle, it is
possible for the leader vehicle to wind up behind the AV if it keeps a closer gap to the leader
than the vehicle that collected the data.

Finally, in contrast to standard data science practices of splitting the data into a training
set, a validation set used to tune hyperparameters, and a test set for assessing generalization,
we use the entirety of our data for training. This choice was made due to the relatively small
size of the collected dataset and the even smaller number of low-speed segments within the
data. Instead, we view the field deployment of our controller as our measure of generalization
and robustness.

7.4 Controller Design

In this section we describe the control design and structure, the details on how the controller
is trained on the trajectory data, and the software deployment pipeline that is used to screen
candidates before deployment on a vehicle.

Environment Structure

Due to the ability to acquire information about state solely through radar (and optionally
GPS), we model our problem as a Partially Observed Markov Decision Process (POMDP) [7].
Below we describe the state and action spaces that are feasible to implement given our
available sensing and actuation capabilities and our reward function.

State space: [v, vlead, h] where v is the AV speed, vlead the speed of the vehicle right in front
of it, and h the space-gap. All of these features can be acquired by using the forward-facing
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radar and the data collection software[23, 40] that we place on our vehicles. Note that this
state is partially observed; the vehicle is not provided with information such as the state of
vehicles in the platoon behind it nor information needed to predict the evolution of its leader
vehicle.

Action space: an instantaneous acceleration a, bounded between [−3.0, 1.5] m
s2
, to be ap-

plied to the AV. Note that we do not allow the AVs to lane-change in this work to minimize
safety considerations.

Reward function: The reward the AV receives at time-step t is a combination of minimiz-
ing energy consumption, acceleration regularization and penalties for leaving too small or
too large gaps. It is given by

rt = 1− c0Et − c1a
2
t − c2Pt .

Here Et is the instantaneous gallons of fuel consumed by the AV (given by a piece-wise
polynomial energy model calibrated to a RAV-4 Toyota vehicle; the fitting procedure and
function coefficients are given in [78]), at the AV’s instantaneous acceleration in m

s2
and Pt

its gap penalty, all at time-step t. The first term is intended to discourage fuel consumption,
the second to encourage smooth driving, and the third to discourage the formation of large
gaps that induce cut-ins or small gaps that might be unsafe. Pt is essential as the energy-
minimizing solution is to come to a full-stop; Pt both removes this solution and is used to
encourage the vehicle to drive with a “sensible“ distance to its lead vehicle.

For our reward functions, we use coefficients c0 = 1.0 1
Gal

, c1 = 0.002 s2

m
and c2 = 2, and

penalize with Pt = 1 when the gap is below 7m, above 120m or when the time-gap (i.e.,
space-gap over speed) to the leader is below 1 second. These particular values were selected
via an informal hyperparameter search and found to yield improved fuel consumption of the
platoon while maintaining both plausible roadway behaviors (via not opening too large a
gap) and driver comfort (via not getting too close to the leader.

Termination condition and start state: Each episode is run with a fixed horizon of
1000 steps. For a leader-trajectory of length M, we sample the start-point of a trajectory
uniformly from the first M−1000 steps. Termination of the trajectory occurs when the fixed
horizon is reached.

System dynamics: The dynamics of all vehicles in the system are double integrators up-
dated with a ballistic update [145] and a 0.1 second time-step with the exception of the lead
vehicle whose position is directly updated from the pre-recorded data. The vehicles follow-
ing behind the RL vehicle are updated using a Gaussian-perturbed IDM model described in
Appendix Sec. 2.2.

Note that our reward function does not directly optimize the stated objective of optimiz-
ing miles-per-gallon. Unfortunately, mile-per-gallon is a quantity that can only be calculated
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at the completion of a trajectory and is therefore challenging to use as a reward function since
RL methods struggle with infrequent rewards [5]. However, we note that for a fixed-length
trajectory, subject to the constraint that the vehicle must complete the entire trajectory
before the episode terminates, minimization of consumed fuel and MPG maximization are
equivalent. This is simply because, in the fixed length trajectory, the numerator in the MPG
term becomes a constant.

Finally, there is an incongruity between the finite-horizon objective and our infinite-
horizon field deployment. The shorter horizons are used here as gradient-based controller
design methods (in particular the ones used here) can struggle with long horizons due to
a linear dependency of the variance of the gradient estimator on the horizon [118]. It is
possible that optimizing the gallons consumed on the finite horizon generates behavior that
is sub-optimal for a longer horizon.

Algorithm

We train our policy using Proximal Policy Optimization [124] (PPO), a policy gradient
algorithm. We modify the standard PPO algorithm by providing the value function with
a few additional inputs: the total distance traveled from start to time t, the total energy
consumed by the agent at time t, and time t. The value function V π estimates the reward-
to-go from a given state st and a particularly controller π as

V π(st) = E

[
T∑
j=t

γ(j − t)r(sj, aj)|sj

]
. (7.1)

This quantity is difficult to estimate without the additional information we provide due to
the partially observed state described in Sec. 7.4. The non-local information provided to the
value function is used exclusively during training for variance reduction (see [124] for details
on the usage of value function), and these additional inputs are neither available nor needed
by the controller during evaluation.

Training was done using the PPO implementation provided in Stable Baselines 3 [112]
version 1.0, a Pytorch-based deep RL library. Training details, a script to reproduce the
results in the paper, and hyperparameters are provided in the linked code-base.

