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Emergence of Structured Behaviors from Curiosity-Based Intrinsic Motivation
Nick Haber, Damian Mrowca, Li Fei-Fei, Daniel L. K. Yamins

( [nhaber, mrowca, feifeili, yamins]@stanford.edu )
Department of Psychology and Computer Science, Stanford University, Stanford, CA 94305, USA

Abstract

Infants are experts at playing, with an amazing ability to gen-
erate novel structured behaviors in unstructured environments
that lack clear extrinsic reward signals. We seek to replicate
some of these abilities with a neural network that implements
curiosity-driven intrinsic motivation. Using a simple but ecolog-
ically naturalistic simulated environment in which the agent can
move and interact with objects it sees, the agent learns a world
model predicting the dynamic consequences of its actions. Si-
multaneously, the agent learns to take actions that adversarially
challenge the developing world model, pushing the agent to
explore novel and informative interactions with its environment.
We demonstrate that this policy leads to the self-supervised
emergence of a spectrum of complex behaviors, including ego
motion prediction, object attention, and object gathering. More-
over, the world model that the agent learns supports improved
performance on object dynamics prediction and localization
tasks. Our results are a proof-of-principle that computational
models of intrinsic motivation might account for key features
of developmental visuomotor learning in infants. Keywords:
Development learning, Curiosity, Neural Network Models

Introduction
Within the first year of life, humans exhibit a wide range of
interesting, apparently spontaneous, visuomotor behaviors —
including navigating their environment, seeking out and at-
tending to objects, and engaging physically with these objects
in novel and surprising ways (Fantz, 1964; Twomey & West-
ermann, 2017; Hurley et al., 2010; Hurley & Oakes, 2015;
Goupil et al., 2016; Begus et al., 2014; Gopnik et al., 2009). In
short, young children are excellent at playing, and their abil-
ity to make sense of and (re)structure their environments sets
them apart from even the most advanced autonomous robots.
Play capacity in this period likely interacts with infants’ pow-
erful abilities to understand and model their environment. By
six months of age or younger, infants can orient themselves
in a complex environment, account for the presence, number
and visual properties of objects they interact with, and have a
sense of how these objects behave dynamically Spelke (1985);
Stahl & Feigenson (2015); Baillargeon (2007).

But how exactly do such young children know how to
play? And how do such behaviors relate to their world model
building abilities? One natural idea is that infants’ world
modeling capacities are the result of built-in core systems,
including those for e.g. object attention and permanence, self-
localization, number sense, and intuitive physics (Spelke &
Kinzler, 2007). Once operational, such systems would natu-
rally give the infant a basis on which to make judgments about
which sequences of actions would be interesting to perform.

A related but alternative idea is that the intrinsic motiva-
tion of curiosity can itself drive the development of world
model making (Schmidhuber, 2010). This idea relies on a
virtuous cycle in which, by seeking out novel but replicable

Figure 1: Problem setting. How do agents learn from object
interactions while moving around in the physical world?

interactions, the child pushes the boundaries of what its world
model-prediction systems can achieve, giving itself useful data
on which to improve and develop these systems. As world
modeling capacity improves, what used to be novel becomes
old hat, and the cycle starts again. Related to the conception of
the “scientist in the crib” (Gopnik et al., 2009), in this account,
aside from being fun, play behaviors may be extremely useful
and highly structured, driving the self-supervised learning of
a variety of representations underlying sensory judgments and
motor planning capacities (Mitash et al., 2017).

