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Disc brake technology used for mountain bikes, and mountain bike tech-

nology in general, has improved significantly as the sport of mountain biking has

evolved. Disc brakes on bicycles are relatively new compared to their use on other

vehicles. Rotor design is varied for rotors of the same intended use for many com-

panies; some still use the same initial rotor designs that were introduced over a

decade ago. Through the finite element analysis and optimization process, under-

standing the difficulties of designing disc brake rotors and the validity of certain

design trends in current disc brake rotors is pursued. Additionally, this investi-

gation uses finite element methods to design and optimize a mountain bike disc

brake rotor using topology optimization. More specifically, the goal is to design a

lighter rotor that maintains similar structural performance as rotors that are cur-

rently commercially available. The new rotor design was compared to two existing

rotor geometries. The strength of the new rotor is comparable to existing rotors

xiii



A and B. Weight improvements of 14.3% and 12.4% over Rotor A and Rotor B,

respectively, are realized.
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Chapter 1

Introduction

With any design problem there are objectives and constraints that must

be met. With mechanical design, size, weight, strength, and cost are a few of the

many constraints that may need to be taken into consideration when designing for

a set of objectives. Traditional methods of design rely on an engineer or a team

of engineers’ creativity, experience, and intuition to come up with several initial

designs. These initial designs are compared and analyzed using simplified models,

from which the best solution is chosen. The best design is then improved upon

iteratively. These iterations are in essence cycles of trial and error that can often

require many cycles, each of which can be costly and time consuming. With finite

element analysis and optimization, more complex problems can be solved more

quickly, decreasing the amount of physical testing for a new design. An optimum

design can be achieved based on predetermined criteria using computational meth-

ods. Sometimes unforeseen problems arise and additional design goals need to be

met; it is also possible to determine where and how changes should be made, if the

intended use of the new product were to change, because all conditions for opti-

mization are known. This helps address the cases where non-optimal designs may

continue to be use to cut the time, cost, and risk of trying to find a better design.

For these reasons, finite element techniques were chosen as the design method for

designing a disc brake rotor.

Although disc brakes are not new, they have not been used on bicycles for

1
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very long. Disc brakes for bicycles are most commonly seen on mountain bikes,

because of how well they work in varying weather conditions, at high speeds, and

under long braking periods. Mountain biking is a relatively new sport with influ-

ences originating from cyclocross1 in Europe, Roughstuff Fellowship in the United

Kingdom[5], and from gravity enthusiasts riding modified cruisers2 down dirt trails

in Marin County, California[6]. It began gaining mainstream popularity through-

out the 1990s. Many ideas including disc brake design are still in the process of

being perfected by engineers and hobbyists alike. There are a range of products

and designs for almost every component of the mountain bike that are changing

from year to year. These products are exhibited at various annual expos such as at

the Interbike International Trade Expo[7] or the Sea Otter Classic Expo[8]. Mar-

keting efforts and popularity trends often blur the line between real technological

advances and product hype, and create situations where new technology may not

be used where it is most applicable3.

Disc brake technology has significantly influenced the limits of the moun-

tain biking sport. In turn, disc brake technology has also been pushed by the

evolving sport of mountain biking. Disc brakes on bicycles were not initially pop-

ular, because of the lack in stopping power of mechanical disc brakes compared to

the standard rim brakes, and the reliability problems of early hydraulic systems.

Now hydraulic systems are very robust, relatively light, and very easy to maintain.

They include technologies that reduce brake fade more effectively and products

1Cyclocross is a type of race involving several laps on a course with various terrain including
pavement grass, and wooded trails. Cyclocross bikes look like road bikes with knobby tires.

2Cruisers are bikes that allow a more upright and relaxed riding posture and usually have
fatter tires than road bikes.

3A good example of this occurred around 2003 when mountain bike suspension design and
damping technologies were still relatively simple. In a pioneering effort to introduce new damping
technology to reduce pedal bobbing, many companies began making stable platform suspension
systems. (Pedal bob is the vertical movement of the bike caused by pedaling. Stable platform
suspension refers to suspension that contains some type of damping or valve system that keeps
or helps keep the suspension from becoming too active under pedaling.) This was also around
the time that long travel bikes used for more than just high speed gravity racing began gaining
popularity; aggressive trail riding and extreme technical trail riding are more pedaling inclusive.
This combination made long travel stable platform suspension a hit for a short period of time
until riders began to realize that this decreased small bump sensitivity. This led to a large drop
in stable platform fork and stable platform long travel rear shock popularity in subsequent years.
It’s primary presence remains in cross-country or short travel oriented suspension products.
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that make maintaining the system much easier. Very recently hydraulic bicycle

disc brakes with variable leverage ratios have been made that combine the advan-

tages and reduce the disadvantages of previous systems,4 making them even more

desireable. Brake pad technology and brake fluid technology from other disc brake

systems such as those on motorcycles have also trickled down into bicycle disc

brake technology as the performance requirement became more demanding. How-

ever, even with the advancements in hydraulic actuation of disc brake systems,

rotor design has remained relatively stagnant. Until recently, many companies

used the same or similar rotor designs as when they introduced their first prod-

ucts. Hayes is an example of a company that has used a very similar rotor design

for over a decade for all size rotors.

Performance due to differences in existing single alloy designs are not ob-

vious. Many companies offer several rotors with different designs for similar ap-

plications. The designs also vary significantly from company to company. A few

examples are shown in Figure A.4. Some companies are beginning to introduce

rotors that use multiple alloys5. However, these rotors are much more expensive

and take longer to make than steel rotors which are simply stamped, water jet cut,

or laser cut out of steel sheets. Therefore finite element optimization techniques

are used to design a single alloy disc brake rotor that is lighter and performs as

well as existing single alloy rotors. The scope of this paper is to investigate rotor

design using topological optimization for a single alloy disc brake rotor. All finite

element analysis and optimization is done on a linear finite element solver, thus

does not account for any cyclic loading or plastic deformations. Heat effects are

also not considered. Although, plastic deformation and heat can affect the point

of failure of a brake rotor, it is assumed that failure directly caused by these effects

are not common. Under normal braking, the rotor should remain in its elastic

region. Otherwise the rotor would deform after each use. Regarding failure by

4In earlier hydraulic disc brake systems leverage was not variable and forced two designs: the
first option was more braking force and reduced piston travel, the second option was to have
more piston travel to accommodate for bent rotors and mud with reduced braking force.

5Shimano is one of the pioneering companies that have experimented with multiple alloy
designs in their proprietary Center Lock mounting system. They have used multi-alloy rotors
since the mid 2000s.
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overheating, brake system failure due to glazing of the brake pads or boiling of the

brake fluid usually occur before rotor failure due to warping occurs. In addition,

if heating becomes a problem under aggressive use, the traditional solution is to

use a larger diameter rotor. Analysis is done to compare existing designs to a new

design developed using Optistruct R©, a finite element optimization software offered

by Altair Engineering, Inc. The existing rotors chosen for comparison are a 160

mm Hayes rotor and a 160 mm Shimano rotor, here on referred to as Rotor A and

Rotor B, respectively. Images of these rotors can be seen in Figure A.2 and A.3 in

Appendix A.



