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SUMMARY

This paper presents a systematic procedure for the seismic response analysis of highway

overcrossings. The study employs an elementary stick model and a more sophisticated finite ele-

ment formulation to compute response quantities. All dynamic stiffnesses of approach embank-

ments and pile groups are approximated with frequency-independent springs and dashpots that

have been established elsewhere. A real eigenvalue analysis confirms the one-to-one correspon-

dence between modal characteristics obtained with the three-dimensional finite element solutions

and the result of the simpler stick-model idealization. A complex eigenvalue analysis yields

modal damping values in the first six modes of interest and shows that modal damping ratios

assume values much higher than those used by Caltrans. The validity of the proposed method is

examined by comparing the computed time response quantities with records from the Meloland

Road and Painter Street overcrossings located in southern and northern California respectively.

The proposed procedure allows for inexpensive parametric analysis that examines the importance

of considering soil-structure interaction at the end abutments and center bent. Results and recom-

mendations presented by past investigations are revisited and integrated in comprehensive tables

that improve our understanding on the dynamic characteristics and behavior of freeway over-

crossings. The study concludes with a step-by-step methodology that allows for a simple, yet

dependable dynamic analysis of freeway overcrossings, that involves a stick model and fre-

quency-independent springs and dashpots.
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INTRODUCTION

The motivation for this study did not originate from a lack of published material on the seis-

mic response of freeway overcrossings but rather from an abundance of publications, the vast

numbers of which present findings that are scattered, occasionally conflicting, and derived from
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various methodologies that in many occasions have little in common. As a result, despite several

existing recommendations (Werner 1994; Goel and Chopra 1997, among others) there is no estab-

lished procedure that results in a dependable estimate of the seismic response of freeway over-

crossings, partly because the findings of the below-mentioned studies have not been combined in

a rational manner that will result in a systematic analysis procedure.

The seismic response of freeway overcrossings received distinct attention in the late 1980s.

Maragakis and Jennings (1987) introduced the “stick model” enhanced with bilinear “springs”

and “dashpots” at its support to study the motion of skew overpasses. Their model accounted for

several practical difficulties such as the presence of elastomeric pads and the gap between the

deck and the back wall. Werner et al. (1987) developed a system identification methodology to

extract information from an array of strong-motion measurements that were recorded in the vicin-

ity of the Meloland Road Overcrossing during the 1979 Imperial Valley earthquake. Their conclu-

sions emphasized the ability of linear models to fit the measured response and the pronounced

effects that the approach embankments and foundations have on the response of the bridge.

Although their paper identifies relatively low values of modal damping for the bridge-foundation

system ( to 8%), a later publication by Werner (1994) indicates modal damping ratios

ranging from 19% to 26%. About the same time, Crouse et al. (1987) conducted experimental and

analytical studies to determine the significance of soil-structure interaction on the response of a

single span overcrossing with monolithic abutments on spread footings. The small displacement

gradient generated from the ambient quick-release and forced-vibration tests resulted in small val-

ues of damping and large values of stiffness that are not representative under earthquake loading.

The present paper revisits the problem of seismic response of highway overcrossings and pro-

poses a systematic procedure to account for soil-structure interaction. Our goal is not to derive

another isolated study, but rather to build on the work of others. Many past publications are used

in this study to validate deformation levels, material parameters, and response quantities. Agree-

ments between our results and those of other investigators further establish the dependability of

the proposed procedure, while discrepancies in response quantities have been the motivation for

the additional studies presented herein. This paper essentially builds on and extends the work of

Wilson and Tan (1990b), Werner (1994), Goel and Chopra (1997), McCallen and Romstad (1994)

and Makris et al. (1994).

The work of S. D. Werner and others on two-span short bridge overcrossings was summa-

rized in a paper in an effort to evaluate Caltrans procedures for seismic response analysis of free-
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way overcrossings (Werner 1994). That study underlined the significance of soil-structure

interaction and offered selected recommended values on some modal parameters. Emphasis was

given to the transverse response of the bridge. As in the Wilson and Tan (1990a) study, the Werner

(1994) study did not provide any information on the embankment stiffnesses and damping along

the longitudinal direction. Information on modal response quantities was limited to the first trans-

verse mode only. Despite its limitations and occasional sweeping statements, the Werner (1994)

study identifies several of the challenges associated with this problem. This study revisits the

Werner (1994) paper by refining and extending several of the concepts advanced therein.

A comprehensive study that established the validity of the stick model was conducted by

McCallen and Romstad (1994) who computed natural frequencies, mode shapes, and response

time histories of the Painter Street Overcrossing using the two aforementioned numerical models.

Both fixed and resilient foundation supports were considered and it was found that there is a one-

to-one correspondence between the mode shapes predicted by the stick and the detailed finite ele-

ment model. The McCallen and Romstad study indicated the substantial reduction in the trans-

verse and longitudinal frequencies when realistic soil strains are considered; while in these two

modes of vibration modal damping should be of the order of 20 to 30%. The levels of modal

damping were concluded by McCallen and Romstad (1994) after a large number of trial and error

iterations and comparisons of measured and computed responses at several bridge locations. The

detailed finite element study by McCallen and Romstad (1994) that accounts for the resilience

and dissipation at the center bent and end abutment involved the discretization of embankments

and a large volume of the surrounding soil. Efforts to establish the validity of the stick model in

estimating the seismic response of skew bridges have been also reported by Werner (1994).

