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Integrating State Data Assimilation and Innovative Model
Parameterization Reduces Simulated Carbon Uptake in the
Arctic and Boreal Region
Xueli Huo1,2 , Andrew M. Fox3,4, Hamid Dashti5, Charles Devine1 , William Gallery1,
William K. Smith1, Brett Raczka6, Jeffrey L. Anderson6, Alistair Rogers7,8, and David J. P. Moore1

1School of Natural Resources and the Environment, University of Arizona, Tucson, AZ, USA, 2Department of Atmospheric
Sciences, University of Utah, Salt Lake City, UT, USA, 3Global Modeling and Assimilation Office, NASA Goddard Space
Flight Center, Greenbelt, MD, USA, 4GESTAR‐II, Morgan State University, Baltimore, MD, USA, 5Global Change
Research Laboratory, University of Wisconsin‐Madison, Madison, WI, USA, 6Data Assimilation and Research Section,
NCAR, Boulder, CO, USA, 7Climate and Ecosystem Sciences Division, Lawrence Berkeley National Laboratory,
Berkeley, CA, USA, 8Environmental and Climate Sciences Department, Brookhaven National Laboratory, Upton,
NY, USA

Abstract Model representation of carbon uptake and storage is essential for accurate projection of the
response of the arctic‐boreal zone to a rapidly changing climate. Land model estimates of LAI and aboveground
biomass that can have a marked influence on model projections of carbon uptake and storage vary substantially
in the arctic and boreal zone, making it challenging to correctly evaluate model estimates of Gross Primary
Productivity (GPP). To understand and correct bias of LAI and aboveground biomass in the Community Land
Model (CLM), we assimilated the 8‐day Moderate Resolution Imaging Spectroradiometer (MODIS) LAI
observation and a machine learning product of annual aboveground biomass into CLM using an Ensemble
Adjustment Kalman Filter (EAKF) in an experimental region including Alaska and Western Canada.
Assimilating LAI and aboveground biomass reduced these model estimates by 58% and 72%, respectively. The
change of aboveground biomass was consistent with independent estimates of canopy top height at both
regional and site levels. The International Land Model Benchmarking system assessment showed that data
assimilation significantly improved CLM's performance in simulating the carbon and hydrological cycles, as
well as in representing the functional relationships between LAI and other variables. To further reduce the
remaining bias in GPP after LAI bias correction, we re‐parameterized CLM to account for low temperature
suppression of photosynthesis. The LAI bias corrected model that included the new parameterization showed
the best agreement with model benchmarks. Combining data assimilation with model parameterization provides
a useful framework to assess photosynthetic processes in LSMs.

Plain Language Summary The arctic‐boreal zone is warming rapidly, impacting regional and global
carbon cycles. The Community Land Model (CLM) can be used to project future carbon uptake and storage in
this region. However, CLM is biased in estimating leave area index (LAI) and aboveground biomass that can
significantly affect model projections of carbon uptake and storage. We forced the model estimates of LAI and
the aboveground biomass to be consistent with satellite‐derived LAI observations and a high‐quality machine
learning product of aboveground biomass in Alaska andWestern Canada using data assimilation. The change of
aboveground biomass resulted in model estimates of vegetation height consistent with independent estimates at
regional and site levels. The assessment using the International Land Model Benchmarking System showed that
CLM's performance in simulating carbon and hydrologic cycles was improved. Fixing the model bias in LAI
only removed partial bias in carbon uptake, and a new parameterization allowing two key parameters in
photosynthesis to vary with leaf temperature was introduced into CLM, to further remove the remaining bias in
carbon uptake. Combining data assimilation with this new parameterization yielded more accurate model
estimates of carbon uptake.

1. Introduction
The arctic‐boreal zone is warming rapidly and the impact of this warming on the carbon cycle will have sub-
stantial and globally significant effects, with the region projected to become a source for carbon to the atmosphere
in the coming century (Braghiere et al., 2023). Land surface models (LSMs) do not provide consistent estimates of
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carbon uptake in the arctic‐boreal zone (Birch et al., 2021; Braghiere et al., 2023; Fox et al., 2022; Song
et al., 2021). The Community LandModel (CLM 5.0; a component of the Community Earth SystemModel) tends
to overestimate GPP in the arctic‐boreal zone (Wieder et al., 2019). A recent benchmarking and model devel-
opment study identified several potential problems with CLM5.0 in the arctic, including errors in where the
vegetation is distributed, problems with leaf phenology and the seasonality of GPP and differential bias in GPP of
different plant functional types (PFTs, Birch et al., 2021). Moreover, compared to satellite benchmarks, the peak
season of leaf area in the arctic‐boreal zone was delayed on average by 1–2 months across 27 LSMs participating
in the 6th Coupled Model Intercomparison Project (CMIP6) (Song et al., 2021).

Allocation schemes in CLM 5.0 are empirical and relatively simple (Oleson et al., 2013). The model allocates
carbon between leaf, stem (live and dead stem), coarse root (live and dead coarse root), and fine root based on four
allometric parameters: (a) ratio of new fine root to new leaf carbon allocation, (b) ratio of new coarse root to new
stem carbon allocation, (c) ratio of new stem to new leaf carbon allocation, and (d) ratio of new live wood to new
total wood allocation. It is challenging to observe allocation to different pools at large scales, so we infer allo-
cation from studies of biomass. Data to parameterize dynamic allocation schemes are rare and typically include
only estimates of the average biomass within the leaf, wood and root pool (Brown, 2002; Caspersen et al., 2000;
Franklin et al., 2012; Gower et al., 2001; Houghton, 2005; Keith et al., 2009; Litton et al., 2007; Luyssaert
et al., 2007; Montané et al., 2017; Oleson et al., 2013). Decadal and centennial carbon storage depends on how the
product of photosynthesis is allocated. Different plant pools (leaf, stem, and root) have different functions and
residence times (Delbart et al., 2010) and modeling studies that investigate the influence of allocation on biomass
accumulation show that this poorly constrained process exerts huge control over long term carbon storage (Friend
et al., 2014; Montané et al., 2017).