Chapter 2

Disc Brake Overview

Disc brakes are a type of brake that uses discs (as opposed to rims or drums)

as the braking surface. This type of brake is used on many types of vehicles such

as cars, motorcycles, and bicycles. Their main advantages over other types of

bicycle brakes are their ability to perform well in dry and wet conditions and

under prolonged braking periods.

The main components of a disc brake system are the brake caliper, which

houses pistons and brake pads, and the rotor. A typical configuration of disc

brake caliper and rotor can be seen in the cross sectional view shown in Figure

2.1(a). Pistons are usually actuated hydraulically or mechanically, but can be

actuated by other means such as pneumatics or electromagnetism as well. Bicycle

disc brakes are almost exclusively actuated by hydraulic or mechanical means via a

lever mounted to the handlebar. The hydraulic fluids most widely used are mineral

oil, DOT 3, and DOT 4 fluids. Bicycle disc brakes are one of the few systems that

still use mechanical means of actuation and do so with cables[1]. Although they are

not typically as powerful as hydraulic disc brakes, their use is continued because

they are generally cheaper and lighter. The user input is usually done via a hand

lever. A cross section of a bicycle hydraulic lever can be seen in Figure 2.1(b).

On a bicycle, the rotor is mounted to the hub of the wheel. There are

various proprietary mounting methods but a standard pattern of six T-25 screws

is most widely used. The front disc brake caliper is typically mounted to the fork

5
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(a) (b)

Figure 2.1: Cross section of a disc brake caliper with brake pads in contact with a
brake rotor (a) and hydraulic brake lever (b). Friction forces and pressure forces
are also shown. Source:[1]

and the rear disc brake caliper is typically mounted to the seat stay of a bicycle.

The lever is mounted to the handlebar. Figure 2.2 shows the mounting points for

the front and rear disc brake system. The major parts of a bicycle are labeled in

Figure A.1 in Appendix A.

Currently there are few regulations for bicycle disc brake performance ex-

cept the general braking regulations for bicycles stated in Title 16 §1512.5 of the

Code of Federal Regulations determined by the US Consumer Safety Commission[9].

These regulations offer a very large amount of freedom in brake design, limited pri-

marily to distance before stopping and failure of the braking apparatus. For this

reason the factor of safety for rotor failure can be as low as what is comfortable for

each individual manufacture. Strength sufficiency of the newly designed rotor is

based on comparisons to two existing rotors that have been in use for many years.
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(a) front caliper and rotor (b) rear caliper and rotor

(c) brake lever

Figure 2.2: How the disc brake system is typically mounted to a bicycle.



Chapter 3

Two Wheel Vehicle Dynamics

In addition to understanding how the braking system works, the physics

behind braking on a bicycle must be examined in order to optimally design a rotor.

Maximum forces on the rotor can be determined from examining bicycle stability

under braking in a straight line. Examining the suspension dynamics shows how

the reduction of rotor weight is will affect the performance of the bicycle.

3.1 Stability Under Braking

The following is an analysis on a fully rigid bicycle under braking. Equations

3.1, 3.2, and 3.3 give the force balance equations for Figure 3.1(a). The sum

of forces in the x direction, and sum of moments about point G are dynamic

equilibrium equations, because of the motion of the bicycle, and is set to the total

mass of the system msys times the deceleration of the system asys, and (ma)sys

times the height of msys from the ground, respectively. The sum of forces in the y

direction is under static equilibrium, because there is no motion in the y direction,

and can be set to zero.∑
Fx :

f1 + f2 = (ma)sys (3.1)∑
Fy :

N1 +N2 −W = 0 (3.2)

8
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(a)

(b)

Figure 3.1: Free body diagram of a bicycle on (a) flat ground and (b) a slant.
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∑
MG :

−d1W + LN2 = −h(ma)sys (3.3)

N is the normal force, f is the friction force at the tire-road contact patch, and W

is the combined weight of the rider and bicycle. Subscripts 1 and 2 indicate forces

applied at the front and rear wheel, respectively. Coulomb friction f is defined as

f = µN, (3.4)

where µ is the coefficient of friction. The subscript T indicates properties at the

tire-road contact patch. Therefore, Equation 3.1 becomes

(ma)sys = µT (N1 +N2). (3.5)

Plugging Equation 3.5 into Equation 3.3 leads to,

−d1W + (d1 + d2)N2 + hµT (N1 +N2) = 0

⇒ −d1W + LN2 + hµTN1 + hµTN2 = 0

⇒ −d1W + hµTN1 + (L+ hµT )N2 = 0.

Using Equation 3.2 this becomes,

−d1W + hµTN1 + (L+ hµT )(W −N1) = 0.

⇒ −d1W + LW − LN1 + hµTW = 0.

Solving for N1 gives,

N1 = W
−L

(d1 − L−HµT )

and simplifies to

N1 = W

(
d2 + hµT

L

)
. (3.6)

Plugging back into Equation 3.2 gives,

N2 = W

(
d1 − hµT

L

)
. (3.7)

Equation 3.7 is of particular interest because when N2 ≤ 0, the bicycle is no longer

stable and means the rear wheel will lift; this is often called endoing. Instability or
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the condition N2 ≤ 0 occurs when µT ≥ d1
h

. The variables d1 and h are dimensions

that locate the center of mass for the combined rider and bike mass relative to

point G when the instability condition µT ≥ d1
h

occurs. A line can be drawn from

point G to the center of mass at position (d1, h), which creates an angle θ with the

ground. Angle θ can be defined as

θ = tan−1

(
h

d1

)
, (3.8)

or,

θ = tan−1

(
1

µT

)
. (3.9)

This line is a stability boundary that the combined center of mass of the rider

and bicycle must remain behind for the bicycle to remain stable in the forward-aft

direction1. This only holds true if the wheels are locked (i.e. no wheel rotation).

Figure 3.2: Free body diagram of a bicycle’s front wheel at the instance of
instability.

To understand when the wheels will be locked, force balances on the wheel

must be looked at (see Figure 3.2). Because the wheel does not move in the x or

y direction relative to the bike fork or frame only the moment equation is shown:

1Unless the rider is skilled enough to sufficiently lower his center of gravity, the rear wheel
can expect to lift at deceleration rates over approximately .5 g or 4.9 m/s2[10][11].
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∑
MA :

−rRfR1 + rWf1 = 0, (3.10)

where r is the radius of the rotor or wheel denoted by subscripts R and W, respec-

tively. Using Equation 3.4 Equation 3.10 becomes,

−rRµRnNP + rWµTN1 = 0, (3.11)

where µR is the coefficient of friction between brake rotor and pad, NP is the

normal force of the piston on the rotor, and n is the number of pistons acting on

the rotor. Solving for µT gives,

µT =
rRµRnNP

rWN1

. (3.12)

So,

µT ≤
rRµRnNP

rWN1

, (3.13)

for the front wheel to remain locked.