Established values of kinematic response functions and dynamic stiffnesses of the approach

embankments and pile foundations are used in this study to synthesize a simple dynamic model to

estimate the dynamic response of freeway overcrossings. The numerical simulations that employ

a simple stick model and a more sophisticated finite element model build on the work presented

by McCallen and Romstad (1994). In contrast with the McCallen and Romstad study, the method-

ology presented in this paper adopts the substructure approach, where the kinematic response

functions and dynamic stiffnesses are computed separately and subsequently are incorporated in a

simple dynamic model where the mechanical behavior of each of its components can be calcu-

lated with any desired level of sophistication. The methodology to compute the kinematic

response functions and dynamic stiffnesses of approach embankments is presented in the compan-
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ion paper, whereas the methodology to compute the dynamic stiffnesses of pile groups has been

summarized in the paper by Makris et al. (1994).

Lastly, the structural characteristics that we compute for the Painter Street Overcrossing are

compared with those reported by Goel and Chopra (1997), who employed an equilibrium based

approach to back-figure abutment stiffnesses at different levels of shaking. The follow-up work of

Goel (1997) is also used to compare the estimated values of modal periods and damping ratios of

the entire bridge-foundation system.

SOIL-STRUCTURE INTERACTION

Figure 1(a) shows the schematic of a typical two-span overcrossing with its approach

embankments. During ground shaking the dynamic response of the deck is affected: (a) from the

dynamic response of the embankments that support the end abutment and (b) from the dynamic

response of the pile foundations at the center bent. The need to account for this interaction moti-

vated finite element studies that involved the discretization of the bridge superstructure and a

large volume of the embankments and supporting soil (Sweet 1993; McCallen and Romstad 1994

among others). Although such studies elucidated the significance of deck-abutment-embankment

interaction, they do not provide direct information on the distinct mechanical characteristics of

approach embankments and pile foundations and their influence on the dynamic response of the

bridge structure. This might be a possible reason for the lack of practical procedures to account

for soil-structure interaction when computing the seismic response of freeway overcrossings. This

paper together with its companion paper (Zhang and Makris 2001) concentrates on addressing the

issue of the importance of soil-structure interaction on the seismic response of freeway overcross-

ings and proposes a practical methodology to include its effect in association with simple bridge

models.

Owing to its computational efficiency the substructure method is a popular approach to

address the soil-foundation-superstructure problem (Tseng and Penzien 2000). Assuming linear

soil-foundation-superstructure response, the analysis of the system can be performed in three con-

secutive steps as shown in Figure 1. First, find the motion at the end abutments and pile cap of the

center bent in the absence of the bridge superstructure (the so-called foundation input motion),

which includes translational as well as rotational components; second, determine the dynamic

stiffnesses (frequency dependent springs and dashpots) associated with longitudinal, transverse,

vertical, rocking and cross-horizontal-rocking oscillations of the embankments and pile groups;
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third, compute the seismic response of the superstructure (deck and abutments) supported on

springs and dashpots and subjected to the foundation input motion.

An earlier attempt to investigate the effect of soil-pile-structure interaction was presented

by Makris et al. (1994). In that study the Painter Street Overcrossing was idealized with a plane

six-degree-of-freedom lumped-parameter model, whereas the influence of the approach embank-

ments was neglected. The limitations of the plane model restricted the analysis of the response

only along the transverse direction. Despite its limitations, that study indicates some of the short-

comings that may result by neglecting the resilience of the pile foundations at the center bent and

outlines a simple integrated procedure that one can follow in order to compute the stiffnesses and

damping of pile foundations. The same procedure was adopted and extended in this study which

examines the two-dimensional coupled longitudinal and transverse response of highway over-

crossings. Figure 1 (bottom) shows the elevation and plan views of the model adopted in this

study and the springs and dashpots that are proposed to approximate the interaction of the bridge

superstructure with its foundation and the surrounding soil.

Dynamic Stiffnesses of Approach Embankments

The dynamic stiffnesses of approach embankments have been examined in the companion

paper and for most practical purposes they can be replaced with frequency independent springs

and dashpots.

Dynamic Stiffnesses of Pile Groups

The dynamic stiffnesses of a pile group, in any vibration mode, can be computed using the

dynamic stiffnesses of a single pile in conjunction with the concept of superposition criterion,

originally developed for static loads by Poulos (1968), and later justified for dynamic loads by

Kaynia and Kausel (1982), Sanchez-Salinero (1983) and Roesset (1984). It can be used with con-

fidence at least for groups with less than 50 piles. Dynamic interaction factors for various modes

of loading are available in the form of non-dimensional graphs (Gazetas et al. 1991) and in some

cases, closed form expressions derived from a beam on winkler foundation model in conjunction

with simplified wave-propagation theory (Dobry and Gazetas 1988; Makris and Gazetas 1992).