Software Controller Verification

Before evaluating the controller as a candidate for deployment on hardware, a transfer-
learning test is conducted to assess the effectiveness of controller when exposed to varying
dynamics that could potentially be experienced during the real-world test. We refer to this
as the Software-in-the-loop (SWIL) tests. The SWIL test is intended to elucidate potential
failure modes of the RL controller by running it in a different environment with out-of-
distribution dynamics changes from the training environment. In particular, the SWIL test
contains different sized time-steps for integrating the dynamics, unseen vehicular dynamics
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Figure 7.5: The 2-vehicle simulated scenario used for assessing the behavior of the RL
controller. The lead car performs a series of abrupt starts and stops that the RL car behind
it must safely respond to.

and a new set of leader trajectories. The transfer-learning environment consists of a 2-
vehicle leader-follower pair (in which our controller is the follower) where both vehicles
are controlled via ROS [110] and simulated in Gazebo [71]. The vehicles in Gazebo have
significantly different dynamics than our simulator

An initial software-in-the-loop (SWIL) step is taken to check functional correctness and
interface testing in a 2-vehicle Gazebo simulation [71] as is shown in Fig. 7.6. In this 2-vehicle
scenario, structured velocity profiles (e.g., constant acceleration, sinusoidal, trapezoidal) are
given as an input to the leader vehicle and the RL controller is deployed on its follower
vehicle to ensure outputs are not unusual (e.g. acceleration is bounded within reasonable
values, appropriate safety gaps are maintained, etc.) and yield safe behavior. An example
of one of the tests, consisting of sharp starts-and-stops of the lead vehicle is depicted in
Figure 7.6.

7.5 Hardware Pipeline

For hardware-in-the-loop (HWIL) deployment on the physical vehicle, there is a series of
three tests to mitigate safety risks from the transition from simulation to physical vehicle
before testing the controller on the I-24 segment. All three tests have varied input from
the leader vehicle to ensure performance in non-equilibrium states. Such tests assess the
performance for initial response, vehicle collision, and space-gap between two vehicles as the
test progresses over the time.

First, the controller is tested in a ‘Ghost Mode’ as in [99] where the vehicle follows a
simulated ‘Ghost’ vehicle as its leader. This provides the opportunity for a bad implemen-
tation to fail and crash into a virtual vehicle instead of a real one. The full HWIL setup is
used with the modification that the real sensing done by the vehicle is replaced by a spoofed
recording of a lead vehicle ahead using [40]. Second, the controller is tested in a ‘CAN
Coach Mode’ as in [99] where the controller feedback is sent through a human-in-the-loop
(HIL) for actuation. This second test occurs on a low-traffic, high speed route. Here the
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Figure 7.6: Resultant RL velocity and space-gap profiles of the RL controller when following
behind a rapidly accelerating and decelerating vehicle in Gazebo.

vehicle sensors feed real-time data into the controller, and the controller outputs a desired
velocity. A passenger periodically reads out the desired velocity to the driver who attempts
to faithfully actuate it. If the controller provides unsafe input to the HIL it is rejected by
the driver to maintain safety and replaced with human control.

Finally, the controller is used on a low-traffic, high-speed route testing the complete
HWIL control loop. Once these are successfully finished, the controller is ready to be tested
on the heavy traffic, high speed I-24 roadway segment.

Hardware stack

Like many modern vehicles, the Toyota RAV-4 is designed as a set of many small modules
that communicate information between each other using the Controller Area Network (CAN)
protocol standard. This enables the drive-by-wire, allowing operation of actuators over the
CAN bus. Sensors also report information over the CAN bus. Because of this, it is possible
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Figure 7.7: Diagram showing how information flows though the hardware-in-the-loop
(HWIL) system when deployed. The vehicle sensors send data on the CAN bus. Libpanda[23]
records the data and data are translated into ROS [40]. The neural net is embedded in a
ROS node subscribing to pertinent CAN-to-ROS data, and its output is filtered through a
supervisory FollowerStopper wrapper controller to get vsafe. This value is sent to the vehicle
interface which takes a desired ROS command and sends it via CAN to the vehicle.

Figure 7.8: A schematic diagram of controller structure for traffic smoothing experiment.
w, th, and a are parameters to time-headway based Followerstopper controller discussed
in detail in [29]. ONNX2ROS framework is used to make prediction over trained model in
real-time manner.
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to connect third party devices to the CAN bus to both read and send information to a
vehicle’s modules. This concept was leveraged for these experiments to replace the vehicle’s
stock cruise controller, a CAN device, with our custom cruise controller.

Because CAN is standard protocol the method of parsing CAN messages is a trivial
task with CAN hardware. Many companies provide hardware to interface with the CAN
bus in vehicles, a common one being an OBD-II reader for vehicle diagnostics and emmision
compliance. One company named comma.ai sells a device called the Panda that is a bit more
invasive requiring the disconnection of some of the vehicle’s CAN modules, but in doing so
provides access to lower level information on the vehicle. The Panda can also intercept
messages between modules and replace the messages with custom data. Such a device fits
the use-case of this project, to read information on the state of the leader vehicle from the
built-in radar while also allowing the operation of custom cruise controller algorithms.

Libpanda [23] was designed as a high performance library for data collection and vehicle
control on devices like the Raspberry Pi. A node in the Robotics Operating System (ROS)
/citeros was built on top of libpanda to expose components of the vehicle’s cruise controller,
allowing for acceleration requests.

Converting an acceleration controller to a velocity controller

In this section we briefly describe the procedure to convert our controller into a velocity-
based controller that closely mimics the original acceleration-based controller. This step
is necessary as our controller outputs an acceleration but the vehicle control stack requires
velocity-based controller. We will seek to find a simple controller vdes(t) = v(t)+Ta where T
is a constant and a is the output of our controller. When fed through the control architecture,
this function should ensure that the commanded acceleration closely matches our desired
acceleration.

