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Abstract

The assumption that decision makers choose actions to maximize their pref-
erences is a central tenet in economics. This assumption is often justified either
formally or informally by appealing to evolutionary arguments. In contrast, this
paper shows that in almost every game, payoff maximization cannot be justified
by appealing to such arguments. We show that in almost every game, for almost
every distortion of a player’s actual payoffs, some extent of this distortion is benefi-
cial to the player because of the resulting effect on opponents’ play. Consequently,
such distortions will not be driven out by any evolutionary process involving payoff-
monotonic selection dynamics, in which agents with higher actual payoffs proliferate
at the expense of less successful agents. In particular, under any such selection dy-
namics, the population will not converge to payoff-maximizing behavior. We also
show that payoff-maximizing behavior need not prevail even when preferences are
imperfectly observed.

1 Introduction

The assumption that decision makers choose actions to maximize their preferences is a
central tenet in economics. This assumption is often justified either formally or informally
by appealing to evolutionary arguments. For example, in their classic work, Alchian
(1950) and Friedman (1953) argue that profit maximization is a reasonable assumption
for characterizing outcomes in competitive markets because only firms behaving in a
manner consistent with profit maximization will survive in the long run. Under this
argument, firms failing to act so as to maximize profits will be driven out of the market
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by more profitable rivals, even if none of these firms deliberately maximizes profits or is
even aware of its cost or revenue functions. Similar arguments that consumers behave
“as if” maximizing preferences due to myriad market forces that exploit non-optimal
behavior are pervasive. More recently, Sandroni (2000) gives such a justification for
rational expectations equilibria, showing that a market populated by agents who initially
differ in the accuracy of their predictions will nonetheless converge to a competitive
rational expectations equilibrium as those agents who make inaccurate predictions are
driven out of the market by those who are more accurate.

In contrast, this paper shows that in almost every strategic interaction, payoff max-
imization cannot be justified by appealing to evolutionary arguments. Specifically, we
show that in almost every game, for almost every type of distortion of a player’s actual
payoffs, some extent of this distortion is beneficial to the player because of the resulting
effect on opponents’ play. Consequently, we show that such distortions will not be driven
out by any evolutionary process involving payoff-monotonic selection dynamics, in which
agents with higher actual payoffs proliferate at the expense of less successful agents. In
particular, under any such selection dynamics, the population will not converge to payoff
maximizing behavior.

The idea that in strategic situations players may gain an advantage from having an ob-
jective function different from actual payoff maximization dates back at least to Schelling
(1960), and his discussion of the commitment value of decision rules. Related ideas run
through work ranging from Stackelberg’s (1934) classic work on timing in oligopoly to
the theories of reputation in Kreps and Wilson (1982), and Milgrom and Roberts (1982).
For similar reasons, Frank (1987, 1988) argues that emotions may be a beneficial commit-
ment device. Recently, a large and growing literature has emerged that formalizes some
of these ideas by explicitly studying the evolution of preferences. This work shows that in
strategic interactions, a wide array of distortions of actual payoffs, representing features
such as altruism, spite, overconfidence, fairness, and reciprocity, that bias individuals’
objectives away from actual payoff maximization, may be evolutionarily stable.1

Unlike most standard evolutionary game theory, in which individuals are essentially
treated as “machines” programmed to play a specific action, the work on the evolution
of preferences treats individuals as decision makers who choose actions to maximize
their preferences, and then studies how the distribution of these preferences evolves over
time. Preferences that are distortions of true payoffs — or “dispositions” — drive a wedge
between an individual’s objectives and actual payoffs. Dispositions may nonetheless
be evolutionarily stable because the resulting bias in a player’s objectives may induce
favorable behavior in rivals that may more than compensate for the loss stemming from

1For a brief overview of this literature, see Samuelson (2001). Examples include Güth and Yaari
(1992), Huck and Oechssler (1998), Fershtman and Weiss (1997, 1998), Rotemberg (1994), Bester and
Güth (1998), Possajennikov (2000), Bolle (2000), Bergman and Bergman (2000), Koçkesen, Ok, and
Sethi (2000a, 2000b), Guttmann (2000), Sethi and Somanathan (2001), Kyle and Wang (1997), Benos
(1998), and Heifetz and Segev (2001).
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departures from actual payoff maximization. Thus the literature on the evolution of
preferences illustrates the point that in a variety of strategic interactions, individuals who
fail to maximize their true payoffs due to the bias created by various dispositions may
actually end up with higher payoffs than individuals who are unbiased. Such beneficial
dispositions would then not be weeded out by any selection dynamics in which more
successful behavior proliferates at the expense of less successful behavior, where success
is measured in terms of actual payoffs.

Much of the work on the evolution of preferences, however, focuses on specific kinds of
dispositions, such as altruism or reciprocity, and addresses these questions using specific
functional forms for both the individuals’ payoffs and dispositions. Such results then
provide conditions on the parameters of the particular model at hand that guarantee that
some non-zero degree of this disposition will survive evolutionary pressures. Our results
generalize this work in an important way by showing that the evolutionary emergence of
dispositions is in fact generic. In particular, we show that in almost any kind of strategic
interaction and for almost any kind of disposition, having some degree of this disposition
is better for a player than having no disposition at all. That is, in almost any game,
some degree of almost any kind of disposition results in a higher equilibrium payoff than
could be attained without the disposition. Any such disposition will not become extinct
under any payoff-monotonic selection dynamics, and in any such setting the population
will not converge to payoff-maximizing behavior under these selection dynamics.

Our genericity results are fairly intuitive. Having a disposition affects a player’s payoff
in two ways: directly, through the player’s own actions, and indirectly, by influencing
other players’ actions. A crucial observation is that a small degree of disposition leads to a
slight deviation from payoff-optimizing behavior, and therefore has only a negligible direct
effect on the player’s payoff. The crux of our argument is that for generic combinations
of games and dispositions, the indirect effect on the player’s payoff resulting from such
a small degree of the disposition is not negligible. We first prove this result for a class
of finite-dimensional manifolds of payoff and disposition functions, and then generalize
it to the infinite-dimensional families of all payoff and disposition functions.

Our main results are derived under the assumption that players’ preferences are per-
fectly observable. We then show that dispositions may remain evolutionarily viable even
when the players’ preferences can be only imperfectly observed. Here the natural so-
lution concept given the imperfect observability of preferences is Bayesian equilibrium.
This highlights a technical obstacle surrounding results about the evolutionary viability
of dispositions. Unlike Nash equilibria with perfect observability, Bayesian equilibria are
typically not locally unique (see, e.g., Leininger, Linhart, and Radner, 1989). In such
cases an equilibrium selection is not well-defined even locally, and different selections from
the equilibrium correspondence may result in contradictory conclusions regarding the ef-
fects of dispositions. While this precludes a general analysis of imperfect observability, in
the context of an example with a unique Bayesian equilibrium we show that dispositions
may remain evolutionarily viable even in the presence of imperfect observability. We con-
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sider three alternative settings: first, that preferences are perfectly unobserved in some
fraction of interactions while unobserved in others; second, that preferences are observed
but with noise; and third, that the model involves costly signaling of preferences. We
show that in all three settings, dispositions will not be eliminated for almost all parame-
ter values in the model, and in the first and third settings we completely characterize the
limiting distribution.

The paper proceeds as follows. Section 2 contains the development of our framework
and our main results, showing generically that dispositions do not become asymptotically
extinct under payoff-monotonic selection dynamics. We prove this result both in the
case where the payoff and disposition functions vary over a particular class of finite-
dimensional sets, as well as for the case where they vary over the infinite-dimensional set
of all payoff and disposition functions. In Section 3 we illustrate these results by means
of a specific example. In this example we can derive sharper predictions than under
our general results. Here we fully characterize the asymptotic distribution of types, and
show that in the limit distribution players will have dispositions. In Section 4 we relax
the assumption that types are perfectly observed and consider the three alternatives
involving imperfect observability outlined above. In each case we show that our main
results carry over to these settings. All proofs are collected in the Appendix.

2 The genericity of dispositions

2.1 Payoffs and dispositions

Two players, i and j, engage in strategic interaction. The strategy spaces of the two
players, X i and Xj, are open subsets of RM and RN , respectively, where, without loss
of generality, M ≤ N .2 Typical strategies are denoted xi = (xi1, . . . , x

i
M) and xj =

(xj1, . . . , x
j
N). The payoffs of the two players are given by the C

3 functions

Πi,Πj : Xi ×Xj → R.

In what follows we denote the partial derivatives of Πi by

Πi
i ≡ DiΠ

i =

µ
∂Πi

∂xi1
, . . . ,

∂Πi

∂xiM

¶
and Πi

ij ≡ DjΠ
i
i =


∂2Πi

∂xi1∂x
j
1

· · · ∂2Πi

∂xi1∂x
j
N

. . .
∂2Πi

∂xi
M
∂x

j
1

· · · ∂2Πi

∂xi
M
∂x

j
N

 .

The partial derivatives of Πj and of other functions are denoted similarly.

2The restriction to two players is just for notational convenience; all of our results carry over directly
for games with an arbitrary number of players. For games with more players and more general strategy
sets, see Remarks 1 and 2 below.
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In the course of their strategic interaction, the players perceive their payoffs to be

U i(xi, xj, τ) ≡ Πi(xi, xj) +Bi(xi, xj, τ), (2.1)

U j(xi, xj, θ) ≡ Πj(xi, xj) +Bj(xi, xj, θ),

where
Bi, Bj : Xi ×Xj ×R→ R

are the dispositions of players i and j and τ and θ are the players’ (one-dimensional) types.
The introduction of dispositions then drives a wedge between the objectives of the players,
which are to maximize their perceived payoffs U i and U j, and their eventual realized
payoffs Πi and Πj. We assume that Bi and Bj are C3. Moreover, as a normalization we
assume that when τ or θ is zero, the players’ perceived payoffs coincide with their actual
payoffs:

Bi(xi, xj, 0) ≡ Bj(xi, xj, 0) ≡ 0. (2.2)

That is, a type 0 player has no disposition and simply chooses actions to maximize his
actual payoff.3

Our framework captures a wide range of situations. For instance, the players might be
altruistic or spiteful, thus care not only about their own payoffs but also about their rival’s
payoffs. To model this idea we can, as in Bester and Güth (1998) and Possajennikov
(2000), write the players’ dispositions as Bi(xi, xj, τ ) = τΠj(xi, xj) and Bj(xi, xj, θ) =
θΠi(xi, xj). When τ and θ are positive, the players are altruistic as they attach positive
weights to their rival’s payoff, while when τ and θ are negative the players are spiteful.

Another example of this framework is concern about social status. Here suppose that
M = N = 1 (the strategies of the two players are one-dimensional) and let Πi and Πj

represent the monetary payoffs of the two players. Then, as in Fershtman and Weiss
(1998), we can write the dispositions as Bi(xi, xj, τ ) = τσ(xi − xe) and Bj(xi, xj, θ) =
θσ(xj − xe), where σ is either a positive or a negative parameter and xe is the average
action in the population. Here the revealed preferences of the players are to maximize
the sum of their monetary payoffs and their social status, where the latter is linked to
the gap between the players’ own actions and the average action in the population. The
players’ types, τ and θ, represent the weights that the players attach to social status.

2.2 The evolution of dispositions

Let Γ = (X i, Xj,Πi,Πj, Bi, Bj) denote the game in which players i and j choose actions
from X i and Xj, respectively, to maximize their perceived payoffs, U i(·, τ ) and U j(·, θ),
and obtain true payoffs Πi and Πj. For each (τ , θ), let (yi(τ , θ), yj(τ , θ)) be a Nash

3Notice that this formulation in terms of an additive disposition term is equivalent to specifying
instead that a player has preferences given by a utility function U i(xi, xj , τ) such that U i(xi, xj , 0) ≡
Πi(xi, xj). To see this, given such a utility function simply set Bi(xi, xj , τ) ≡ U i(xi, xj , τ)−Πi(xi, xj).
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equilibrium of this game. Since the strategy spaces X i and Xj are open, the Nash
equilibria of this game are interior. We assume for this discussion that the selection
(yi(τ , θ), yj(τ , θ)) from the Nash equilibrium correspondence is continuously differentiable
at (τ , θ) = (0, 0).4 The true payoffs of players i and j in this Nash equilibrium are

f i(τ , θ) ≡ Πi
¡
yi(τ , θ), yj(τ , θ)

¢
and f j(τ , θ) ≡ Πj

¡
yi(τ , θ), yj(τ , θ)

¢
. (2.3)

Since we cast our analysis in an evolutionary setting, these equilibrium payoffs, f i and
f j, will represent fitness. This formulation leads directly to a natural selection process
among different types in the population.