Although the dynamic stiffnesses of pile groups are in general frequency dependent quanti-

ties, their low frequency values do not fluctuate appreciably with frequency and one can replace
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them with frequency independent springs and dashpots (Zhang and Makris 2001). The stiffness

matrix of a pile foundation is symmetric so that at the pile cap for a posi-

tive unit displacement along the direction. With the system of axis shown in Figure 1, a positive

unit displacement along the direction generates a negative moment. In contrast, a positive unit

displacement in the direction generates a positive moment so that . is the

moment along the direction due to a unit rotation in this direction.

RESPONSE OF THE MELOLAND ROAD OVERCROSSING

Figure 2 shows the stick model (left) and the three-dimensional finite element model (right)

of the Meloland Road Overcrossing in its deformed configuration. The stick model is a collection

of beam elements with cross-section properties adjusted from geometric data without considering

any cracked section reduction. The three-dimensional finite element model uses eight-node solid

elements for the bridge superstructure. The bridge superstructure is supported at its center bent

and at each end by the springs and dashpots schematically shown in Figure 1. The spring and

dashpot values of the approach embankments have been estimated with the methodology pre-

sented in the companion paper, whereas the spring and dashpot values of the pile foundations

have been estimated with the methodology presented in the paper by Makris et al. (1994) and is

also included in the report by Zhang and Makris (2001). All values of interest are summarized in

Table 1. The loops shown at the far ends of the bridge models in Figures 2 and 8 represent the

deformed embankment springs as being plotted by ABAQUS.

During the numerical simulation, the Young’s modulus of the beam elements on top of the

column was artificially increased by three orders of magnitude to form a rigid link in order to pre-

vent excessive deflections at the connection point between pier and deck in the stick model,

(McCallen and Romstad 1994). Vertical excitations are not considered. In both models, the damp-

ing of the bridge deck and center bent is approximated with the Rayleigh damping approximation,

where the parameters and are computed by assuming a 5% modal damping ratio in the first

and the second modes. The Young’s modulus of the concrete is assumed to be . This

value is approximately 80% of the value obtained from empirical expressions to account for the

cracking that occurred during the earthquake. Similar cracked values for the Young’s modulus of

concrete in seismic response analysis of bridges have been reported by Douglas and Reid (1982,

) and Dendrou et al. (1985, ). The density of concrete is

assumed .

Kxθ Kθx moment= =

x

x

y Kyθ Kθy 0>= Kθ

θ

α β

Ec 22 GPa=

Ec 20 25 GPa∼= Ec 20 GPa=

2400 kg m
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TABLE 1. Spring and dashpot values that approximate the presence of the approach
embankments and pile foundation of the Meloland Road Overcrossing. Values from this
study are associated with the intensity of the 1979 Imperial Valley earthquake.

Eigenvalue Analysis

Eigensolutions were performed for the stick model and three-dimensional finite element

model using the commercially available software ABAQUS. Figure 2 compares the first six

modes and modal frequencies of the stick model and three-dimensional finite element model, and

indicates a one-to-one correspondence between the two models. The natural frequencies of the

stick model are also in good agreement with that of the three-dimensional finite element model.

Parameters 1 2 3 4 5 6

E
m

ba
nk

m
en

t
+
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21+56 / 91 (365) / / 596+49

78+356 418* 263 (1051) / / /

1.5+4.5 / / / / /

1.5+4.5 / / / / /
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, ( ) 260 / 254 (876) / 1007 175

7611 366 1888 (6509) / 5696 /

( ) -409 / / / / /

( ) 409 / / / / /

887 / 550 (1898) / 1460 /

, 6 / / / / /

25 / / / / /

Note

1. This study ( and for embankment soil)
2. Wilson and Tan 1990a (* embankment only, no piles and is used for
embankment soil)
3. Douglas, Maragakis and Vrontinos 1991 (values in parenthesis are the optimal values
identified from dynamic tests)
4. Werner 1994 (fixed boundary condition at the base of pier)
5. Maragakis, Douglas and Abdel-Ghaffar 1994 (values are from dynamic tests)
6. Caltrans: Method A (Method B)
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While modal frequencies are directly estimated by solving the real eigenvalue problem of

some structural idealization of the bridge-foundation system having mass matrix, , and stiff-

ness matrix, , the estimation of the modal damping ratios appears to be a less straightforward

procedure. The majority of modal damping ratios of bridges published in the literature have been

back-figured by processing recorded data with system identification algorithms (Wilson 1986;

Werner et al. 1987; Wilson and Tan 1990b; Werner 1994; and Goel 1997 among others). Although

more recent multi-input-multi-output system identification algorithms appear to be more efficient

than older single-input-single-output algorithms, the relevance of the reported values is strongly

associated with the sophistication of the adopted structural model and the quality of the recorded

data. In some occasions modal damping values appreciably larger than those identified were rec-

ommended (Werner 1994).

In an effort to calibrate finite element results, McCallen and Romstad (1994) initially

assigned a uniform modal damping ratio, , to the first six modes of the Painter Street

Overcrossing. Subsequently, after conducting a large number of trial and error iterations and com-

parisons of recorded and computed responses of the bridge, they reassigned much larger values of

modal damping to selected modes in order to approximate satisfactorily the recorded responses.