First, we fit a model of the vehicle with a first-order transfer function Ψ(s) = 1
1+τs

using
data collected from the drives. In state-space form this would correspond to the relaxation
ODE v̇(t) = 1

τ
(vdes(t)− v(t)). If we then plug the relationship vdes(t) = v(t) + Ta into this

ODE and simplify we will arrive at v̇(t) = T
τ
a so selecting T = τ gives us the desired property

of our output acceleration matching out desired acceleration. Based on a fit to the original
transfer function, we observed the τ = 0.6 closely fits the original transfer function and so
our controller is simply vdes(t) = v(t) + 0.6a. We refer to this as the A-To-V Trick ; this is
what we use to output velocity commands to the vehicle’s cruise controller.

Safety Controller

At deployment time, we wrap our controller in a safety wrapper to minimize potential risks.
We use the FollowerStopper from [132] with tuned coefficients to decrease the range of actions
where the safety controller might override our controller. The FollowerStopper serves as a
velocity controller, navigating the speed of individual vehicles to a predefined desired speed
vdes while maintaining a safe gap with the vehicle ahead. Following this model, the command
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velocity vcmd of an AV is defined as:

vcmd =


0 if hα ≤ ∆x1

v ∆x−∆x1

∆x2−∆x1
if ∆x1 ≤ hα ≤ ∆x2

v + (vdes − v) ∆x−∆x2

∆x3−∆x2
if ∆x2 ≤ hα ≤ ∆x3

vdes otherwise

(7.2)

where v = min(max(vl, 0), U) and ∆xk is defined as:

∆xk = ∆x0
k +

1

2dk
(∆v−)

2, k = 1, 2, 3 (7.3)

where ∆v− = min(∆v, 0) is the negative arm of difference between the speed of the lead
vehicle and the AV. Here vdes is the output of the controller post A-To-V Trick.

Post-hoc controller modifications

We wrap our controller with a few changes to handle out-of-distribution behavior between
the simulator and the field deployment test. In particular, there are several significant
changes in the distribution of observed states caused by the presence of lane-changes in the
field-deployment test that require careful handling.

First, there are challenges related to headways (gaps to the leader) that exceed the values
observed in the simulator and are consequently out-of-distribution (OOD). As discussed in
Sec. 7.4, we penalize the agent if it gets more than 120 meters from the lead vehicle. As
a consequence, the AV learns to successfully stay less than 120 meters away in all the
trajectories evaluated in the later stages of training. Consequently, it is possible (and we
observe it to be the case) that for headways significantly above 120 meters, that the controller
has unexpected and undesirable behavior. In particular, at high speeds and above 150 meters,
the controller begins to slowly decelerate.

In the field-deployment, these large headways can occur via two distinct mechanisms.
First, if the AV experiences several rapid cut-outs of the lead vehicle in the field deployment
test, the headway can occasionally increase to large values. Additionally, the radar can
occasionally not detect a lead vehicle. This occurs when either a lead vehicle is more than
250 meters away i.e. outside the range of the radar or when the vehicle is taking a sharp
curve and the lead vehicle ceases to be visible. In both of these cases, the radar returns a
distance of 250 meters for when the lead vehicle is missing which puts us into the range of
the OOD behavior of the controller. We handle this case and ensure that the gap above 120
meters is rapidly closed by smoothly interpolating between the acceleration output by the
controller and and acceleration of 0.75m

s2
using a logistic function.

However, for very large gaps, continually accelerating at 0.75m
s2

can lead to unreasonable
speeds. For this reason, we cap the speed at 35m

s
and apply an additional safety filter that

smoothly interpolates between the desired acceleration down to an acceleration of −3.0 if
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Figure 7.9: Acceleration behavior of the RL controller (ego) as a function of the leader speed
and gap to the leader for a fixed speed of the RL controller. The set of equilibrium values
is given by the intersection of the thick black curve and the dotted curve. Due to OOD
behavior there are two unique equilibria, one of which occurs at an undesirably large gap.

the vehicle Time-To-Collision (time to close the headway to a stopped leader) falls below
6.5.

After applying all these changes, the resultant controller is the following:

ch =
1

(1.0 + exp(−0.1 ∗ (ht − 120.0)))

at = π (st) ∗ (1− ch) + ch ∗ 0.75

TTC =
ht

max(vt − vl, 0.1)

cTTC =
1

(1.0 + exp(−1.5 ∗ (TTC− 6.5)))

aout = at ∗ (1− cTTC)− cTTC ∗ 3.0

where π(st) is the controller, ht is the headway, vt is the ego speed and vl is the leader speed
and soft-logistics are used rather than explicit if-else statements to account for the type of
operands that are supported by the tool that converts Pytorch models to ONNX modules.

Finally, we note that this controller is still wrapped in the safety controller described in
Sec. 7.5; the modifications described here intended to keep the controller within the set of
states that are in-distribution and override undesirable out-of-distribution behavior.
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Figure 7.10: Percent improvement in MPG relative to a baseline in an IDM vehicle leads
the platoon in Fig. 7.4. Each column contains both percent improvement on the y-axis and
MPG values used to compute this improvement inside each column with IDM (AV) on the
left (right) of the arrow. High and low speed columns are over the training set. The “Test
trajectories” column is the controller evaluated on data from the physical test.

7.6 Results

Simulation Results

Here we analyze the performance of the controller in terms of energy efficiency improvements
in miles per gallon (MPG) observed in our simulator. In Fig. 7.10, we compare the energy
consumption of the AV and all vehicles in the platoon (as shown in Fig. 7.4) when the AV
is using our RL controller compared to an IDM controller, over the whole training dataset.
We split the trajectories by leader speed, computing the energy savings at leader speeds
above and below 18m

s
, which is the speed boundary beyond which IDM vehicles with the

parameters used in this work go from being string-unstable to string-stable. The results in
the left and middle columns indicate that most of the expected energy improvements from
the controller will come at low speeds. While these savings are significant, in more complex
settings imperfections in actuation, modeling of human drivers, and cut-ins would likely
lower the actual improvement. The rightmost column is described in Sec. 7.6.