In contrast, LSMs, represent short term biophysical processes using well‐tested and more mechanistic equations
and represent long term ecological or biogeographic processes using less tested and more empirical equations
(Bonan, 2019). Our study focuses on the Community Land Model (CLM5.0). In CLM5.0, photosynthesis is
represented by the mostly mechanistic Farquhar et al. (1980) model where the response to irradiance is repre-
sented by an empirical, non‐rectangular hyperbola where key parameterization is associated with the initial slope
(quantum yield) and curvature of that relationship. In CLM5.0 the quantum yield approaches the theoretical
maximum which has been commonly observed in unstressed dark‐adapted plants (Kromdijk et al., 2016; Long
et al., 1993; Singsaas et al., 2001) but which is rarely observed in nature, particularly in plants experiencing stress
such as drought or low temperature (Bolhar‐Nordenkampf et al., 1991; Groom & Baker, 1992; Long et al., 1994;
Ogren & Evans, 1992; Rogers et al., 2019). In contrast, quantum yield and convexity measured in arctic plants
were reduced significantly at low leaf temperatures (Rogers et al., 2019). This suggests the potential to over-
estimate GPP in the arctic‐boreal zone.

Modeling carbon uptake and storage remains a challenge, especially for the arctic‐boreal zone. A CMIP6 analysis
showed that tree height was, on average, overestimated in the arctic‐boreal zone (Song et al., 2021); an error
consistent with poor parameterization of carbon allocation. Biases in GPP, as reported by Bonan et al. (2011),
arise from model parameter uncertainties and from model structural/parameterization errors entailing radiative
transfer, leaf photosynthesis and stomatal conductance, and canopy scaling of leaf processes. While the so-
phistication of physiological processes in LSMs has increased steadily over the last few decades (Blyth
et al., 2021), there is evidence that GPP is not always represented using accepted photosynthetic parameteriza-
tions (Rogers et al., 2017, 2019). If models are parameterized to match benchmarks of GPP without first ensuring
that biomass and LAI are correctly modeled, there is a risk of introducing compensating errors in allocation and
photosynthetic processes.

Data assimilation can be applied to improve performance of LSMs and circumvent the lack of understanding in
processes controlling GPP and allocation. Data assimilation of leaf area index (LAI) is an increasingly common
method to reduce errors in allocation of leaf carbon in LSMs; for example, CLM (Fox et al., 2018; Ling
et al., 2019; Raczka et al., 2021; Stöckli et al., 2008), ISBA (Albergel et al., 2010, 2017), ORCHIDEE (Bacour
et al., 2015; Demarty et al., 2007; MacBean et al., 2015), CHTESSEL (Boussetta et al., 2015) and Noah‐MP
(Kumar et al., 2019). For example, an ensemble Kalman filter was used to update the prognostic estimate of
LAI from CLM5.0 to more faithfully match the LAI3g (Zhu et al., 2013) satellite data product (Fox et al., 2022).
Model estimates of GPP are dependent on LAI magnitude and duration and processes controlling photosynthetic
rates, but LSM errors in prognostic LAI are significant (Montané et al., 2017). In Fox et al. (2022), assimilating
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LAI into CLM5.0 resulted in a globally averaged decline in modeled GPP of 18%, and in the arctic‐boreal zone,
the decrease was up to 50%.

In this study we use an ensemble data assimilation approach to constrain leaf area and biomass, aiming at reducing
biases in GPP and allocation processes in CLM in a subset of the arctic‐boreal zone, the Arctic‐Boreal
Vulnerability Experiment (ABoVE) region which includes Alaska and Western Canada. We verify the change
of biomass by comparing modeled and measured tree height at the regional and site levels. To further reduce bias
in GPP when the error in phenology is fixed through data assimilation, we implement a new parameterization
allowing the variation of maximum quantum yield and curvature of the response of photosynthesis to irradiance
with leaf temperature which was developed based on the findings in Rogers et al. (2019). Then, we compare CLM
runs with and without data assimilation and with and without the modified photosynthetic process to see the effect
of data assimilation and the new parameterization on reducing biases in GPP.

2. Materials and Methodology
We constrained LAI and aboveground biomass state variables estimated by CLM5.0 to satellite and derived data
estimates (hereafter observations) by implementing the Ensemble Adjustment Kalman Filter (EAKF) (Ander-
son, 2001). LAI data assimilation aims to improve GPP by correcting bias in LAI, and biomass data assimilation
focuses on correcting wood (stem and root) carbon pools and decomposition (litter and soil) carbon pools with the
aim to improve respiration fluxes and vegetation structure such as tree height. We then compared the model
output to a suite of independent data sets to verify the adjustment of states was successful. Removal of bias in
model states allowed us to develop and implement a new parameterization of photosynthesis in CLM5.0 based on
in situ data collections (Rogers et al., 2019) to improve model fluxes. We evaluated all the model runs against
established land surface benchmarks.

2.1. CLM‐DART

The Community LandModel (CLM) is capable of simulating complex biophysical and biogeochemical processes
on land (Lawrence et al., 2019). It was run in the biogeochemistry and crop (BGC‐Crop) mode in which the
carbon and nitrogen in the natural vegetation, litter and soil are prognostic at each time step, and the prognostic
crop model is turned on. The land cover and land use are constant in the model run.

The Data Assimilation Research Testbed (DART) is open‐source community software for ensemble data
assimilation (Anderson et al., 2009). We used CLM‐DART, a coupled system of DART and CLM to carry out the
model experiments described in this study. We configured CLM‐DART similarly to previous studies (Fox
et al., 2018, 2022; Raczka et al., 2021) using the Ensemble Kalman Adjustment Kalman Filter (EAKF), a fully
deterministic and computationally efficient algorithm (Anderson, 2001). The CLM‐DART settings used in this
study are provided in Table 1.