In this study the modal damping ratios of the bridge foundation system are computed by solving

for the complex eigenvalues of the homogeneous equation

(1)

where , , and are the mass, damping, and stiffness matrices of the bridge-foundation

idealization shown in Figure 1.1 and is the free vibration response vector

(2)

In equation (2), is the complex characteristic value and is the associated characteristic

vector. This complex eigenvalue approach is well known in the literature and was given a critical

review by Veletsos and Ventura (1986). The damping matrix, , is constructed by adopting the

concept of Rayleigh damping for the bridge superstructure and appending the pre-identified

lumped dashpots at the locations where the superstructure interacts with its foundation. Following

this approach we assign a 5% modal damping ratio at the first and second modes of the undamped

idealized model (bridge deck with springs) and add the damping constants, , identified in the

companion paper (Zhang and Makris 2001, for the embankments) and in the paper by Makris et

al. (1994, for the pile groups), that represent the presence of the embankments and pile founda-

M[ ]
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tions. With this superposition the nonclassical damping matrix, , of the bridge-foundation sys-

tem assumes the form

(3)

The matrix is assembled in the same way as the stiffness matrix of the undamped super-

structure so that the lumped dashpots are assigned to the correct degrees of freedom. Substitu-

tion of (2) in (1) yields

(4)

which is a standard polynomial eigenvalue problem. The roots of this polynomial are the complex

characteristic values that were evaluated with MATLAB (1997). The relation between

with the modal frequencies, , and modal damping ratios, ( ) is determined

from the associated equation of a single-degree-of-freedom oscillator. Interpreting as the fre-

quency domain parameter one may determine

(5)

After solving for and ,

(6)

(7)

in which and are the real and imaginary parts of the characteristic value , respec-

tively.

The stick model used in the real eigenvalue analysis consists of 354 degrees of freedom for

Meloland Road Overcrossing. In order to bypass the problem of computing and interpreting the

complex eigenvalues of such large matrices, a reduced-order stick model was developed with

fewer degrees of freedom. Sensitivity studies indicated that the modal characteristics of the first

ten modes are virtually insensitive to the exact number of elements of the reduced-order stick

model. Two reduced-order stick models that consist of 228 and 300 degrees of freedom (d.o.f)

respectively yield nearly identical results as indicated in Table 2.

C[ ]
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TABLE 2. Modal frequencies, (rad/s), and damping ratios, (%), of the Meloland Road Overcrossing

Modes
Eigenvalues (rad/s) 1 2 3 4 5

Model A Model B Model C Model D

1st transverse 12.320 12.647 12.440

(12.441)

13.8

(13.8)

18.7

(18.7)

15.5 7.2 14.3~15.7 6.6~12.7 15.6 16.3 19~26

longitudinal 16.044 17.913 17.882

(17.884)

19.4

(19.4)

56.8

(56.8)

16.7

1st vertical
(antisymmetric)

21.405 22.460 21.911

(21.921)

21.1

(21.2)

8.3

(8.3)

17.5

torsion about vertical
axis

24.521 25.105 23.823

(23.824)

17.9

(18.0)

100

(100)

Critically Damped Mode

2nd transverse/torsion
about longitudinal axis

26.996 25.340 25.096

(25.087)

26.9

(26.9)

28.2

(28.2)

2nd vertical
(symmetric)

30.724 26.515 26.496

(26.526)

28.3

(28.3)

10.2

(10.2)

28.7 5.8 27.4~29.9 3.1~7.4 27.6

Note A: Undamped original 3D FEM model

B: Undamped original stick model

C: Undamped reduced stick model with 300 d.o.f and (228 d.o.f) respectively

D: Damped reduced stick model with 300 d.o.f and (228 d.o.f) respectively

1: This study

2: Werner, Beck, and Levine 1987;

3: Wilson & Tan 1990b

4: Gates 1993

5: Werner 1994

ωj ξj

ωj ξj ωj ξj ωj ξj ωj ωj ξj

13.519 2.5771i+

13.702 2.7333i+( )

16.001 11.047i+

16.221 11.104i+( )

21.073 1.746i+

21.252 1.888i+( )

0.0 17.942i+

0.0 17.962i+( )

25.778 7.570i+

26.830 8.010i+( )

28.153 2.895i+

28.187 2.900i+( )
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Table 2 presents the first six real eigenvalues of the Meloland Road Overcrossing that have

been computed with the 3D finite element model of the undamped bridge (column A), the original

stick model of the undamped bridge (column B, d.o.f=354), the reduced-order stick model of the

undamped bridge (column C, d.o.f=300 and 228 respectively), and the first six complex eigenval-

ues of the reduced-order stick model of the damped bridge (column D, d.o.f=300 and 228 respec-

tively). The corresponding damping ratios computed with this study are shown in column 1, next

to other values reported in the literature.

The values shown in Table 2 indicate that the reduced-order stick model in association with

the complex eigenvalue analysis yield valuable information on the free vibration characteristics of

the bridge.

• The computed modal damping ratios, , are much larger than the 5% modal damping assumed

by Caltrans.

• The computed first modal damping ratio, , which in this case corresponds to the

first transverse mode with the deck bending away from the undeformed configuration, is in

agreement with the low end of damping values along the transverse mode that are reported by

Werner (1994). The values of first modal damping reported by Werner (1994) are appreciably

larger than the value by the same and other investigators during earlier studies on the same

bridge (Werner et al. 1987).