In the case that the wheel is not locked instability can still occur. By

plugging Equation 3.12 into Equations 3.7 and 3.9 it is seen that instability occurs

when µR ≥ d1rWN1

hrRnNP
, and the instability boundary can be drawn by

θ = tan−1

(
rWN1

rRµRnNP

)
(3.14)

for N1 > 0. These equations are useful because the pad and rotor contact area will

always experience kinetic friction when applying the brakes under motion.

Another equation of interest arrises from Equations 3.2 and 3.3:

−
(

d1

hmsys

)
N1 +

(
d2

hmsys

)
N2 = −asys. (3.15)

Equation 3.15 shows that as asys increase (e.g. higher decelerations) N1 increases

and N2 decreases. In cases where the bike is not on flat ground as shown in Figure

3.1(b), there is an x component of the weight vector making Equation 3.15:

−
(

d1

hmsys

)
N1 +

(
d2

hmsys

)
N2 + hmsysW sinα = −asys. (3.16)
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Equation 3.16 shows that the deceleration greatest when N2 = 0 and when α = 0

for 90 ≥ α ≥ 0. The term hmsys sinαW is a moment caused by a gravitational

force, so even though it is negative when 0>α ≥ −90 and contributes to higher

deceleration, the deceleration forces due to braking do not increase.

The above cases all assume the tire-road contact is great enough to cause

instability whether skidding is present or not. On asphalt, the limiting factor of

deceleration is bicycle stability rather than the tire-road friction coefficient[11].

Also, static friction is greater than kinetic friction. Therefore, maximum decelera-

tion due to braking forces is seen at the instance before the bike becomes unstable

on flat ground with no skidding. Because stresses on the brake rotors increase as

braking forces increase and all loads are at the front wheel during maximum de-

celeration, maximum stresses seen by a rotor are on the front rotor at the instance

before the bicycle becomes unstable. These conclusions apply to full suspension

bikes as well. Even if brake dive and brake squat are taken into consideration, the

dimensions locating the center of mass simply become time dependent (e.g. h, d1,

and d2 become h(t), d1(t), and d2(t), respectively) and the same method will give

the same conclusions. In general the main effects of brake dive are the forward and

downward shift of the center of mass due to the fork compressing under braking.

Brake squat occurs in some full suspension bikes where the braking moments from

the rear wheel cause the the rear suspension to compress; the result is the rearward

and downward shift of the center of mass. Additional circumstantial cases where

the normal forces are larger due to dropping from a point above the ground or

from changes in the grounds slope over time are not considered.

3.2 Effects of Reduced Mass

There are many advantages for reducing the mass of a vehicle, and on a

bicycle in particular. The most apparent reason is that it takes less work to lift

a less massive object. This is more important for competitive endurance racing

bikes, such as cross-country mountain bikes or road bikes where there is a significant

amout of climbing and every gram matters. It is also easier to change the direction
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of a less massive bike. This is a desirable trait in bikes ridden on trails with many

turns or those used for tricks while jumping. The reduction in mass of a rotor

is a small percentage of the total rider and bike mass, but it is a collection of

components that make up the total mass of the bike. While reducing the mass

of the rotor alone may seem insignificant, doing so along with mass reductions

of all other possible components can be significant. In addition, the reasons for

reducing rotor weight becomes more significant on a fully suspended bicycle; that

is, a bicycle with independent suspension for the front and rear wheel. Just as it

is easier to change the direction of a bike with less mass, it is easier to change the

direction of a wheel with less mass. Reducing the mass of a rotor is one step to

making a less massive wheel.

How well the wheel tracks the ground is very important especially for com-

petitive gravity mountain biking events, where the fastest rider to the bottom of

the mountain wins. These courses are often very technical with many natural and

man made obstacles, often requiring high speed turns and hard braking. The more

time the wheel can stay in contact with the ground, the more traction the rider

will have. Therefore reducing unsprung mass should be a priority in performance

mountain bike design.

Most vertical motion of a bicycle is caused by the contour of the ground.

This motion also tends to be of relative high frequency on dirt trails where rocks

and roots are abundant. For a full suspension bicycle only the parts that are below

the springs and dampers, the unsprung components, see most of the high frequency

motions.

A simplified model of a full suspension bicycle is a three mass, two spring,

and two damper system with four degrees of freedom shown in Figure 3.3.

Forces exerted by springs and dampers are shown by Equations 3.17 and

3.18, respectively:

F = −kx, (3.17)

F = −cẋ, (3.18)

where k is the spring constant, c and the damping constant, and the symbol ˙ is d
dt

.
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Figure 3.3: A full suspension bicycle modeled as a 4 degree of freedom mass, spring,
damper system.

The general form of a damped mass-spring system is given in Equation 3.19:

Mẍ + Cẋ + Kx = F(t), (3.19)

where M is the mass matrix, C is the damping matrix, and K is the stiffness

matrix. The variables ẍ, ẋ, x, and F are column vectors.

By performing a force balance, the model in Figure 3.3 can be represented

by four equations:

m3ẍ3 + k1(x3 − x1 − d1θ) + c1(ẋ3 − ẋ1 − d1θ̇)

+ k2(x3 − x2 + d2θ) + c2(ẋ3 − ẋ2 + d2θ̇) = 0 (3.20)

J3θ̈3 − k1(x3 − x1 − d1θ)d1 − c1(ẋ3 − ẋ1 − d1θ̇)d1

+ k2(x3 − x2 + d2θ)d2 + c2(ẋ3 − ẋ2 + d2θ̇)d2 = 0 (3.21)

m1ẍ1 + k1(x1 − x3 + d1θ) + c1(ẋ1 − ẋ3 + d1θ̇) = N1(t) (3.22)

m2ẍ2 + k2(x2 − x3 − d2θ) + c2(ẋ2 − ẋ3 − d2θ̇) = N2(t) (3.23)
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Equations 3.20 through 3.23 are represented in the general matrix form:

m1 0 0 0

0 m2 0 0

0 0 m3 0

0 0 0 J3





ẍ1

ẍ2

ẍ3

θ̈



+



c1 0 −c1 c1d1

0 c2 −c2 −c2d2

−c1 −c2 c1 + c2 −c1d1 + c2d2

c1d1 −c2d2 −c1d1 + c2d2 c1d
2
1 + c2d

2
2





ẋ1

ẋ2

ẋ3

θ̇



+



k1 0 −k1 k1d1

0 k2 −k2 −k2d2

−k1 −k2 k1 + k2 −k1d1 + k2d2

k1d1 −k2d2 −k1d1 + k2d2 k1d
2
1 + k2d

2
2





x1

x2

x3

θ


=



N1(t)

N2(t)

0

0


(3.24)

N1(t) and N2(t) are functions that represent the normal force at the front and

rear wheel at time t. The sprung weight, m3, usually consists of the rider, bicycle

frame without the swingarm, seat, handlebar and controls, and upper fork.2 The

front unsprung weight, m1, usually consists of a wheel, tire, brake rotor, brake

caliper, and fork lowers. The rear unsprung weight, m2, usually consists of a

wheel, tire, sprocket, rear derailleur, brake rotor, brake caliper, swingarm, and

some chain mass. Reducing the weight of the rotors will decrease the unsprung

weight. It is not explicit, but with known values, Equation 3.24 will show that as

m1 and m2 approach 0, the time the tires are in contact with the ground (where

N ≥ 0) increases. More generally, as the unsprung mass is decreased, the ability to

change its direction increases. This means the wheels can track higher frequency

perturbations at the ground, equivalent to increased control.