To assess the evolutionary viability of various dispositions, we begin by asking which
dispositions are beneficial to a player. Since we are interested in characterizing whether
having no disposition (i.e., maximizing true payoffs) can survive evolutionary pressures,
we introduce the following notion:

Definition 1 (Unilaterally beneficial dispositions) The disposition Bi (Bj) is said to be
unilaterally beneficial for player i (player j) in the game Γ if there exists τ 6= 0 (θ 6= 0)
such that f i(τ , 0) > f i(0, 0) (f j(0, θ) > f j(0, 0)).

It is important to note that Definition 1 says that a disposition is unilaterally beneficial
for player i if, given that player j has no disposition (i.e., θ = 0), there exists some non-
zero type of player i whose fitness is higher than the fitness of type 0. In particular, the
definition does not require this property to hold for all of types of player i: a unilaterally
beneficial disposition might be beneficial for some types of player i but harmful for
others.5

To study how dispositions evolve, suppose that there is a large population of indi-
viduals. At each point t ≥ 0 in time, the population is characterized by the (possibly
correlated) distributions (Tt,Θt) ∈ ∆(R) ×∆(R) of (τ , θ), where ∆(R) denotes the set
of Borel probability distributions over R. At each point in time, a pair of individuals
is selected at random from the population. These individuals assume the roles i and
j with equal probabilities, and then play the game Γ against one another. Thus, the
average fitnesses of types τ and θ at time t are given byZ

f i(τ , θ)dΘt and
Z

f j(τ , θ)dTt. (2.4)

4We show in the appendix that such a selection is feasible for generic games.
5Consider for instance the altruism/spite example mentioned above. Suppose that f i

τ (0, 0) 6= 0.
Then if a small degree of altruism (τ > 0) is beneficial, a small degree of spite (τ < 0) would be harmful
and vice versa.
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We assume that the selection dynamics are monotonically increasing in average fitness.
That is, we assume that the distributions of types evolve as follows:

d
dt
Tt(Ai) =

R
Ai g

i(τ ,Θt)dTt, Ai ⊆ R Borel measurable,
d
dt
Θt(A

j) =
R
Aj g

j(Tt, θ)dΘt, Aj ⊆ R Borel measurable,
(2.5)

where gi and gj are continuous growth-rate functions that satisfy

gi(τ ,Θt) > gi(τ̃ ,Θt) ⇐⇒
Z

f i(τ , θ)dΘt >

Z
f i(τ̃ , θ)dΘt, (2.6)

gj(Tt, θ) > gj(Tt, θ̃) ⇐⇒
Z

f j(τ , θ)dTt >
Z

f j(τ , θ̃)dTt.

To ensure that Tt and Θt remain probability measures for each t, we also assume that gi

and gj satisfy Z
gi(τ ,Θt)dTt = 0, and

Z
gj(Tt, θ)dΘt = 0 for each t. (2.7)

Equations (2.5)-(2.7) reflect the idea that the proportion of more successful types in the
population increases at the expense of less successful types. This may be due to the fact
that more successful individuals have more supportable descendants, who then inherit
their parents’ preferences either genetically or by education. An alternative explanation
is that the decision rules of more successful individuals are imitated more often. The
same mathematical formulation is also compatible with the assumption that successful
types translate into stronger influence rather than numerical proliferation. Under this
interpretation, more successful individuals take part in a larger share of the economic
interactions.

To guarantee that the system of differential equations (2.5) has a well-defined solution,
we require some additional regularity conditions on the selection dynamics as follows.

Definition 2 (Regular dynamics) Payoff-monotonic selection dynamics are called regu-
lar if gi and gj can be extended to the domain R× Y, where Y is the set of signed Borel
measures with variational norm smaller than 2, and on this extended domain, gi and gj

are uniformly bounded and uniformly Lipschitz continuous. That is,

sup
τ∈R

¯̄
gi(τ ,Θt)

¯̄
< ∞, sup

τ∈R

¯̄̄
gi(τ ,Θt)− gi(τ , eΘt)

¯̄̄
< Ki

°°°Θt − eΘt

°°° , Θt,fΘt ∈ Y,

sup
θ∈R

¯̄
gj(Tt, θ)

¯̄
< ∞, sup

θ∈R

¯̄̄
gj(Tt, θ)− gj(eTt, θ)¯̄̄ < Kj

°°°Tt − eTt°°° , Tt, eTt ∈ Y,

for some constants K i,Kj > 0, where kµk = sup
|h|≤1

¯̄R
R
hdµ

¯̄
is the variational norm of the

signed measure µ.
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Oechssler and Riedel (2001, Lemma 3) show that regularity of the dynamics guar-
antees that the map (Tt,Θt) 7→

¡R
gi(τ ,Θt)dTt,

R
gj(Tt, θ)dΘt

¢
is bounded and Lip-

schitz continuous in the variational norm, which implies that for any initial distributions
(T0,Θ0), the system of differential equations (2.5) has a unique solution.

To characterize the asymptotic properties of the distributions (Tt,Θt) we will use the
following notion.

Definition 3 (Asymptotic extinction) The dispositions (Bi, Bj) become asymptotically
extinct in the game Γ if (Tt,Θt) converges weakly to a unit mass at (τ , θ) = (0, 0) as
t→∞.

Theorems 1 and 2 below show that generically dispositions do not become asymp-
totically extinct under any regular payoff-monotonic selection dynamics. Theorem 1
applies to finite-dimensional manifolds of payoff and disposition functions. Here we allow
payoff and disposition functions to vary over an arbitrary finite-dimensional manifold
provided it contains a sufficiently rich class of functions. We use these finite-dimensional
results to show in Theorem 2 that the same result holds when varying over the entire
infinite-dimensional families of all thrice continuously differentiable payoff and disposition
functions.

2.3 Finite-dimensional manifolds

Let G̃ denote the space of all pairs of C3 payoff functions (Πi,Πj), and let B̃ denote
the space of all pairs of C3 disposition functions (Bi, Bj). We endow G̃ and B̃ with the
Whitney C3 topology, and G̃ × B̃ with the natural product topology.6
We start by considering a finite-dimensional, boundaryless submanifold G of G̃ that

is rich enough to allow us to perturb each payoff function in each of the directions xim, x
j
n

and ximx
j
m independently and obtain a new pair of payoff functions in G. To formalize

this idea, let

p =
¡
p1, p2, p3

¢
=
¡¡
p11, . . . , p

1
M

¢
,
¡
p21, . . . , p

2
N

¢
,
¡
p31, . . . , p

3
M

¢¢ ∈ RM+N+M ,

q =
¡
q1, q2, q3

¢
=
¡¡
q11, . . . , q

1
M

¢
,
¡
q21, . . . , q

2
N

¢
,
¡
q31, . . . , q

3
M

¢¢ ∈ RM+N+M .

6Roughly, the Whitney Ck topology is the topology in which two Ck functions are close if their
values, and the values of all of their derivatives of orders up to and including k, are uniformly close. For
a formal description and discussion, see e.g. Golubitsky and Guillemin (1973). This is the appropriate
topology for our problem because it guarantees that all of the maps we work with, such as the first order
conditions for Nash equilibria, are continuous as we vary the payoff and disposition functions.
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Given a pair of payoff functions (Πi,Πj), define

Π̄i(xi, xj, p) ≡ Πi
¡
xi, xj

¢
+

MX
m=1

p1mx
i
m +

NX
n=1

p2nx
j
n +

MX
m=1

p3mx
i
mx

j
m, (2.8)

Π̄j(xi, xj, q) ≡ Πj
¡
xi, xj

¢
+

MX
m=1

q1mx
i
m +

NX
n=1

q2nx
j
n +

MX
m=1

q3mx
i
mx

j
m.

Using this notation, we assume that the manifold G is such that for every pair of payoff
functions (Πi,Πj) ∈ G there exist open neighborhoods P,Q ⊆ RM+N+M of zero such
that (Π̄i(·, ·, p), Π̄j(·, ·, q)) ∈ G for every (p, q) ∈ P ×Q.

Similarly, let v = (v1, . . . , vM) ∈ RM and w = (w1, . . . , wN) ∈ RN . Given a pair of
dispositions (Bi, Bj), define

B̄i(xi, xj, τ , v) ≡ Bi
¡
xi, xj, τ

¢
+ τ

MX
m=1

vmx
i
m, (2.9)

B̄j(xi, xj, θ, w) ≡ Bj
¡
xi, xj, θ

¢
+ θ

NX
n=1

wnx
j
n.

We consider a finite-dimensional submanifold B of B̃ such that for every (Bi, Bj) ∈ B,
there exist neighborhoods V ⊆ RM , W ⊆ RN of zero such that for every (v, w) ∈ V ×W ,
(B̄i(·, ·, ·, v), B̄j(·, ·, ·, w)) ∈ B .
In this finite-dimensional setting, the natural notion of genericity is as follows.

Definition 4 (Genericity) A property is said to hold for generic combinations of pairs
of payoff functions in G and dispositions in B if there is an open, full-measure subset A
of the product manifold G ×B such that the property obtains for all (Πi,Πj, Bi, Bj) ∈ A.

We can now state the first version of our main result.

Theorem 1 For generic combinations of pairs of payoff functions (Πi,Πj) ∈ G and
dispositions (Bi, Bj) ∈ B:

(i) The disposition Bi is unilaterally beneficial for player i.

(ii) The dispositions (Bi, Bj) do not asymptotically become extinct under any regular
payoff-monotonic selection dynamics.
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The basic idea behind this result is can be summarized as follows. Suppose that both
players do not have dispositions, so that τ = θ = 0. The resulting Nash equilibrium of
the game Γ is therefore (yi(0, 0), yj(0, 0)). Introducing a slight disposition for player i
would then change the player’s fitness at the rate

f iτ(0, 0) = Πi
i

¡
yi(0, 0), yj(0, 0)

¢
yiτ(0, 0) +Πi

j

¡
yi(0, 0), yj(0, 0)

¢
yjτ(0, 0). (2.10)

The first term is the direct effect on i’s equilibrium payoff due to the change in i’s own
behavior. The second term is the indirect effect caused by the change in j’s equilibrium
behavior. For generic pairs of payoffs and dispositions, yiτ(0, 0) and yjτ(0, 0) are well-
defined. As (yi(0, 0), yj(0, 0)) is an interior Nash equilibrium of Γ, it follows that

Πi
i(y

i(0, 0), yj(0, 0)) = 0. (2.11)

Therefore the first, direct effect vanishes. The essence of the proof is then to show
that for generic combinations of payoff and disposition functions, a perturbation in i’s
disposition ensures that the second, indirect effect does not vanish. That is,

f iτ(0, 0) = Πi
j

¡
yi(0, 0), yj(0, 0)

¢
yjτ (0, 0) 6= 0. (2.12)

This implies in turn that payoff-monotonic selection dynamics cannot converge to a unit
mass at (τ , θ) = (0, 0). If instead the distribution of player j’s type were to become
concentrated around θ = 0, the fact that f iτ(0, 0) 6= 0 means that some small nonzero
value of τ (positive or negative, depending on the sign of f iτ (0, 0)) increases the fitness
of player i. This in turn implies that a non-zero type of player i would fare better than
a type zero player i, and would therefore increase in number at the expense of the type
zero player. Thus in the limit the dispositions will not become extinct.7

Several remarks about Theorem 1 are now in order.

Remark 1: Theorem 1 can be easily generalized to games with finitely many players.
In that case, the proof of the theorem applies verbatim with the index j being interpreted
as the vector of all players but i, and with N being the dimension of the product of the
strategy spaces of all players but i.

Remark 2: The proof of Theorem 1 relies on the first-order necessary conditions that
obtain at interior Nash equilibria of Γ. If we allow the strategy spaces of the players,
X i and Xj, to be closed subsets of RM and RN , then some Nash equilibria may be on
the boundary. In such a case, the analysis carries over when restricting attention to
the set of directions for which the first-order conditions do hold at equilibrium.8 No

7For symmetric games, Güth and Peleg (2001) identified the analogue of (2.12) as a necessary condi-
tion for evolutionary stability (in contrast with the fully dynamic analysis of the current paper). However,
Güth and Peleg did not investigate the genericity of this condition.

8Dubey (1986) and Anderson and Zame (2001) employ a similar approach to demonstrate the generic
Pareto-inefficiency of “non-vertex” Nash equilibria.

10



first-order conditions need to hold at Nash equilibrium strategies that are extreme points
in the strategy sets Xi and Xj, however. This will be the case for instance for pure-
strategy Nash equilibria whenX i andXj are simplices of mixed strategies. Such extreme
equilibria are not perturbed when the game is perturbed with a slight disposition, so the
marginal analysis in the proof does not apply in this case. In such games, types with
small dispositions may have the same fitness as zero types with no disposition.