The assimilation time step is set to every 8 days to match the frequency that the leaf area index observations are
available. The annual biomass observations do not have an assigned observation date; thus, we prescribed the
biomass observation during the month of September to align with the leaf area index observations (e.g., 5th
September 2012, 6th September 2011, 2013, 2014). We implemented minimal additional quality control given the
highly processed nature of the observations but did use the outlier rejection to reject observations that have
accurate values but are so far away from the model ensemble mean. If the difference between the observation and
the prior ensemble mean is more than N standard deviations from the square root of the sum of the prior ensemble
and observation error variance, the observation will be rejected. The number of standard deviations is called the
outlier threshold, and the value of the outlier threshold can be found in Table 1. Note that outlier rejection was
applied only to LAI observations and turned off for biomass observations due to the scarcity of biomass ob-
servations. Otherwise, almost all of the biomass observations would be rejected, resulting in biomass DA having
no impact. After assimilation, the ensemble spread decreases consistently. It is crucial to increase and maintain it
to prevent insufficient forecast error variance (i.e., ensemble spread), which can lead to excessive rejection of
observations. Inflation can achieve this by increasing the ensemble spread without changing the ensemble mean.
We used the time‐ and space‐adaptive state‐space inflation (El Gharamti et al., 2019) that is spatially distributed
and evolve with time as observation changes. The damping parameter is used to reduce the inflation when the
frequency or density of observations declines. For more details of damping and inflation, see DART tutorial
(https://docs.dart.ucar.edu/en/latest/guide/inflation.html).
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We found the inflation generated with the default parameter settings within this approach overly inflated the
ensemble spread at grid cells where the observation density was low, leading to unrealistic spatial heterogeneity.
We kept the default settings of the inflation standard deviation and its lower bound (both set to be 0.6) which
control how quickly the inflation responds to new observations since these settings have been demonstrated to
yield good results for large geophysical models (El Gharamti et al., 2019). Based on this, we tuned the damping
parameter to reduce the inflation. The inflation applied to the prior state is 1 + damping × (current infla-
tion − 1.0), that is, the sum of 1.0 and the difference between the current inflation value and 1.0 multiplied by the
damping value (Anderson, 2007, 2009). Two different damping values, 0.9 and 0.4, were used to account for the
varying seasonal spatial coverage of the leaf area index observation. A large damping value, 0.9, was used to
damp inflation slowly to increase prior ensemble spread when the availability of data is greater and a small
damping value, 0.4, was used to damp the inflation quickly to minimize prior ensemble spread where data
availability is lower.

To limit the influence of the observations to specific regions of the DART state and reduce the likelihood of
applying spurious updates during the assimilation update step, we used localization. First, we impose a horizontal
spatial localization function (Gaspari & Cohn, 1999) with a halfwidth value of 0.015 radians to limit the influence
of an observation for prognostic variables to near the observation location. Second, we limit the influence of the
observations to specific CLM prognostic variables. When biomass observations are assimilated, six vegetation
carbon pools (leaf, live stem, dead stem, fine root, live coarse root and dead coarse root) and decomposition pools
(coarse woody debris, litter and soil) are updated, however, when leaf area index observations are assimilated,
only the leaf carbon pool is updated. When both biomass and leaf area index observations are available, only
biomass observations are assimilated.

Briefly, the way how CLM‐DART works is: CLM provides a forecast simulation until the time when an
observation is available (every 8 days in this case). At this time inflation is applied to increase the ensemble
spread. An observation operator is then applied to the CLM output that calculates the model estimate of the
observation, which we call the observed variable (Text S1 in Supporting Information S1). The observed variable
is then adjusted with increments which are calculated using the information of the observation likelihood and the
prior distribution (Text S2 in Supporting Information S1). Increments to unobserved variables are calculated
based on the covariance between the observed variable and unobserved variables. Increments are applied to the
prognostic variables of CLM stored in the restart file. The updated restart file serves as the initial condition for the
next forecast. All these steps are repeated in the subsequent assimilation cycles.

2.2. Observations Used in Data Assimilation

2.2.1. Leaf Area Index (LAI)

The MCD15A2H version 6 Moderate Resolution Imaging Spectroradiometer (MODIS) LAI product is an 8‐day,
500‐m, global satellite data product available from 2011 to 2019 and was obtained using NASA Application for
Extracting and Exploring Analysis Ready Samples (AρρEEARS; https://appeears.earthdatacloud.nasa.gov/).
AρρEEARS categorized MODIS LAI flags into several categories, and only MODIS LAI pixels within the very
good or better category are used in the assimilation. The 500 m LAI and the associated uncertainty denoted by its
standard deviation were re‐gridded to the model resolution (∼25 km) using spatial averaging. MODIS LAI covers

Table 1
Summary of CLM‐DART Settings for the Data Assimilation (DA) Run

Experiment Observations
Simulation
period Damping value Outlier threshold Prognostic variables to update in restart files

Assimilation leaf area index and
aboveground
biomass

2011–2019 0.9 in summer (from June 9th
to September 5th in 2012
and 2016, and from June
10th to September 6th in
other years), 0.4 in other
seasons

3 when leaf area index
observation is assimilated;

Six displayed vegetation carbon pools and all
decomposition carbon pools when biomass
observation is assimilated;

− 1 when biomass observation
is assimilated (outlier
rejection turned off)

Leaf carbon pool only when leaf area index
observation is assimilated

Note when both leaf area index and biomass
observations are available, only biomass
observations are assimilated

Journal of Geophysical Research: Biogeosciences 10.1029/2024JG008004

HUO ET AL. 4 of 15

 21698961, 2024, 9, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2024JG

008004 by U
niv of C

alifornia L
aw

rence B
erkeley N

ational L
ab, W

iley O
nline L

ibrary on [07/10/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

https://appeears.earthdatacloud.nasa.gov/


most of the ABoVE region (64.6%–77.6%) from mid‐June to mid‐September and decreases with time from mid‐
September to mid‐November as snow covers LAI first in higher and then lower altitudes. From late November to
early January, no LAI observations are available in the region, and from mid‐January to early June, the coverage
of LAI expands from south to north with time.