Reducing rotor weight also reduces the rotational mass of the wheels. This

helps with forward acceleration of the bicycle. Rotational mass can be compared

2A labelled diagram of bicycle components can be found in Figure A.1 in the Appendix.
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to equivalent mass moving in a linear path with the kinetic energy equation

KE =
1

2
mv2 +

1

2
Jω2 =

1

2
meqv

2, (3.25)

where v is velocity and ω is angular velocity.



Chapter 4

Finite Element Optimization

Overview

4.1 Finite Element Method

Finite element analysis or the finite element method is a type of compu-

tational analysis use to solve a system of differential equations (DE) that have a

set of restraints or boundary conditions (BC). These differential equations are also

called boundary value problems (BVP). BVPs can be represented in their strong

or classical form, and their weak or variational form. The strong form is simply a

DE and its BCs stated explicitly. The weak form is equivalent to the strong form

but consists of trial solutions, and weighting functions (also known as variations).

In mechanics, equations in this form are often called equations of virtual work.

The finite element method finds approximate solutions for BVPs from the weak

form. For further explanation of strong and weak forms and their equivalence can

be found in Hughes[12].

Computational analysis requires that the region, Ω, governed by the differ-

ential equation be discretized into subregions, Ωe, called elements; solving for the

infinite points within Ω is impractical. The elements collectively are called a mesh.

Points where more than 2 elements share a boundary is called a node. Because

of the discretization, only an approximation of the solution can be found for a

18
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given BVP. How close the approximation is to the actual solution depends on how

finely the region governed by the differential equation is discretized. The finer the

discretization the closer the results will be to the actual solution. However, this

comes at the cost of more computations and thus requires more computing power

or time. To deal with this problem finer elements are used in regions of importance

and larger ones in areas that hold less interest or significance.

The solution can be more reliable if higher quality elements are used as

well. The more skewed an element is the less accurate the solution[13].

Element shape can vary as well. Trias and quad elements are common 2-D

elements. Hexa, penta, tetra, and pyramid elements are common 3-D elements.

The choice of element depends on the problem being analyzed, the accuracy needed,

and the computational resources available.

For example, generally 2-D or shell elements are computationally less costly

than 3-D elements because there are usually fewer nodes per element1. However,

2-D elements only allow a good representation of flat and thin objects with uniform

thickness. Also, if using 2-D elements for thin objects moving out of plane of the

2-D element, in the third dimension, the elements become referred to as plate

elements. Although plate and shell elements are both 2-D elements and look the

same in a mesh the equations relating the elements together to arrive at a solution

are very different. Most of the plate elements used in FEA is based on Reissner-

Mindlin Theory. C0 plate elements should generally not be used because of the

tendency for shear locking; shear locking is when the model solution is stiffer than

it should be. The problems of shear locking in Reissner-Mindlin plate theory is

briefly discussed in Hughes[12] and is a well know problem that has led to the birth

of plate elements other than the basic C0 element. It is things like this that make

the choice of element important in certain FE models. Recommendations for 2-D

elements used as plate elements is provided by Altair[2].

There are many methods for solving boundary value problems but a com-

mon method in finite element analysis is the Bubnov-Galerkin Method widely know

1There are elements with nodes at places other than their vertices
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simply as the Galerkin Method. The Galerkin Equation in matrix form

Kd = F (4.1)

is the differential equation to be solved for static loading cases. The solution is

d = K−1F (4.2)

and is often non-trivial to achieve. K is the global stiffness matrix, and defines

the properties and element relations of the mesh; d is the displacement vector,

containing the displacement of each node; F is the force vector. The global stiffness

matrix is formulated from elemental stiffness matrices, ke, which is formulated from

the bulk modulus, B, and material modulus matrix, D:

ke =
∫

Ωe
BTDBdΩ (4.3)

The material modulus matrix contains shear and normal stiffness coefficient for

the material applied to the region Ω. The bulk modulus is a matrix of basis or

shape functions for an element. What shape function is used depends on the order

of the differential equation. For higher order differential equations smoother shape

functions are required. For example, piecewise quadratic shape functions that are

C1 functions are needed for 4th order differential equations[12]. The strain tensor,

ε, can be calculated once the displacements are found:

εij =
∂jdi + ∂idj

2
(4.4)

The stress can subsequently be found using Hooke’s Law:

σ = Cε (4.5)

C is the material elasticity matrix and σ is the stress tensor.

Linear buckling analysis using the finite element method is also possible.

Buckling loads can be calculated by solving the eigenvalue problem:

[K− λKG]x = 0 (4.6)

using the Lanzcos Method, where K is the material stiffness matrix, KG geometric

stiffness matrix, x is the eigenvector for the eigenvalue λ.
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4.2 Optimization Overview

Designing a product to solve a specific problem can be very time consuming

and complicated. Often, multiple designs can solve the same problem, but one may

perform more favorably in one area and not so favorably in another. Although

testing is essential to prove a design, using trial and error is a very expensive

and time consuming method to optimize a design. This method also becomes

very difficult when several design variables and constraints are present. Alternate

optimization methods have been developed to address such difficult optimization

problems. Most methods use a cost function, which is a function that includes

and relates all important variables within a problem with the optimization goal.

Minimizing or maximizing the cost function will lead to a solution that is the design

that contains the optimal parameters for its defined variables. Design constraints

are also applied to the cost function to ensure that the optimum solution does

not lie outside the acceptable range of design parameters. In other words, the

best solution within the constraint boundaries will be found. If a cost function

only contains a few variables it is sometimes possible to minimize (or maximize) it

analytically. However, for those that are too complex to solve analytically, many

computational methods exist.

An optimization problem can be expressed mathematically with a cost func-

tion E. This cost function should include all considered design variables and their

relationship to the optimization goal (i.e., if weight of a beam is the optimiza-

tion response in question, simply using the radius of a beam is not sufficient; the

relationship between the radius and weight need to be used). Thus,

E = f(D), (4.7)

where D is a vector containing all design variables to be considered. The cost

function can also be subject to equality constraints,

g(D) = 0 (4.8)

and inequality constraints,

g(D) ≤ 0, (4.9)
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g(D) ≥ 0. (4.10)

The amount of influence of each variable in the final design can also be included

by weighting parts of the cost function[14].

4.3 Optistruct

Optistruct is a linear solver developed by Altair Engineering. Optistruct

can find solutions for linear static analysis, normal modes analysis, linear buckling

analysis, and frequency response analysis using the modal method.

