Title
NUCLEAR RELAXATION IN FERROMAGNETIC COBALT

Permalink
https://escholarship.org/uc/item/0hj5j7f9

Author
Shaw, Earl David.

Publication Date
1970-02-01
NUCLEAR RELAXATION IN FERROMAGNETIC COBALT

Received Lawrence Radiation Laboratory
MAR 23 1970

Library and Documents Section

Earl David Shaw

February 1970

AEC Contract No. W-7405-eng-48

NUCLEAR RELAXATION IN FERROMAGNETIC COBALT

February 1970

AEC Contract No. W-7405-eng-48
DISCLAIMER

This document was prepared as an account of work sponsored by the United States Government. While this document is believed to contain correct information, neither the United States Government nor any agency thereof, nor the Regents of the University of California, nor any of their employees, makes any warranty, express or implied, or assumes any legal responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by its trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof, or the Regents of the University of California. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof or the Regents of the University of California.
NUCLEAR RELAXATION IN FERROMAGNETIC COBALT

Earl David Shaw

Department of Physics, University of California, and
Inorganic Materials Research Division, Lawrence Radiation Laboratory,
Berkeley, California, 94720

ABSTRACT

Nuclear magnetic spin-spin relaxation processes of Co59 have been studied in magnetically saturated particles of fcc cobalt. The transverse relaxation has been studied experimentally by observing the two-rf-pulse spin echo envelope decay. This decay is initially oscillatory with the oscillations damping in a time of order of the transverse relaxation time T_2 into exponential decay. The oscillatory behavior is dependent on the pulse widths and the relaxation time T_2, determined from the exponential decay rate, varies as the square root of the local field. Theory is presented which shows that the observed oscillatory behavior can be explained qualitatively by assuming that the dominant spin-spin interaction is of the Suhl-Nakamura type, with the resonance line broadened by microscopic inhomogeneities. The period of the oscillations gives the rms microscopic inhomogeneous linewidth, 100 kHz. Using the correlation function technique, the relaxation function has been derived for this system. This theory is similar to that of Kubo and Tomita for the exchange narrowing problem and agrees well with the observed nonoscillatory transverse relaxation. From the derived relaxation function and observed transverse relaxation results, a model of the homogeneous line is deduced. The line is assumed lorentzian with a cutoff of the order of the second moment of the Suhl-Nakamura interaction. Using this model and the theory of quantum-statistics of irreversible processes, a theory of spectral diffusion is
derived. Spectral diffusion was studied experimentally by monitoring the decay of the three-rf-pulse stimulated echo. The new theory presented here agrees well with these experimental results.
I. INTRODUCTION

Since the discovery of the Co59 resonance in ferromagnetic cobalt,1 a considerable amount of work has been performed on this system. And yet, even though from the beginning it was believed that the dominant spin-spin mechanism in moderate dc magnetic fields was the Suhl-Nakamura interaction (indirect virtual spin-wave coupling)2 weakened by random microscopic static inhomogeneities, it was not until a preliminary account of this study3 that direct experimental evidence was reported which supported that conclusion. The purpose of this paper is to describe quantitatively the spin-spin processes in magnetically saturated particles of cobalt, in applied dc magnetic fields where the weakened Suhl-Nakamura interaction is the dominant nuclear coupling mechanism.

In order to study the microscopic spin-spin processes in ferromagnetic cobalt, a two-rf-pulse spin echo study was made on magnetically saturated particles. The measurements were made in dc applied fields of moderate magnitude and will be described in Section II. Along with the experimental results, new theoretical results are presented in this section to interpret the experimental observations. An echo amplitude oscillatory effect observed experimentally is shown to be caused by pair coherence between nearest neighbor spins, in different local fields, coupled by the Suhl-Nakamura interaction. The period of the oscillations gives a measure of the rms microscopic inhomogeneous line width analogous to the earlier results of Hahn and Maxwell for exchange coupled systems.4 Using the correlation function technique a theory is derived similar to that of Kubo and Tomita for exchange narrowing,5 that describes accurately the observed nonoscillatory relaxation process. In particular, the decay
law is shown to be initially gaussian, proceeding to exponential decay at long times. This prediction is in agreement with the experimental results. Also the derived analytic expression for the relaxation rate at long times has the observed dependence on the local dc magnetic field. The change of decay law with time is shown to be a result of the more stringent requirement on energy conservation for mutual spin flips at long times. This is a special application of the uncertainty principle. Thus, the correlation function approach gives results which extend earlier theoretical results of Portis and Hone, Jaccarino, Ngwe, and Pincus. Analogous to the Anderson model for exchange narrowing, a model of the homogeneous line is deduced in this chapter. The spectral distribution of the homogeneous line is taken to be lorentzian with a cut-off of order of the second moment of the Suhl-Nakamura interaction. The experimental data are used to make the choice of cut-off more precise.

Portis pointed out previously that macroscopic spectral diffusion is possible in a system where the inhomogeneity varies microscopically. These considerations are made more quantitative in Section III. For the case where the transverse relaxation time is much shorter than the longitudinal relaxation time, a theory of spectral diffusion is derived using the model of the homogeneous line deduced in Section II and recent developments in the formulation of the theory of quantum statistics of irreversible processes. These results are compared with the experimental results of the three-pulse stimulated echo study presented in this section. It is thus demonstrated that the microscopic and macroscopic spin-spin processes can be treated in a unified manner in this system.
II. TRANSVERSE RELAXATION

A. Experimental Results

The familiar two-pulse spin echo technique13 was used to study a cobalt metal sample consisting of Johnson-Matthey cobalt sponge. These micronsized particles, which are fcc and multidomain in zero dc field, were studied at 77°K in dc applied magnetic fields between 5 and 10 kOe. Multidomain particles become magnetically saturated in dc fields in excess of the particle demagnetizing fields. However for the range of applied fields utilized in this study, not all of the particles in the sample were saturated. Since there is a distribution of particle shapes, and a random orientation of the particles with respect to the dc magnetic field, the sample has a distribution of particles with demagnetizing factors varying between 0 and 4\pi. Thus fields in excess of $4\pi M = 18$ kOe are required to saturate the entire sample. However at these fields, the dipole spin-spin interaction becomes comparable to the Suhl-Nakamura interaction,14 and it is the aim here to study the latter interaction under as unambiguous conditions as possible. In order to separate the signal from single domain particles from that of multidomain particles, advantage was taken of the different field dependence of the ferromagnetic nuclear resonant (FNR) frequency for the two cases.15 If the turning angle of the pulses is small, as is the case in this study, it is possible to distinguish two signals. One has large amplitude at low dc fields, strong amplitude dependence on field, and very weak frequency dependence on field as illustrated in Fig. 1. This signal characterizes the multidomain material. The second signal is extremely broad and of considerably smaller amplitude at low fields; the amplitude varies less strongly with field; and the resonant frequency varies much more
strongly, approaching a linear dependence on the applied field at large fields as seen in Fig. 1. This signal characterizes the single domain material.15 The resonant frequency decreases with increasing field because the hyperfine field at the cobalt nucleus is negative. The broadness of the single domain signal is associated with the distribution of demagnetizing factors. The width of the line is approximately 18 MHz corresponding to the local field spread of 18 kOe. All measurements were made on the single domain signal at small pulse turning angles.