7.6. RESULTS 99

Figure 7.11: Time-space diagram showing the trajectories of our platoon of vehicle during
the first test. We can observe two regions of congestion (visible in red) where the AV may
have a smoothing effect.

Experimental Results

In this section, we describe the validation experiment conducted on the segment of I-24
shown in Fig. 7.1. We assess the success of the controller deployment onto AVs by showing
an accurate match between simulation and reality. Finally, we seek to determine whether
our controller improved the energy efficiency of its platoon.

Fig. 7.14 shows four vehicles from the eleven-vehicle platoon of alternating humans and
AVs that we deployed on I-24. The vehicles are arranged with two human drivers at the
front of the platoon to serve as test probes. These vehicles are unaffected by the behavior of
the AVs and can serve as a proxy measure for the MPg of the unsmoothed traffic. We then
alternate four AVs and human drivers going down the platoon. We chose the alternating
order rather than a continious platoon as we expect the AVs to get gradually spread apart
by human drivers that lane-change in. Each human-AV pair constitutes a small sub-platoon
on which we can merge the influence of the AV on its following vehicles.

For each test, we got the platoon onto the highway without any non-platoon vehicles lane-
changing into it. Once on the highway, non-platoon traffic cut in and out of our platoon.
Since our vehicles were only instrumented to sense the vehicle in front of them, the number
of vehicles that managed to enter into our platoon is unknown. We ran experiments on
August 2nd, 4th, and 6th of 2021, each day launching the platoon of vehicles three times
and bringing the vehicles back to the start of the highway section in between each run. Due
to other controllers being tested, as well as errors in the region that the safety wrapper
considered safe, the controller presented here was only actuated on 08/06, over three tests
that occurred at 6:45, 7:29 and 8:36 AM. Fig. 7.11 shows individual vehicle trajectories on
a time-space diagram from the 6:45 AM test; the two regions of red correspond to potential
sources of congestion that the controller may have reduced.

The deployment of the controller from simulation to real vehicles was overall successful,
all tests having ran safely and smoothly. We then investigate the effect of the sim-to-real
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Figure 7.12: Comparison of velocity and time-gap between a real (solid) and simulated
(dashed) roll-out. There are small divergences that occur around the cut-ins but the car
mostly maintains a three-second time-gap in both cases.

gap induced by the presence of cut-ins and cut-outs, which we did not have when training
our controller, as well as imperfect modeling of the transfer function of the AV. First, we
attempt to compute a counterfactual baseline in which we replay our controller in simulation
behind a trajectory collected during the tests. We note, however, that this mechanism is
imperfect as the real-world trajectory has cut-ins and replaying a different controller behind
it might affect the cut-in frequency. Without a model of lane changing, we cannot perform
this counterfactual perfectly and so we instead make the calculations assuming that both
the times when cut-ins occur and the space-gap directly after the cut-in are unchanged.
Occasionally, we choose to relax this latter condition in order not to experience, in simulation,
cut-ins that would be more aggressive than what the real-world AV experienced. To that
end, at each time-step t where a cut-in would leave the AV with a space-gap hsim

t while the
real-world AV experienced a space-gap hreal

t , we set hsim
t = max(hsim

t ,min(hsim
t−1, h

real
t )).

Fig. 7.12 shows the velocity and time-gap (space-gap divided by velocity) of an AV from
the validation experiment as well as the replay of the trajectory in our simulation using
the counterfactual cut-in mechanism mentioned above. The velocity profile of the vehicle
closely matches its expected behavior computed in simulation. Besides, although there are
mismatches around cut-ins and cut-outs (regions where time-gap changes discontinuously),
the time-gaps are relatively close and we can observe the vehicle roughly tracking a three-
second time-gap in both cases. We observe similar results on the other trajectories we
collected during the tests.

Finally, we analyze the potential fuel efficiency improvements from the validation exper-
iment. The third column in Fig. 7.10 depicts the energy savings obtained when replaying
in simulation using the trajectories collected during the experiments (instead of the training
data which did not have lane changes) using the counterfactual cut-in mechanism mentioned
earlier. We observe that the fuel efficiency of the AV has improved by 8% with additional
small gains for the IDM vehicles. Fig. 7.13 shows the density of accelerations taken by the
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Figure 7.13: Histogram showing the density of the AV acceleration when simulating an AV
or an IDM vehicle behind leader trajectories from the tests. The AV case places less mass at
high, energy-consuming accelerations. The peak observed at 0.75 corresponds to situations
in which the lead vehicle is out of range of radar due to a cut-out.

IDM vs. the AV; the higher density of large accelerations of the IDM vehicle are likely the
reason for the improved fuel efficiency of the RL AV over the IDM AV. Unfortunately, the
day of the deployment featured limited congestion so potential improvements are smaller
than might be observed in heavier traffic conditions. More experimental testing on a num-
ber of days are needed to provide conclusive experimental energy savings results. Here we
compute estimates from simulations using our models on experimental trajectory data.