There are a few nonlinear problems that Optistruct can solve using iterative

methods. Optistruct can solve quasi-static problems using Newton’s Method[2].

Quasi-static solutions are a series of static solutions found over some discrete in-

tervals of time. This is useful for problems where the boundary conditions are not

constant over time. Because the of the quasi-static requirement for Optistruct, the

behavior of the loads and constraints over time must be known before analysis.

Therefore, transient response analysis is not possible. Any analysis that requires

non-linear relationships between nodes, such as fluid, heat, or fatigue analysis, is

not supported.

Solutions can only be found where a mesh is present. In situations where

there are spaces or gaps in the mesh where contact with another part of a mesh

is possible, gap elements can be used. Gap elements are elements with very little

stiffness, simulating lack of connectivity, until a threshold is reached. At this

threshold the stiffness becomes very high, simulating contact. This allows analysis

of bodies that may collide with each other. The gap element’s properties change

relative to distance of the two nodes it connects. Figure 4.1 shows the relationship

of distance and the gap elements’ stiffness in Optistruct. In the case where contact

is simulated the force the gap element exerts on the mesh is determined by the

distance the nodes pass each other via a penalty method[2][14]. The greater the

distance between the nodes past the threshold point, the greater the penalty or

force in the opposite direction the nodes are traveling. The distance between nodes

at the point impact is simulated is the threshold where the gap elements switch
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Figure 4.1: Non-linear force deflection curve of Optistruct CGAP elements, before
and after threshold U0. K is the stiffness of the gap element. UA − UB is the size
of the opening. Source: [2]

from one set of properties to the other, however, this threshold can be set to any

desired distance. The forces the gap elements exert on the mesh are calculated

iteratively.

Optimization in Optistruct uses the direct method and the adjoint variable

method; the chosen method is determined automatically by Optistruct.

The direct algorithm is an acronym for DIviding RECTangles. This method

is called such because of the partitioning of the search space into hyper-rectangles

to find an optimal hyper-rectangle. The function being optimized is normalized

to fit an n-dimensional unit hyper-cube. Once the search space is partitioned the

cost function is evaluated at the center point of each partitioned area. The hyper-

rectangle with the lowest evaluated center point is the optimal hyper-rectangle

and becomes the new search space. This hyper-rectangle is partitioned and the

process is repeated until the global minimum to some determined resolution is

found. Figure 4.2 is an example of the direct method process on a two dimensional

search space. The dots in Figures 4.2 show the function evaluated at each center

point. The unfilled dot represents the lowest calculated value. The shaded area

is the portion of the search space being considered at that particular iteration.

Further explanation of the direct method can be found in Zhu et. al.[3].

The adjoint variable method is a gradient-based optimization method that
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Figure 4.2: Direct Method performed through 4 subsequent iterations shown (a)-
(d) respectively. The unfilled dot represents the rectangle with the lowest value.
Source: [3]
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uses adjoint equations to determine search vectors towards the minimum or max-

imum of a cost function. Other types of gradient-based optimization methods

include the steepest descent method and the conjugate gradient method. The only

difference between these is how the gradient and direction vector is solved for, when

moving towards minima or maxima. Further explanations of the adjoint variable

method can be found in Sergeant[15]. Further explanations of the steepest descent

method and the conjugate gradient method can be found in Shewchuck[16]. The

OptiStruct topology optimization solves structural optimization problems where

the cost function is determined by the finite element model and optimization ob-

jective, and the constraint functions are user defined constraints entered into Hy-

permesh.

These and additional details on Optistruct and its capabilites can be found in

the Optistruct Help Manual[2].



Chapter 5

Pre-Processing

5.1 Modeling

In order to optimize a design, the actual system must be well understood;

then a sufficient model of the real system can be created. This includes under-

standing the forces and constraints on the system, the materials of the system, and

the geometry of the system under consideration.

5.1.1 Load Modelling

Boundary conditions (BC) are the loads and constraints acting on a partic-

ular mesh. To know what BC to implement on the mesh of the rotor, actual forces

on a rotor in use must be determined. Proper BCs are those that represent actual

forces accurately enough for the results to be of any significance. §3.1 examines the

affects of braking on the rotor. Although the analysis in §3.1 shows the relationship

between multiple bodied under braking it is still necessary to replace variables with

specific values in order to determine a satisfactory explicit value for the BC loads

and constraints. Much of the information needed for a reasonable model under all

braking conditions for various riders is not realistic, mainly because it would lead

to an infinite combinations of BC and infinite cases for analysis. Fortunately, only

the worst case under most circumstances is needed to ensure that failure is very

improbable for the new rotor design under normal use.

26
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Most adult males are less massive than 100 kg based on US National Health

and Nutrition Exam Survey 99-02 [17] and Hermanussen [18]. This value was used

as a general reference for human body mass. Bicycle weight varies greatly from

very light performance road bikes to very heavy down hill mountain bikes meant

for heavy abuse. A mass of 15 kg was used for the bicycle. Although heavier

bikes exist they typically are used for more gravity oriented riding styles which

typically use larger rotors1. Combined, a total rider and bike mass of 115 kg was

used. For the highest loads on the rotor due to braking, as discussed in §3.1,

100% of this weight is on the front wheel. Therefore, the normal force N is 1128

N. Also see Figure 3.2 for a free body diagram of a bicycle’s front wheel under

braking. When a wheel is rolling no relative motion occurs between the tire and

the ground at the contact interface so static friction can be used; the same applies

to braking without skidding [19]. This is not to be confused with rolling resistance,

which does not use a dimensionless coefficient and is related to the adhesion and

deformation interactions2 between the wheel and ground [20]. The static friction

coefficient is about .9 for rubber on asphalt [21]. Using Coulomb friction (Equation

3.4), the maximum friction force the front tire-asphalt contact patch f1 can see

under braking is 1015 N. The standard mountain bike wheel diameter is .6604 m

(26 in), so the moment caused by f1 about the axle or center of the wheel point

A would be 335 Nm. Under dynamic equilibrium the moment caused by f1 must

equal the moment caused by the friction force of the rotor-pad contact patch fR1

about point A (Equation 3.10). For a 160 mm rotor3, fR1 would be about 4200 N.

The calculated value for the friction force of the brake pad exerted on the

rotor is a very approximate value based on values chosen from the statistical cases

1Larger rotors provide increased braking power and greater surface area for heat dissipation.
Generally, if a rotor is not powerful enough or is overheating too often for the riding style, larger
rotors are used [1]. For this reason, effects on heat dissipation due to reduced surface area is not
considered.

2Forces form rolling resistance vary greatly depending on tire thickness, air pressure, wheel
diameter, and surface contours of the tire and ground. However, they are small relative to other
forces and have been neglected in these calculations.

3“Eight inch”(203 mm) and “six inch”(160mm) rotors are the most commonly used rotor
diameters, although “seven inch”(185mm) and 140mm rotors are becoming popular as well.
Rotor size used for optimization was the 160 mm rotor.
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and assumed values mentioned in the previous paragraph. However, it coincides

closely with the maximum recommended torque for a Hayes rotor. The published

value is approximately 312 Nm (230 ft-lbs), which is about 3900 N at 80 mm [22].