The rf field was applied perpendicular to the dc magnetic field in order to take advantage of the added enhancement of the rf signal by domain rotation. The enhancement factor is estimated to vary between 40 and 20 for dc fields values from 5 to 10 kOe respectively. The half width of the echo envelope T_2^*, varied from 0.75 to 1.5 μsec for these fields. Therefore, the width of the excited spectrum was of the order of $(1/2\pi)(2/T_2^*) \approx 400-200$ kHz. Thus, a narrow portion of the single domain spectrum was sampled at each field value.

The first pulse of the two-pulse spin echo sequence was adjusted for maximum signal and this pulse will be assumed to be a 90° pulse. The results of monitoring the spin echo amplitude for 90°-β pulse sequences at fixed frequency, 215.9 MHz, for values of $\beta = 90^\circ$, 135°, and 180° are shown in Fig. 2. The time τ is the separation between the first and second pulse, and the second pulse and the center of the echo. For $\beta = 180^\circ$, the time behavior at moderately short times is essentially a gaussian decay transforming into exponential decay at long times. The exponential decay behavior was observed out to 100 μsec. For τ less than about 2 μsec ($2\tau \leq 4$ μsec) receiver saturation due to the large pulses and interference between the spin echo and free induction decay
signal13 obscures the dependence of the echo amplitude time behavior on the homogeneous broadening processes.16 These effects may contribute to the decrease of the $\beta = 180^\circ$ curve at $2\tau = 4 \mu$sec. For $\beta \neq 180^\circ$, there is a much more noticeable spin echo amplitude oscillatory effect superimposed on the $\beta = 180^\circ$ curve at short times. The period of these oscillations in τ is approximately 7μsec \pm 10%. This corresponds to a frequency of 140 kHz \pm 10%. These oscillations damp out in a time of order of the spin-spin relaxation time, $T_2 = 28.3 \mu$sec, determined from the slope of the exponential curve. T_2 does not depend on β within the experimental accuracy of 10%.

The frequency dependence of the echo decay is shown in Fig. 3 for a 90°-90° pulse sequence. The oscillatory behavior is less apparent at lower frequencies where the enhancement factor is smaller and thus the signal is smaller. The interpretation of the results at $2\tau = 8 \mu$sec is also made more difficult by the increase in T_2^* at lower frequencies because of the decrease in enhancement factor. The relaxation time, T_2, monotonically increases with decreasing frequency. The increase in T_2 indicates that the spin-spin coupling is weakened by the increase of the local field. In Fig. 4, T_2^2 is plotted versus the resonance frequency.3 The data are fit well by a straight line that extrapolates to a frequency of 221.5 MHz for $T_2^2 = 0$. This is 4.6 MHz above the zero field multidomain resonance. In the following sections these results are shown to be direct evidence that the Suhl-Nakamura interaction, weakened by microscopic inhomogeneities, is the dominant homogeneous broadening mechanism for the range of applied dc fields of 5-10 kOe.
B. Microscopic Theory

1. The Hamiltonian of the System

The Hamiltonian, \mathcal{H}, of the N particle system consists of two terms: the Zeeman energy, \mathcal{H}_z, and the spin-spin interaction term, \mathcal{H}_{SN}.

$$\mathcal{H} = \mathcal{H}_z + \mathcal{H}_{SN} = -\hbar \sum_l \omega_l I_l^z + \sum_{l \neq m} A_{lm} I_l^+ I_m^-$$

$$A_{lm} = \frac{-\hbar \omega_0^2}{2N} \sum_k \frac{e^{i k \cdot r_{lm}}}{E_k}$$

Here, S is the effective electronic spin; k is the spin-wave wave-number; E_k is the unperturbed (by nuclear effects) spin-wave energy for the wave-number k; ω_0 is taken to be the center frequency of the resonant spins; ω_l is the frequency of the nuclear spin located at the l'th site; r_{lm} is the vector between the l'th and m'th sites and I_l^z, I_l^+, I_l^- are the nuclear angular momentum operators having the usual meaning. Although A_{lm} is frequency dependent, it does not vary appreciably for the width of the spectrum excited experimentally, or for the range of frequencies (approximately $1/T_2$) over which spins of different frequency interact. The N spins are assumed to be within the microscopic range of the Suhl-Nakamura interaction, and their frequencies are assumed to be randomly distributed about ω_0 with the spread described by the normalized distribution function $g(\omega - \omega_0)$. E_k is derived in reference 18 for an isolated single domain particle and may be written.
\[E_k = \hbar \left[\gamma_e H'_{\text{loc}} + \gamma_e H_a + \omega_E a^2 k^2 \right]^{1/2} \left[\gamma_e H'_{\text{loc}} + \gamma_e H_a + \omega_E a^2 k^2 + \alpha_M \sin^2 \theta_k \right]^{1/2} \]

\[H'_{\text{loc}} = H_0 - N^2 M; \quad \cos \theta_k = \frac{k_z}{|k|}; \]

\[\omega_M = \frac{4\pi \gamma_e M}{a}; \]

\(\gamma_e \) is the electronic magnetogyric value; \(N^2 \) is the particle demagnetizing factor; \(\omega_E \) is the electronic exchange frequency; \(a^3 \) is the volume of a primitive unit cell; and \(H_a \) is the anisotropy field assumed directed along the applied field \(H_0 \). For cobalt, \(H_a = 1 \text{kOe} \). For a particle immersed in a permeable medium, there are additional contributions to \(H'_{\text{loc}} \) from the cavity in which the particle sits and from the outer surface of the sample. This total local field, \(H_{\text{loc}} \), is also the additional field that nuclei in single domain particles experience compared to nuclei in multi-domain particles. Thus the shift in frequency, \(\omega_{\text{loc}} \), of the single domain FMR signal compared to the zero field multidomain FMR frequency, 216.9 MHz, is a measure of \(H_{\text{loc}} \). Also \(\omega_{\text{loc}} = \gamma H'_{\text{loc}} \), where \(\gamma = 2\pi \times 1.011 \text{ MHz/kOe} \) is the magnetogyric value for Co^{59}. Since the distribution of particle demagnetizing factors is not known, \(H_{\text{loc}} \) rather than \(H_0 \) is the relevant parameter for analyzing the data.