Our genericity analysis is also inappropriate for pure-strategy Nash equilibria in games
with finitely many pure strategies. For such games a global analysis rather than a mar-
ginal one is appropriate for characterizing equilibria. Nonetheless, similar results may
hold in some such games. For example, in symmetric games with finitely many pure
strategies, Dekel et al. (1998) show that for any symmetric Nash equilibrium differ-
ent from the payoff-maximizing symmetric outcome (as, for example, in the prisoners’
dilemma), the lack of dispositions is not evolutionarily viable.

Remark 3: A similar result holds when the strategy spaces X i and Xj are infinite-
dimensional. Unfortunately, in the most obvious examples of such games, such as infi-
nitely repeated games or games with incomplete information, Nash equilibria are typically
not locally unique. For infinitely repeated games this follows from the Folk Theorem,
while incomplete information games typically have a continuum of Bayesian-Nash equi-
libria (see e.g., Leininger, Linhart, and Radner, 1989). In such cases, an equilibrium
selection is not well-defined even locally, so when small dispositions are introduced it is
unclear which equilibrium to consider. Different selections from the equilibrium corre-
spondence may result in contradictory conclusions regarding the effects of the disposi-
tions.9 We wish to emphasize however that this problem arises not from any inherent
limitation of the argument itself; rather, the evolutionary analysis ceases to be predictive
because the equilibrium is not locally unique.

2.4 All games and dispositions

The genericity result established in the previous subsection might appear to be somewhat
limited in scope because of its restriction to certain finite-dimensional submanifolds G
and B. Next we show that an analogous result holds when we vary over the infinite-
dimensional sets of all possible pairs of payoff functions and dispositions.

To extend our genericity results to the space of all payoff and distribution functions,
we will need a notion of genericity that is suitable in an infinite-dimensional setting. Un-
fortunately, there is no natural analogue of Lebesgue measure in an infinite-dimensional
space, and standard topological notions of “almost all” such as open and dense or residual
are not entirely satisfactory, particularly in problems like ours in which “almost all” is

9In specific cases, however, there may be more natural candidates for such selections; see for example
the analysis in Section 4 below and in Heifetz and Segev (2001).
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loosely interpreted in a probabilistic sense as a statement about the likelihood of partic-
ular events. For example, open and dense sets in Rn can have arbitrarily small measure,
and residual sets can have measure 0. Nevertheless, Christensen (1974) and Hunt, Sauer,
and Yorke (1992) have developed measure-theoretic analogues of Lebesgue measure 0 and
full Lebesgue measure for infinite-dimensional spaces, called shyness and prevalence.

Definition 5 (Shyness and prevalence) Let Y be a topological vector space. A universally
measurable subset E ⊂ Y is shy if there is a regular Borel probability measure µ on Y with
compact support such that µ(E+y) = 0 for every y ∈ Y .10 A (not necessarily universally
measurable) subset F ⊂ Y is shy if it is contained in a shy universally measurable set.
A subset E ⊂ Y is prevalent if its complement Y \ E is shy.

Christensen (1974) and Hunt, Sauer and Yorke (1992) show that shyness and preva-
lence have the properties we ought to require of measure-theoretic notions of “smallness”
and “largeness.” In particular, the countable union of shy sets is shy, no relatively open
subset is shy, and a subset of Rn is shy in Rn if and only if it has Lebesgue measure 0.
Hunt, Sauer, and Yorke (1992) also provide simple sufficient conditions for their notions
of shyness and prevalence (here we adopt the somewhat more descriptive terminology
from Anderson and Zame, 2001).11

Definition 6 (Finite shyness and finite prevalence) Let Y be a topological vector space.
A universally measurable set E ⊂ Y is finitely shy if there is a finite dimensional subspace
V ⊂ Y such that (E−y)∩V has Lebesgue measure 0 in V for every y ∈ Y . A universally
measurable set E ⊂ Y is finitely prevalent if its complement Y \ E is finitely shy.

Sets that are finitely shy are shy, hence sets that are finitely prevalent are prevalent.
Using this fact together with the results we established for finite-dimensional submani-
folds will yield a general version of our results when payoffs and dispositions vary over
the entire infinite-dimensional spaces G̃ and B̃.
We can now state a second version of our main result:

Theorem 2 There exists an open, prevalent subset P of G̃ × B̃ such that for each
(Πi,Πj, Bi, Bj) ∈ P,

10A set E ⊂ Y is universally measurable if for every Borel measure η on Y , E belongs to the completion
with respect to η of the sigma algebra of Borel sets.

11Anderson and Zame (2001) have extended the work of Hunt, Sauer and Yorke (1992) and Christensen
(1974) by defining prevalence and shyness relative to a convex subset that may be a small subset of the
ambient space. Their extension is useful in many applications, particularly in economics, in which the
relevant parameters are drawn not from the whole space but from some subset, such as a convex cone or
an order interval, that may itself be a shy subset of the ambient space. Here we use the original notion
as formulated in Hunt, Sauer and Yorke (1992).
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(i) The disposition Bi is beneficial for player i.

(ii) The dispositions (Bi, Bj) do not asymptotically become extinct under any regular
payoff-monotonic dynamics.

3 An example

In this section we illustrate our main results by means of an example. In this example we
are able to completely characterize the asymptotic distribution in the population by mak-
ing use of the special structure of payoffs and dispositions. The example yields stronger
results than our general results in Theorems 1 and 2 since it shows that the evolutionary
process converges to a unique, positive type, whereas the two general theorems merely
show that the evolutionary process cannot converge to zero types who lack dispositions.

For this example, suppose that the strategy spaces of the players are Xi = Xj = R,
and the actual payoff functions are

Πi(xi, xj) = (α− bxj − xi)xi, Πj(xi, xj) = (α− bxi − xj)xj, (3.1)

where α > 0, and b ∈ (−1, 1). Moreover, suppose that the dispositions of the players
are given by:

Bi(xi, xj, τ) = τxi, Bj(xi, xj, θ) = θxj, τ , θ ∈ T, (3.2)

where T ⊂ R is a compact interval that contains 0. The example differs from the more
general analysis in Section 2 in that the set of types is now a compact interval rather
than R. This assumption will enable us to characterize the asymptotic distribution of
types.

Using these payoff and disposition functions, the perceived payoff functions are given
by

U i(xi, xj, τ ) = Πi(xi, xj) +Bi(xi, xj, τ) = (α + τ − bxj − xi)xi,
U j(xi, xj, θ) = Πj(xi, xj) +Bi(xi, xj, θ) = (α+ θ − bxi − xj)xj.

(3.3)

These dispositions can be interpreted as “self-esteem” biases reflecting over- and under-
confidence. Here the players either overestimate the return to their own actions, if τ and
θ are positive, or underestimate these returns, if τ and θ are negative.

The unique Nash equilibrium when players i and j choose xi and xj to maximize their
perceived payoffs given (τ , θ) is

yi(τ , θ)=
2(α + τ)− b(α + θ)

4− b2
, yj(τ , θ)=

2(α + θ)− b(α + τ)

4− b2
. (3.4)

The resulting fitnesses of the players are given by

f i(τ , θ) ≡ Πi(yi(τ , θ), yj(τ , θ)) =
(2(α+τ)−b(α+θ))(2α−(2−b2)τ−b(α+θ))

(4−b2)2 ,

f j(τ , θ) ≡ Πj(yi(τ , θ), yj(τ , θ)) =
(2(α+θ)−b(α+τ))(2α−(2−b2)θ−b(α+τ))

(4−b2)2 .
(3.5)
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Note that the dispositions Bi and Bj are unilaterally beneficial for players i and j,
because

f iτ(0, 0) = f jθ (0, 0) =
αb2

(2 + b)2(2− b)
> 0. (3.6)

We are now interested in characterizing the asymptotic distribution of types. To
simplify the discussion and notation, we assume that Tt = Θt, i.e., the types of both
players are drawn from the same distribution on the support T .12

Proposition 1: Suppose that b2α
4+2b−b2 ∈ T . Then for any initial distribution T0, Tt

converges in distribution to a unit mass at b2α
4+2b−b2 under any regular payoff-monotonic

selection dynamics.

Proposition 1 shows that as long as b 6= 0, the dispositions Bi and Bj do not as-
ymptotically become extinct, and in fact the population converges to a unit mass at

b2α
4+2b−b2 . Since

b2α
4+2b−b2 > 0, it follows that aside from the case where b = 0, in which the

payoff of each player is independent of the other player’s actions so there is no strategic
interaction, evolution gives rise to players who consistently overestimate the returns to
their actions. All other types, including types who perceive the returns to their actions
accurately, asymptotically become extinct. In this case we have a sharper result than
obtains in Theorem 1, in that for a generic set of parameter values, in particular for any
values other than b = 0, a unique positive type of the disposition survives in the limit.

4 Imperfect observability of dispositions

Thus far, we have assumed that players i and j play a Nash equilibrium given their
perceived payoff functions. One justification for this assumption is that players’ perceived
payoffs are perfectly observed. Of course, by standard arguments, Nash equilibrium play
does not necessarily require observability of payoffs. If the interaction lasts several rounds,
play can converge to a Nash equilibrium even if players have very limited knowledge or
adapt their behavior myopically. This may be the case, for example, if the players follow
some version of fictitious play (see e.g. Fudenberg and Levine, 1998).

In this section, we pursue further the possibility that preferences may not be perfectly
observed. We consider three different settings. First, we consider settings in which
preferences are observed in only a fraction of all encounters. Second, we consider the
case in which players’ types are observed with some noise. Third, we consider the case
in which players may be engaged in costly signaling regarding their preferences.

The natural solution concept for each of these settings is Bayesian equilibrium. Un-
fortunately, as we discussed above, Bayesian equilibria are typically not locally unique;

12The results would be identical even if the players’ types were drawn from different distributions.
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consequently, it is impossible to generalize Theorems 1 and 2 to these settings. Nonethe-
less, we can show that in the absence of this technical obstacle, the evolutionary viability
of dispositions is maintained under imperfect observability. We use the example of Section
3 as our vehicle, since in all three settings it gives rise to a unique Bayesian equilibrium
for any given distribution (T ,Θ) of types. Qualitatively similar results would obtain
for any other example that admits a unique Bayesian equilibrium at least in some weak
neighborhood of the unit mass at (τ , θ) = (0, 0).

4.1 Partial observability

In this subsection we consider a setting in which preferences are mutually observed in
some exogenously specified fraction 1 − ρ of all interactions, but are completely unob-
served in the remaining fraction ρ of interactions, where ρ ∈ (0, 1). When preferences are
not mutually observed, a Bayesian equilibrium (yi(τ ,Θt), y

j(Tt, θ)) is played at time t, in
which each player maximizes his or her preferences given the distribution of actions taken
by the opponent, which in turn depends on the current distribution of the opponent’s
preferences.

Proposition 2: Suppose that in the example considered in Section 3, the players observe
each other’s preferences with probability 1− ρ. Moreover, suppose that 2(1−ρ)b2α

8+4b−2b2−ρb3 ∈ T .
Then under any regular payoff-monotonic selection dynamics, the distribution of types in
the population converges in distribution to a unit mass at

τ ∗ = θ∗ =
2 (1− ρ) b2α

8 + 4b− 2b2 − ρb3
. (4.2)

Proposition 2 shows that the emerging type is monotonic in the probability (1− ρ)
of observability. Moreover, the disposition becomes asymptotically extinct, that is,
τ ∗ = θ∗ = 0, only in the extreme cases where either ρ = 1, so preferences are never
observed, or b = 0, so there is no strategic interaction between the players.13 Thus we
also obtain a more precise result than Theorem 1 in terms of the generic emergence of
dispositions, since for any b ∈ (−1, 1) \ {0} and any ρ ∈ [0, 1), players have a disposition
in the limit distribution.

4.2 Noisy observability

We now consider the possibility that preferences are always mutually observed, but that
the observation of preferences is subject to some randomly distributed noise. Specifically,

13In different but analogous settings, Dekel et al. (1998), Ely and Yilankaya (2001), Ok and Vega
Redondo (2001) and Güth and Peleg (2001) also show that payoff-maximization is evolutionarily stable
if preferences are completely unobservable.
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we assume that before choosing actions, players i and j receive noisy signals of each other’s
types, update their beliefs about each other’s preferences, and then play a Bayesian
equilibrium given these updated beliefs.