A value near both the calculated friction force and the friction force resultant of

the Hayes data was used; the value for the friction force at the pad-rotor interface

used for the finite element model was 4000N. The strength of the new rotor design

is compared to the strength of existing designs under the same BCs, to provide

a reference point to aid in validation, in case the approximated friction force of

4000N is too high or too low of an estimate.

Analytically solving for the friction force, rather than model the pad-rotor

interface using normal forces and friction coefficients, was done because theoreti-

cally any amount of normal force could be applied to the rotor regardless of the

strength of a human finger. This normal force depends on the ratios between

the actuator piston size and the caliper piston size. Solving for the friction force

analytically allows for a maximum friction force at the rotor that is limited by

tire-road friction rather than the braking strength.

5.1.2 Meshing

Hypermesh automatically generates a mesh from geometry [23]. The ge-

ometry can be created within Hypermesh itself, or imported from a number of

Computer Aided Design (CAD) software. Rotor geometry was created in Solid-

works and imported into Hypermesh as an Initial Graphics Exchange Specification

(IGES) file. The mesh was auto-generated using approximately 1 mm sized trias

shell elements with some curvature and proximity biasing to increase mesh den-

sity where edge curvature is small or edges are close in proximity. The 1 mm size

was chosen to ensure that geometrical features of at least 1 mm would show up

in optimization solutions. The selection of trias elements over quad elements was

arbitrary. They are both solved similarly using the Galerkin Method if all loads

and displacements are all in the same 2 dimensional plane as the elements them-

selves. Each element was assigned to be 1.75 mm in thickness with the material
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properties given in §§5.1.5; rotors are typically 1.75 mm thick.

Gap elements were given stiffness properties based on the stiffness of their

surrounding elements. Of course this stiffness is applied only during simulated

contact situations where the gap element exerts a force opposing mesh overlap. The

iterations for non-linear loading was limited to 25 (see §4.3). Gap elements must

be associated with a coordinate system in order to define its orientation (e.g. the

overlap direction mush be defined). Cylindrical coordinate systems were created,

each with its origin at the center of each bolt hole. Gap elements connecting the

bolts to the rotor were assigned to respective coordinated systems.

Every disc for analysis has to be meshed. This includes existing rotors A and

B during initial analyses, the generic rotor for optimization, and all subsequently

analyzed rotors developed from optimization solutions. The generic rotor refers to

a blank rotor, without any design features, that is used for topology optimization;

it is essential a solid disc that can be mounted to the standard 6 bolt mount on a

bicycle hub (see Figure 5.6).

Rotor A consists of 22,552 trais elements, 6 rigid elements, and 72,906 total

degrees of freedom (DOF). Rotor B consists of 22,049 trias elements, 6 rigid ele-

ments, and 72,396 total DOF. The generic disc consists of 35,386 trias elements,

6 rigid elements, and 108,234 total DOF. When bolts were modeled with gap ele-

ments the generic disc had 35,386 trias elements, 6 rigid elements, 96 gap elements,

and 109,188 total DOF. The newly designed disc after optimization and result in-

terpretation consisted of 20,400 trias elements, 6 rigid elements, and 68,244 total

DOF. See §§5.1.3 for how screws were modeled for various mounting conditions.

5.1.3 Boundary Conditions

Boundary conditions (BC) are the loads and constraints acting on a partic-

ular mesh. In FEA exact representation of loads on a system cannot be modeled

and must be represented discretely for the same reasons a body must be discretized

into elements.
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Loads

In §§5.1.1 it was determined that 4000 N was a reasonable estimation for

the maximum friction forces on a rotor due to braking. This friction force occurs

at the pad-rotor interface. In hydraulic disc brakes the pad is pressed to the rotor

by a floating piston, so the load on the rotor from the pad is fairly uniform (see

Figure 2.1(a). Thus, in the FE model, the load was distributed uniformly across

nodes on the rotor’s braking surface that intersected the brake pad area, shown in

Figure 5.1.

Loads can be modeled several ways often with similar results. Just as a

distributed load can be represented with a single equivalent point load in conven-

tional statics and dynamic analysis, a distributed load can be modeled as several

small point loads distributed over multiple nodes or as one large equivalent load

on one node (see Figure 5.2).

Figure 5.1: Nodes on the rotor’s braking surface that coincide with the brake pad’s
contact area.

(a) (b)

Figure 5.2: Equivalent distributed (a) and point (b) loads on the rotor’s mesh.



31

This is demonstrated by comparing analysis results of Rotor B under equiv-

alent distributed and point loads shown in Figure C.1 in Appendix C. Note the

large localized stresses around the point load in Figure C.1(a) and the similar stress

distribution to that of Figure C.1(b) in areas further from the load. Point loads

were often used in place of distributed loads to decrease pre-processing setup time

because of the number of model cases processed, but were verified using distributed

loads once satisfactory models were found. All optimization was done using dis-

tributed loads although similar results were also attained using point loads.

While the rotor rotates, there are infinite positions around the circumference

of the rotor where the pads can be when braking occurs. Although it is desirable to

ensure that the rotor is optimized for all rotational orientations, this is not possible;

in a linear finite element model it is not possible to move the loads relative to the

mesh over time as the pads would move about a real rotor. Fortunately, because of

the cyclic symmetry most of the orientations are redundant. Two pad placements

about the rotor were chosen to simulate two of the rotor’s rotational orientations;

a load case was created for each of the rotor’s cyclic symmetry configurations. The

first position is with the pad radially inline with a bolt. The second positions is

with the pad equally spaced between two bolts. There are six bolt holes, thus

through symmetry these two positions cover 12 positions about the rotor. Figure

5.3 shows the two cases of symmetry and the two load cases for the generic rotor

to be optimized.

Each load case is considered simultaneously during optimization, but hav-

ing multiple load cases on a single model is not the same as having both load cases

applied to the rotor at the same time. Each position provides slightly different

optimization solutions as seen by comparing Figures C.2(a) and C.2(b). All other

possible solutions from pad positions between pad positions in load cases 1 and 2

should be some combination of these two solutions. It is assumed that simulta-

neously considering just the two orientations on the cyclic planes is sufficient for

an optimization design that is good for all orientations. A compromised solution

resultant from simultaneously solving for both load cases is shown in Figure C.2(c).
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(a) Load Case 1: Aligned

with bolt holes.

(b) Load Case 2: Un-

aligned with bolt holes.

Figure 5.3: Two cases of cyclic symmetry for the generic

Physical Constraints

The rotor is mounted to the hub of the wheel by six T-25 screws in a

standardized six hole pattern. Although torque specifications for mounting the

rotor to the hub exist, many bicycle owners do not own the tools to correctly do

so. Even if the rotor is mounted correctly, it is possible for the screws to become

loose over time. Therefore, several mounting cases must be considered:

Case 1: the screws are loose with no shear or friction restraint by the screw

head (i.e. the rotor can wiggle around freely due to the tolerances between the

clearance hole and screw threads, but cannot rotate with respect to the wheel).