For \(\theta_k = 0 \), \(E_k = \hbar[\gamma_e H_{\text{loc}} + \gamma_e H_a + \omega_E a^2 k^2] \), this leads to the familiar result

\[A_{\text{FMR}} = \frac{2}{\delta T \gamma M} \frac{a}{r_{\text{im}}} \exp \left[-\frac{\gamma_e (H_{\text{loc}} + H_a)}{\omega_E} \right]^{1/2} \left[\frac{r_{\text{im}}}{a} \right]^{1/2}. \]

For \(\gamma_e (H_{\text{loc}} + H_a) \approx 10^{-3} < \omega_E \), this result is valid for all values
of \(r_{lm} \). 7 The quantity \(\left[\frac{\omega_E}{\gamma_e(H_{loc} + H_a)} \right]^{1/2} \), approximately equal to \(30 \gamma_a \) in cobalt, is the range of the Suhl-Nakamura interaction. However, it can be seen from the functional dependence of \(E_k \) on \(\theta_k \) that the \(\theta_k = 0 \) approximation does not account for the dipole contribution to the spin-wave energy. This contribution is important for values of \(H_{loc} + H_a \) of the same order as the average value of \(\frac{h \pi}{2} M \sin^2 \theta_k \). For an approximation that takes account of the dipole energy, \(E_k \) is rewritten

\[
E_k \approx \hbar \left\{ \gamma_e(H_{loc} + H_a) + \frac{\alpha_m}{2} \sin^2 \theta_k + \alpha_E a^2 \right\}
\]

for \((H_{loc} + H_a) \approx \frac{\alpha_m}{2 \gamma_e} \left\langle \sin^2 \theta_k \right\rangle_{ave} = \frac{4 \pi}{3} M. \)

The average value, \(\left\langle \sin^2 \theta_k \right\rangle_{ave} = \frac{2}{3} \), is substituted for \(\sin^2 \theta_k \) in \(E_k \) to obtain \(A_{lm} \) and the second moment of the Suhl-Nakamura interaction,

\[
\omega_{SN}^2 = \frac{4}{3} (I)(I+1) \sum_{m} \frac{A_{lm}^2}{\hbar^2} = \left[\frac{(I)(I+1)}{24 \pi S^2} \right] \omega_0^2 \left[\frac{\alpha_0}{\alpha_E} \right]^2 \left[\frac{\alpha_E}{\gamma_e(H_{loc} + H_a + \frac{4 \pi M}{3})} \right]^{1/2}
\]

For \(S = 1/2; I = 7/2; \omega_0 = 1.36 \times 10^9 \); \(\frac{\alpha_E}{\gamma_e(H_{loc} + H_a + \frac{4 \pi M}{3})} = 10^3 \); \(\omega_E = 3.9 \times 10^{13} / \text{sec} \) the calculated value of \((\omega_{SN})^{-1} \) is 7 \(\mu \text{sec} \). In this study, \(H_{loc} + H_a = 2-6 \text{ kOe} \) and \(\frac{4 \pi}{3} M = 6 \text{ kOe} \). Thus, the neglect of higher order dipolar effects will produce an estimated error of 35% or less. The average of \((E_k)^{-1} \) over \(\theta_k \), as opposed to the average of \(E_k \) as was presented here, does not
It is clear that the average over \(\theta \) which leads to a spherically symmetric interaction is not a true representation of the Suhl-Nakamura interaction. The interaction actually has a longer range in the z direction than in the transverse plane. However, the description of the interaction presented here is adequate to describe the results of this study.

2. Modulation of the Spin Echo Amplitude

In order to describe the dynamics of the spin echo oscillatory effect, the contribution to the echo from a nearest neighbor pair for a \(\frac{\pi}{2} - \beta \) pulse sequence is calculated. The nearest neighbor Hamiltonian,

\[H_{12} = -\hbar \omega_1 I_1^Z - \hbar \omega_2 I_2^Z + A_{12} \left(I_1^+ I_2^- + I_1^- I_2^+ \right) \]

is used to derive the equation of motion of the angular momentum operators.

\[
\begin{align*}
\frac{\partial I_1^+}{\partial t} &= -\omega_1 I_1^+ - \frac{2iA_{12}}{\hbar} I_1^Z I_2^Z \\
\frac{\partial I_1^-}{\partial t} &= \omega_1 I_1^- + \frac{2iA_{12}}{\hbar} I_1^Z I_2^Z \\
\frac{\partial I_1^Z}{\partial t} &= -A_{12} \left(i_2^+ I_2^- - I_1^- I_2^+ \right) \\
\frac{\partial I_2^+}{\partial t} &= \frac{A_{12}}{\hbar} \\
\frac{\partial I_2^-}{\partial t} &= 0
\end{align*}
\]

with similar results for \(I_2 \). The spins are assumed to be initially aligned along the z axis, and a \(\frac{\pi}{2} \) pulse applied along the x-axis rotates the spins to the negative y-axis. Thus, \(I_{1,2}^x(0) = 0 \); \(I_{1,2}^y(0) = -I \); \(I_{1,2}^z(0) = 0 \). The magnitude of the nearest neighbor interaction

\[\frac{|A_{12}|}{\hbar} = \frac{\omega_2^2}{8\pi^3 \omega_2^2} = (450 \text{ \mu sec})^{-1} \]

or \(\left(\frac{2|A_{12}|}{\hbar} \right) = (65 \text{ \mu sec})^{-1} \), is calculated from Eq. (3). For the case of microscopic inhomogeneous broadening, \(|\omega_1 - \omega_2| > \frac{2|A_{12}|}{\hbar} \). Thus, for the time that the oscillatory behavior is observed,
the second term in the equation of motion for the transverse component of angular momentum can be neglected. Then,

\[I_1(t) = -i I e^{-i \omega_1 t}, \quad I_1^+(t) = i I e^{i \omega_1 t}, \]

\[I_2(t) = -i I e^{-i \omega_2 t}, \quad I_2^+(t) = i I e^{i \omega_2 t}. \]