2.2.2. Aboveground Biomass

The annual, regional 30‐m, aboveground biomass is a machine learning product specifically developed for the
boreal forest biome portion in the ABoVE domain (Wang et al., 2021). It upscales spaceborne lidar‐based es-
timates of aboveground biomass with satellite surface reflectance, climate and topographic data based on a
machine learning model, and it overlaps the model simulation period from 2011 to 2014. The original data in
standard “B” grid tiles (106 aboveground biomass and 106 standard error) were re‐projected from Albers equal
area conic to WGS84 projection and aggregated to the approximate model grid resolution (∼25 km) from 30 m
using spatial averaging. Finally, tiles were mosaiced annually and adjusted to the precise model grid using nearest
neighbor pixel matching. Aboveground biomass in CLM was calculated as the sum of leaf carbon, live and dead
stem carbon. Biomass in Wang et al. (2021) was assumed to be 50% carbon. All of the biomass observations are
considered to be of satisfactory quality and are assimilated into CLM.

2.3. A New Parameterization of GPP in Arctic Plants

To investigate whether cold temperature inhibition of photosynthetic capacity could account for overestimates of
GPP, we implemented a new parameterization of the photosynthesis module in CLM based on in situ observations
collected at a site (71.28°N, 156.65°W) near Barrow (now Utqiagvik) in Alaska (Rogers et al., 2019). We mapped
the field estimated maximum quantum yield and convexity (Rogers et al., 2019) to the CLM parameters for
maximum quantum yield and curvature, respectively (Text S3 in Supporting Information S1). We updated CLM
maximum quantum yield and curvature values to match the in situ measurements (Table 2) and applied linear and
nonlinear regression to estimate temperature responses for the parameters (Text S4 and Figure S1 in Supporting
Information S1). Values were not extrapolated above 25°C or below 5°C.

2.4. Model Simulations

We carried out two 40‐member ensemble CLM runs: free run (no assimilation) and data assimilation (DA) run. In
the DA run, both LAI and aboveground biomass observations assimilated serially. LAI observations are
assimilated every 8 days and biomass observations are assimilated once a year on the specific date we assigned
due to the fact that the frequency of LAI observations is 8 days and biomass observations are annual. These runs
were used as the starting point for single‐member CLM model runs that included (or did not include) the rep-
arametrized photosynthesis module.

All simulations were run at a spatial resolution of 0.25 × 0.25° (∼25 × 25 kms) in the ABoVE region. The surface
and domain data of this resolution were generated using the CLM mkmap tool from the default input data sets. In
both free and DA runs, CLM was driven by 40 ensemble members of the CAM6 reanalysis forcing data
(Ds345.0, 2020; Raeder et al., 2021) which is an atmospheric ensemble generated by assimilating atmosphere
observations into version 6 of the Community Atmosphere Model (CAM6) from 2011 to 2019 with a spatial
resolution of 0.9 × 1.25°. Atmospheric data were interpolated onto the 0.25 × 0.25° land grid automatically by the
default bilinear interpolation within CLM.

Initial conditions to perform the free and DA runs from 2011 to 2019 were estimated using a single‐member
model spin‐up, initialized from CLM default present‐day condition using atmospheric data from the first
member of the CAM6 ensemble from 2011 to 2019 cycled 120 times (1,080 years total) to equilibrium.
Initializing each ensemble member in this way was too computationally costly, so the initial ensemble spread was
created by running CLMwith 40 CAM6 forcing ensemble members (2011–2019) four times (36 years total) from
the initial condition generated by the single‐member spin‐up.

To evaluate the impacts of either the new parameterization or data assimilation or both of these approaches on
reducing biases in GPP, three additional model experiments are performed: parameterization, initialization, and
parameterization + initialization runs. Running all three model experiments with 40 ensemble members for the
entire simulation period (2011–2019) would be computationally expensive and unaffordable. Due to limited
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computational resources, in all three model runs, CLMwas driven by the first member of the CAM6 ensemble and
ran for 1 year (2015). These additional model runs are like the free run in that no observations were assimilated, so
they are model forecasts. First, the parameterization simulation includes the new parameterization but is
initialized with the free run model state on 1 January 2015, Second, the initialization simulation doesn't have the
new parameterization but is initialized from the updated DA run model state on 1 January 2015. Third, the
parameterization + initialization simulation includes both the new parameterization and is initialized from the
DA run model state on 1 January 2015.

2.5. Model Evaluation Data Sets

2.5.1. Canopy Top Height

Improved aboveground biomass in CLM should result in a more realistic estimate of canopy height assuming the
tree allometry is broadly correct. We evaluated canopy height using a global canopy top height data set and local
airborne light detection and ranging (lidar).

We extracted canopy height data for the ABoVE region from the Geoscience Laser Altimeter System (GLAS)
aboard ICESat (Ice, Cloud, and land Elevation Satellite) 1 km × 1 km global data set (Simard et al., 2011). These
data were re‐gridded to the model resolution (∼25 km × ∼25 km) for regional comparisons across grid cells that
were dominated by NEBT (needleleaf evergreen boreal tree, as shown in Figure 3a). To evaluate height of other
PFTs, we used the National Ecological Observatory Network (NEON) airborne observation platform (AOP)
estimates of canopy top height (NEON, 2023a, 2023b) derived from the airborne lidar data. These estimates have
a 1 m × 1 m spatial resolution and are distributed in 1 km × 1 km tiles. The NEON AOP canopy top height
estimates agree well with ground measurements at two NEON sites in Alaska: Healy and Delta Junction (Figure
S2 in Supporting Information S1) and were used as the benchmark for comparison at the two sites. For each site,
we collected all tiles of NEON AOP data within the model gridcell, covering 25% and 40% of area for Healy and
Delta Junction, respectively. We compare the model height to the distribution of canopy top height from NEON
AOP considering the abundance of each PFT.