• The computed second modal damping is unusually high. However, our confi-

dence in this value originates from the straight configuration of the deck and its integral abut-

ments which are mobilizing a large volume of soil with high damping. Indirect evidence that

this high damping value might be realistic is provided by the inability of system identification

studies to detect modal characteristics along the longitudinal mode of vibration.

• The modal damping associated with the third mode (1st vertical, antisymmetric, )

is lower than the modal damping associated with the transverse and the longitudinal modes that

involve more soil participation.

• The torsional mode about the vertical axis is critically damped. Since the modes are decoupled

the modal damping of the torsional mode can be estimated by assuming that the deck is a sin-

gle-degree-of-freedom structure with length, , and linear mass density, , that rotates about

ξj

ξ1 18.7%=

ξ2 56.8%=

ξ3 8.3%=

L m
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the center bent and its motion is resisted at the two ends by the transverse springs and dashpots

of the embankments indicated in Table 1. With this idealization, the equation of motion for tor-

sion about the vertical axis is

(8)

where is the moment of inertia of the deck about the vertical axis. Using the stan-

dard real valued procedure (Chopra 1995) or the complex formulation given by equations (6)

and (7) one concludes that and .

• The computed fifth modal damping also assumes a high value, probably due to

the explanation offered above, since this mode involves the transverse motion of the deck as

well as torsional motion of deck about the longitudinal axis.

• The good agreement between the values reported for the first and sixth natural frequencies of

the MRO by various investigators is worth mentioning.

Time History Analysis

Figures 3 to 5 plot total acceleration, relative velocity, and displacement time histories of

the bridge response at selected locations. The analysis shown in these figures investigates the sen-

sitivity of the bridge response to the support motion. The first column shows the recorded

motions. The second column (case 1) shows computed response quantities by using as a support

motion at the end abutments the crest motions computed using Equation (14) in the companion

paper. The third column (case 2) shows the computed response quantities by using as a support

motion at the center bent and the end abutments the free-field motion. The last column (case 3)

shows computed response quantities by using as a support motion at the end abutments the

recorded crest motions. All simulated responses are obtained by implementing the spring and

dashpot values that have been evaluated with the approximate methods advanced in the compan-

ion paper.

Figure 3 compares the computed response with the records of channel 7, which is located at

mid-span of the bridge deck (see Figure 6 of the companion paper). The case where the recorded

crest motions is used as support motions yields the best overall predictions. The acceleration and

the deck drift are predicted with errors less than 8%, while the relative velocity is underestimated

by 26%. When the computed crest motions are used as support motions, the peak acceleration is

I0θ·· 1
2
---C

x
L

2θ· 1
2
---KxL

2θ+ + 0=

I0
1

12
------mL

3
=

ω5

6Kx

mL
--------- 26.2 rad s⁄≈= ξ5 3Cx( ) 6KxmL( )⁄ 1.0≈=

ξ5 28.6%=
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overestimated by 27% while the deck drift and the relative velocity is predicted with marginal dis-

crepancies. Figure 4 compares the computed response with the records of channel 8. When the

free-field motions are used as support motions the discrepancies between records and predictions

are of the order of 70% or more for relative velocities and relative displacements. When the com-

puted crest motions are used as support motions the peak acceleration is overestimated by 50%

while the deck drift history contains higher frequencies than the recorded. Similar trends can be

observed in Figure 5, which compare the computed responses with the records of channel 13. The

results shown in Figures 3 to 5 indicate the significance of considering the amplified support

motions at the crest of the embankments. More comparisons between recorded and computed

time histories are offered in the report by Zhang and Makris (2001)

Our parametric analysis proceeds by analyzing the bridge response when different support

idealizations are considered. Figure 6 shows three idealizations of interest: (a) monolithic abut-

ments and viscoelastic foundation at the center bent, (b) viscoelastic embankments and mono-

lithic support at the center bent, and (c) viscoelastic embankments and elastic support at the center

bent. The sensitivity of the bridge responses to the resilience and dissipation of the bridge sup-

ports is investigated in Figure 7, which compares the response quantities against the records of

channel 7. The first column in Figure 7 shows the recorded motions. The second column shows

computed response quantities by assuming monolithic abutments and viscoelastic foundation at

the center bent. It examines the effect of neglecting the resilience and dissipation at the abutments.

It is shown that in this case the response is more high frequency with overestimated peak acceler-

ation. The third column examines the effect of neglecting the resilience and dissipation of the pile

foundation at the center bent. The last column examines the effect of neglecting the dissipation of

the pile foundation at the center bent. All simulated response are subjected to the recorded

motions at the crest of the embankment and the free-field and should be compared with the last

column of Figure 3. The case of a rigid support at the center bent (third column) results in the

smaller drifts, while the case of neglecting the dissipation of the pile foundations (Goel and

Chopra 1997) yields comparable results when it is included.