Substituting these equations into the equation of motion for the \(z \) component of angular momentum, the solution at the time of the second pulse is

\[I_2^z(\tau) = \frac{4 A_1 A_2 I^2}{\hbar (\omega_2 - \omega_1)} \sin^2 (\omega_2 - \omega_1) \frac{\tau}{2} = - I_2^z(\tau). \]

(5)

This oscillatory behavior of the \(z \) component of angular momentum is the origin of the observed modulation of the echo amplitude. If a 90° pulse is applied at \(\tau \), this component of magnetization will be rotated into the transverse plane. For the times considered here, the individual transverse angular momentum component simply rotates in the plane at the frequency determined by the static field which each spin experiences. Immediately after the 90° pulse, the contribution to the magnetization in the transverse plane is zero since the two spins give opposite contributions. However, the spins rotate at different frequencies, and this will add an oscillatory contribution to the echo. This signal gives the observed dependence on pulse width; for example, it gives zero contribution to the echo for \(\beta = 180° \). The prediction that the Suhl-Nakamura interaction will not give a modulation effect for a 90°-180°
pulse sequence is consistent with the earlier results of Stearns. Note that for either \(A_{12} = 0 \), or \(\omega_1 - \omega_2 = 0 \), or if one spin is not resonated, \(I^+(0) = 0 \), the modulation does not occur. This is analogous to the result of Hahn and Maxwell, for exchange coupled spin pairs. Hahn has shown that the non-oscillatory echo amplitude is proportional to \(\sin^2 \frac{\beta}{2} \).

It is now shown how this echo amplitude dependence on \(\beta \) is modified by the effect of pair coherence. Consider the reference frame that rotates at the rf pulse frequency, \(\omega_0 \). Both rf pulses are assumed to occur along the x-axis in this frame, then the echo signal occurs along the positive y-axis at time \(2\tau \). For \(\omega_1 > \omega_2 \), \(A_{12} < 0 \), \(\beta \leq \pi \), the pair coherence contributes

\[
\sin \beta \frac{I^2}{1}(\tau) \left[\cos(\omega_1 - \omega_0)\tau - \cos(\omega_1 - \omega_0)\tau \right]
\]

to the magnetization along the positive y-axis at \(2\tau \). Thus the echo amplitude \(E(2\tau) \) may be written,

\[
E(2\tau) \propto 2I \left[\sin^2 \frac{\beta}{2} - \sin \beta \frac{4A_{12}I}{\pi(\omega_2 - \omega_1)} \sin^3(\omega_2 - \omega_1)^p \frac{\tau}{2} \sin((\omega_1 + \omega_2 - 2\omega_0)^p) \right]
\]

Pairs of spins such that \(\omega_1 + \omega_2 = 2\omega_0 \) do not contribute to the modulation of the echo. Since the oscillatory term is only affected by the magnitude of the frequency difference, the rms of the frequency terms is taken in order to give physical interpretation to the measured modulation period. The rms standard deviation of \(g(\omega - \omega_0) \) is represented by \(\sigma \) and since

\[
\langle (\omega_1 - \omega_2)^2 \rangle = \langle (\omega_1 + \omega_2 - 2\omega_0)^2 \rangle = 2\sigma^2
\]

the final result is written

\[
E(2\tau) \propto 2I \left[\sin^2 \frac{\beta}{2} - \sin \beta \frac{4A_{12}I}{\sqrt{2} \pi \sigma} \sin^3 \frac{\sqrt{2}\sigma \tau}{2} \right]
\]

The period of the oscillations in \(\tau \) is given by \(\left(\frac{\sqrt{2}\sigma}{2\pi} \right)^{-1} \). Therefore the observed results give \(\frac{\sigma}{2\pi} \approx 100 \text{ kHz} \pm 10\% \) as a measure of the
microscopic inhomogeneity linewidth. This result is in qualitative agreement with results reported in reference 12 where an estimate of 140 kHz was given. The ratio of the oscillation amplitude to the echo amplitude is

$$2 \left(\frac{2A_{12}}{\hbar} \right) \left(\frac{1}{\sqrt{2\sigma}} \right) \approx -30 \, \text{db}.$$

These results are consistent with the observations plotted in Figs. 2 and 3. The pair coherence is expected to be rapidly damped since the Suhl-Nakamura interaction is long range and many spins are in communication. The oscillations should thus damp out in a time of order $T_2 \approx 30 \, \mu\text{sec}$ as observed. This justifies the earlier approximations which were based on the coherence being observed for a time short compared to the nearest neighbor spin-spin relaxation time.

3. Spin-Spin Relaxation Theory

The non-oscillatory decay of the spin echo amplitude describes the homogeneous broadening processes. The decay function is given by the Fourier transform of the homogeneous line and can be calculated from the correlation function $\langle I^+_I(t) I^-_I(0) \rangle$. The high temperature approximation is valid for the work considered here and simplifies the calculation considerably. For example, nuclear spin wave effects, which would cause spacial correlation between nuclear spins located at different sites, have no effect on the results reported here. The terms that would lead to such effects are neglected in the following calculation. The equation of motion of $\langle I^+_I(t) I^-_I(0) \rangle$ is calculated from the equation of motion of $I^+_I(t)$. The latter equations are written
\[
\frac{\partial I^+_l}{\partial t} = -i \omega_l I^+_l - \frac{2i}{\hbar} \sum_{m=\pm l} A_{lm} I^z_l I^+_m
\]
\[
\frac{\partial I^z_l}{\partial t} = -\frac{i}{\hbar} \sum_{m=\pm l} A_{lm} \left\{ I^+_l I^-_m - I^-_l I^+_m \right\}
\]

The equation for \(I^z_l \) is solved and substituted into the equation for \(I^+_l \) to give

\[
\frac{\partial I^+_l(t)}{\partial t} = -i \omega_l I^+_l(t) - \frac{2i}{\hbar} \sum_{m=\pm l} A_{lm} I^z_l(t) I^+_m(t)
\]

\[
- \frac{2}{\hbar^2} \sum_{m=\pm l} \sum_{m' \neq l} A_{lm} A_{l'm'} \int_0^t \left\{ I^+_l(t') I^+_l(t') - I^-_l(t') I^-_l(t') \right\} dt'.
\]