Case 2: the screws are fully tightened and the rotor is fully constrained to

the wheel.

Case 3: the screws are somewhere between fully tightened and fully loose.

In Constraint Case 1 or “loose screw” condition, a screw can only apply

compressive loads on the rotor. Modeling a screw that only pushes on an edge

requires the use of non-linear gap elements (see §4.3). The screw was modeled as

a rigid element4 that was attached to the rotor by gap elements. The rigids were

4Rigid elements are 1-D elements with no elasticity or properties. Although, rigid elements
should be used in situations where the material being represented by the rigid elements is be
much harder than the surrounding material, representing the bolts with elements assigned the
properties of steel versus representing them with rigid elements did not make significant changes
in the solution.
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constrained in all 6 degrees of freedom (DOF) at its center node. Rotational DOF

are denoted with subscript “r”.

In Constraint Case 2 or “tight screw” condition, the screw applies tensile

loads on the rotor by the friction forces between the screw’s bearing surface and

the rotor’s surface. The screw head was not modeled. Instead a simplified model

where the screw can pull on the rotor at its thread contact interface was used. The

nodes that line the bolt holes are connected to a rigid element. The central node

of the rigid element is constrained in all 6 DOF.

Constraint Case 3 is difficult to simulate without multiple models because

there is an infinite range between fully tight and fully loose conditions. Therefore,

a pseudo model for case three was used. The “rotating tight screw” condition is

the same as the tight screw condition but with the zr DOF (rotation about the z

axis) unconstrained at the the center node of each rigid element. Figure 5.4 shows

the modeled constraint conditions. Stress distribution at the bolt holes from each

Constraint Cases can be seen in Appendix B.

5.1.4 Modifications for Buckling Analysis

Linear buckling analysis was conducted using Optistruct. Buckling analysis

requires that the shell elements be displaced out of plane, thus shear locking be-

comes a concern. For this reason, the rotors were remeshed primarily using quad

elements interspersed with trias elements. Hypermesh was unable to create a mesh

using purely quad elements. Constraints in the z direction at the pad-rotor contact

patch also needed to be added to simulate the physical constraint that the brake

pads place on the rotor under braking (see Figure 5.5). The result of an artificially

stiff mesh caused by shear locking can be seen in Table 7.2.

5.1.5 Materials

Most mountain bike rotors today are made of a martensitic stainless steel

for its strength, hardness, thermal resistance, and rust resistance [24]. SUS 403,

410, 420 are common types of stainless steel used for disc brake rotors. Although



34

(a) Constraint Case 1: loose screw. (b) Constraint Case 2: tight screw.

(c) Non-rigid screw.

Figure 5.4: Constraint cases and their modeled representation. Constraints for the
non-rigid screw (c) are not shown, but all DOFs of the screw’s center node are
constrained. All other nodes on the non-rigid screw are constrained in only the z
and zr directions.
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Figure 5.5: Quad elements and constraints at the pad-rotor interface in the z
direction (in and out of the page). Changes made for buckling analysis.

rotors with aluminum mounts and stainless steel braking surfaces are becoming

available, steel rotors are still prominent because of their ease of manufacture, and

thus, reduced cost. There are numerous possibilities for multiple material designs

that have yet to be tried, but the primary focus of this paper is an investigation

of single alloy rotor design.

The grade of stainless steel is not readily available for each rotor. In this

analysis it is assumed that all rotors are of the same grade of stainless steel, that

they are under the same loading conditions, and that design advantages are purely

from geometry. Therefore the exact material properties of the steel become unim-

portant when comparing the selected rotors. All rotor models were assigned default

properties of a generic steel included in the Hypermesh package. The properties

were as follows: Young’s Modulus of 200 GPa, Poisson’s Ratio of .3, and a density

of 7.85 g/cm3. These properties also fall within the ranges of martensitic stainless

steel including SUS 403. The tensile strength and yield strength of SUS 403 was

also used as a guideline for stresses that indicate where failure might occur; they

are 485 MPa and 275 MPa, respectively[25].
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5.2 Optimization

An optimization problem can be expressed mathematically with a cost func-

tion, which should include all considered design variables and their desired re-

sponses as introduced in §4.2. Optimization was conducted under different bound-

ary conditions cases seen in §§5.1.3.

5.2.1 Design Space

The design space is the area which is to be optimized. Hypermesh makes

it very easy to designate which elements are to be included in the optimization

process and which elements will be unaffected. This is particularly important for

structural optimization of the disc brake rotor, where material needs to be present

around the rotor’s mounting points and at its braking surface regardless of loading

cases or rotor design. Figure 5.6 shows the design space, labeled as “Area 2”,

and the non-design area, labeled as “Area 1” and “Area 3.” Area 1 is the braking

surface of the disc and Area 3 consists of 6 regions surrounding mounting holes.

5.2.2 Design Response

The optimization goal is to reduce the weight of a disc brake rotor by re-

moving material within the design space in a way that still allows for the discs

to be manufactured by stamping. In other words, thickness must be uniform.

Reducing weight by thinning the rotor is also not acceptable, because the rotor

becomes more susceptible to warping when high temperatures are reached under

braking. The temperatures seen by a bicycle rotor are not substantially lower than

that seen by a motorcycle rotor [1]. The rotor is a body of uniform density, thus,

either the mass or volume can be used as the response to minimize5. The “vol-

5Mass and massfrac responses are better for models where mass rather than volume is more
important especially for models with non-uniform densities, or the volume is very small relative
to the mass (high density). Volume and volfrac responses are better for models where volume is
more significant than mass, and less dense models. For models with uniform density where mass
or volume is not particularly more significant than the other, either response should give similar
results [2].
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Figure 5.6: A meshed rotor with no material removed from the design area. The
design area is labeled “Area 2”. The non-design area consisting of the braking
surface and mounting holes are labeled “Area 1” and “Area 3.”
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umefrac”response was used for optimization in Hypermesh. Volumefrac optimizes

only the fraction of the volume designated for optimization; this is opposed to the

“volume”response where optimization is done to the entire volume. The volume

designated for optimization or design space is shown in Figure 5.6.

5.2.3 Optimization Constraints

Optimization constraints are conditions that must be satisfied when search-

ing for the optimization solution (see §4.2). Stress and geometric symmetry were

the only optimization constraints used.