We will again cast our analysis in the context of the example from Section 3. Now
we suppose that before the players choose their actions, they receive the following signals
about each other’s types:

si = τ + ν, sj = θ + ν, (4.3)

where ν is a random variable distributed on the support [−r, r] according to a cumulative
distribution function N .14

Proposition 3. In the example of Section 3 with noisy observability, if the players’
signals are si and sj, then the dispositions do not asymptotically become extinct under
any regular payoff-monotonic selection dynamics.

4.3 Costly signaling of preferences

The benefit of having a disposition is the influence it exerts on opponents’ equilibrium
behavior, achieved at the cost of departures from actual payoff maximization. This
leads to the following natural question. Can a player enjoy the best of all worlds —
signal a disposition to rivals but choose actions that maximize his or her actual payoff?
If signaling a disposition to others were merely cheap talk, then the signal would be
ignored by the opponents, and hence the actual asymptotic behavior in the population
would converge to a Nash equilibrium of the underlying game without dispositions. This
is essentially the argument of Acemoglu and Yildiz (2001).

In practice, however, the appearance of individuals often does convey information
about their dispositions. This information may be transmitted by body language or by
past behavior in similar encounters. One possibility for why this is the case is that it
may be costly to conceal dispositions. For instance, Frank (1987,1988) argues vividly
that some physical tendencies, like the blush that follows lying, may be credible, costly
signals about character. Under this argument, the observable symptoms of emotional
arousal reflect the operation of automatic physical reactions, like adrenaline flow, muscle
tension and more rapid breathing, and the fact that these are automatic reactions has
some survival value when facing imminent threats. A mutant who might be able to
consciously control these functions, and therefore enjoy the benefits of lying without
being caught, would pay a fitness cost as a result of reacting more slowly to predators
and enemies. This cost would be larger the less automatic these reactions were, and
thus the larger the ability of the individual to hide her true emotions.

14The assumption that the support of ν is symmetric around 0 is not essential. However, the as-
sumption that the support is finite is important for our results because it makes it possible for players
to distinguish between zero and non-zero types.
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To model this idea, we suppose that players generate signals mi and mj regarding
their true types τ and θ. Once again, the multiplicity of Bayesian equilibria associated
with such a game at each point in time preempts a general analysis. Hence we again
consider an extension of the example from Section 3. Suppose that mi, mj ∈M , where
M ⊂ R is a (large) compact interval that contains 0. To capture the idea that deception
is costly, assume that these signals entail fitness costs c(τ −mi)2 and c(θ −mj)2, where
c > 0. We suppose that the signals mi and mj evolve in parallel with the players’ types τ
and θ according to some regular payoff-monotonic selection dynamics starting from some
initial distribution with support in the rectangle T ×M . That is, the effective types of
the players are now two-dimensional, consisting of both their disposition parameters τ
and θ, and their signals mi and mj. When players i and j interact, they first observe
each other’s signals, update their beliefs about each other’s preferences, and then play a
Bayesian equilibrium given these updated beliefs. We can then characterize the limits
of this evolutionary process as follows.

Proposition 4. Consider the costly signaling version of the example from Section 3.
Suppose that 8cb2α

2(4+2b−b2)(1+4c)−b3 ∈ T and 2(1+4c)b2α
2(4+2b−b2)(1+4c)−b3 ∈ M. Then the joint dis-

tribution of types and signals will converge under any regular payoff-monotonic selection
dynamics to a unit mass at

τ ∗ = θ∗ =
8cb2α

2(4 + 2b− b2)(1+ 4c)− b3
,

m∗ =
2 (1+ 4c) b2α

2(4 + 2b− b2)(1+ 4c)− b3
.

Note that unless b = 0, so that there is strategic interaction between the players,
τ ∗ = θ∗ > 0. This implies that generically in terms of the parameters of the model, the
players will have dispositions, as in the previous case of noisy observability in Section
4.1. In contrast, however, the resulting type to which the population converges is the
same as in the case of noisy observability only when c→∞, that is, only when deception
is infinitely costly. Otherwise, the resulting type is smaller when signaling is costly.
Intuitively, this is because the cost of deception must now be added to the costs of
having a disposition. Furthermore, note that for all 0 < c <∞, m∗ > τ ∗ = θ∗, implying
that the population will converge over time to a type whose appearance will exaggerate
the true disposition. That is, agents will appear to be more overconfident than they
really are.

5 Conclusion

This paper is part of a large body of work that focuses on the meaning and foundations
of rationality in economic models. “Rational” behavior is typically interpreted to mean
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that decision makers have well-defined, stable preferences, and act optimally given these
preferences. In contrast, a large body of experimental work, combined with casual ob-
servation, suggests that individuals often behave in ways that are inconsistent with these
rationality assumptions. One approach to explaining such “irrational” behavior is to
attribute it to various bounds on the rationality of agents, such as limited computational
ability, limited memory, and so on. Instead our work has followed an alternative, more
recent approach by exploring the evolutionary foundations of rationality assumptions.
This approach, by focusing on the evolution of preferences, shows that in a variety of
contexts individuals can actually obtain higher payoffs if they strive to maximize some
distorted form of their actual payoffs. While work along these lines has been successful
in providing foundations for various types of deviations from true payoff maximization,
it is often criticized on two important grounds (see e.g., Samuelson, 2001). First, spe-
cific results typically consider preferences and dispositions that are carefully tailored to
the particular game of interest, which raises the question of how robust such specific
examples are and whether they extend to more general types of preferences and disposi-
tions. Second, most of the existing work modeling the evolution of preferences assumes
that preferences are perfectly observed, while it is unclear whether this assumption is
reasonable or whether the results obtained still hold if this assumption is relaxed.

Our work addresses both of these questions. Under the assumption that preferences
are observable, we show that in almost every game and for almost every type of dis-
tortion of a player’s actual payoffs, some extent of this distortion is beneficial to the
player because of the resulting effect on opponents’ play. Hence, any standard evolu-
tionary process in which selection dynamics are monotone in payoffs will not eliminate
such distortions; in particular, under any such selection dynamics, the population will
not converge to payoff maximizing behavior. This implies in turn that the evolutionary
viability of dispositions is generic, and independent of the particular parametric models
employed in most of the literature. We also show that the viability of dispositions may
be robust to unobservability of preferences. Although the lack of local uniqueness of
Bayesian equilibria in models with unobserved preferences precludes an extension of our
results to general settings with imperfect observability, when the Bayesian equilibrium is
unique (as the examples in Section 4 illustrate) dispositions remain evolutionarily viable
in the sense that the population still does not converge to payoff maximizing behavior.
Moreover, in settings where preferences are perfectly observed in a fraction of interac-
tions and completely unobserved in others and in settings in which the players convey
(costly) information about their preferences, it is even possible to completely characterize
the limiting distribution, and to show that for generic combinations of parameters, the
population will converge over time to a monomorphic type whose objective function does
not coincide with actual payoffs.

The generic value of dispositions in strategic settings suggests that when contem-
plating the design of particular institutions, such as markets, auctions, or committees,
it may be important to consider not only the equilibrium behavior of payoff-maximizing
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agents, but the equilibrium behavior of individuals whose behavior is biased by various
dispositions as well. Moreover, the institutions themselves may influence the long-run
preferences of participating agents; that is, preferences may be in part an endogenous
feature of the particular institutional framework. Preliminary analysis in this vein in-
cludes Bar-Gill and Fershtman (2001), Güth and Ockenfels (2001), Fershtman and Heifetz
(2002), and Heifetz et al. (2002). More generally, the approach has the potential to illu-
minate other aspects of “intrinsic motivation” (see e.g., Kreps, 1997) not fully captured
by other theories, in issues ranging from corporate culture to the relations between culture
and exogenous economic factors. These questions seem to present promising avenues for
future research.

6 Appendix

In order to prove Theorems 1 and 2 we proceed with a sequence of lemmata. We make
repeated use of the following standard definition and theorem, which we include here for
completeness.15

Definition 7 (regular value) Let X and S be boundaryless, Cr manifolds, and G : X ×
S → RK be a Cr function, where r ≥ 1. An element y ∈ RK is a regular value of G if
for all (x, s) such that G(x, s) = y, the derivative Dx,sG(x, s) is surjective.

In particular, notice that if there are no points (x, s) such that G(x, s) = y, then y is
trivially a regular value of G.

Remark 4: In the arguments below we will frequently need to show that zero is a regular
value of various maps. To this end we will rely on two useful observations. First, we
will repeatedly use the assumption that these manifolds contain an open set around each
point consisting of a particular type of perturbation. More precisely, fix (Πi,Πj) ∈ G
and recall that we assume that there exist open neighborhoods P,Q ⊆ RM+N+M of zero
such that (Π̄i(·, ·, p), Π̄j(·, ·, q)) ∈ G for each (p, q) ∈ P × Q, where Π̄i and Π̄j are given
in (2.8). Now let h : X i × Xj × G → RK be an arbitrary C1 function. Then zero is
a regular value of h provided Dh(xi, xj,Πi,Πj) has rank K (i.e., is surjective) for each
(xi, xj,Πi,Πj) ∈ h−1(0). Given our assumptions about G, to show that Dh(xi, xj,Πi,Πj)
has rank K it then suffices to show that

Dp,qh(x
i, xj, Π̄i(xi, xj, 0), Π̄j(xi, xj, 0))

has rank K.

Second, if the derivative
Di,jh(x

i, xj,Πi,Πj)

15For example, see Hirsch (1976).
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does not have rank K for any (xi, xj) ∈ X i × Xj, then zero can be a regular value of
h(·, ·,Πi,Πj) only if h(xi, xj,Πi,Πj) 6= 0 for all (xi, xj) ∈ X i ×Xj.

Theorem 3 (The transversality theorem). LetX and S be finite-dimensional, bound-
aryless, Cr manifolds and G : X×S → RK be a Cr function, where r > max {0, dim X−
K}. For each s ∈ S let G(·, s) be the restriction of G to X × {s}. If y ∈ RK is
a regular value of G, then for almost every s ∈ S, y is a regular value of G(·, s).
In addition, if s 7→ G(·, s) is continuous in the Whitney Cr topology, then {s ∈ S :
s is a regular value of G(·, s)} is open.

The first step in our argument is to show that equilibria are locally unique in almost
all games. To that end, we first define the class of regular games. We will slightly abuse
terminology by referring to a pair of payoff functions (Πi,Πj) as a game (recall that the
strategy spaces X i, Xj remain fixed throughout).

Definition 8 (Regular games) A game is called regular if at each of its Nash equilibria
(yi, yj), the (M +N)× (M +N) matrixµ

Πi
ii(y

i, yj) Πi
ij(y

i, yj)

Πj
ji(y

i, yj) Πj
jj(y

i, yj)

¶
has full rank. We denote by R ⊆ G the set of regular games.

Our first lemma shows that almost all games are regular.

Lemma 1 The set of regular games R is an open, full-measure subset of G.

Proof. Fix a game (Πi,Πj) ∈ G. Since the strategy spaces X i,Xj are open, Nash
equilibria of the game are interior. Thus, at each Nash equilibrium (yi, yj) of the game,
the following system of M +N first order conditions holds:µ

Πi
i(y

i, yj)

Πj
j(y

i, yj)

¶
= 0.

Define the map φ : X i ×Xj × G → RM+N by

φ(·, ·,Πi,Πj) =

µ
Πi
i(·, ·)

Πj
j(·, ·)

¶
.

Consider the derivative

Dp1,q2φ(y
i, yj, Π̄i(·, ·, 0), Π̄j(·, ·, 0)) =

µ
IM 0
0 IN

¶
,
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where IM and IN are the M ×M and N × N identity matrices. Since the matrix has
rank M +N for each (yi, yj), it follows from Remark 4 that zero is a regular value of φ.
Therefore, the transversality theorem implies that there is a set of full measure R ⊂ G
such that zero is a regular value of φ(·, ·,Πi,Πj) for each game (Πi,Πj) ∈ R. For each
(Πi,Πj) ∈ R, the definition of regular value and the fact that zero is a regular value of
φ(·, ·,Πi,Πj) implies that the derivative

Di,jφ(y
i, yj,Πi,Πj) =

µ
Πi
ii(y

i, yj) Πi
ij(y

i, yj)

Πj
ji(y

i, yj) Πj
jj(y

i, yj)

¶
has full rank M + N at each Nash equilibrium (yi, yj) of (Πi,Πj). Thus, using the
definition of a regular game, a game (Πi,Πj) ∈ G is regular if and only if 0 is a regular
value of φ(·, ·,Πi,Πj), that is, R = R. Thus R has full measure.

Finally, since the map (Πi,Πj) 7→ φ(·, ·,Πi,Πj) is continuous in the Whitney C1

topology, R is open by the transversality theorem.