This equation is multiplied by \(I^+_l(0) \) and the ensemble average is taken. The first term on the right of the equality sign gives a zeeman energy driving term. In the high temperature approximation the second term leads to a product term, \(\langle I^+_m(t) \rangle I^z_l(0) I^+_l(0) \), and gives zero contribution since the trace of the angular momentum operator is zero. Likewise, the correlation of the four product terms leads to a product of pair correlation functions, \(\langle I^+_l(t') I^+_l(0) \rangle I^-_l(t') I^-_l(t) \langle I^+_l(t') I^-_l(0) \rangle \), with the negative term, which involves double spin flip processes, giving zero contribution since the hamiltonian has no terms that will support such processes. To eliminate the zeeman driving term, the relaxation function \(\phi(t) \) is defined by the equation
\[\langle I^+_l(t) \ I^-_l(0) \rangle = \langle I^+_l(0) \ I^-_l(0) \rangle \ e^{-i \omega_l t} \phi_{\omega_l} (t). \]

\(\phi_{\omega_l} \) has the following general properties: \(\phi_{\omega_l} (t) = \phi_{\omega_l} (-t) \); \(\phi_{\omega_l} (0) = 1 \), and is given directly by the decay of the spin echo amplitude. Ignoring a frequency pulling term of order \(\frac{1}{T_2} \), and interchanging the operation of differentiation with the ensemble average, the following equation of motion for \(\phi_{\omega_l}(t) \) is derived:

\[
\frac{\partial \phi_{\omega_l}(t)}{\partial t} = -\frac{4}{3} \ (l) \ (l+1) \ \sum_{j=0}^{n} \ \frac{A^2_{l,j}}{\hbar^2} \ \int_0^t \ \phi_{\omega_j}(t') \ \phi_{\omega_j}(t'-t) \
\cos \left[(\omega_j - \omega_l) (t-t') \right] dt',
\]

where

\[\langle I^+_l(0) \ I^-_l(0) \rangle = \frac{2}{3} \ (l) \ (l+1). \]

From the uncertainty principle, energy conservation is not a critical consideration at sufficiently small times. In this limit, let \(\phi_{\omega_l}(t') = \phi_{\omega_j}(t-t') = 1 \) and \(\omega_l = \omega_j \) in Eq. (7), then

\[
\phi(t) = 1 - \frac{\omega_{SN}^2 t^2}{2} - e^{-\omega_{SN}^2 t^2/2} \]

for

\[\omega_{SN}^2 = \frac{4}{3} \ (l) \ (l+1) \ \sum_{j=0}^{n} \ \frac{A^2_{l,j}}{\hbar^2} . \]

Thus the relaxation is initially gaussian as it is in a concentrated homogeneous system. This result is consistent with the theoretical findings of Klauder and Anderson who predict "lorentzian diffusion" in a concentrated homogeneous system, and it agrees with the results of Hone, Jaccarino, Ngwe and Pincus who predict gaussian decay for the Suhl-Nakamura interaction, in a concentrated homogeneous system, from moment.
analysis. Also, Eq. (8) is consistent with the short time experimental observations plotted in Figs. 2 and 3.

To consider the long time behavior, it is necessary to assume that the microscopic inhomogeneity is random and use the distribution function $g(\omega_j - \omega_0)$ to average frequency over position in Eq. (7). This procedure was first suggested in reference 6 and should be a good approximation since each spin interacts with some $(30)^3$ other neighboring spins. If the average is taken in Eq. (7), then the sum over position can be made, and if τ is substituted for $t-t'$, Eq. (7) becomes

$$\frac{\partial \phi_{\omega_i}}{\partial t} = -\omega_{SN}^2 \int_{-\infty}^{\infty} \int_0^t \phi_{\omega_i} (t-\tau) \phi_{\omega_j} (\tau) g(\omega_j - \omega_0) \cos(\omega_j - \omega_i) \tau \, d\tau \, d\omega_j \tag{9}$$

As t approaches ∞, the trigonometric term oscillates rapidly for $\omega_j + \omega_i$, giving zero contribution to the integral. Since spins interact only with other spins of the same frequency, the spin system becomes essentially diluted in this limit. In the limit of extreme microscopic inhomogeneous broadening (extreme dilution), it is reasonable to expect the decay to be exponential; particularly, in the light of our experimental results in Figs. 2 and 3. In this limit, $\phi(t - \tau) \phi(\tau) = \phi(t)$, and Eq. 9 becomes

$$\frac{\partial \phi_{\omega_i}}{\partial t} = -\omega_{SN}^2 \phi_{\omega_i} (t) \left\{ \lim_{\tau \to \infty} \int_{-\infty}^{\infty} \int_0^t g(\omega_j - \omega_0) \cos(\omega_j - \omega_i) \tau \, d\tau \, d\omega_j \right\} =$$

$$= -\omega_{SN}^2 g(\omega_i - \omega_0) \phi_{\omega_i} (t), \tag{10}$$

thus, $\phi_{\omega_i} (t) = e^{-\frac{t}{T_2(\omega_i)}}$, where $\frac{1}{T_2(\omega_i)} = \omega_{SN}^2 g(\omega_i - \omega_0)$

This solution is consistent with the second order iteration solution of Eq. (9) in the long time limit.
This theory contains the essential features of the observed relaxation measurements, it predicts gaussian decay at short times and lorentzian decay at long times. The relaxation time at long times is given by \[\frac{1}{T_2(\omega_0)} = \pi \omega_{SN}^2 g(0) = \sqrt{\pi/2} \frac{\omega_{SN}^2}{\sigma} \] for \(g(\omega-\omega_0) \) assumed gaussian. Taking the observed value for \(T_2 = 28.3 \mu s \), measured at 215.9 MHz, and the measured value for \(\sigma/2\pi = 100 \text{ kHz} \), \((\omega_{SN})^{-1} = 7.5 \mu s \) is calculated. This is within all estimated experimental uncertainty equal to the value of 7 \(\mu s \) calculated above. Also, the expression for \(T_2 \) predicts the linear dependence of \(T_2^2 \) on the local field, giving \(T_2^2 \propto \omega_{SN}^{-4} \propto \|_{\text{loc}} + H_a + \hbar \pi/3 M \). The value of \(\frac{\omega_{\text{loc}}}{\gamma} \) for which \(T_2 = 0 \) gives the value of the quantity \(H_a + \hbar \pi/3 M \). The predicted value of 5-7 kOe corresponding respectively to \(H_a \) being antiparallel and parallel to the magnetization is reasonably close to the measured value of 4.6 kOe. Again this agreement is within all estimated uncertainty. Note that the \(\theta_k = 0 \) approximation would predict an intercept of \(H_a = 1 \text{ kOe} \) which is far in error of the observed results.