RESPONSE OF THE PAINTER STREET OVERCROSSING

Figure 8 shows the stick model (left) and three-dimensional finite element model (right) of

the Painter Street Overcrossing in its deformed configurations. Again, the stick model is a collec-

tion of beam elements with cross-section properties adjusted from geometric data without consid-
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ering any cracked section reduction. While it is not shown in Figure 8 the beam elements are

joined following the skew configuration of the bridge that results in coupling of the vibration

modes. The three-dimensional finite element model uses eight-node solid elements for the bridge

structure. The bridge superstructure is supported at its center bent and both ends by the springs

and dashpots schematically shown in Figure 1their values being estimated separately in the

companion paper and summarized in Table 3 (column 1), along with selected values reported in

literature (columns 2 to 5).

TABLE 3. Spring and dashpot values that approximate the presence of the embankments
and pile foundations of the Painter Street Overcrossing. Values from this study are
associated with the intensity of the 1992 Petrolia earthquake.

Vertical excitations are not included during the analysis. In both models, the damping of the

bridge superstructure is approximated with the Rayleigh damping approximation, where the

Parameters 1 2 3 4 5

E
m

ba
nk

m
en

t
+

P
ile

F
ou

nd
a

tio
ns

137+180 201* 851+105 117~438+
810+105
(68+105)

137+180 / 815+105 146~1458+ 876+105

582+773 564* / /

9+9 / / / /

9+9 / / / /

17+56 / / / /

P
ile

F
ou

nd
at

io
n

of
C

en
te

r
B

en
t

, ( ) 321 / 140 / 140

5254 / / / /

( ) -354 / / / /

( ) 354 / / / /

982 / / /

, 5 / / / /

20 / / / /

Note

1. This study ( and for embankment soil)
2. Wilson and Tan 1990a (* embankment only, no piles)
3. McCallen and Romstad 1994
4. Goel and Chopra 1997(+ embankment and piles)
5. Caltrans 1989 Method A (Method B)

Kx MN m⁄( )

Ky MN m⁄( )

Kz MN m⁄( ) ∞

Cx MN s m⁄⋅( )

Cy MN s m⁄⋅( )

Cz MN s m⁄⋅( )

Kx Ky MN m⁄

Kθ MN m rad⁄⋅( )

Kxθ MN rad⁄

Kyθ MN rad⁄

Kz MN m⁄( ) ∞

Cx Cy MN s m⁄⋅( )

Cz MN s m⁄⋅( )

G 8.0 MPa= η 0.50=
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parameters and are computed by assuming a 5% modal damping ratio in the first and the sec-

ond modes. The Young’s modulus of the concrete is assumed to be 22GPa. This value is approxi-

mately 80% of the value obtained from empirical expressions to account for the cracking that

occurred during the earthquake. The density of concrete is .

Eigenvalue Analysis

Eigensolutions were performed for the stick model and three-dimensional finite element

model using the commercially available software ABAQUS. Figure 8 compares the first six natu-

ral modes and frequencies of the stick model and the three-dimensional finite element model.

There is a one-to-one correspondence between the mode shapes predicted by the stick

model and three-dimensional finite element model. The natural frequencies of the stick model are

also in good agreement with that of the three-dimensional finite element model. The first values

shown are those computed by adopting the converged soil properties during the strong 1992

Petrolia earthquake. The values shown in the parenthesis are those reported by McCallen and

Romstad (1994). They are 50% higher than the values computed in this study. Part of the reason

for these discrepancies is the six times larger embankment stiffnesses they used in their study.

Modal damping ratios are estimated with the complex eigenvalue procedure presented in

the section associated with the analysis of the Meloland Road Overcrossing. Similarly, a reduced-

order stick model was developed with fewer degrees of freedom in order to bypass the problem of

computing and interpreting the large number of complex eigenvalues resulting from the original

stick model which consists of 618 degrees of freedom. Table 4 presents the first six eigenvalues of

the Painter Street Overcrossing that have been computed with the three-dimensional (3-D) finite

element model of the undamped bridge (column A), the original stick model of the undamped

bridge (column B), the reduced-order stick model of the undamped bridge (column C); and the

first six complex eigenvalues of the reduced-order stick model of the damped bridge. Damping

ratios computed with this study are shown in column 1 next to other values reported in the litera-

ture. Selected observations from the modal values indicated in Table 4 are:

• Due to the skew configuration, there is strong coupling of modes involved in the eigenvalue

analysis.

α β

2400 kg m
3⁄
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TABLE 4. Modal frequencies, (rad/s), and damping ratios, (%), of the Painter Street Overcrossing

Modes
Eigenvalues (rad/s) 1 2 3 4

Model A Model B Model C Model D

1st transverse/antisymmetric
vertical

14.514 11.162 11.364

(11.587)

11.5

(11.8)

9.0

(9.5)

20.7 20 11.0~17.9 5.6~8.5 10.3 16.6

antisymmetric vertical/tor-
sion about vertical axis

17.593 14.409 14.578

(14.751)

14.7

(14.9)

6.7

(6.8)

16.9 3

torsion about vertical axis/
symmetric vertical

18.410 16.366 16.365

(16.366)

16.6

(16.6)

5.8

(5.9)

25.1 3

symmetric vertical/longitudi-
nal

23.562 20.691 20.808

(20.994)

21.1

(21.4)

8.3

(8.4)

32.9 5

longitudinal 26.641 21.545 20.938

(21.265)

22.7

(22.9)

45.8

(45.4)