The next lemma shows that in a regular game, the Nash equilibrium correspondence
is locally single-valued in a neighborhood of zero. This feature allows us to study the
effects of small dispositions on the true equilibrium payoffs in a well-defined manner.

Lemma 2 Consider a regular game (Πi,Πj) and let (yi, yj) be a Nash equilibrium of the
game. For any pair of dispositions (Bi, Bj) ∈ B, there is a neighborhood V0 of τ = 0
and a unique C1 function

Z(·) ≡ (yi (·, 0) , yj(·, 0)) : V0 → X i ×Xj,

such that (yi (0, 0) , yj(0, 0)) = (yi, yj) and (yi (τ , 0) , yj(τ , 0)) is a Nash equilibrium of the
game (Πi +Bi,Πj) when τ ∈ Vo. Moreover,µ

Πi
ii(y

i, yj) Πi
ij(y

i, yj)

Πj
ji(y

i, yj) Πj
jj(y

i, yj)

¶µ
yiτ(0, 0)
yjτ(0, 0)

¶
=

µ −Bi
iτ(y

i, yj, 0)
0

¶
. (A.1)

Proof. Suppose that θ = 0 (player j has no disposition), so that Bj(·, ·, 0) ≡ 0. Then
a Nash equilibrium (yi (τ , 0) , yj (τ , 0)) of the game (Πi + Bi,Πj) satisfies the following
system of M +N first order conditionsµ

Πi
i(y

i, yj) +Bi
i(y

i, yj, τ)

Πj
j(y

i, yj)

¶
= 0. (A.2)

Since Bi(·, ·, 0) ≡ 0, Bi
i(y

i, yj, 0) ≡ 0, hence at τ = 0 this system becomesµ
Πi
i(y

i, yj)

Πj
j(y

i, yj)

¶
= 0.
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Since the game (Πi,Πj) is regular, zero is a regular value of the mapµ
Πi
i(·, ·)

Πj
j(·, ·)

¶
: RM+N → RM+N .

The implicit function theorem then implies that the Nash equilibrium map Z(·) ≡
(yi (·, 0) , yj(·, 0)) is locally defined and C1 in a neighborhood V0 of τ = 0. Finally,
since Bi(·, ·, 0) ≡ 0, Bi

ii(y
i, yj, 0) = Bi

ij(y
i, yj, 0) ≡ 0. Then (A.1) follows by differentiat-

ing (A.2) with respect to τ and evaluating at τ = 0.

Now let U = G × B be the manifold of perceived payoff functions, so

U = ©¡U i, U j
¢
= (Πi +Bi,Πj +Bj) : X i ×Xj ×R→ R2|(Πi,Πj) ∈ G, (Bi, Bj) ∈ Bª .

(A.3)
Since, Bi(xi, xj, 0) ≡ Bj(xi, xj, 0) ≡ 0, the projection PrG : U → G maps (U i, U j) to the
corresponding game

PrG(U i, U j) ≡ ¡U i(·, ·, 0), U j(·, ·, 0)¢ ,
while the projection PrB : U → B maps (U i, U j) to the corresponding dispositions

PrB(U i, U j) ≡ ¡U i − U i(·, ·, 0), U j − U j(·, ·, 0)¢ .
By Lemma 1, the set UR ≡ R× B is an open, full-measure subset of U .

Lemma 3 There is an open, full-measure subset UB ⊆ UR of perceived payoff functions
(U i, U j) for which Bi

iτ(y
i, yj, 0) 6= 0 at each Nash equilibrium (yi, yj) of (Πi,Πj).

Proof. Let ξ : X i ×Xj × UR → RM+N+M be given by

ξ(·, ·,Πi,Πj, Bi, Bj) =

 Πi
i(·, ·)

Πj
j(·, ·)

Bi
iτ(·, ·, 0)

 .

Since (Πi,Πj) is a regular game, by definition the (M +N)× (M +N) matrixµ
Πi
ii(y

i, yj) Πi
ij(y

i, yj)

Πj
ji(y

i, yj) Πj
jj(y

i, yj)

¶
has rank M +N at each Nash equilibrium (yi, yj) of (Πi,Πj). Therefore, the derivative

Di,j,vξ(y
i, yj,Πi,Πj, B

i
(·, ·, ·, 0), Bj

(·, ·, ·, 0)) =
 Πi

ii(y
i, yj) Πi

ij(y
i, yj) 0

Πj
ji(y

i, yj) Πj
jj(y

i, yj) 0
Bi
iτi(y

i, yj, 0) Bi
iτj(y

i, yj, 0) IM


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has rank M + N +M at each Nash equilibrium (yi, yj) of (Πi,Πj). Consequently, by
Remark 4, zero is a regular value of ξ. Therefore, the transversality theorem implies
that there is a full-measure subset UB ⊆ UR such that zero is a regular value of the map
ξ(·, ·,Πi,Πj, Bi, Bj) for all (Πi + Bi,Πj + Bj) ∈ UB. Since the map (Πi,Πj, Bi, Bj) 7→
ξ(·, ·,Πi,Πj, Bi, Bj) is continuous in theWhitney C1 topology, UB is open by the transver-
sality theorem as well.

Let (Πi +Bi,Πj +Bj) ∈ UB. Since the derivative

Di,jξ(x
i, xj,Πi,Πj, Bi, Bj) =

 Πi
ii(x

i, xj) Πi
ij(x

i, xj)

Πj
ji(x

i, xj) Πj
jj(x

i, xj)
Bi
iτi(x

i, xj, 0) Bi
iτj(x

i, xj, 0)


has onlyM+N columns, it cannot have rankM+N+M for any (xi, xj) ∈ X i×Xj. By
Remark 4, zero can be a regular value of ξ(·, ·,Πi,Πj, Bi, Bj) only if ξ(xi, xj,Πi,Πj, Bi, Bj) 6=
0 for all (xi, xj) ∈ X i × Xj. Therefore, at a (interior) Nash equilibrium (yi, yj) of the
game (Πi,Πj), where µ

Πi
i(y

i, yj)

Πj
j(y

i, yj)

¶
= 0,

we must have Bi
iτ(y

i, yj, 0) 6= 0.

Let Π̃j
ji(x

i, xj, q) be the M ×M matrix consisting of the first M rows of Π̄j
ji(x

i, xj, q).

If Π̃j
ji(x

i, xj, 0) has rank M − k, it takes k consecutive first-order perturbations (of its
diagonal entries, for example) to produce a matrix of full rank. This idea is formalized
in the following lemma.

Lemma 4 For each k = 0, . . . ,M there is an open, full-measure subset Uk ⊆ UB such
that for every (Πi,Πj) ∈ PrG(Uk),

∂M−k

∂q31∂q
3
2 . . . ∂q

3
M−k

det Π̃j
ji(y

i, yj, 0) 6= 0

at each Nash equilibrium (yi, yj) of (Πi,Πj).

Proof. We proceed by induction on k. For the base case k = 0, we claim that for
any Πi and any (yi, yj, q)

∂M

∂q31∂q
3
2 . . . ∂q

3
M

det Π̃j
ji(y

i, yj, q) = 1. (A.4)
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This follows because the determinant of Π̃j
ji(·, ·) is a sum of products, of M factors each,

and the derivative with respect to (q31, . . . , q
3
M) of each of these products is zero with the

exception of the diagonal product
QM

m=1
∂2Πj

∂x
j
m∂xim

. For this term, note that

∂2Πj(yi, yj, q)

∂xjm∂xim
= q3m,

for each (yi, yj, q), so
MY
m=1

∂2Πj(yi, yj, q)

∂xjm∂xim
=

MY
m=1

q3m

which implies that for any (yi, yj, q),

∂M

∂q31∂q
3
2 . . . ∂q

3
M

Ã
MY
m=1

∂2Πj(yi, yj, q)

∂xjm∂xim

!
= 1.

Now suppose that the claim holds for k = 0 − 1. Then we claim there is an open,
full-measure subset U� ⊆ U�−1 such that for games (Πi,Πj) that correspond to perceived
payoff functions in U�, zero is a regular value of the map

ψ(·, ·,Πi,Πj) ≡

 Πi
i(·, ·)

Πj
j(·, ·)

∂M−�

∂q31∂q
3
2 ...∂q

3
M

det Π̃j
ji(·, ·, 0)

 : X i ×Xj × G → RM+N+1. (A.5)

To see this, note that the derivative

Dp1,q1,q3
M−(�−1)

ψ(yi, yj, Π̄i(·, ·, 0), Π̄j(·, ·, 0)) =



IM 0 0

0 IN

0
...

yiM−(�−1)
...
0

0 0 ∂M−(�−1)
∂q31∂q

3
2 ...∂q

3
M

det Π̃j
ji(y

i, yj, 0)


(A.6)

has rank M +N + 1 at each Nash equilibrium (yi, yj) of the game (Πi,Πj) ∈ PrG(U�−1).
Consequently, by Remark 4, zero is a regular value of ψ. Therefore, the transversality
theorem implies that there exists a set of full measure U� ⊂ U�−1 such that zero is a regular
value of ψ(·, ·,Πi,Πj) for each (Πi,Πj) ∈ PrG(U�). Since the map (Πi,Πj) 7→ ψ(·, ·,Πi,Πj)
is continuous in theWhitney C1 topology, U∗ is an open subset of UM by the transversality
theorem.
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Let (Πi +Bi,Πj +Bj) ∈ U∗. Since the derivative

Di,jζ(x
i, xj,Πi,Πj, Bi, Bj) =

 Πi
ii(y

i, yj) Πi
ij(y

i, yj)

Πj
ji(y

i, yj) Πj
jj(y

i, yj)
Di

¡
Πi
j(y

i, yj)yjτ(0, 0)
¢

Dj

¡
Πi
j(y

i, yj)yjτ(0, 0)
¢


has only M +N columns, it cannot have rank M +N + 1. By Remark 4, zero can be a
regular value of ζ(·, ·,Πi,Πj, Bi, Bj) only if ζ(xi, xj,Πi,Πj, Bi, Bj) 6= 0 for all (xi, xj) ∈
X i ×Xj. Thus if (Πi,Πj) ∈ PrG(U∗) and (yi, yj) is a (interior) Nash equilibrium of the
game (Πi,Πj), so that Πi

i(y
i, yj) = Πj

j(y
i, yj) = 0, then we must have Πi

j(y
i, yj)yjτ(0, 0) 6=

0, as required.

Lemma 5 Let (U i, U j) ∈ UM , (Πi,Πj) = PrG(U i, U j) and (Bi, Bj) = PrB(U i, U j). For
every Nash equilibrium (yi, yj) of (Πi,Πj), yjτ (0, 0) 6= 0.

Proof. Let (U i, U j) ∈ UM , (Πi,Πj) = PrG(U i, U j) and (Bi, Bj) = PrB(U i, U j).
Let (yi, yj) be a Nash equilibrium of (Πi,Πj). Now recall from Lemma 4 that for
each k = 0, . . . ,M there is an open, full-measure subset Uk ⊆ UB such that for every
(Πi,Πj) ∈ PrG(Uk),

∂M−k

∂q31∂q
3
2 . . . ∂q

3
M−k

det Π̃j
ji(y

i, yj, 0) 6= 0.

When k =M , this implies that

det Π̃j
ji(y

i, yj) 6= 0.
Hence, Πj

ji(y
i, yj) has rank M .

Now note from (A.1) that

Πj
ji(y

i, yj)yiτ(0, 0) +Πj
jj(y

i, yj)yjτ (0, 0) = 0, (A.7a)

and
Πi
ii(y

i, yj)yiτ (0, 0) +Πi
ij(y

i, yj)yjτ(0, 0) = −Bi
iτ(y

i, yj, 0), (A.7b)

and suppose by way of contradiction that yjτ (0, 0) = 0. Since Π
j
ji(y

i, yj) has rank M , it
is injective. Then since yjτ (0, 0) = 0, (A.7a) implies that yiτ(0, 0) = 0. Recalling from
Lemma 3 that −Bi

iτ(y
i, yj, 0) 6= 0, this means that (A.7b) cannot hold, a contradiction.

Lemma 6 There is an open, full-measure subset U∗ ⊆ UM such that if (Πi,Πj) =
PrG(U i, U j) and (Bi, Bj) = PrB(U i, U j) for some (U i, U j) ∈ U∗, then for every Nash
equilibrium (yi, yj) of the game (Πi,Πj),

Πi
j(y

i, yj)yjτ(0, 0) 6= 0.
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Proof. Denote by Jn the (M +N)× (M +N) matrix obtained fromµ
Πi
ii(y

i, yj) Πi
ij(y

i, yj)

Πj
ji(y

i, yj) Πj
jj(y

i, yj)

¶
after replacing the n-th column by

−Bi
iτ(y

i, yj, 0)
0
...
0

 .