C. Conclusions

A quantitative description of the homogeneous line has been made. The homogeneous spectrum distribution is the fourier transform of the relaxation function and is thus lorentzian near the center of the line, with the linewidth given by \(T_2^{-1} \), and gaussian in the wings. The gaussian behavior occurs for spins at a distance of order of the second moment of the Suhl-Nakamura interaction from the center of the line.

For simplicity, the line is consider to be lorentzian with a cutoff at \(\frac{\omega_{SN}}{2} \). This value is determined from the data in Figs. 2 and 3, since it is at time \((\omega_{SN}/2)^{-1} = 15 \mu s \) that the exponential decay becomes a fair approximation of the actual relaxation process. The homogeneous "packet" of spins is essentially independent of other packets since different
packets experience different static fields. Since spins interact only with spins in the same packet, spectral diffusion must occur within the homogeneous line. Thus, the relaxation function contains the microscopic physics for the macroscopic diffusion process. This is shown formally in the next section where a theory of spectral diffusion is derived, and compared with experimental results.
III. SPECTRAL DIFFUSION

A. Experimental Results

Spectral diffusion may be studied by monitoring the three pulse stimulated echo. After a pair of 90° pulses separated by a time τ, a spin system will have a periodic variation of the z component of angular momentum proportional to $\langle I_z^2(\omega) \rangle_L \cos (\omega - \omega_0) \tau$. $\langle I_z^2(\omega) \rangle_L$ is the z component of the angular momentum density function $\langle I_z^2(\omega) \rangle_L = \langle \Sigma \omega \omega^* \rangle_L$, where the summation is over all spins that have frequency ω, and the ensemble average is over the equilibrium density matrix. This modulation will be destroyed by spectral diffusion as well as other longitudinal relaxation processes. However, since only the spectral diffusion relaxation rate is dependent on τ, the spectral diffusion effect can be distinguished from other longitudinal relaxation processes. Following a third 90° pulse at time T, a spin echo signal occurs at time $T+\tau$ whose amplitude depends on the remaining periodic variation of the z component of angular momentum. In Fig. 5, the log of the stimulated echo signal at 215.9 MHz is plotted versus T for $\tau = 2, 9, and 13.8 \mu$sec. The decay is initially non-exponential, proceeding to exponential decay at long times. The rate of decay is τ dependent at both long and short times with the rate of decay at short times roughly twice the rate at long times. Because of the τ dependence, the non-exponential behavior is associated with the spectral diffusion relaxation process.

Within the noise limitation of the experimental apparatus, the slowest relaxation rate was measured from the slope of the exponential curve for several τ values and plotted versus τ^2 in Fig. 6. The overall accuracy is estimated to be within 20%. Initially the decay rate is
proportional to \(\tau^2 \) as expected from previous results.\(^{12}\) From the slope of the curve near \(\tau^2 = 0 \), \(D = 3.77 \times 10^{-5} (\mu\text{sec})^{-3} = \frac{85}{T_2^3} \) is determined as a lower limit for the diffusion constant of the system. For large \(\tau \) the relaxation rate increases more slowly than \(\tau^2 \). In Fig. 7, the relaxation rate for several values of the local field is plotted versus \(\tau^2 \). It is seen that for this range of field values, the diffusion process is essentially independent of field. The slight tendency for the points of the 213.9 MHz curves to give larger relaxation rates is probably associated with the increased difficulty in determining the smallest relaxation rate, because of a smaller signal to noise ratio at this frequency.

The relaxation rate determined by extrapolating to \(\tau^2 = 0 \) in Figs. 6 and 7 gives a value of \(T_1 = 950 \mu\text{sec} \) for the non-spectral diffusion relaxation processes. This value is approximately 0.3 times the intrinsic Co\(^{59}\) single domain longitudinal relaxation time of 3200 \(\mu\text{sec} \).\(^{23,24}\) This suggests that the spins observed in the rf skin depth by the stimulated echo technique may be relaxed by fluctuating fields from neighboring unsaturated particles in a manner similar to the way spins are relaxed in the wings of Bloch walls.

B. Macroscopic Theory

Since \(T_2 \ll T_1 \), quasi-equilibrium considerations are appropriate for describing the spectral diffusion relaxation process. In a time of order \(T_2 \) after the spin system has been disturbed from its equilibrium state, local equilibrium is established in the subsystems of the spin packet. Then, the state of a subsystem is characterized by its zeeman energy density function, \(\langle H(\omega) \rangle = -\hbar \omega \langle I^z(\omega) \rangle \) where \(\omega \) refers to homogeneous frequencies, and the ensemble average is taken over the non-equilibrium density matrix. The spin temperature is well defined for each subsystem although the various spin temperatures have a slowly varying time...
dependency, quasi-equilibrium. From quasi-thermodynamical theory, the
development of the zeeman energy density currents from their equilibrium value
\(\langle J(\omega) \rangle - \langle J(\omega) \rangle_L \) and the derivatives of the entropy \(\partial S / \partial \langle H(\omega) \rangle \) can be repre-
represented by a linear expansion in the parameters \(\langle H(\omega) \rangle - \langle H(\omega) \rangle_L \). There-
therefore, the mutual linear dependence of the quantities
\[
\langle J(\omega) \rangle - \langle J(\omega) \rangle_L \quad \text{and} \quad \partial S / \partial \langle H(\omega) \rangle
\]
may be written:
\[
\langle J(\omega) \rangle - \langle J(\omega) \rangle_L = \frac{1}{K_B L} \sum_{\omega'} L(\omega, \omega') \frac{\partial S}{\partial \langle H(\omega') \rangle} \tag{11}
\]
here \(K_B L \) is the reciprocal lattice temperature and \(K \) is the Boltzmann
constant, and \(L(\omega, \omega') \) are the kinetic coefficients. From thermodynamics
and the spin temperature assumption, \(\partial S / \partial \langle H(\omega) \rangle \) may be rewritten \(\partial S / \partial \langle H(\omega') \rangle = K_B \beta(\omega')/\Delta \omega \Delta \omega' \) where \(K_B(\omega') \) is the reciprocal spin temperature of the
spins of frequency \(\omega' \). In the case studied here, there is no macroscopic
spectral current flow in the equilibrium state and \(\langle J(\omega) \rangle_L \) is set equal
to zero. \(\langle J(\omega) \rangle \) satisfies the continuity equation
\(\partial / \partial t \langle H(\omega) \rangle = -\partial / \partial \omega \langle J(\omega) \rangle \).
Thus a general spectral diffusion equation is written in the limit of a
continuous frequency distribution
\[
\frac{\partial}{\partial t} \langle H(\omega) \rangle = - \frac{\partial}{\partial \omega} \int_{-\infty}^{\infty} L(\omega, \omega') \frac{1}{\beta_L} \frac{\partial \beta(\omega')}{\partial \omega'} \Delta \omega' . \tag{12}
\]
The theory of quantum statistics of irreversible processes gives the
following prescription\(^9,10\) for determining the kinetic coefficients:
\[
L(\omega, \omega') = \int_0^{\beta_L} d\lambda \int_{-\infty}^{0} e^{st} \langle J(\omega) J(\omega'; t + i\lambda) \rangle_L dt ; \lim_{s \to +0} \quad \tag{13}
\]
\[
= \beta_L \int_{-\infty}^{0} e^{st} \langle J(\omega) J(\omega'; t) \rangle_L dt . \lim_{s \to +0}
\]
The current operator is determined from the equation of motion of \(H(\omega) \) and
the continuity equation. Consider,
When the current operator is substituted into Eq. (13) and the high temperature approximation is made, the correlation function is given by the results of the microscopic theory in Section IIB. The integral over time is essentially the Fourier transform of the square of the relaxation function, and the various frequency integrals are simplified because of the criterion that no correlation exist between spins at different sites, placing a delta function criterion on the intermediate frequencies.\(^{16}\)