Building on recent work in artificial intelligence (Schmidhu-
ber, 2010; Pathak et al., 2017; Kulkarni et al., 2016; Jaderberg
et al., 2016; Oudeyer et al., 2007) we make a computational
model of an agent driven by curiosity-based intrinsic moti-
vation — an agent acting to maximize an intrinsic reward
derived from a measure of what its internal model of the world
finds, by some operationalization, interesting, rather than an
extrinsic reward. Related are approaches that attempt to learn
“options” useful for exploration (Machado et al., 2017) and
those that learn a predictive coding amidst random goal setting
and imitation (Najnin & Banerjee, 2017). We present a simple
simulated interactive environment in which an agent can move
around and physically act on objects it sees (Fig. 1). In this
world, interesting interactions are sparse unless actively sought
after. We then describe a neural network architecture through
which the agent learns a world model that seeks to predict
the consequences of its own actions. In addition, as the agent
optimizes the accuracy of its world model, a separate neu-
ral network simultaneously learns an agent action policy that
seeks to take actions that adversarially challenge the current
state of its world model. We demonstrate that this architecture
stably engages in the virtuous reinforcement learning cycle
described above, spontaneously learning to understand self-
generated ego motion and to selectively pay attention to, local-
ize, and interact with objects, without having to have any of
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these concepts built in. This learning occurs through emergent
self-curricularization in which new capacities arise at distinct
“developmental milestones”. Unlike previous work, we show
the learned representation transfers to improved performance
on analogs of real-world visual tasks such as object localiza-
tion and detection. To our knowledge, a self-supervised setup
in which an explicitly self-modeling agent uses intrinsic moti-
vation to learn about and restructure its environment has not
been explored prior to this work.

Agent Architecture and Environment
We place an agent in a physically realistic simulated environ-
ment built in the Unity 3D simulation framework. The agent
consists of a world model and a loss model. The world model
is tasked to learn dynamics from visuomotor inputs. The loss
model tries to estimate the world model’s losses several time
steps into the future to choose actions that antagonize the
world model’s learning. Our self-supervised curiosity system
is depicted in Figure 2. We emphasize that we do not initial-
ize our model with pretrained weights so as to explore what
world representation and behaviors emerge from this simple
antagonistic setup in a physically embodied environment.

Interaction environment
Our environment consists of a simple square room in which
an agent and several objects are initially placed randomly. The
agent is modeled as an invisible sphere that can move around
and, in discrete time steps, receives an RGB image from its
forward-facing camera. In order to model interaction with
objects requiring some attention and proximity, the agent can
apply forces and torques in all three dimensions to objects that
are both in view and within a fixed distance δ. We refer to a
state in which the agent can act on the object as a play state,
and the object as in play. Although the remaining environment
is static, the agent and objects can collide with every part.

We define a state in the state space st ∈ S to consist of the
images captured at times t and t−1 by the agent. In state st , the
agent specifies an action at ∈ A, which leads to the next state
st+1. The action space A ∈ R2+6N is continuous. The first 2
dimensions specify ego motion, restricting agent movement to
forward/backward motion v f wd and horizontal planar rotation
vθ. The remaining 6N dimensions specify the forces fx, fy, fz
and torques τx,τyτz applied to N objects sorted from the lower-
leftmost to the upper-rightmost object relative to the agent’s
field of view. This representation is unambiguous as objects
can only be acted on when in view, and if k < N objects are
in play, the environment accepts all 2+ 6N-tuples but only
applies the leftmost k force-torque pairs. All coordinates are
bounded by constants and normalized to 1.

World model
Given a slice of history ht = (st−kb ,at−kb . . .st+k f ,at+k f ) ∈ H,
we can describe a generalized dynamical problem by an in-
put map ξ : H → X and a true-value map η : H → Y and
require the world model (blue in Figure 2) map ξ(h) to
η(h) — regardless of whether this is well-defined. Let ω

denote this world model, so that ω(ξ(h)) ∈ Y . For each pre-
diction, a loss Lwm(ω(ξ(h)),η(h)) is incurred. Note that
both the input and true-value maps are determined exclu-
sively by the agent’s experience and require no outside pro-
cessing or labels. In practice, we find inverse dynamical
prediction useful — filling in a missing action, instead of
predicting the future — and concretely in our case, H =
{(at−2,st−1,at−1,st ,at ,st+1,at+1,st+2)} with ξ(h) excluding
at and η(h) = ζ(at). Here ζ zeros out the force and torque
components not corresponding to objects in play, as they have
no observable effect, and bins the action into classes, with Lwm
the softmax cross-entropy loss. We bin each dimension by
x <−0.1,−0.1≤ x≤ 0.1, and x > 0.1.