7.7 Conclusions and Future Work

In this chapter we propose and test a pipeline that allows for effective validation and training
of traffic smoothing controllers. We collect over 700 km of training data that is used to build
a controller validation system. This system avoids the fundamental modeling issues that
have restricted the learning or design of traffic smoothing controllers to relatively simple
settings, or prevented them from deployment on real cars. In our validation system, we use
Policy Gradient methods to train a controller that improves the MPG of an AV by 16% and
has benefits for the following human vehicles. We then construct a pipeline for porting these
controllers to four AVs and perform physical validation experiments over three days. The
behavior of the vehicle on the validation experiment closely matches its expected simulation
behavior, suggesting that our pipeline is an effective mechanism for validating controllers.

We observe that the main feature missing in our environment is the presence of counter-
factual lane-changes. In future work, this can be addressed using the observed lane changes
in the data to build a single-lane lane changing model that can be used to extend our simu-
lation. Additional field experiments can support the assessment of our approaches in a range
of traffic congestion levels.
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Figure 7.14: 4 of 11 vehicles in formation on the roadway. Green arrows and green X on
roof indicate AV (AV), orange arrows and orange X on roof indicate human driven sensing
vehicle (H). During experiments platoon formed in this order: [H, H, AV, H, AV, H, AV, H,
AV, H, H], with no control over traffic flow consistently cutting in and out.
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Chapter 8

Future Directions and Open Problems

In this work we have demonstrated that deep reinforcement learning can be used to design
CAVs in a wide variety of complex scenarios. In simple scenarios, we were able to quickly
design controllers for CAVs that sharply improved metrics such as throughput or energy
consumption. As we approached more complex, multi-agent scenarios with open networks,
we observed challenges with convergence and simulation speed. Finally, when moving to full-
size networks we were still able to design controllers that removed stop-and-go waves but the
cost of 30 or more hours of simulation time. As we moved towards a field deployment, the
cost of simulation and gaps between our simulator and the real-world became increasingly
critical and it became necessary to move to a smaller, fast, data-driven simulator. Using
this simulator we were able to successfully field deploy four traffic-smoothing controllers and
validate that our simulation strategy yielded sensible behaviors despite a potential sim-to-
real gap. What remains in the short-term is to deploy this strategy at significant enough
penetration rates such that wave-smoothing is both qualitatively observable and statistically
observable.

Looking forward, we can draw some clear lessons and opportunities that can inform future
research directions. In particular, simplifications required to complete this work expose
several challenges that need to be addressed to achieve the goal of designing CAVs in large-
scale simulations that can then be deployed zero-shot to the roadway. While in this work we
were still able to design and deploy controllers using a single-lane simulator that captured
the relevant features of stop-and-go waves, this strategy would likely not work for different
phenomena that we might want to optimize such as merges, bottlenecks, or interactions
between CAVs and traffic lights. We highlight a few potential areas whereby rapid progress
can likely be made.

8.1 Data Opportunities

One key challenge observed in Chapter 7, inspired by the results of Chapter 5 was in getting
simulated waves that even qualitatively looked like the type of waves observed on the road-
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way. As the characteristics of the waves cannot be sufficiently constrained using macroscopic
information such as vehicle counts, microscopic data is needed for calibration. This data is
increasingly available as new sources of data such as overhead cameras, dashboard cameras,
data-sets from self-driving companies, and GPS traces from cloud-connected vehicles can all
be combined with advances in computer vision to generate huge data-sets of vehicle trajec-
tories. While car-following models have been a huge boon to research, their parameters are
frequently calibrated using small data-sets [143] that may not correctly reproduce the full
complexity of human highway driving. Converting the abundance of data into a form suit-
able for easy calibration using open-source object tracking and computer vision models and
the development of the corresponding calibrated car-following models that spontaneously
form waves is an exciting direction for future research.

8.2 Algorithmic Opportunities

On the algorithmic front, while there has been immense progress in the design of MARL
algorithms capable of solving cooperative tasks like SMAC [119], Google Football [76], or
Hanabi [12], there has been comparatively less attention to assessing whether these algo-
rithms scale to settings with hundreds of agents. These settings are challenging as the joint
action space blows up exponentially in the number of agents and the use of centralized meth-
ods may cause challenges with hardware as the memory requirements can be large. While
there are benchmarks in this setting such as MAgent [165], standard evaluation procedures
for algorithms tend towards settings that contain a smaller number of agents.

For these larger settings, one promising avenue is to develop methods that somehow
“avoid“ the exponential blow-up in agent numbers by implicitly or explicitly splitting the
agents into groups that have significant interactions. Such approaches might include learn-
ing or inferring a factorization of the coordination structure [82, 52], using heuristics that
explicitly depend on spatial distance, or mean-field-like approaches that model the interac-
tions between agents through a reduced set of coupling variables [136, 137]. There may be
promising algorithmic advances that do not have the exponential dependence on the number
of agent actions [63]. Finally, instead of using the full-scale system, once could consider
transferring agents progressively from smaller to larger simulators [159, 87] in a transfer
learning or curriculum learning approach.

8.3 Simulation Opportunities

As we scale to larger settings, simulation speed rapidly becomes a problem due to a near
linear scaling of the simulation step-time with the number of agents in the system for many
micro-simulators. In other domains, huge gains have been made by employing GPUs for
simulation [92, 47]: they can both be used to accelerate the simulator and to accelerate the
learning procedure. Furthermore, the co-location of the simulator and the learning algorithm
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onto the GPU can avoid expensive CPU-GPU transfers. While maximizing the effectiveness
of GPUs for traffic simulation may be a challenging problem, prior work has suggested that
there may be large speed-ups available [115]. Separately, there may be modeling strategies
akin to those employed here where a reduced simulator is used that captures most of the
needed effects. It is reasonable to imagine, as an extension of the work done here, a sim-
ulator that couples a single-lane simulator to a set of macroscopic variables and infers how
microscopic changes in the driving behavior affect the macroscopic quantities and vice-versa.
Finally, the actual process of calibrating these simulators is challenging but perhaps could
be eased by replacing our simulators with differentiable simulators whose parameters could
be tuned to match collected data; such an approach is widely used in rendering [101, 27] and
physics simulation [8, 56]. As a side-benefit, such simulators could allow us to flexibly trade
off accuracy for speed as needed for particular applications.