2.5.2. ILAMB (International Land Model Benchmarking)

The International Land Model Benchmarking system (ILAMB, Collier et al., 2018) is an open‐source land model
evaluation tool that compares model simulations to benchmark data sets including global‐, regional‐, and site‐
level data and calculates scores to represent model performance. ILAMBv2.6 was used to assess whether
assimilating LAI and aboveground biomass observations into CLM improves model performance for the
terrestrial carbon and water cycles in the ABoVE region. The assessment integrated analysis for 12 variables in
the carbon and water cycles utilizing 22 benchmark data sets which were downloaded from the ILAMB data
archive (https://www.ilamb.org/ILAMB‐Data/DATA/). Note that data from the global benchmark data sets in
regions other than the ABoVE region were masked out during the evaluation. For each variable, ILAMB produces
maps, time series, statistics, assessment of variable‐to‐variable relationship, scores for bias, RMSE, seasonal
cycle, interannual variability, spatial distribution and an overall score (Soverall) representing the overall perfor-
mance of the model (Collier et al., 2018).

Note the default CLM5.0 simulations driven by the Global Soil Wetness Project (GSWP3v1) forcing which
scores the best compared to other forcing data sets (Lawrence et al., 2019) is also included in the ILAMB
assessment to evaluate the impact of the alternative CAM reanalysis forcing as well as data assimilation on the
performance of CLM.

Table 2
Default and Updated Values of Maximum Quantum Yield and Curvature at Three Different Leaf Temperatures

Leaf temperature (oC) Maximum quantum yield denoted by 0.5ΦPSII (mol CO2 mol
− 1absorbed quanta) Curvature denoted by ΘPSII (unitless)

Default Updated Default Updated

5 0.425 0.132 0.7 0.44

15 0.217 0.5

25 0.316 0.65
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2.5.3. FLUXCOM Gross Primary Productivity

The FLUXCOM GPP product used as the benchmark in comparing the seasonal cycle of GPP from different
model runs is identical to the GPP benchmark in ILAMB, and it was downloaded from the ILAMB data archive.
This product overlaps the simulation period from 2011 to 2013 and is one of the 0.5 × 0.5°, monthly, global
gridded FLUXCOM GPP ensemble products. It was generated using an artificial neural networks machine
learning approach with CRUNCEPv6 meteorological data and mean seasonal cycles of several MODIS based
variables (Jung et al., 2019; Tramontana et al., 2016). The seasonal values of the GPP product were calculated
within ILAMB and stored in its output files. Only data in the ABoVE region and during the overlapped time
period were used in the assessment.

3. Results
3.1. State Data Assimilation Reduced LAI and Aboveground Biomass to Match Remote Sensing Data
Products

Assimilating leaf area index and aboveground biomass observations into CLM5.0 significantly improves the
model's estimates of LAI and aboveground biomass both temporally and spatially in the ABoVE region. The free
run in which CLM was run without assimilation significantly overestimates LAI and aboveground biomass
(Table 3, Figure 1). The DA run corrects a significant amount of the LAI bias in the free run, with modeled LAI
reduced by 58% and phenology aligning with the observations (Figure 1a). The aboveground biomass is reduced
by 72% through data assimilation. The DA run represents the spatial variability of LAI and aboveground biomass
more closely to the observations compared to the free run (Figures 1c and 1d).

The impact of DA varies across the ABoVE domain in proportion to the bias in the free run (Figures 2a and 2b).
LAI is overestimated in the free run across 83% of the area. Although the average bias is 1.27 m2/m2, in large
portions of the domain the bias is as high as 4 to over 6 m2/m2 (Figure 2a). In the DA run, LAI bias relative to the
satellite estimate is reduced to 0.019 m2/m2. The model over‐ and under‐ estimates the satellite data but the extent
of extreme errors is significantly reduced (Figures 2b and 2e). Similarly, aboveground biomass is overestimated
in the free run across 95% of the area; the average model bias is 4,222 gC/m2 but in some southern portions of the
domain the bias is much higher than 15,000 gC/m2 (Figures 2c and 2f). In the DA run, aboveground biomass bias
is reduced significantly, resulting in relatively small positive and negative differences with the aboveground
biomass data product (Figures 2d and 2f). The magnitude of initial bias and consequently the size of the
adjustment required was surprisingly high, indicating a significant misrepresentation of either cumulative carbon
uptake, allocation or turnover.

3.2. Independent Estimates of Vegetation Height Support the Aboveground Biomass Corrected by the DA
System

Comparing the model's estimates of canopy top height with independent canopy top height estimates provides
support for the changes in aboveground biomass. Canopy height correlates well with aboveground biomass
(Drake et al., 2002; Lefsky et al., 2002, 2005; Takagi et al., 2015). CLM calculates canopy top height from dead
stem carbon, the major component of aboveground biomass, using a linear equation. Assuming this relationship is
reasonable, independent height data is a proxy of aboveground biomass and can be used to validate the changes in
the aboveground carbon stock altered by the DA system. For areas where needleleaf evergreen boreal trees
(NEBT) was greater than 95% (dark blue shade in Figure 3a), we found that DA significantly improved model
estimates of height compared with satellite lidar‐derived canopy height (Figure 3b). NEBT was chosen because it
is widespread, often dominates large areas in the ABoVE region, and it is typically above the minimum detection
limit of ICESat (5 m). The distribution of the height of NEBT (Figure 3b) shows that canopy height is over-
estimated in the free run compared with the ICESat data, and the canopy height from the DA run is closer to the
validation data. One caveat is that some of the mismatch between the distribution of canopy height in the model
runs and the validation data might be caused by the mismatch between the spatial distribution of NEBT in CLM
and the true spatial distribution of NEBT.