The only serious approximation that is necessary to evaluate \(L(\omega, \omega')\) is the assumption that the relaxation function is purely exponential. It will be shown later that this has serious consequences in limiting the description of the spectral diffusion process. However with the choice of the frequency cutoff made in Section II, the long time diffusion process is still described quantitatively. With this approximation in mind \(L(\omega, \omega')\) is substituted in Eq. (12) to give

\[
\frac{\partial \mathcal{H}(\omega)}{\partial t} = 2 \left[\frac{2}{3} \langle 1 \rangle (\omega + 1) \right]^2 \omega^2 \sum_{i \in \omega} \sum_{j \neq i} A_{ij}^2 \frac{T_2(\omega, \omega_j)}{1 + (\omega - \omega_j)^2 T_2(\omega, \omega_j)} \left[\beta(\omega) - \beta(\omega_j) \right]
\]

where

\[
\frac{1}{T_2(\omega, \omega_j)} = \frac{1}{T_2(\omega)} + \frac{1}{T_2(\omega_j)}
\]

The spectral diffusion process is driven by the difference in spin temperature across the spin packet which explains the \(\tau\) dependence of the relaxation rate. At this point, it is again assumed that the
microscopic inhomogeneity is spacially random and that frequency can be averaged over position. Substituting for \(\Sigma \), \(N_g(\omega_0 - \omega) \), and using \(g(\omega_j - \omega_0) \) to average frequency over the \(j \)'th position, the summation over \(j \) can be made. The lorentzian is more sharply peaked than \(g(\omega_j - \omega_0) \) so that \(g(\omega_j - \omega_0) \) will be set equal to \(g(\omega - \omega_0) \) in the integral over \(\omega_j \). Also, for the same reason, \(T_2(\omega, \omega_j) \) is set equal to \(T_2(\omega, \omega) = T_2(\omega)/2 \). However, it is necessary to remember at this point that the assumption of exponential decay is only good for the lorentzian linewidth limited to \(|\omega - \omega_0| < \omega_{SN}/2 \). In order to relate the theory to the experimental results, the following relations,

\[
\beta(\omega) = \cos(\omega - \omega_0) \tau \beta(\omega_0) \text{(coherent excitation is assumed which does not affect the final results),}
\]

\[
\langle \mathbf{I}^2(\omega) \rangle = 1/3 \, N_g(\omega)(I)(I+1)\omega \beta(\omega),
\]

and finally from section II:

\[
\frac{1}{T_2(\omega)} = 4/3 \, (I)(I+1) \sum_{j \neq i} \frac{\mathbf{A}_i \cdot \mathbf{A}_j}{\pi} \, n_g(\omega - \omega_0)
\]

are used with the above considerations to give the final results:

\[
\frac{\partial}{\partial t} \langle \mathbf{I}^2(\omega_0) \rangle = - \frac{1}{\pi} \left\{ \int_{\omega_0 - \omega_{SN}/2}^{\omega_0 + \omega_{SN}/2} \frac{1 - \cos(\omega_j - \omega_0) \tau}{1 + (\omega_j - \omega_0)^2(\langle T_2(\omega_0)/2 \rangle)^2} \, d\omega_j \right\} \langle \mathbf{I}^2(\omega_0) \rangle
\]

(16)

Thus the spectral diffusion decay is predicted to be exponential with a relaxation rate given by

\[
\frac{1}{T_S} = \frac{1}{\pi} \left\{ \int_{\omega_0 - \omega_{SN}/2}^{\omega_0 + \omega_{SN}/2} \frac{1 - \cos(\omega_j - \omega_0) \tau}{1 + (\omega_j - \omega_0)^2(\langle T_2(\omega_0)/2 \rangle)^2} \, d\omega_j \right\}
\]

(17)

To explain the disagreement between this result and the experimental results in Fig. 5, consider Eq. (17) in the random walk limit, \(\tau \ll T_2 \).

In this limit \(1 - \cos(\omega_j - \omega_0) \tau \approx 1/2 (\omega_j - \omega_0)^2 \tau^2 \) and
The spectral diffusion relaxation rate is directly proportional to the cut-off in this limit. This result shows the limitation of the simple cutoff model. In actuality, the line is gaussian in the wings, which would thus lead to a distribution of relaxation rates. However, in the derivation, the functional form of the relaxation function was too complex to handle in closed form. Even so, the choice of cutoff should give a lower limit for the diffusion constant, and thus, the simplified model should describe the long time spectral diffusion process.