8.4 Looking Forwards to Large Scale Field

Deployments

Finally, we briefly speculate on the challenges and possibilities of a large-scale field de-
ployment of the controllers designed here. While we observed promising wave-smoothing
behavior in simulation, wave-smoothing is difficult to observe in a multi-lane highway using
a small platoon of vehicles all operating in the same lane as waves can dissipate or form for
reasons unrelated to our controllers e.g. a human driver that has entered the platoon might
lane-change out / in and incidentally dissipate / cause a wave. Furthermore, potential ob-
served improvements within the lane could come at the cost of deterioration of fuel efficiency
in adjacent lanes.

However, at significant penetration rates where the CAVs are distributed widely through-
out the lanes, we can perform a proper comparison as we can now roughly treat the lanes
as homogeneous i.e. we can assume that each lane is experiencing the same conditions and
a vehicle cannot lane-change to avoid the impact of our control strategy. We look forward
to such a test in 2022 where we aim to deploy 100 vehicles onto the roadway, constituting
between 2-5% of the vehicles on the day of the deployment. At this scale we will be able to
definitively confirm by comparing the traffic patterns of the day to historical data whether
we have caused a statistically significant improvement in the miles-per-gallon of the roadway.
If so, this would constitute the largest deployment of traffic-smoothing cruise control and
may constitute sufficient evidence to convince existing vehicle manufacturers to adopt more
energy-friendly cruise control strategies.

Looking forwards more speculatively, the work presented here suggests that there are
many avenue by which CAVs can improve the roadway. Since these vehicles are already
deployed, in some sense improving our highway systems is as easy as flipping a switch and
uploading a new and improved set of cruise controllers onto existing platforms. Perhaps it
is not too far in the future where we will see the potential benefits of CAVs widely deployed
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into our existing systems.
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[32] Mladen Čičić, Li Jin, and Karl Henrik Johansson. “Coordinating Vehicle Platoons for
Highway Bottleneck Decongestion and Throughput Improvement”. In: arXiv preprint
arXiv:1907.13049 (2019).
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Appendix

A.1 Benchmarks for Reinforcement Learning in

Mixed Autonomy Traffic

Hyperparameter search

Hyperparameter searches were conducted on the various algorithms to yield optimally per-
forming training results. For ARS and ES, a grid search was conducted over SGD step sizes
of [0.01, 0.02] and noise standard deviations of [0.01, 0.02]. The best hyperparameters are
reported in Table A.1.

Table A.1: Description of controller-specific hyperparameters.

Controller Selected Hyperparameters

ARS SGD step size=0.02, σ = 0.02
ES Adam step size=0.02, σ = 0.02
TRPO Adam step size=0.01
PPO Num epochs=10

merge, bottleneck: λ(GAE)= 0.97, Adam step size=5× 10−4

grid0: λ(GAE)= 0.5, Adam step size=5× 10−5

grid1: λ(GAE)= 0.3, Adam step size=5× 10−4

a) ARS and ES: σ is the standard deviation of the noise used to perturb parameters; b) TRPO
and PPO: use of actor-critic method, the former with advantages as empirical returns minus
the baseline and batch gradient descent, the latter with GAE advantages and stochastic
gradient descent
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A.2 Optimizing Mixed Autonomy Traffic Flow With

Decentralized Autonomous Vehicles and

Multi-Agent Reinforcement Learning

Detailed MDP

Here we provide significantly more details about the MDP defined in Sec. 4.3. We have three
possible state spaces that we investigate. The first state set we call the radar state as the
states accessed would be readily available via an on-board radar and GPS. This is the state
space that would be most easily implemented using existing technology on an autonomous
vehicle. In the radar environment, the state set is:

• The speed and headway of one vehicle ahead in each of the lanes and one vehicle
behind. If the vehicle is on a segment with four lanes, it will see one vehicle ahead
in each of the lanes and one vehicle behind in each of the lanes. A missing vehicle
is indicated as two zeros in the appropriate position. Subject to some restrictions on
sensing range, this information can be acquired via radar. Refer to Fig. 4.5 for a
diagrammatic description.

• The speed of the ego vehicle as well as its lane where lanes are numbered in increasing
order from right to left.

• The edge number and position on the edge of the ego vehicle where the edge numbering
is according to Fig. 4.2. This information would readily be available via GPS. We
supplement this with an “absolute” position on the network, indicating how far the
vehicle has traveled. This latter state is technically redundant and could be inferred
from edge number and position.

• A counter that indicates how long the speed of the vehicle has been below 0.2 meters
per second. This is used to endow the AV with a memory that allows it to track how
long it has been stopped / waiting at the bottleneck entrance.

• A global time counter indicating how much time has passed.

Note that in the radar state that information about the bottleneck is only indirectly available;
it can only examine the states of visible vehicles and use it to infer information about the
bottleneck state.

The second set of states would be available given appropriate loop sensing infrastructure
or a sufficient number of overhead cameras distributed throughout the bottleneck. These
states endow the AV with macroscopic information about the bottleneck. We refer to this
as the aggregate state. Here the additional states are:

• The average speed of the vehicles on edges 3, 4, and 5.
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• The number of vehicles in the bottleneck.

• A global time counter indicating how much time has passed.