We train a convolutional neural network ωθ for this task
from scratch with stochastic gradient descent, with randomly
initialized parameters θ. We use twelve convolutional layers,
with two-stride max pools every other layer and one hidden
layer to encode states into a latent space with shared weights.
The latent states {λt+i} concatenated with the given actions
{at+ j} are then input to a two-layer MLP to predict at .

Loss model
The agent’s goal is to antagonize the world model, so if it
could predict the loss incurred at future time steps as a func-
tion of its options, a policy could be made. In practice, we
do this explicitly, except predicting only a discretization of
the loss for ease of training. Given st and a proposed next
action a, the loss model predicts, for u = 1 . . .T timesteps into
the future, probability distributions pu(c|st ,a) over discrete
(via thresholding) classes of loss c ∈Cl . It is penalized with
softmax cross-entropy loss, averaged over timesteps. We use
a separate convolutional neural network Λψ with parameters
ψ, with twelve convolutional layers with two-stride max pools
every other layer and one hidden layer to encode the state
which is then concatenated with the proposed at . This repre-
sentation is then used as input to a two-hidden-layer MLP to
infer the prediction. All future losses aside from the first one
depend not only on the state of the world model but also on
future actions taken. The loss model hence needs to predict
in expectation over future policy. The loss predictions are
usefully interpreted as loss prediction maps Λst (a) on action
space given a current state st as depicted in Figure 4.

Action policy
Given the loss prediction model, the agent can use a simple
mechanism to choose its actions. Given a real-valued function
σ of these T probability distributions, we can define our policy
π(a|st) as a distribution

π(a|st)∼ exp(βσ(p1, . . . pT )(a,st)), (1)

with hyperparameter β. We take σ to be a sum over expecta-
tion values in loss class σ(a)[st ] = ∑i ∑c∈C cpi(c|a,st), though
other methods (Feigelis et al., 2018) have proven useful in
some contexts. We evaluate σ for K = 1000 uniform ran-
dom samples in A. We then sample from a K-way discrete
distribution with probabilities proportional to equation (1).
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Figure 2: Self-supervised curiosity model. We train a dynamical world model (blue), while simultaneously learning a loss model
(red) that predicts the world model’s loss to choose actions that lead to novel and surprising events in the environment (black).
Models both consist of convolutional neural networks and are fed one or more states consisting of two successive images from
the agent’s camera.

Experiments
We randomly situate the agent and up to two objects in a square
10x10 unit room with play distance δ = 2. The agent trains
on 16 blue objects with different shapes, i.e. cones, cylinders,
cuboids, pyramids, and spheres of varied aspect ratios. We
reinitialize the play scene every 8,000 to 30,000 steps.

We first place the agent with one object in the room and
show that it learns to predict ego motion, and attend, localize
and navigate towards objects by evaluating the world model’s
training loss, the agent’s play state frequency, and the inverse
dynamics prediction performance on a fixed validation set. In
a second experiment we increase the number of objects to two,
and demonstrate that the agent learns to gather both objects
and further prefers to play with two objects over one object
by looking at the frequency of 1 and 2 object play states and
object-agent distances. These behaviors emerge in a specific
order akin to developmental milestones.

We compare our learned world model with curious policy
with T = 40 (LW/CP-40) against a baseline with a world
model with fixed random weights following a random policy
(RW/RP) and a baseline where the world model weights are
learned with a random policy (LW/RP).

Ego motion learning
Figure 3 (a) shows the training loss curves of LW/CP-40 and
the baselines. RW/RP does not learn well since most of its
weights are fixed to be random. LW/RP quickly converges to
a low value as it learns from a constant random distribution
without an antagonistic policy. The LW/CP-40 loss dips be-
fore increasing as the loss model first needs to learn which
actions lead to higher loss before being able to antagonize the
world model effectively. This first dip in loss corresponds to
the world model learning ego motion. The ego motion error
reported in Table 1 is close to the error reached at this point.

Emergence of object attention
As the LW/CP-40 loss increases after the initial ego motion
dip the agent starts to attend to objects which is reflected in an
increase of object interactions as shown in Figure 3 (b). At the
final stage, the agent interacts with the object about 60% of the
time which indicates that it learns to localize and attend to the
object (Table 1). At the same time, the increasing world model
loss shows that these object interactions are much harder to
predict than ego motion. The baselines almost never interact
with the object and thus experience lower ego motion losses.