Assimilating LAI and biomass observations leads to improved model estimates of canopy height for other PFTs as
well. We compared model estimates of canopy height to those from the National Ecological Observatory Network
(NEON) airborne observation platform (AOP) at twoNEON sites: Healy andDelta Junction. Figure 3c displays the
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distribution of canopy top height from the NEON AOP, free run and DA run at Delta Junction. Similar results are
found at Healy as well. The arctic grass (C3AG) has no change, and the shrub (BDBS) is slightly shorter in the DA
run compared to the free run. Notably, both boreal trees, needleleaf evergreen (NEBT) and broadleaf deciduous
(BDBT), aremuch shorter in theDA run. The heights of boreal trees in the free run are near or over 20m,whereas in
theDA run, themaximumheight of the boreal trees is around 15m.NEONAOPdata suggests that the possibility of
a tree taller than 20 m is extremely low, supporting the realism of canopy top height estimates from the DA run.

3.3. DA Results Match With Most Large‐Scale Land Model Benchmarks Better

The DA run showed substantial improvement over both the free run and the default run of CLM when compared
to a wide range of independent land model benchmarks (Figure 4). Compared to ILAMB carbon and hydrological
benchmarks, the DA run outperformed both the free run and the default CLM5.0 run with GSWP3v1 forcing
(Lawrence et al., 2019). Nine of the twelve benchmarks showed improvement with respect to the default model:
LAI, aboveground biomass, total biomass, GPP, ecosystem respiration, evapotranspiration, latent heat, sensible
heat, and terrestrial water storage. All four functional relationships between LAI and other variables

Table 3
Statistics of LAI (From 2012 to 2019) and Aboveground Biomass (in 2014)

Obs Free Assim
Mean change
Assim− Free

Free (%)
Reduction in error Assim RMSD− Free RMSD

Free RMSD (%)
Assim bias− Free bias

Free bias (%)

LAI (m2/m2) 0.87 2.14± 0.006 (1.27, 1.27) 0.89 ± 0.001 (0.019,
0.019)

− 58.4 − 98.5

− 98.5

Aboveground Biomass
(gC/m2)

1,692 5,914 ± 16 (4,222.2,
4,222.1)

1,670± 1 (22.5, − 22.5) − 71.8 − 99.5

− 100.5

Note. Mean ± standard deviation (RMSE, bias).

Figure 1. Time series of (a) monthly LAI and (b) aboveground biomass from the free run (orange line), data assimilation (DA) run (blue line) and the observation (green
line). LAI is averaged over the ABoVE region and aboveground biomass is averaged over the ABoVE Boreal Forest domain to be consistent with the spatial coverage of
aboveground biomass observations. The 8‐day MODIS LAI observation is averaged to the monthly time scale, and the aboveground biomass observation is annual. The
boxplot shows the spatial variability of (c) LAI averaged from 2012 to 2019 and (d) aboveground biomass in 2014 when LAI and biomass in the DA run are stable.
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(aboveground biomass, total biomass, GPP, and evapotranspiration) were improved. The snow water equivalent
in the data assimilation run was worse compared to the default CLM5.0 run with GSWP3v1 forcing but better than
the free run forced with CAM6 forcing, probably due to the degradation in the snowfall or snowmelt rate in the
CAM6 forcing which needs further investigation, rather than errors introduced by data assimilation. DA alters
other vegetation carbon pools in addition to the aboveground carbon pools (Figure S5 in Supporting Informa-
tion S1). Consequently, the ratio of each vegetation carbon pool to the total vegetation carbon content changes
(Figure S6 in Supporting Information S1). However, the lack of such benchmark data hinders us from verifying
the plausibility of the change.

To estimate the overall carbon balance, land surface models calculate net ecosystem exchange as the small
remainder between large photosynthetic and respiration fluxes. The ILAMB benchmarking suggests our DA

Figure 2. Spatial maps of the difference between modeled LAI (ensemble mean) and MODIS LAI observations averaged over July and August from 2012 to 2019:
(a) free run; (b) data assimilation (DA) run. Spatial maps of the difference between modeled aboveground biomass (ensemble mean) and aboveground biomass
observation in 2014 using annual values: (c) free run; (d) DA run. Histograms of spatial bias of LAI (e) and of aboveground biomass (f). To avoid bias, comparisons are
restricted to the period when observations cover the most of ABoVE region and DA run achieves stability. LAI comparisons are averaged over July and August because
MODIS observes most of the region in that time. We also limit LAI comparisons to the time between 2012 and 2019 because LAI in the DA run is stable during that
time. Differences in aboveground biomass are restricted to 2014 because that is the last year when observations are available and the modeled biomass in the DA run is
stable from then on.
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approach improves estimates of GPP and ecosystem respiration but has poorer performance with respect to net
ecosystem exchange (Figure 4). While aboveground respiration decreased as the DA reduced aboveground
biomass, below ground respiration did not respond similarly. Belowground respiration in the DA run increases in
August, September, and October (Figure S4 in Supporting Information S1) because of a slight increase in soil
carbon pool updated by data assimilation.

3.4. GPP Bias in CLM Stems From Estimating Model LAI States and
Photosynthetic Rates

The error in modeled LAI in CLMwas corrected through DA as evidenced by
the significant reduction in LAI (Figure 5a). However, the bias in carbon
uptake was not fully removed. GPP in the DA run (Figure 5b) was still highly
biased compared to the FLUXCOM GPP estimate (Jung et al., 2019; Tra-
montana et al., 2016). This indicates that other model parameterizations
associated with GPP could be incorrect. Building on the work of Rogers
et al. (2019), we developed and implemented a new parameterization that
considered the effect of temperature on the light response curve and imple-
mented it in CLM, with the aim to further reduce bias in the model estimate of
GPP in the ABoVE region.

The implementation of the new parameterization (cyan) in CLM reduces
model error in GPP compared to the free run (orange) which does not include
the parameterization, and it has a similar effect in forecasting GPP as the
provision of a better initialization (red) achieved by data assimilation
(Figure 5b). This indicates that fixing the bias in the photosynthetic parameters
in light response of photosynthesis which is a fast process has a similar effect
to improving GPP by fixing the bias in the phenology which is a relatively
slow process.When we improved both the initial conditions (through DA) and
photosynthesis related parameterization, the forecasted GPP (pink) was the
closest to the FLUXCOM benchmark data set with the greatest model error
reduction. It would be interesting to evaluate the relative effect of DA and new
parameterization on deciduous versus evergreen forest. However, the data for
deciduous forests are too limited (only two grid cells are dominated by de-
ciduous trees and affected by DA) to provide a credible comparison.