Finally, the final set of states we consider is a significantly pruned state set in which we
have hand-picked what we believe to be a minimal set of states with which the task can
be accomplished. We refer to this as the minimal state. This state space should yield the
fastest learning due to its small size. Here the states are:

• Total distance travelled.

• The number of vehicles in the bottleneck.

• A counter that indicates how long the speed of the vehicle has been below 0.2 meters
per second.

• Ego speed.

• Leader speed.

• Headway.

• The amount of time our feedback controller described in Sec. 4.2 would wait before
entering the bottleneck. This state is intended to ease the learning process since initially
the vehicles can simply learn to imitate this value.

From these three potential sets of states, we form three combined state spaces that we
study: radar + aggregate, minimal + aggregate, and minimal alone. Each of these represents
a different set of assumptions on what sensing technology will be available, as is illustrated in
Fig. 4.5. We characterize the relative performance of these different state spaces in Sec. 4.4.

The action space is simply a 1-dimensional acceleration. The vehicles enter the network
at 25 meters per second and roughly maintain that speed as they travel along. Since our
intent is for the controllers to stop at edge three and determine the optimal time to enter the
bottleneck, we want to increase the likelihood of them coming to a stop on edge three. To in-
crease the likelihood of sharp decelerations, we bound our action space between 1

8
[−4.5, 2.6]

and re-scale the actions by multiplying them by eight. The neural network weight initial-
ization scheme we use (see appendix for details) tends to output actions bounded between
[−1, 1] at initialization time; this re-scaling scheme makes it likelier that large decelerations
are applied.

While we could include lane-changes as a possible action, we made the assumption that
it was unlikely that lane-changing behavior could be a positive and would only cause the
training to take longer. To prevent the vehicles from forming unusual patterns at the entrance
of the bottleneck, control is only applied on edge 3 (edges numbered according to Fig. 4.2).
However, states and rewards are received at every time-step and consequently actions are
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computed at each time-step: we simply ignore the controller output unless we are on the
third edge.

We are trying to optimize throughput, so as our reward function we simply use the
number of vehicles that have exited in the previous time-step as a reward

rt(st, at) = nt/N

where nt is the number of vehicles that have exited in that time-step and N is a normalization
term that was use to keep the cumulative reward at reasonable values. We use N = 50 in
this work. Since the outflow is exactly the quantity we are trying to optimize, optimizing
our global reward function should result in the desired improvement. This is a global reward
function that is shared by every agent in the network.

However, we note a few challenges that make this a difficult reward function optimize.
First, the reward is global which causes difficulties in credit assignment. Namely, it is not
clear which vehicle’s action contributed to the reward at any given time-step. Secondly,
there is a large gap between when an action is taken and when the reward is received for
that action. That is, a vehicle choosing to enter the bottleneck does not receive any reward
directly attributable to that decision for upwards of 20 steps. Finally, the bottleneck being
fully congested is likely a local minimum that is hard to escape. Once congestion has onset,
it cannot be removed without a temporary period where the inflow into the bottleneck is
reduced. However, a single vehicle choosing to not enter the bottleneck would have negligible
effect on the inflow, making it difficult for vehicles to learn that decongestion is even possible.

Training parameters

Here we outline the optimal hyperparameters and seed for every experiment presented in
this paper. These hyperparameters were found, as discussed in Sec. A.2, by sweeping a fixed
set of hyperparameters, picking the policy with the highest reward after 2000 iterations, and
then sweeping 35 seeds.

Experiment details

For the training parameters for TD3, we primarily used the default parameters set in RL-
lib [84]1 version 0.8.0, a distributed deep RL library. Both the policy and the Q-function
are approximated by a neural network, each with two hidden layers of size [400, 300] and a
ReLU non-linearity following each hidden layer. We used a training buffer size of 100000
samples and use a ratio of 5 new samples from the environment for every gradient step. For
each training run, we also perform a hyperparameter sweep over the following values:

• The learning rate for both the policy and the critic: [1e− 3, 1e− 4].

1https://github.com/ray-project/ray/python/ray/rllib

https://github.com/ray-project/ray/python/ray/rllib
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actor lr critic lr n step prioritzed replay seed

5% 0.001 0.0001 5 True 24
10% 0.0001 0.0001 5 False 29

minimal 20% 0.0001 0.001 5 True 15
40% 0.0001 0.0001 5 False 9
universal 0.0001 0.0001 5 False None

5% 0.0001 0.0001 5 False 28
10% 0.001 0.0001 5 True 3

minimal 20% 0.0001 0.0001 5 False 0
+ aggregate 40% 0.0001 0.001 5 True 9

universal 0.001 0.001 5 False None

5% 0.0001 0.0001 5 True 14
10% 0.0001 0.001 5 False 16

radar 20% 0.0001 0.001 5 False 17
+ aggregate 40% 0.0001 0.001 5 True 19

universal 0.0001 0.0001 5 False None

no congest number 5% 0.0001 0.001 5 False None

Table A.2: Parameters used during training with RLlib [85]’s implementation of the TD3
algorithm for the experiments trained at penetrations of 5%, 10%, 20%, 40% or universally
(cf. Sec. 4.4) for the minimal, minimal + aggregate and radar + aggregate state spaces.
The experiments trained at fixed penetration have been trained for 2000 iterations with
a parameter search (cf. Sec A.2) followed by a grid search on the best parameters (cf.
Sec A.2), after which the best seed was kept. The universal controllers have been trained
for 400, 1200 and 2000 iterations for respectively the minimal, minimal + aggregate and
radar + aggregate state spaces, and no seed search was ran for these three experiments.
The last line of the table refers to the experiment that was trained without macroscopic
information about the bottleneck’s outflow (cf. Sec 4.4); it was trained for 1600 itera-
tions and without seed search. Only parameters that differ from the default RLlib config-
uration for TD3 (https://docs.ray.io/en/releases-0.6.6/rllib-algorithms.html#
deep-deterministic-policy-gradients-ddpg-td3) are detailed here.

https://docs.ray.io/en/releases-0.6.6/rllib-algorithms.html#deep-deterministic-policy-gradients-ddpg-td3
https://docs.ray.io/en/releases-0.6.6/rllib-algorithms.html#deep-deterministic-policy-gradients-ddpg-td3
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• The length of the reward sequence before truncating the target with the Q-function
(also known as n-step return): [1, 10]

• We test both using and not using prioritized experience replay [122].