In Fig. 6, the numerical integration of Eq. (17) is represented by the full line. The theoretical curve was adjusted to fit at \(r^2 = 0 \). It is seen that the agreement with data for all \(r \) is quite good. For comparison, the dashed line gives the predicted spectral diffusion relaxation rate for a gaussian relaxation function \(\phi(t) = e^{-t^2/2T_2^2} \). For this relaxation function, \(1/T_S(\text{gaussian}) = 2/T_2 [1 - e^{-r^2/T_2^2}] \) which is to be compared with Eq. (17) which gives \(1/T_S = 2/T_2 [1 - e^{-2r/T_2} \] in the limit \(r \omega_{SN}/2 \rightarrow \infty \). Both functions lead to a maximum relaxation rate of \(2/T_2 \); however the gaussian relaxation function leads to saturation much more rapidly than do the observed experimental results. Also Eq. (18) predicts a diffusion constant, \(D = .5/T_2^3 \), in qualitative agreement with the observed value, \(.85/T_2^3 \), while \(1/T_2(\text{gaussian}) \) gives \(D = 2/T_2^3 \) which is close to the value observed for the short time diffusion process. Using Eq. (18) and the values of \(T_2 \) determined in Fig. 3, \(D \) is calculated to decrease only 6% in going from 215.9 to 213.9 MHz.
The increase in the numerator and denominator essentially compensate for each other in agreement with the results of Fig. 7. Considering the uncertainty in choosing the cutoff, and the obvious oversimplification of the actual experimental situation, this agreement between theory and experiment is quite remarkable. The simple model of the homogeneous line, lorentzian of width T_2^{-1} and cutoff $\omega_{SN}/2$, gives a simple physical picture of the spectral diffusion problem.
IV. APPARATUS

The main considerations in designing and building the transient study apparatus were detection sensitivity and minimizing the adverse effect the large rf pulses have on the detection system, (see block diagram in Fig. 8). A random phase pulsed oscillator of the Arenberg PG 650 design, which delivered approximately 20 watts of peak power at 200 MHz when inductively coupled to the series tuned sample network, was used to resonate the Co59 sample. The nuclear induction signal was detected by a wide band converter which consisted of a two stage grounded grid preamplifier and a pentode mixer and cathode- follower stage. The low Q value of 10-15 for the preamplifier stages and the mixer stages prevented excessive ringing following the large rf pulses. The converter was linear over the 30 dB signal range studied and had a measured sensitivity greater than 3 microvolts.

The IF amplifier was most vulnerable to saturation and since it was preceded by an attenuator, saturation was more of a problem at small signals. Diode gates were placed after the local oscillator and after the converter and were closed during the pulse excitation in order to minimize saturation in the IF amplifier. Although diode gates have limited effectiveness in the 30 MHz - 200 MHz frequency range, measurements could be made as close as 1\textmu sec after an rf pulse at large signals. A precision attenuator was used to maintain a constant nuclear induction signal at the IF detector input, so that the measurements were independent of the detector response. Since the smallest increment of attenuation was 1 dB, it was necessary to extrapolate for signal changes less than this amount.
I thank Dr. A. M. Portis for suggesting this problem. Dr. Portis's physical insights made the experimental execution and theoretical interpretation possible. I thank Dr. E. L. Hahn for an enlightening discussion of the oscillatory effect. The computer program was very kindly written by Mr. Richard Johnson. I thank Dr. J. N. Aubrun for his help in building some of the apparatus.

This work was supported by the United States Atomic Energy Commission.
REFERENCES

*Now at Bell Telephone Laboratories, Murray Hill, N.J.

I am grateful to Professor V. Jaccarino for calling my attention to this work.

18. Ibid., page 227.

19. This result was reported in private correspondence to E. L. Hahn for spin 1/2 particles.

FIGURE CAPTIONS

Fig. 1. Resonance frequency of Co59 as a function of applied field in cobalt spore.

Fig. 2. Log of the spin echo amplitude versus time for several turning angles.

Fig. 3. Log of the echo amplitude versus time and frequency for a 90°-90° pulse sequence.

Fig. 4. The square of transverse relaxation time versus frequency.

Fig. 5. Log of the stimulated echo amplitude versus T and τ.

Fig. 6. Longitudinal relaxation rate versus τ^2 at 215.9 MHz.

Fig. 7. Longitudinal relaxation rate versus τ^2 and frequency.

Fig. 8. Block diagram of the apparatus.
Fig. 1

Resonance frequency vs. Applied field (kOe) for multi domain and single domain cobalt.
Fig. 2

![Graph showing log of echo amplitude vs. 2τ (μsec).](image)

- $90° - 90°$
- $90° - 135°$
- $90° - 180°$

$\nu_0 = 215.9 \text{ MHz}$

$T_2 = 28.3 \mu\text{sec}$
Fig. 3
Fig. 4
Fig. 5
\[\frac{1}{T_s} = \frac{2}{T_2} \left[1 - e^{-\frac{T^2}{T_{e2}}} \right] \]

\(\frac{1}{T_s} \) (calc.)

\(\frac{1}{T_s} \) (exp.)
Fig. 7

- Sample
 - Pulsed oscillator
 - Pulse generator
 - Gate
 - Wide band converter
 - Gate
 - Local oscillator GRI021-D3
 - Gate
 - IF amp GR-1216A
 - 20 DB Amplifier
 - Boxcar integrators
 - Chart recorder
 - Precision variable attenuator
Figure 8

The graph shows the relationship between T_1 (in μsec) and τ^2 (in $(\mu$sec)2) for various frequencies ν: $
\bullet \, \nu = 215.9 \, \text{MHz}$
\triangle \, \nu = 214.9 \, \text{MHz}$
\circle \, \nu = 213.9 \, \text{MHz}$
LEGAL NOTICE

This report was prepared as an account of Government sponsored work. Neither the United States, nor the Commission, nor any person acting on behalf of the Commission:

A. Makes any warranty or representation, expressed or implied, with respect to the accuracy, completeness, or usefulness of the information contained in this report, or that the use of any information, apparatus, method, or process disclosed in this report may not infringe privately owned rights; or

B. Assumes any liabilities with respect to the use of, or for damages resulting from the use of any information, apparatus, method, or process disclosed in this report.

As used in the above, “person acting on behalf of the Commission” includes any employee or contractor of the Commission, or employee of such contractor, to the extent that such employee or contractor of the Commission, or employee of such contractor prepares, disseminates, or provides access to, any information pursuant to his employment or contract with the Commission, or his employment with such contractor.