Then by (A.1) and Cramer’s rule

yjτ (0, 0) =

. . . ,
detJn

det

µ
Πi
ii(y

i, yj) Πi
ij(y

i, yj)

Πj
ji(y

i, yj) Πj
jj(y

i, yj)

¶ , . . .

 .

In particular, note that yjτ(0, 0) is independent of p
2.

Let ζ : Xi ×Xj × G × B → RM+N+1 be given by

ζ(·, ·,Πi,Πj, Bi, Bj) =

 Πi
i(·, ·)

Πj
j(·, ·)

Πi
j(·, ·)yjτ(0, 0)

 . (A.8)

Since yjτ(0, 0) is independent of p
2 and since Dp2Π̄

i
j(·, ·, p) = 1,

Dp2

¡
Π̄i
j(y

i, yj, p)yjτ(0, 0)
¢
= yjτ(0, 0).

Since by Lemma 5, yjτ(0, 0) 6= 0, it follows that if (yi, yj) is a Nash equilibrium of (Πi,Πj),
then the derivative

Dp1,q2,p2ζ(y
i, yj, Π̄i, Π̄j, Bi, Bj) =

 IM 0 0
0 IN 0
0 0 yjτ(0, 0)


has rankM+N+1. Consequently, by Remark 4, zero is a regular value of ζ. Therefore,
by the transversality theorem, there is a full-measure subset U∗ ⊂ UM such that zero is
a regular value of ζ(·, ·,Πi,Πj, Bi, Bj) for all (Πi +Bi,Πj +Bj) ∈ U∗. Since the map
(Πi,Πj, Bi, Bj) 7→ ζ(·, ·,Πi,Πj, Bi, Bj) is continuous in the Whitney C1 topology, U∗ is
an open subset of UM by the transversality theorem.

Let (Πi +Bi,Πj +Bj) ∈ U∗. Since the derivative

Di,jζ(x
i, xj,Πi,Πj, Bi, Bj) =

 Πi
ii(y

i, yj) Πi
ij(y

i, yj)

Πj
ji(y

i, yj) Πj
jj(y

i, yj)
Di

¡
Πi
j(y

i, yj)yjτ(0, 0)
¢

Dj

¡
Πi
j(y

i, yj)yjτ(0, 0)
¢

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has only M +N columns, it cannot have rank M +N + 1. By Remark 4, zero can be a
regular value of ζ(·, ·,Πi,Πj, Bi, Bj) only if ζ(xi, xj,Πi,Πj, Bi, Bj) 6= 0 for all (xi, xj) ∈
X i ×Xj. Thus if (Πi,Πj) ∈ PrG(U∗) and (yi, yj) is a (interior) Nash equilibrium of the
game (Πi,Πj), so that Πi

i(y
i, yj) = Πj

j(y
i, yj) = 0, then we must have Πi

j(y
i, yj)yjτ(0, 0) 6=

0, as required.

Lemma 7 For perceived payoffs (U i, U j) ∈ U∗, f iτ(0, 0) 6= 0.

Proof. At (τ , θ) = (0, 0) we have

f iτ(0, 0) = Πi
i(y

i, yj)yiτ(0, 0) +Πi
j(y

i, yj)yjτ(0, 0).

As (yi, yj) is a Nash equilibrium, Πi
i(y

i, yj) = 0. By Lemma 6, Πi
j(y

i, yj)yjτ (0, 0) 6= 0.
Hence f iτ(0, 0) 6= 0.

Next, consider the “fitness” game in which players i and j choose their types, τ and
θ, to maximize their fitness, f i(τ , θ) and f j(τ , θ). Note that Lemma 7 shows that for
perceived payoffs (U i, U j) ∈ U∗, the profile (τ , θ) = (0, 0) is not a Nash equilibrium of
this fitness game, since f iτ(0, 0) means that player i’s best response to θ = 0 is nonzero.
Moreover, this will be enough to allow us to conclude that the dispositions do not become
asymptotically extinct under any regular payoff-monotonic selection dynamics, as the
next lemma shows.

Lemma 8 If the dispositions (Bi, Bj) asymptotically become extinct in the game (Πi,Πj),
then the types (τ , θ) = (0, 0) are a Nash equilibrium of the fitness game.

Proof. Let δ0 denote the unit mass at (0, 0). Suppose, by way of contradiction,
that (τ , θ) = (0, 0) is not a Nash equilibrium of the fitness game. Then without loss
of generality, for some τ 6= 0 we have f i(τ , 0) > f i(0, 0). Since f i is continuous, there
exists a neighborhood A of δ0 and neighborhoods V0 of 0 and Vτ of τ such that if Θ ∈ A,
τ̂ ∈ V0 and τ̃ ∈ Vτ , then

R
f i(τ̃ , θ)dΘt >

R
f i(τ̂ , θ)dΘt. Now since (Bi, Bj) becomes

asymptotically extinct, there exists t0 sufficiently large so that for every t ≥ t0, Θt ∈ A,
and hence for every t ≥ t0,

R
f i(τ̃ , θ)dΘt >

R
f i(τ̂ , θ)dΘt for any τ̃ ∈ Vτ and τ̂ ∈ V0.

Then, using (2.6), the growth rates satisfy gi(τ̃ ,Θt) > gi(τ̂ ,Θt) for every t ≥ t0, τ̃ ∈ Vτ
and τ̂ ∈ V0 as well. By (2.5), this implies that for t ≥ t0 we have d

dt
Tt(Vτ̃) > d

dt
Tt(V0).

This means that Tt does not converge weakly to δ0, a contradiction.

Proof of Theorem 1. Part (i) of the theorem follows immediately from Lemma 7. As
for part (ii), Lemma 8 implies that if (τ , θ) = (0, 0) is not a Nash equilibrium of the fitness
game then the dispositions (Bi, Bj) do not become asymptotically extinct. Since Lemma
7 implies that for perceived payoffs in U∗, (τ , θ) = (0, 0) is not a Nash equilibrium of the
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fitness game, it follows that for (U i, U j) ∈ U∗, the dispositions (Bi, Bj) = PrB (U i, U j)
do not become asymptotically extinct in the game (Πi,Πj) = PrG (U i, U j). ¥

Proof of Theorem 2. Let

P =
n¡

Πi,Πj, Bi, Bj
¢ ∈ G̃ × B̃ : f iτ (0, 0) 6= 0o .

Thus every (Πi,Πj, Bi, Bj) ∈ P satisfies part (i) of the theorem, and by Lemma 8 it also
satisfies part (ii). It remains to show that P is finitely prevalent in G̃ × B̃. To this end,
we first claim that P is open. To see this, note that by (2.10),

f iτ (0, 0) = Πi
i

¡
yi(0, 0), yj(0, 0)

¢
yiτ(0, 0) +Πi

j

¡
yi(0, 0), yj(0, 0)

¢
yjτ(0, 0)

and by (A.1) and (A.2), yi(0, 0), yj(0, 0), yiτ(0, 0) and y
j
τ (0, 0) are continuous in (Π

i,Πj, Bi, Bj)
on G̃ × B̃. Thus Πi

i (y
i(0, 0), yj(0, 0)) and Πi

j (y
i(0, 0), yj(0, 0)) are continuous on G̃ × B̃ as

well. This implies that f iτ(0, 0) is continuous in (Π
i,Πj, Bi, Bj) on G̃ × B̃, which suffices

to show that P is an open subset of G̃ × B̃.
Now let

V =

(
(bΠi, bΠj) ∈ G̃ | bΠi(xi, xj) =

MX
m=1

p1mx
i
m +

NX
n=1

p2nx
j
n +

MX
m=1

p3mx
i
mx

j
m

for some p ∈ RM+N+M ,

bΠj(xi, xj) =
MX
m=1

q1mx
i
m +

NX
n=1

q2nx
j
n +

MX
m=1

q3mx
i
mx

j
m

for some q ∈ RM+N+M
ª
,

and

W =

(
( bBi, bBj) ∈ B̃ | bBi(xi, xj, τ) = τ

MX
m=1

vmx
i
m for some v ∈ RM ,

bBj(xi, xj, θ) = θ
NX
n=1

wnx
j
n for some w ∈ RN

)
.

Now by Theorem 1, for every (Πi,Πj, Bi, Bj) ∈ G̃×B̃, [(V ×W) + (Πi,Πj, Bi, Bj)]∩P
has full measure in V × W. Equivalently, (P − (Πi,Πj, Bi, Bj)) ∩ (V ×W) has full
measure in V × W . Thus P is finitely prevalent. Since finitely prevalent sets are
prevalent, the proof is complete. ¥

To prove Proposition 1 we need the following theorem, which is of independent in-
terest. It generalizes Theorem 1 in Samuelson and Zhang (1992) to the case of games
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with infinitely many strategies. In keeping with the example, we state the theorem
for symmetric two-player games with a compact strategy space; the result carries over
however to asymmetric games with virtually the same proof.

To state this result we need some additional notation. We consider a symmetric game
with common strategy space T and payoff function f : T × T → R. Let D denote the
set of serially dominated strategies in this game, so that D = ∪∞n=0Dn where D0 = ∅ and
for n ≥ 1,

Dn = {t ∈ T \Dn−1 : ∃s ∈ T \Dn−1 such that f(s, r) > f(t, r) ∀r ∈ T \Dn−1}
Analogously, let U denote the set of serially undominated strategies in this game, so that
U = T \D. Equivalently, U = ∩∞n=0Un where U0 = T and for n ≥ 1,

Un = {t ∈ T \Dn−1 : ∀s ∈ T \Dn−1 ∃r ∈ T \Dn−1 s.t. f(t, r) ≥ f(s, r)}

Theorem 4 Let T be a compact space of strategies, f : T × T → R be the continuous
payoff function of a symmetric two-player game, and g : T × T → R a regular, pay-
off monotonic growth-rate function. Let Gt be the population dynamics defined by the
differential equation

d

dt
Gt(A) =

Z
A

g(t, Gt)dGt, A ⊆ T Borel measurable (A.9)

given initial distribution G0. For every strategy d ∈ D there is a neighborhood Wd ⊂ T
such that lim

t→∞
Gt(Wd) = 0. In particular, if the game is dominance solvable, so that

U = {u} for some u ∈ T , then Gt converges in distribution to the unit mass at u.

Proof. We prove by induction that for each n, Un is compact, and for every strategy
d ∈ Dn there is a neighborhood Wd ⊂ T for which lim

t→∞
Gt(Wd) = 0.

Since D0 = ∅ and U0 = T, the claim holds for n = 0. If D1 = ∅ as well, i.e. no
strategies are strictly dominated, then the claim holds vacuously. So without loss of
generality assume D1 6= ∅. Now suppose that the claim holds for n < k.

We first prove that Uk is compact. Since Uk ⊂ T and T is compact, it suffices to
show that Uk is closed. To that end, let {tn} ⊂ Uk and tn → t. Let s ∈ T \ Dk−1.
Since {tn} ⊂ Uk, for each n there exists rn ∈ Uk−1 such that f(tn, rn) ≥ f(s, rn). By
the inductive hypothesis, Uk−1 is compact, hence {rn} has a convergent subsequence.
Without loss of generality, take rn → r for some r ∈ Uk−1. Then since f is continuous,
f(t, r) ≥ f(s, r). Hence t ∈ Uk, which shows that Uk is closed.

Next we show that for each d ∈ Dk there is an open neighborhood Wd such that
lim
t→∞

Gt(Wd) = 0. To this end, let d ∈ Dk and let x ∈ Uk−1 be such that

f(x, y)− f(d, y) > 0 for all y ∈ Uk−1
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Let
B = {y ∈ T |f(x, y)− f(d, y) ≤ 0} ,

Since f is continuous, B is a compact subset of T , and by choice of d and x, B ⊂ Dk−1. In
particular, B is a proper subset of Dk−1, since Dk−1 is open by the induction hypothesis.
Now let

s =
1

2
sup

y∈Dk−1
[f(x, y)− f(d, y)] , (A.10)

and
C = {y ∈ Dk−1|f(x, y)− f(d, y) ≤ s} .

Since B ( Dk−1, s > 0.