4. Discussion
Failure to accurately model LAI and aboveground carbon pools leads to
significant errors in projections of regional GPP. Removing biases of 58% and
72% in LAI and aboveground biomass through DA (Table 3) resulted in a

Figure 3. Comparison of canopy top height estimated by CLM5.0 with independent canopy height estimates from ICESat lidar observations at regional and site levels.
(a) Locations of the grid cells dominated by NEBT (needleleaf evergreen boreal tree, in dark blue) and two NEON sites (Healy in red, Delta Junction in cyan). (b) The
distribution of canopy top height of the widespread NEBT estimated by CLM5.0 free run (in blue), DA run (in red) and derived from ICESat lidar measurements (in
green). (c) The distribution of canopy top height at Delta Junction from CLM free run (vertical blue lines), DA run (vertical red lines) and NEON airborne observation
platform (AOP, in green). PFTs in CLM within the gridcell where Delta Junction is located are NEBT (needleleaf evergreen boreal tree), BDBT (broadleaf deciduous
boreal tree), BDBS (broadleaf deciduous boreal shrub), C3AG (C3 Arctic grass).

Figure 4. ILAMB summary diagram for the default CLM5 run driven by
GSWP3v1 forcing (gswp3v1run), free run and data assimilation run. The
color represents the overall score described in the Methodology.

Journal of Geophysical Research: Biogeosciences 10.1029/2024JG008004

HUO ET AL. 10 of 15

 21698961, 2024, 9, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2024JG

008004 by U
niv of C

alifornia L
aw

rence B
erkeley N

ational L
ab, W

iley O
nline L

ibrary on [07/10/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



40.6% reduction in GPP (gC/m2/year) (Table S2 in Supporting Information S1). Overall, DA of LAI and biomass
significantly improved CLM simulations of the carbon and hydrologic cycles, as well as in representing the
functional relationships between LAI and other variables (aboveground biomass, total biomass, GPP, and
evapotranspiration; Figure 4). DA likely resulted in realistic allocation of carbon to above ground biomass as it
improved vegetation height estimates when compared to independent airborne and spaceborne lidar (Figure 3).

Data assimilation is an effective tool to adjust model states to initial conditions that match observations.
Initialization of LSM carbon pools is a challenging but essential step in projecting the future state of the land
carbon sink. The practice of model spin‐up to equilibrium is time and resource consuming and the assumption of
equilibrium is not realistic for most ecological systems (Luo et al., 2015). Running models for millennia,
analytical solvers, model vectorization and state data assimilation can be used to more effectively initialize LSMs
(Ajami et al., 2014; Hoffman et al., 2005; Jeong et al., 2008; Liao et al., 2023; Luo et al., 2011).

Removing biases caused by processes that influence LAI is a necessary first step to improving estimates of GPP
and forecasting carbon storage in LSMs. A detailed modeling study in the artic boreal zone identifies CLM
specific issues with LAI phenology, mistimed peak GPP and high GPP for some plant functional types (Birch
et al., 2021). Our DA approach adjusted both the timing and magnitude of LAI (Figure 5a) and resulted in
significant improvement in GPP relative to FLUXCOM estimates (Figure 5b). Failure to predict LAI is a
persistent problem across many ESMs and there has been limited improvement in model projections of LAI from
CMIP5 to CMIP6 (Mahowald et al., 2016; Song et al., 2021). A comparison of high latitude LAI in seven Earth
System models with the LAI3gv.1 product (Zhu et al., 2013) either overestimated or underestimated LAI
(Winkler et al., 2019). Nearly all (24 of 27) CMIP6 models overestimate satellite estimates of global mean LAI
(aggregated from three satellite products) and 9 of these models show bias of more than 50% (Song et al., 2021). A
study of biophysical processes mediated by leaves in four land surface models attributed biases in interannual
variability of LAI to parameterization of the carbon allocation and phenology schemes in these models (Forzieri
et al., 2018). Alteration of the phenology model in the CARDAMOM model changes the sensitivity of carbon
storage to climate (Norton et al., 2023). We have previously shown that DA can be used globally to remove bias in
CLM from poorly parameterized controls of carbon allocation, phenology; adjusting LAI by 23% to align with
satellite observations results in an 18% reduction in global GPP and a 6% reduction in global latent heat estimated
by CLM (Fox et al., 2022). However, state DA does not improve prognostic modeling of LAI and biomass so
model development to better represent the controls of LAI remains a priority.

Correcting bias in LAI revealed that the processes controlling photosynthesis in CLM5.0 also appear to be
inaccurate. After LAI bias was removed, GPP was significantly (78.2%, Table S3 in Supporting Information S1)
higher than the FLUXCOM data product (Figure 5b). Comparing field measurements to model assumptions of
photosynthetic parameters have revealed significant over‐estimates of apparent Vcmax, Jmax and ΦPSII in