29.6 30

2nd transverse/torsion about
longitudinal axis

32.233 31.156 22.052

(22.532)

24.1

(24.6)

17.0

(17.5)

41.5 5

Note A: Undamped original 3D FEM model

B: Undamped original stick model

C: Undamped reduced stick model with 174 d.o.f and (138 d.o.f) respectively

D: Damped reduced stick model with 174 d.o.f and (138 d.o.f) respectively

1: This study

2: McCallen and Romstad 1994

3: Goel 1997

4. Price and Eberhard 1998

ωj ξj

ωj ξj ωj ξj ωj ξj ωj ξj

11.490 1.040i+

11.730 1.116i+( )

14.683 0.984i+

14.863 1.006i+( )

16.527 0.962i+

16.524 0.972i+( )

21.075 1.761i+

21.370 1.809i+( )

20.176 10.383i+

20.394 10.395i+( )

23.754 4.096i+

24.236 4.302i+( )



17

• The computed modal damping ratio, , are larger than the 5% modal damping assumed by

Caltrans, however, the first three modal damping ratios are not as high as the modal damping

ratios computed for the straight (unskewed) Meloland Road Overcrossing. This might be partly

due to the strong participation of the vertical mode in the Painter Street Bridge that is associ-

ated with less damping.

• The computed first modal damping, is approximately half the value that McCallen

and Romstad (1994) needed to match the recorded data. However, it is in agreement with the

high-end of the modal damping range identified by Goel (1997).

• The longitudinal mode (that was the second mode for the Meloland Road Overcrossing) has

been pushed down to the fifth mode. Interestingly, the complex eigenvalue analysis advanced

in this study is able to capture the high damping, , associated with this mode. As

was indicated during the analysis of the modal properties of the Meloland Road Overcrossing,

in which , the longitudinal mode mobilize a large volume of

soil with high damping.

• The procedure advanced in this study, where the appropriate values of and of the soil

embankments are established with the kinematic response analysis, yields a first natural fre-

quency that is in very good agreement with the values reported by Goel (1997) and Price and

Eberhard (1998).

Time History Analysis

Figures 9 and 10 plot total acceleration, relative velocity, and displacement time histories of

the bridge response at selected locations. The analysis shown in these figures investigates the sen-

sitivity of the bridge response to the foundation input motion. The first column shows the

recorded motions. The second column (case 1) shows computed response quantities by using as a

support motion at the end abutments the crest motions computed using eq. (14) of the companion

paper. The third column (case 2) shows the computed response quantities by using as a support

motion at the center bent and end abutments the free-field motion. The last column (case 3) shows

computed response quantities by using as a support motion at the end abutments the recorded

crest motions.

Figure 9 compares the computed responses with the records of channel 4. The case where

the recorded crest motions are used as support motions (last column) yields invariably the most

ξj

ξ1 9%=

ξ5 46%=

ξ2 56.5% (longitudinal mode)=

G η
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favorable prediction. When the free-field motions are used as support motions, the bridge

response shown along the third column is substantially underestimated, since it has not experi-

enced the amplification that the embankments induce at the two ends. When the computed crest

motions are used as support motions the peak accelerations are predicted with marginal discrepan-

cies; however, deck drifts are underestimated by 22% with a time history that exhibits higher fre-

quencies than the recorded. Figure 10 which compares the computed response with the records of

channel 7, indicates similar trends. When the free-field motions are used as support motions the

discrepancies between records and predictions are of the order of 40% or more, for relative veloc-

ities and relative displacements. When the computed crest motions are used as input, the com-

puted responses are as good as when the recorded crest motions are used. Additional comparisons

between recorded and computed time histories are offered in the report by Zhang and Makris

(2001).

The sensitivity of the bridge response to the resilience and dissipation of the bridge supports

is investigated in Figures 11 and 12, which plot total acceleration, relative velocity, and displace-

ment time histories. Again the first column shows the recorded motion for convenience. The sec-

ond column plots the computed response quantities by assuming that the abutments are

monolithic supports and soil-structure-interaction happens only at the foundation of the center

bent (case (a) of Figure 6). The third column plots the computed response quantities by consider-

ing soil-structure-interaction at the end abutments and by assuming a monolithic support at the

center bent (case (b) of Figure 6). The fourth column plots the computed response quantities by

neglecting the dissipation of the pile foundation at the center bent. In all cases the free-field

motions were induced at the foundation of the center bent and the recorded crest motions were

induced at the end abutments.

Figure 11 compares the computed responses with the records of channel 4. It indicates that

the flexibility of the pile foundation of the center bent is appreciably affecting the response,

whereas the associated damping has less important effects. Neglecting the flexibility and damping

of the end abutments results to a more high-frequency acceleration response. Figure 12, which

shows computed responses at the mid-span, indicates the similar trends. More specifically, the

results obtained by neglecting the damping of the pile foundation at the center bent are compara-

ble to the results obtained when damping is included, a result that confirms the validity of the

assumption adopted by Goel and Chopra (1997). These trends suggest that in this case the damp-
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ing of the pile foundation at the center bent has marginal effects; whereas the flexibility of the pile

foundations has an appreciable effect and has to be included.