By the induction assumption, for each y ∈ C there exists a neighborhood Wy of y
such that Gt(Wy) → 0. Then {Wy : y ∈ C} is an open cover of C. As C is compact,
there is a finite subcover {Wy1, . . . ,WyK}, and for each t, Gt(C) ≤

P
Gt(Wyk). Thus

Gt(C)→ 0 as t→∞.
Now note that by construction,

f(x, y)− f(d, y) > s for all y ∈ Dk−1 \ C
and

f(x, y)− f(d, y) > 0 for all y ∈ T \Dk−1

Since f is continuous and Uk−1 is compact, there exists s̄ > 0 and open neighborhoods
Vx 3 x and Wd 3 d such that for every x0 ∈ V x and d0 ∈W d,

f(x0, y)− f(d0, y) ≥ s/2 for all y ∈ Dk−1 \ C
and

f(x0, y)− f(d0, y) ≥ s̄ for all y ∈ T \Dk−1

Since f is continuous on the compact set T , there exists a bound M such that
|f(w, z)| ≤M for all (w, z) ∈ T ×T . Now set ε = min

©
s
2
, s̄, 1

2

ª
. There exists t̄ such that

for each t ≥ t̄, Gt(C) ≤ ε
8M

and Gt(T \ C) > 1− ε. Then for any x0 ∈ V x, d
0 ∈ W d and

t ≥ t,

f(x0, Gt)− f(d0, Gt) =

Z
T

[f(x0, y)− f(d0, y)] dGt

=

Z
C

[f(x0, y)− f(d0, y)] dGt +

Z
T\C

[f(x0, y)− f(d0, y)] dGt

> (−2M) ε

8M
+ ε(1− ε) ≥ −ε

4
+ ε(1− 1

2
) =

ε

4
. (A.11)

By the continuity of f, (A.11) holds also when Gt is replaced by any probability
measure µ ∈ A ≡ {Gt}t≥t, the closure of {Gt}t≥t in the weak topology.
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Now, by the payoff monotonicity of the growth-rate function g, for every µ ∈ A,
x0 ∈ V x and d0 ∈W d,

g(x0, µ)− g(d0, µ) > 0.

The continuous function g(x0, µ) − g(d0, µ) attains its minimum on the compact set
V x ×W d× A. Therefore, there exists δ > 0 such that

g(x0, Gt)− g(d0, Gt) ≥ δ for any x0 ∈ V x, d0 ∈W d, and t ≥ t. (A.12)

Then (A.12) also holds if we replace g(x0, Gt) and g(d0, Gt) by their averages in V x

and W d, respectively. Thus for t ≥ tR
V x

g(y,Gt)dGt

Gt(V x)
−
R
Wd

g(y,Gt)dGt

Gt(W d)
≥ δ. (A.13)

Hence, by (A.9), for t ≥ t,

Gt(V x)

Gt(W d)
≥ Gt(V x)

Gt(W d)
exp[δ(t− t)]→t→∞ ∞. (A.14)

Therefore, lim
t→∞

Gt(Wd) = 0, as required.

Proof of Proposition 1. Consider the fitness game in which players i and j simulta-
neously choose their types, τ and θ, to maximize their respective fitness, f i and f j. The
best-response functions in this game are

BRi(θ) =
b2 ((2− b)α− bθ)

4(2− b2)
, BRj(τ) =

b2 ((2− b)α− bτ )

4(2− b2)
.

Then the strategy sets are one-dimensional compact intervals, the functions f i and f j

are smooth and strictly concave in the players’ own strategies, and the slopes of the
best-response functions are less than 1 in absolute value. It follows from Moulin (1984,
Theorem 4) that the game can be solved by iterated elimination of strongly dominated
strategies. The unique outcome that survives this process is

τ ∗ = θ∗ =
b2α

4 + 2b− b2
> 0.

By Theorem 4 in the Appendix, all other types which are serially dominated (i.e., do not
survive the iterated elimination process) become asymptotically extinct under any regular
payoff-monotonic selection dynamics. Consequently, the selection dynamics converges to
a unit mass at b2α

4+2b−b2 . ¥

Proof of Proposition 2. When preferences are mutually observable, the equilibrium
actions are specified in (3.4). When preferences are unobservable, we look for a Bayesian
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Nash equilibrium in which each player forms a belief about her opponent’s action and
plays a best-response given this belief. To characterize this equilibrium, let x be the
average action in the population. Then the perceived average payoff of player i whose
type is τ i when taking action xi is given by:

U i(xi, x; τ) = (α + τ − bx− xi)xi. (A.15)

The problem of player j is analogous. The best-responses of players i and j against x
are:

BRi(x; τ) =
α + τ − bx

2
, BRj(x; θ) =

α + θ − bx

2
. (A.16)

On the equilibrium path, the beliefs of the two players about x must be correct. Taking
expectations on both sides of equation (A.16), using ω to denote the average type in the
(current) population, and solving for x yields:

x =
α + ω

2 + b
.

That is, when a player cannot observe the other player’s preferences, the player (correctly)
anticipates that given ω, the rival will play on average x. Substituting for x in BRi(x; τ)
and BRj(x; θ) yields equilibrium actions

byi = α+ τ − bα+ω
2+b

2
, byj = α + θ − bα+ω

2+b

2
.

Given byi and byj, the resulting payoff of player i when the types are mutually unobserved
is Ã

α− b
α + θ − bα+ω

2+b

2
− α + τ − bα+ω

2+b

2

!Ã
α + τ − bα+ω

2+b

2

!
. (A.17)

With probability 1 − ρ, preferences are observed and individual i’s payoff is as in (4.5),
whereas with probability ρ preferences are not observed and i’s payoff is given by (A.17).
Hence the expected fitness of player i when the player’s type is τ , the type of player j is
θ, and the current average type of player j in the population is ω is given by

f i(τ , θ; ρ, ω) = (1− ρ)
(2(α + τ)− b(α+ θ)) (2α− (2− b2)τ − b(α + θ))

(4− b2)2

+ρ

Ã
α− b

α + θ − bα+ω
2+b

2
− α+ τ − bα+ω

2+b

2

!Ã
α + τ − bα+ω

2+b

2

!
.

The expected fitness of player j is analogous.

32



As in the proof of Proposition 1, consider the fitness game in which i and j choose
their types, τ and θ, to maximize their fitness. The best-response function of player i in
this game is

BRi(θ; ρ, ω) =
4αb2 (2− b) (1− ρ)

2 (16− 8b2 + ρb4)
+

bρ (2− b) (4b+ 8− b3 − 2b2)
2 (16− 8b2 + ρb4)

ω (A.18)

−b (ρb
4 + 4b2 − 12ρb2 + 16ρ)

2 (16− 8b2 + ρb4)
θ.

The best response of player j, BRj(τ ; ρ, ω), is analogous.

In what follows we prove that the population converges over time to a stable monomor-
phic type. To this end, let τ ∗ = θ∗ be defined implicitly by the equation

τ ∗ = BRi(τ ∗; ρ, τ ∗). (A.19)

Solving this equation yields

τ ∗ = θ∗ =
2 (1− ρ) b2α

8 + 4b− 2b2 − ρb3
.

Note that τ ∗ ∈ T by the assumption that 2(1−ρ)b2α
8+4b−2b2−ρb3 ∈ T .

The idea behind the rest of the proof is as follows. The fitness game played at
each point in time depends on the current average type ω. Hence, we cannot prove
the convergence result as in Proposition 1 and need to use a more involved argument.
Yet, once it is determined that irrespective of the value of ω, types outside an interval
[τ �, τh] are serially dominated and hence asymptotically become extinct under any payoff-
monotonic selection dynamics, the average type ω will eventually converge to an interval
[τ �−δ, τh+δ], where δ is some small positive number.16 The fact that τ ∗ ∈ [τ �−δ, τh+δ]
enables us to show that further types are serially dominated and thus that types outside
some smaller interval [τ 0�, τ

0
h] ⊂ [τ �, τh] also asymptotically become extinct. The crux of

the argument is in showing that it is impossible for this iterative process to stop with an
interval of positive length.

We explore the evolution of the distribution of player i’s types, Tt. The evolution of
Θt is analogous. Let T = [τ , τ̄ ] and

←−τ = inf
n
τ 0 > τ ∗ : ∀τ > τ 0 ∃Vτ 3 τ , Vτ open, s.t. lim

t→∞
Tt (Vτ) = 0

o
(A.20a)

τ−→ = sup
n
τ 0 < τ ∗ : ∀τ < τ 0 ∃Vτ 3 τ , Vτ open, s.t. lim

t→∞
Tt (Vτ) = 0

o
(A.20b)

Here we use the convention that ←−τ = τ̄ if the infimum in (A.20a) ranges over an empty
set, and similarly that τ−→ = τ if the supremum in (A.20b) ranges over an empty set.

16A priori we cannot rule out the possibility that ω will either approach τ � from below or τh from
above, and therefore always remain outside the interval [τ �, τh]. As an intermediate step we first show
instead that ω will converge to some larger interval [τ� − δ, τh + δ].

33



Let ε > 0, and set A = [τ , τ−→ −
ε
2
] ∪ [←−τ + ε

2
, τ ]. Then A is a compact subset of T .

For each τ ∈ A, let Vτ be a neighborhood of τ as given in (A.20a,b). Then {Vτ : τ ∈ A}
is an open cover of A. Take a finite sub-cover Vτ1 , . . . , Vτn. Since limt→∞ Tt (Vτk) = 0
for each k = 1, . . . , n, there exists a time tε such that for t > tε, Tt (Vτk) < ε

2nM
for each

k = 1, . . . , n, where M = max{ε, τ − ¡←−τ + ε
2

¢
,
³
τ−→−

ε
2

´
− τ}. Hence, for t > tε we

conclude

Tt(A) ≤
nX

k=1

Tt (Vτk) <
ε

2M
.

Therefore, for t > tε the average type in the population, ω, satisfies the following in-
equalities:

ω <
ε

2M
τ +

³
1− ε

2M

´³←−τ + ε

2

´
=
³←−τ + ε

2

´
+

ε

2M

³
τ −

³←−τ + ε

2

´´
(A.21)

≤
³←−τ + ε

2

´
+

ε

2
=←−τ + ε,

and

ω >
ε

2M
τ +

³
1− ε

2M

´³
τ−→−

ε

2

´
=
³
τ−→−

ε

2

´
− ε

2M

³³
τ−→−

ε

2

´
− τ

´
(A.22)

≥
³
τ−→−

ε

2

´
− ε

2
= τ−→− ε.

These inequalities imply that for every ε > 0, there exists a time tε such that for every
t > tε, ω ∈ [ τ−→− ε,←−τ + ε].

Next, note from equation (A.18) that the slope of the best-response function of type
τ in the fitness game in the (τ , θ) space is given by

−2b(4− b2)2(4− 3b2)
(16− 8b2 + b4ρ)2

.

Now consider the case where b < 0. In this case, this slope is negative and less
than 1 in absolute value. Hence, fixing the value of ω, there exists a unique symmetric
Nash equilibrium in the fitness game. Moreover, since b < 0, equation (A.18) shows
that BRi(·; ρ, ω) is decreasing in ω. Hence, the “highest” symmetric Nash equilibrium
in the fitness game is attained when ω = max{ τ−→ − ε, τ} and the “lowest” equilibrium
is attained when ω = min{←−τ + ε, τ̄}. Let the highest and lowest symmetric Nash
equilibria be (←−τ ε,←−τ ε) and ( τ ε−→, τ ε−→), respectively. That is,

←−τ ε and τ ε−→ are the solutions to

the equations ←−τ ε = BRi(←−τ ε; ρ, ( τ−→− ε) ∨ τ) and τ ε−→ = BRi(τ ε−→; ρ, (
←−τ + ε) ∧ τ̄).

Noting that since b < 0, ∂(f i)2(τ,θ;ρ,ω)
∂τ∂ω

= bp

4
< 0, it follows that if ω < eω and τ < eτ ,

then
f i(eτ , θ; ρ, ω)− f i(τ , θ; ρ, ω) ≥ f i(eτ , θ; ρ, eω)− f i(τ , θ; ρ, eω).
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As a result, f i(eτ , θ; ρ, ω) < f i(τ , θ; ρ, ω) implies f i(eτ , θ; ρ, eω) < f i(τ , θ; ρ, eω) and similarly
f i(eτ , θ; ρ, eω) > f i(τ , θ; ρ, eω) implies f i(eτ , θ; ρ, ω) > f i(τ , θ; ρ, ω). These inequalities imply
in turn that types above ←−τ ε are serially dominated for t > tε, while types below τ ε−→ are

serially dominated for t > tε. By Theorem 4, this implies that types outside [τ ε−→,←−τ ε ]
asymptotically become extinct. By the definition of ←−τ and τ−→, it follows that

←−τ ≤ ←−τ ε
and τ−→ ≥ τ ε−→ for every ε > 0. Since←−τ ε and τ ε−→ are continuous functions of ε, letting ε→ 0

yields
←−τ ≤ inf

ε>0

←−τ ε ≡ ←−τ 0 = BRi(←−τ 0; ρ, τ−→),
τ−→ ≥ sup

ε>0
τ ε−→ ≡ τ 0−→ = BRi(τ 0−→; ρ,

←−τ ).