The best performing value, in terms of final converged reward, is selected from the hyper-
parameters, after what we run 35 random seeds using the best hyperparameters. We select
the highest reward at the end of training from these random seeds.

The percentage of autonomous vehicles varies among 5%, 10%, 20% and 40%. During
each training rollout, we keep a fixed inflow of 2400 vehicles per hour over the whole horizon.
At each time-step, a random number of vehicles are emitted from the start edge. Thus, the
number of vehicles in each platoon behind the AVs will be of variable length and it is possible
that at any time-step any given lane may have zero AVs in it. To populate the simulation
fully with vehicles, we allow the experiment to run uncontrolled for 300 seconds. After that,
the horizon is set to 1000 more seconds.

At training time, we use the re-routing technique discussed in Sec. 4.3 where vehicles are
simply placed back at the beginning of the network after exiting. However, when performing
the inflow-outflow sweeps to evaluate the efficacy of the policy / generate the graphs in this
paper, we turn rerouting off to ensure that our policy’s performance is not dependent on the
policy using the rerouting to generate some unusual behavior. To compute the outflow at
a given inflow value, we run the system for 1000 seconds and compute the outflow over the
last 500 seconds.

We use the traffic micro-simulator SUMO [88] for running our simulations. We use a
simulation step of 0.5 seconds and a first-order Euler integration for the dynamics. While we
use a relatively small time-step to maintain sensible dynamics, we use action repetition and
only select a new controller action every 2.5 seconds. Each action is thus repeated five times;
this approach is useful for speeding up training when the system dynamics change at a slower
time-scale than the dynamics update frequency. This technique is standard when applying
deep RL to Atari games [96]. Similarly, states, rewards and actions are only computed once
every 5 simulation steps during both training and evaluation. Thus, running the system for
1000 seconds corresponds to 400 environment steps but to 2000 simulation steps.

It is essential to note that for the multi-agent experiments we used a shared controller,
all of the agents operate in a decentralized fashion but share the same controller.

Reproducibility and Experimental Details

The code used to run the experiments and plot all of the figures is available at our fork of
Flow2.

For each example, we perform the hyperparameter sweep indicated in Sec. A.2 and train
at a fixed inflow of 2400 vehicles per hour. We then take the best hyperparameter set and

2https://github.com/eugenevinitsky/decentralized_bottlenecks

https://github.com/eugenevinitsky/decentralized_bottlenecks
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re-run the experiment using 35 different seeds. The seed with the highest outflow is taken
as the controller for each example.

All experiments are run on c4.8xlarge machines on AWS EC2 which have 36 virtual cores
each. Since we use a single-processor implementation of TD3, both our hyperparameter
sweeps and seed sweeps fit on a single machine.

Feedback Controller Sweep Parameters

For our feedback controllers, we swept the following hyperparameters in a grid:

• ncrit = [6, 8, 10]

• K = [1, 5, 10, 20, 50]

• qinit = [200, 600, 1000, 5000, 10000]

Empirically, we found that these were the parameters that the control scheme was most
sensitive to. Whenever a vehicle enters, we set q0 = qinit so each vehicle is maintaining its
own counter of the appropriate wait-time.


	Contents
	List of Figures
	List of Tables
	Introduction
	Possibilities of Cooperative Autonomy in Mixed Autonomy Settings
	Overview

	Background
	Traffic micro-simulators and FLOW
	Microscopic Car Following Models
	Multi-Agent Reinforcement Learning

	Benchmarks for reinforcement learning in mixed-autonomy traffic
	Introduction
	Background
	FLOW: facilitating benchmark generation
	Benchmarks
	Experiments
	Conclusions and Future Work

	Optimizing Mixed Autonomy Traffic Flow With Decentralized Autonomous Vehicles and Multi-Agent Reinforcement Learning
	Introduction
	Background
	Experiments
	Results
	Conclusions and Future work

	Deep Reinforcement Learning for Fuel Consumption Reduction in Multi-Lane Road Networks
	Introduction
	Related Work
	Smoothing in Multi-Lane Systems
	Problem Formulation
	Controller design
	Results
	Conclusions and Future Work

	Nocturne: a scalable driving benchmark for bringing multi-agent learning one step closer to the real world
	Introduction
	Related Work
	Benchmark construction
	Experimental Results
	Analysis
	Conclusions and Future Work
	Reproducibility and Ethical Statement

	From Sim to Real: A Pipeline for Deploying Traffic Smoothing Cruise Controllers
	Introduction
	Related Work
	Training Set
	Controller Design
	Hardware Pipeline
	Results
	Conclusions and Future Work

	Future Directions and Open Problems
	Data Opportunities
	Algorithmic Opportunities
	Simulation Opportunities
	Looking Forwards to Large Scale Field Deployments

	Bibliography
	Appendix
	Benchmarks for Reinforcement Learning in Mixed Autonomy Traffic
	Optimizing Mixed Autonomy Traffic Flow With Decentralized Autonomous Vehicles and Multi-Agent Reinforcement Learning