OUTLINE OF PROPOSED PROCEDURE

The two case studies presented in this paper confirmed the validity of a step-by-step proce-

dure to estimate the seismic response of freeway overcrossings. The study shows that the stick

model used by Caltrans when enhanced with realistic springs and dashpots at its supports can

yield dependable estimates of the seismic response of freeway overcrossings.

Step 1. Compute the kinematic response function of the approach embankments as outlined in the

companion paper, after establishing the converged values of the equivalent linear soil parameters,

and .

Step 2. Compute the embankment crest response by amplifying the free-field motion with the

kinematic response functions obtained in step 1.

Step 3. Compute the frequency-independent spring and dashpot values of the approach embank-

ment using the values of and established in step 1, as shown in the companion paper.

Step 4. Compute the frequency-independent spring and dashpot values of the pile groups at the

abutments and the center bent as outlined in the paper by Makris et al. (1994).

Step 5. Construct a stick model of the bridge enhanced with the transverse and longitudinal spring

and dashpot values computed in steps 3 and 4.

Step 6. Compute the two-dimensional dynamic response of the model constructed in step 5 (see

Figure 1) subjected to the free-field motions at the center bent and the crest motions at the abut-

ment ends computed in step 2.

CONCLUSIONS

The free-vibration and earthquake responses of two instrumented bridges are examined in

this paper with a reduced-order stick model and a more detailed three-dimensional finite element

model. Either model in this study was enhanced with the springs and dashpots established in the

companion paper to account for the presence of the approach embankments and pile foundations.

Our analysis revealed distinguishable trends that lead to the following conclusions:

G η

G η
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• The reduced-order stick model yields comparable modal parameters and seismic response

characteristics to the more detailed three-dimensional finite element model. It is capable to

capture the dynamic characteristics of a skewed overcrossing that exhibits strong coupling of

its vibration modes.

• The modal damping ratios, , of either the straight Meloland Road Overcrossing and the

skewed Painter Street Overcrossing are much larger than the 5% modal damping ratios

assumed by Caltrans.

• The first mode of the straight Meloland Road Overcrossing is the transverse mode; whereas,

for the skewed Painter Street Overcrossing, it is the coupled transverse/first antisymmetric ver-

tical mode.

• The first modal damping ratio of the Meloland Road Overcrossing is of the order of 20%;

whereas, for the Painter Street Overcrossing, it is of the order of 10%. The smaller amount of

the first modal damping in the skewed Painter Street Overcrossing is because the transverse

mode is coupled with the first antisymmetric vertical mode that is lightly damped.

• The longitudinal mode emerges as the second mode for the straight Meloland Road Overcross-

ing; whereas, in the skewed Painter Street Overcrossing, it is pushed down to the fifth place. In

both cases the modal damping ratio along the longitudinal direction is of the order of 50%.

• Vertical vibration modes exhibit smaller damping ratios (8% to 10%).

• The torsional mode of the straight and symmetric overcrossings is highly damped. For the par-

ticular case of the Meloland Road Overcrossing, the torsional mode (4th mode) was critically

damped, . In contrast, in the case of the skewed Painter Street Overcrossing the tor-

sional mode is coupled with the symmetric vertical mode and the modal damping was as low as

.

• Time history analysis shows that the amplified crest motions of the approach embankments

have an appreciable effect on the bridge response and should not be neglected. When the com-

puted crest motions are used as support motions at the abutments the prediction of the response

is far superior than when one uses the free-field motions.

• Parametric studies that examine the effect of different support idealizations indicate that

neglecting the resilience of the foundation of the center bent yields unrealistic small drifts,

while neglecting the dissipation of the foundation of the center bent has a marginal effect.

ξj

ξ4 100%≈

ξ3 6%≈
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In summary, in view of the strong effect of soil-structure interaction, it is concluded that

the earthquake response of highway overcrossings can be realistically estimated with the stick

model used by Caltrans provided that (a) it is enhanced with the springs and dashpots established

in the companion paper and (b) it is subjected at its end abutments to the amplified crest motions.
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FIGURE LEGENDS

Figure 1. General procedure for seismic soil-foundation-superstructure interaction

Figure 2. First six natural frequencies and modes computed by stick model (left) and 3D FEM
model (right) of Meloland Road Overcrossing

Figure 3. Records of channel 7 and predictions of Meloland Road Overcrossing response
considering different support motions

Figure 4. Records of channel 8 and predictions of Meloland Road Overcrossing response
considering different support motions

Figure 5. Records of channel 13 and predictions of Meloland Road Overcrossing response
considering different support motions

Figure 6. Bridge models with different support idealizations

Figure 7. Records of channel 7 and predictions of Meloland Road Overcrossing response
considering different support idealizations

Figure 8. First six natural frequencies and modes computed by stick model (left) and 3D FEM
model (right). Values in parentheses are those reported by McCallen and Romstad (1994)

Figure 9. Records of channel 4 and predictions of Painter Street Overcrossing response
considering different support motions

Figure 10. Records of channel 7 and predictions of Painter Street Overcrossing response
considering different support motions

Figure 11. Records of channel 4 and predictions of Painter Street Overcrossing response
considering different support idealizations

Figure 12. Records of channel 7 and predictions of Painter Street Overcrossing response
considering different support idealizations
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