Subtracting the second inequality from the first, using equation (A.18), and rearranging
terms yields:

0 ≤ ←−τ − τ−→ ≤
←−τ 0 − τ 0−→ =

bρ (2− b) (2 + b)2

ρb4 + 4ρb3 + 4b2 − 4ρb2 − 8b− 8bρ− 16

³←−τ − τ−→
´
. (A.23)

The coefficient of ←−τ − τ−→ on the right side of the inequality is less than 1, implying that
←−τ = τ−→ = τ ∗ as desired.

We now consider the case where b > 0. Then, ∂(f
i)2(τ,θ;ρ,ω)
∂τ∂ω

= bp

4
> 0, so if ω < eω and

τ < eτ , then
f i(eτ , θ; ρ, ω)− f i(τ , θ; ρ, ω) ≤ f i(eτ , θ; ρ, eω)− f i(τ , θ; ρ, eω).

As a result, f i(eτ , θ; ρ, ω) > f i(τ , θ; ρ, ω) implies f i(eτ , θ; ρ, eω) > f i(τ , θ; ρ, eω) and similarly
f i(eτ , θ; ρ, eω) < f i(τ , θ; ρ, eω) implies f i(eτ , θ; ρ, ω) < f i(τ , θ; ρ, ω). Since b > 0, equation
(A.18) implies that BRi(·; ρ, ω) is upward sloping and increasing in ω. Hence, the highest
best-response of i intersects the lowest best-response of j at (←−τ ε, τ ε−→). This implies in turn
that types above ←−τ ε for i and below τ ε−→ for player j are serially dominated for t > tε.

By Theorem 4, types outside [τ ε−→,←−τ ε] asymptotically become extinct. By the definition
of ←−τ and τ−→, it follows that

←−τ ≤ ←−τ ε and τ−→ ≥ τ ε−→ for every ε > 0. Since ←−τ ε and τ ε−→ are
continuous functions of ε, letting ε→ 0 yields

←−τ ≤ inf
ε>0

←−τ ε ≡ ←−τ 0 = BRi(τ 0−→; ρ,
←−τ ),

τ−→ ≥ sup
ε>0

τ ε−→ ≡ τ 0−→ = BRi(←−τ 0; ρ, τ−→).

Subtracting the second inequality from the first, using equation (A.18), and rearranging
terms yields:

←−τ 0 − τ 0−→ =
bρ (2− b) (4b+ 8− b3 − 2b2)

2 (16− 8b2 + ρb4)

³←−τ − τ−→
´

+
b (ρb4 + 4b2 − 12ρb2 + 16ρ)

2 (16− 8b2 + ρb4)

³←−τ 0 − τ 0−→
´
.
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This implies in turn that

0 ≤ ←−τ − τ−→ ≤
←−τ 0 − τ 0−→ =

(−4 + b2) (2− b) bρ

ρb4 − 4b3ρ + 4b2 − 4ρb2 + 8b+ 8bρ− 16

³←−τ − τ−→
´
. (A.24)

Since b < 1, the coefficient of←−τ − τ−→ is strictly smaller than 1, implying that←−τ = τ−→ = τ ∗

as desired. ¥

Proof of Proposition 3. Before the players choose their actions, they observe the
signals si and sj, but not the true types τ and θ. Player i with type τ and signal si

chooses an action xi so as to maximize the expected perceived payoff

(α + τ − bχj(si, sj)− xi)xi,

where the expectation is taken over players j who produced the signal sj when they meet
somebody with signal si, and χj(si, sj) is the (current) average action of these players.
The problem of player j is analogous.

The best-responses of players i and j against χj(si, sj) and χi(si, sj), respectively, are

xi =
α + τ − bχj(si, sj)

2
, xj =

α+ θ − bχi(si, sj)

2
. (A.25)

Let τ(si) be the (current) average type of player i who produces the signal si and let θ(sj)
be the (current) average type of player j who produces the signal sj. Taking expectations
on both sides of (A.25) yields

χi(si, sj) =
α + τ (si)− bχj(si, sj)

2
, χj(si, sj) =

α + θ(sj)− bχi(si, sj)

2
.

Solving this pair of equations yields

χi(si, sj) =
2α + 2θ(sj)− αb− bτ (si)

4− b2
, χj(si, sj) =

2α + 2τ (si)− αb− bθ(sj)

4− b2
.

Substituting this in (A.25) reveals that the equilibrium actions of players i and j are

bxi = α + τ − b2α+2θ(s
j)−αb−bτ(si)
4−b2

2
, bxj = α + θ − b2α+2τ(s

i)−αb−bθ(sj)
4−b2

2
.

The (current) average fitness of player i with type τ and signal si when meeting player
j with signal sj is therefore

f i(
¡
τ , si

¢
, sj) =

Ã
α− b

2α + 2θ(sj)− αb− bτ (si)

4− b2
− α+ τ − b2α+2θ(s

j)−αb−bτ(si)
4−b2

2

!

×α + τ − b2α+2θ(s
j)−αb−bτ(si)
4−b2

2
.
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Now, suppose thatΘt converges to a unit mass at 0. We will show that it is impossible
for Tt to also converge to a unit mass at 0. Since Θt converges to a unit mass at 0, then
the posterior belief of player i regarding player j’s type, θ(sj), also converges to a unit
mass at 0. Thus, the average fitness of player i with type τ who produces the signal si

converges to

f i
¡
τ , si

¢
=

Ã
α− b

α(2− b)− bτ (si)

4− b2
− α + τ − bα(2−b)−bτ(s

i)
4−b2

2

!
α+ τ − bα(2−b)−bτ(s

i)
4−b2

2

=
b2

4− b2

µ
α

2 + b
+

τ

2

¶
τ(si) +

µ
α

2 + b
− τ

2

¶µ
α

2 + b
+

τ

2

¶
.

Now suppose by way of contradiction that Tt also converges to a unit mass at 0. If
player i produces a signal si ∈ [−r, r], then player j cannot rule out the possibility that
player i’s type is τ = 0. Therefore, τ(si) converges to 0 for all si ∈ [−r, r]. Now,
consider player i whose type τ is positive but close to 0 (the argument when τ is negative
and close to 0 is analogous). With probability N (r − τ ), the player produces a signal
si ∈ [−r+ τ , r]. Given such a signal, player j cannot rule out the possibility that player
i’s type is 0, so player i’s payoff in this case converges toµ

α

2 + b
− τ

2

¶µ
α

2 + b
+

τ

2

¶
.

With probability 1−N (r− τ ), the player produces a signal si ∈ (r, r+ τ ]. In that case,
player j realizes that player i’s type cannot be 0 and is bounded from below by si − r.
Since τ > 0, f i (τ , si) is increasing in τ (si). Consequently, the overall average fitness of
player i with type τ will be bounded from below asymptotically by

N (r − τ)

µ
α

2 + b
− τ

2

¶µ
α

2 + b
+

τ

2

¶
+

Z r

r−τ

·
b2

4− b2

µ
α

2 + b
+

τ

2

¶
(τ + ν − r) +

µ
α

2 + b
− τ

2

¶µ
α

2 + b
+

τ

2

¶¸
dN (ν).

The derivative of this expression with respect to τ , evaluated at τ = 0, is

N 0(r)
rb2α

(4− b2) (2 + b)
> 0.

Thus asymptotically some τ > 0 dominates τ = 0. The disposition is therefore unilater-
ally beneficial to player i, which implies that Tt cannot converge to a unit mass at τ = 0
under any regular payoff-monotonic selection dynamics. ¥

Proof of Proposition 4. The proposition follows from Theorem 4 once we show
that (τ ∗,m∗) is the only combination of strategies that survives iterated elimination of
strongly dominated strategies (τ ,m) in the fitness game.
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Player i with type τ and signal mi chooses an action xi to maximize the expected
perceived payoff

(α + τ − bχj(mi,mj)− xi)xi,

where the expectation is taken over the actions of player j with the signal mj and
χj(mi, mj) is the (current) average action of these players. The problem of player j
is analogous.

The best-responses of players i and j against χj(mi, mj) and χi(mi,mj), are

xi =
α+ τ − bχj(mi, mj)

2
, xj =

α+ θ − bχi(mi,mj)

2
. (A.26)

Let τ(mi) and θ(mj), respectively, be the (current) average types of player i with signal
mi and player j with signal mj. Taking expectations on both sides of the equations in
(A.26) yields:

χi(mi, mj) =
α + τ(mi)− bχj(mi, mj)

2
, χj(mi, mj) =

α + θ(mj)− bχi(mi,mj)

2
.

Solving these two equations yields

χi(mi,mj) =
2α + 2τ(mi)− αb− bθ(mj)

4− b2
, χj(mi, mj) =

2α + 2θ(mj)− αb− bτ(mi)

4− b2
.

(A.27)
Substituting χi(mi,mj) and χj(mi, mj) in (A.26) reveals that the equilibrium actions of
players i and j are given by

bxi = α + τ − b2α+2θ(m
j)−αb−bτ(mi)
4−b2

2
, bxj = α + θ − b2α+2τ(m

i)−αb−bθ(mj)
4−b2

2
.

The resulting (current) average fitness of player i of type τ and signalmi when meeting
player j with signal mj is therefore

f i(
¡
τ ,mi

¢
, mj) =

Ã
α− b

2α + 2θ(mj)− αb− bτ (mi)

4− b2
− α+ τ − b2α+2θ(m

j)−αb−bτ(mi)
4−b2

2

!

×α + τ − b2α+2θ(m
j)−αb−bτ(mi)
4−b2

2
− c(mi − τ )2. (A.28)

The corresponding average fitness of player j is analogous. Maximizing f i((τ ,mi) ,mj)
with respect to τ and f j((θ,mj) , mi) with respect to θ implies that among all types of
player i with the signal mi and among all types of player j with the signal mj, those with
the highest average fitness are

τ ∗(mi) =
4c

1+ 4c
mi, θ∗(mj) =

4c

1+ 4c
mj.
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Therefore, under regular payoff-monotonic selection dynamics, the combination (τ ∗(mi), mi)
will have the highest growth rate among all types of player i with signalmi, and the com-
bination and (θ∗(mj), mj) will have the highest growth rate among all types of player j
with signal mj. This implies in turn that

lim
t→∞

τ
¡
mi
¢
= τ ∗(mi) =

4c

1+ 4c
mi, lim

t→∞
θ
¡
mj
¢
= θ∗(mj) =

4c

1+ 4c
mj. (A.29)

Taking the limit of the expressions in (A.28) as t→∞ and using (A.29), yields

f i(mi, mj) ≡ lim
t→∞

f i(
¡
τ ∗(mi), mi

¢
, mj)

=

α− b
2α + 2 4c

1+4c
mj − αb− b 4c

1+4c
mi

4− b2
− α + 4c

1+4c
mi − b

2α+2 4c
1+4c

mj−αb−b 4c
1+4c

mi

4−b2
2


×α + 4c

1+4c
mi − b

2α+2 4c
1+4c

mj−αb−b 4c
1+4c

mi

4−b2
2

− c(mi − 4c

1+ 4c
mi)2.

The corresponding expression for player j is analogous.

Now consider fitness game in which players i and j choose their signals mi and mj to
maximize their respective fitness, f i(mi, mj) and f j(mj, mi). The best response function
of player i in this game is given by

BRi(mj) =
2b2α(2− b) (1+ 4c)

(4− b2)2 + 32c(2− b2)
− 8cb3

(4− b2)2 + 32c(2− b2)
mj. (A.30)

The slope of BRi is less than 1 in absolute value. Since the strategy sets in the fitness
game are one-dimensional compact intervals (recall that mi, mj ∈M , where M is a one-
dimensional compact interval), the functions f i and f j are smooth and strictly concave
in the players’ own strategies, and the slopes of the best-response functions are less than
1 in absolute value, it follows from Moulin (1984, Theorem 4) that the fitness game can
be solved by iterated elimination of strongly dominated strategies. The unique signal
that survives this process is

m∗ =
2 (1+ 4c) b2α

2(4 + 2b− b2)(1+ 4c)− b3
,

which can be found by setting BRi(mj) = mj = m∗ in equation (A.30). By Theorem 4,
the distribution of signals converges to a unit mass at m∗. Using (A.29), the resulting
types are

τ ∗ = θ∗ =
8cb2α

2(4 + 2b− b2)(1+ 4c)− b3

as specified in the proposition. ¥
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