Improved inverse dynamics prediction
We evaluate the inverse dynamics prediction performance on
a held out validation set gathered from the environment while
following a random action policy. To measure the models’
performance on predicting ego motion and object actions sep-
arately, we divide the validation set into two sets. The first
set contains all examples in which the agent is in a play state.
The second set consists of all remaining examples. As we can
see in Figure 3 (c) and in Table 1, LW/CP-40 and LW/RP per-
form well on predicting ego motion as no antagonistic policy
is necessary to encounter ego motion. However, our policy
outperforms the baselines on predicting object interactions
by a significant margin showing that focusing on object in-
teractions does indeed improve inverse dynamics prediction
performance as seen in Figure 3 (d) and Table 1.

Improved object detection and localization
To quantify the world model’s object presence and localization
performance, we train a linear regression/logistic regression
with elastic net regularization on features from various world
model layers on a dataset generated by gathering data on-
line while following a random action policy. Half of object
presence training data contains an object. For localization,
the second image is guaranteed to contain the object. Both
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Ego motion learning Emergence of object attention object interaction learning
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(a) World model training loss

°* * °

(b) 1 object play frequencies (c) Ego motion validation loss (d) 1 object interaction validation loss

Figure 3: 1 object experiments. Learned world model with curious policy (LW/CP-40) is compared against learning a world
model following a random policy (LW/RP) and a world model with random weights with a random policy (RW/RP). (a) World
model cross-entropy loss during training. (b) Object play state frequency in %. (c) Ego motion prediction cross-entropy loss on
held out validation set. (d) 1 object interaction prediction cross-entropy loss on held out validation set.

Table 1: Performance comparison. Learned world model with
a curious policy (LW/CP-40) is compared against learned
world model with random policy (LW/RP) and random world
model with random policy (RW/RP). Ego motion (v f wd , vθ)
and interaction ( f ,τ) accuracy in % is compared for play and
non-play states. Object frequency and presence are measured
in % and localization in mean pixel error.

Task RW/RP LW/RP LW/CP-40
Play v f wd accuracy 61.8 84.5 93.6
Play vθ accuracy 78.8 95.2 97.9
Play f ,τ accuracy 20.8 39.8 44.4
Non-play v f wd accuracy 59.2 94.2 92.3
Non-play vθ accuracy 75.0 97.9 97.9
Object frequency 0.2 0.4 59.0
Presence error 3.9 1.2 0.6
Localization error [px] 15.14 5.99 4.80

training datasets consists of 16,000 image pairs labeled with
the object’s presence or pixel-wise 2d position of its centroid
respectively. The respective validation and test sets comprise
8,000 image pairs each. As can be seen in Table 1 our model
outperforms the baselines on the object presence and localiza-
tion task, indicating that it learns better visual features.

Navigation and planning
In addition to object localization, the agent also exhibits navi-
gation and planning abilities. In Figure 4 we give visualiza-
tions of loss maps projected onto the agent’s position at the
respective time. The loss prediction maps are generated by
uniformly sampling 1000 actions a from the action space A,
evaluating Λst (a) and applying a postprocessing smoothing
algorithm. We truncate the figure at five out of the 40 time

steps our loss model predicts. The loss maps show the agent
predicting a higher loss (red) for actions moving it towards the
object to reach a play state. Consequently, our curious policy
will take actions that navigate the agent closer to the object.

Emergence of multi-object interactions
At the beginning of the training of the 2 object experiment we
observe similar stages as for the 1 object experiment (Figure 5
(a)). The loss dips as the agent learns to predict its ego motion
and rises when its attention shifts towards objects which it
then interacts with. This is followed by a another loss increase
which corresponds to the agent gathering and playing with
both objects simultaneously. This is reflected in an increase
in 2 object play time (Figure 5 (c)) over 1 object play time
(Figure 5 (b)). Consequently, the average distance between
the agent and the objects decreases over time as seen in Figure
5 (c). It drops to about 2 units, the maximum interaction
distance. The LW/RP baseline quickly drops and flattens out.
LW/CP-20 with T = 20 instead of T = 40 learns to interact
with one object but not with two objects simultaneously.