Figure 5. (a) Seasonal cycle of LAI from CLM5.0 free run (light orange), DA run (blue), and MODIS (green) using data in 2015. (b) Seasonal cycle of GPP from
different CLM runs in 2015 and FLUXCOM averaged from 2011 to 2013 (green). Parameterization (cyan) implements the new parameterization and starts from the
initialization condition identical to the free run. Initialization (red) starts from the initialization condition identical to the DA run. Parameterization+ Initialization (pink)
implements the new parameterization and starts from the initialization condition identical to the DA run. Note that the free run and DA run shown here are results of the
first ensemble member for a fair comparison to the other three CLM runs all of which are driven by the first member of the CAM6 ensemble.
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CLM4.5 (Rogers et al., 2017, 2019). In CLM5.0, Vcmax is now estimated by the Leaf Utilization of Nitrogen for
Assimilation (LUNA) model (Ali et al., 2016). Photosynthetic nitrogen is allocated between Vcmax and Jmax
depending on factors that influence the daily nitrogen use efficiency of each process (Ali et al., 2016; Lawrence
et al., 2019). The performance of LUNA in this region was found to be questionable particularly with respect to
temperature sensitivity and seasonal dynamics (Birch et al., 2021). In this study we used empirical estimates of
low temperature inhibition of photosynthetic capacity (Rogers et al., 2019) in our reparameterization of photo-
synthesis in CLM. This approach reduced CLM's estimates of GPP to more closely match the FLUXCOM
product (Figure 5b). Birch et al. (2021) did not explore temperature inhibition of ΦPSII as we have done here, but
by adjusting Vcmax downwards at low temperature, their approach has a similar effect of reducing GPP. Further
work is needed to resolve how seasonal changes in nitrogen allocation and low temperatures influence photo-
synthetic capacity in the arctic. We suggest these investigations first ensure minimal bias in LAI.

Assimilating biomass had a modest effect on GPP because total biomass is a weaker constraint on leaf carbon than
LAI and biomass is assimilated less frequently than LAI. The correlation between biomass and leaf carbon is not
as strong as that between LAI and leaf carbon, and so, at the assimilation step leaf carbon is altered less by the
change of biomass than by the change of LAIMoreover, biomass is only assimilated once per year compared to 45
times a year for LAI. Because the leaf carbon pool is rapidly changing in CLM, the impact of biomass on leaf
carbon at the assimilation step goes away quickly. Assimilating biomass did influence biomass pools that change
more slowly and influences wood (stem and root) carbon pools and decomposition (litter and soil) carbon pools.
The change of tree height (Figure 3) induced by the change of biomass will alter momentum roughness length and
displacement height. These are two key parameters in calculating wind, temperature, and humidity profiles of the
surface boundary layer, which control the sensible and latent heat fluxes representing land‐atmosphere in-
teractions (Zeng et al., 1998). Also, tree height impacts the under‐canopy atmospheric stability (Sakaguchi &
Zeng, 2009). The decrease of tree height (Figure 3) caused by the change of biomass will decrease the under‐
canopy stability and increase the turbulent transfer coefficient, causing the heat and water vapor transfer from
the ground to the canopy air to increase.

While both GPP and ecosystem respiration were reduced by data assimilation, ecosystem respiration was less
improved due to the worse soil carbon pool and resulted in worse NEE (Figure 4). Assimilating biomass caused a
decrease in aboveground respiration (improving ecosystem respiration Figure S3b in Supporting Information S1)
but was less successful in constraining belowground carbon stocks (Figure S4 in Supporting Information S1).
Greater improvements in ER and more realistic soil carbon may be achieved by assimilating soil carbon ob-
servations into CLM to constrain soil carbon directly, though data are limited, and high uncertainty remains a
concern (Jackson et al., 2017). The slight increase in soil carbon introduced by DA, the subsequent increased soil
respiration (Figure S4 in Supporting Information S1) was likely caused by disequilibrium in soil carbon. Limited
by computational resources, we were unable to spin up each of the 40 members in the ensemble to equilibrium
individually. We assumed the equilibrium states of each ensemble member were similar and spun up one
ensemble member for over 1,000 years to quasi‐equilibrium, as the initial condition to spin up each of the 40
members. This caused soil carbon to be in disequilibrium across approximately one third of the study domain.
Coupling the EAKF with faster approaches to model spin‐up (Liao et al., 2023) could allow defensible initial-
ization while also allowing model states to be in disequilibrium (Luo et al., 2015).

5. Conclusion
Predicting ecosystem responses to environmental change relies on understanding many related processes
simultaneously and, because many processes are imperfectly understood or difficult of parameterize, simplifi-
cations are necessary. In general, highly simplified model processes of leaf phenology, leaf carbon allocation, and
turnover interact to predict LAI using some simple assumptions. The LSMs compared within the CMIP6 protocol
show broad agreement in land carbon storage under historical conditions but projected annual carbon land‐
atmosphere flux in the ensemble ranged from approximately 0 to 15 PgC year− 1 after 140 years (Spafford &
MacDougall, 2021). GPP was the most common benchmark presented by the CMIP6 modeling teams, with LAI
evaluated less frequently (Spafford &MacDougall, 2021). If different LSMs have altered photosynthetic controls
to counterbalance persistent issues with LAI (Song et al., 2021), this would explain the difference between
historical and future performance. It is challenging to correctly evaluate the implementation of photosynthetic
processes in models that incorrectly estimate LAI. Our work suggests that DA can facilitate model development
by overcoming model bias in highly uncertain processes. It also underscores the need for progress in
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understanding phenology, leaf carbon allocation and turnover. Given the mechanistic connection between carbon
stocks and processes controlling carbon, water, and energy fluxes, improving model predictions of carbon stocks
remains a priority in biogeochemical research.

Data Availability Statement
Files and scripts (Huo, 2024a) used to conduct model experiments, generate figures and perform statistical
analysis are archived at https://doi.org/10.5281/zenodo.10480817. The README in the repository provides
detailed descriptions of each folder and outlines the connection between files within each folder. All data
(Huo, 2024b) are archived on CyVerse https://data.cyverse.org/dav‐anon/iplant/home/huoxl90/ABoVE_DA_
Data. The slightly modified ILAMB code (Huo, 2024c) used to evaluate model performance are available at
https://doi.org/10.5281/zenodo.10480704, and model simulations (Huo, 2024d) which were compared to the
benchmark data and the comprehensive evaluation result are accessible from: https://data.cyverse.org/dav‐anon/
iplant/home/huoxl90/ABoVE_DA_Data/ILAMB_ModelData_Results/. The CLM model version used in the
study is a developing version of CLM5.1 and was slightly modified (Huo, 2024e) to comply with the purpose of
data assimilation (https://doi.org/10.5281/zenodo.10480768).
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