Discussion and Future Work
We observe that a simple and general intrinsic motivation
mechanism based on adversarially antagonizing the loss of a
dynamically constructed model of the world allows an agent to
stably generate a spectrum of emergent naturalistic behaviors.
Through self-curricularization in an active learning Settles
(2011) process the agent achieves several “developmental mile-
stones” of suitably increasing complexity as it learns to “play”.
Starting with random actions, it quickly learns the dynamics
of its own ego motion. Then, without being given an explicit
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t t+1 t+2 t+3 t+4

Figure 4: Navigation and planning behavior. The loss model predicts higher loss if the agent turns towards the object. Red colors
correspond to high and blue colors to low loss predictions. The center of the heat map corresponds to the agents position.

Ego motion learning Emergence of object attention 1 object learning 2 object learning

1 object loss

2 object loss

°* x

(a) World model training loss

x°* x x

(b) 1 object play frequencies (c) 2 object play frequencies (d) Object-agent distances

Figure 5: 2 object experiments. Learned world model with curious policy (LW/CP-40) is compared against the same setup but
with T = 20 (LW/CP-20) and a learned world model following a random policy (LW/RP). (a) World model cross-entropy loss
during training. (b) Object play state frequency for 1 object in %. (c) Object play state frequency for 2 objects in %. (d) Average
distance between agent and objects in Unity units.

supervision signal as to the presence or location of an object,
it discards ego motion prediction as boring and begins to focus
its attention on objects, which are more interesting. Lastly,
when multiple objects are available, it gathers the objects so as
to interact with both. This policy leads to performance gains
in object dynamics prediction as well as other tasks which the
system was not explicitly learning.

This occurs without any pretrained visual backbone — the
visual system world model was intentionally not initialized
with filter weights pretrained on (e.g.) ImageNet classification.
This constitutes partial progress in replacing the training of
a visual backbone through a task such as large-scale image
classification with an interactive self-supervised task and is
a proof-of-concept that more complex milestones can be po-
tentially reached while developing an understanding of object
categories and physical relations.

This combination of spontaneous behavior leading to an

improved world model is well suited to designing agents that
must act effectively in the many real-world reinforcement
learning scenarios in which rewards are sparse or potentially
unknown. Here, we ultimately seek to develop algorithms
that will control autonomous robots that learn to operate in
complex unpredictable environments. From a cognitive sci-
ence perspective, these results suggest a route toward using
intrinsically motivated learning systems to model emergence
of spontaneous behavior in young children. In this domain, we
seek to make computational models that describe key aspects
of real infant learning.

In order to have “developmental milestones” that may be
mapped onto real child development, a variety of limitations
will need to be overcome. First, to make the connection to
cognitive science more realistic, our environment and agent
need to be more realistic. Better graphics and physics, with
more interesting visual objects, will be important to allow
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better transfer the learned behavior to real-world visuomotor
interactions. It will also be important to create a properly em-
bodied agent with visible arms and tactile feedback, allowing
for more realistic interactions. In our current work, we fail
to address the fact that infants have severely limited mobility
and motor control. A realistic model of this is critical to make
realistic predictions for actual infant development. Including
other animate agents would lead to more complex interactions
and the possibility of learning through imitation.

Second, our current approach suffers from degeneracy: that
a well-behaved enough map from inputs X to outputs Y may
not exist. The inverse dynamical prediction problem exhibits
this: when given an image sequence in which an object rests
on the ground, action is under-determined: the agent could
have been pushing down on the object, or not. Extending
beyond our environment and to other dynamical problems,
the existence of unpredictable stimuli, referred to as the white
noise problem Schmidhuber (2010), further contributes to de-
generacy, and our method can easily break down in this setting
as the agent seeks out experience it cannot learn from. Several
approaches to address this have been proposed Schmidhuber
(2010); Pathak et al. (2017), and TODO cite Oudeyer Pathak
et al. (2017) have demonstrated some success, it remains to
be seen whether such methods lead to gains in environments
that approach ecological realism. Taking these next steps will
not only help us to understand how infants learn, but also to
develop AI systems that learn without human supervision.
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