Stress Constraint

There are few regulations on the performance of a bicycle disc brake rotor,

only that it much be able to decelerate a rider as specified[9]. The tensile strength of

a commonly used stainless steel for rotors, SUS 403 is 485 MPa [24][25]. Therefore,

485 MPa was initially used as the stress constraint for a limit state design case.

However, the optimization solutions contain stresses that exceeded stress level

ceilings defined by the stress constraint for all BC condition cases. Optistruct is a

gradient based solver (see §4.3). These solvers are prone to getting stuck in local

minima of the cost function’s search space. It is possible that solutions found are

not the global minima of their relative search spaces of their cost functions. Also,

stress constrained optimization problems are difficult to solve; using stress as an

optimization constraint has its limitations6. For this reason, several subsequent

constraint cases, including the permissible stress design case, were implemented

in the optimization. Stress constraints of 450, 400, 350, 300, 275, and 250 MPa

were applied. The optimization problem with stress constraint of 275 MPa is the

6There are several limitations when using the stress constraint for topology optimization:
(1)Only a single von Mises stress constraint can be placed on a model. Singular topology is
apparent when a structure contains several materials each with its own stress constraint. This
can lead to solutions that cannot be found by a gradient based solver such as Optistruct. (2)Stress
constraints on a partial domain is not allowed and is applied to the entire model including non-
design areas. (3)Optistruct is capable of filtering out artificial stress concentrations from point
loads and BCs, but are only partially filtered for stress concentrations from boundary geometry.
These are improved more effectively with local shape optimization.[2]
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(a) cyclic symmetry (b) cyclic, 1 plane symmetry

Figure 5.7: Symmetry constraints used during optimization. Source:[2]

permissible stress design case. The optimization solutions under various stress

constraints can be found in Figures 6.2 through 6.7.

Symmetry Constraint

The symmetry constraint forces the optimization solution to be symmetric

in the specified manner, regardless of the initial mesh, boundary conditions or

loads [2]. Cyclic symmetry and cyclic, one plane symmetry were used for this work.

Cyclic symmetry divides the design area into equal parts and finds a solution that

has the same geometry in each section. Cyclic, one plane symmetry also divides

the design area into equal parts with the same geometry within each section, but

has an additional requirement that forces the solution to be symmetric about a

plane that bisects each cyclic segment. The number of parts is specified by the

user. An example of each are shown in Figure 5.7.

The cyclic symmetry of six parts was used for optimizing the disc brake

rotor, because of the cyclic symmetry that the six hole mounting pattern creates.

This allows for the set up of only one load case to create an optimization solution

for six angularly repeated loads. As discussed in §§5.1.3 the rotor was optimized

for multiple orientations, represented by two load cases each with a six part cyclic

symmetry constraint.
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Optimization Solutions

Optimization solutions resulting from various boundary conditions and op-

timization constraints can be seen in Figures 6.2 through 6.7. The optimization

solution that lead to the final design is shown in Figure 6.6(e).

These solutions should not be used directly as the final optimized design.

The solutions show “element densities” which can be interpreted as a normalized

thickness. Elements of what density should be removed, as well as any other smaller

change, is ultimately dependent on the designer. Even when select elements are

removed the profile of the rotor follows the boundary of the model elements. Vari-

ation in the thicknesses of the rotor is not acceptable because of how actual rotors

are manufactured. Also, the solution does not include design considerations for

smaller geometric boundary details that affect stress such as radii of curvature. If

additional and more localized optimization is desired, size and shape optimizations

can be performed with Optistruct[2]. Even then, the solutions should be combined

with the design knowledge and experience of an engineer to create a manufac-

turable part. Once a part is designed, reanalyzing the designed part is needed to

verify that it will perform as necessary. Optimization solutions should be used as

a guide for designing actual parts.

Several designs that were very close to the optimization results were created

that did not perform as well as desired, relative to rotors A and B. Some of these

designs and their stress distributions can be found in Appendix D. Although some

40
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of these rotor designs can be improved by shape and size optimizations, it would

be time consuming to make a design based on each of the optimization solutions,

especially because the final rotor design should be able to perform well in all three

constraint conditions. Fortunately, several significant observations can be made

from the solutions obtained.

There are three reoccurring general geometries that appear throughout the

solutions. They resemble a rotary tiller blade or a “λ” symbol cyclically patterned

about the disk’s center, an “X” cyclically patterned about the disk’s center, and a

six sized star. These patterns are here on referred to as the “tiller” pattern, “X”

pattern, and “star” pattern, respectively. Respective examples of each are shown in

Figures 6.2(a), 6.4(e), and 6.5(a). The X and star patterns are truss-like patterns

arranged radially about the center of the rotor, and are collectively referred to

as truss type patterns. Existing single-alloy rotors almost exclusively resemble

the tiller type pattern. This is very interesting given the number of truss type

optimization solutions found. Though these designs may look like very different

solutions, they are probably near each other in the optimization search space. The

tiller and star patterns are variants of the X pattern: the tiller pattern is the X

pattern with an arm missing from each of the X structures and the star pattern

is the X pattern with each X structure’s upper arms spread until they touch the

adjacent X structures. This becomes more apparent when looking at the design

iterations that result in each type of solution. Some iterations in the optimization

process are shown in Appendix E for a solution that results in each of the three

above mentioned patterns. Although not all iterations are shown, it is clear that

the solutions are very similar until the last iterations of the design process. This

suggests that an optimal design for varying constraint conditions may be from a

combination of these various solutions. There are also some solutions that very

clearly will not work for other constraint conditions, such as the solution in Figure

6.3(f).

Mirrored tiller patterns such as those in Figures 6.3(a) and 6.3(b) or Figures

6.4(a) and 6.4(c) prompted analysis done in §7.2. They suggest that direction of

operation may not be significant even in existing rotors that have the direction of
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use inscribed on the surface of the rotor.

Examining the optimization solutions also makes apparent that the solu-

tions are not necessarily the best solution that exist, but the best solution found

by the optimization algorithm within the search space of the cost function. It is

possible for the algorithm to get stuck in a local minima of the search space, since

the algorithms used by Optistruct are gradient based methods (see §§5.2.3). It is

expected that as the stress constraints become lower (lower allowed stress), more

material will be added to the rotor. Although the majority of the solutions show

the expected trend, Figures 6.5(b) and 6.6(f) show the contrary. This is an addi-

tional reason than the optimization solutions cannot simply be used as the final

design.

There are also interesting observations to be made on solutions with lower

stress constraints. For “loose” constraint conditions in both cyclic and cyclic,

1-plane symmetry cases, and stress constraints of 250 MPa the solution given

was an unaltered generic disk. Under the same physical constraints with a stress

constraint of 275 MPa, any distinct geometry manufacturable by stamping is not

defined. This means that under these loading conditions designing a rotor that will

have stresses under 275 MPa that is lighter than existing rotors is probably not

likely. At stress constraints of 300 MPa, manufacturable solutions exist. They are

of special interest because they are the designs closest to permissible stress design.

Processing was done on a MacBook Pro running Windows XP through

ParallelsTM with a 2.16GHz Intel CoreDuo chip and 1 GB of RAM. With about

275 MB of alloted memory, processing times for optimization were around 15 min

for models constrained by 0 DOF rigids, 25 min for models constrained using 1

DOF rigids, and 1.5 hours for models constrained by gap elements. Solutions from

models with gap elements take a significantly longer time to obtain because of the

additional iterations necessary for gap element analysis.
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Figure 6.1: Legend for optimization solutions (Figures 6.2 through 6.7): thickness
in mm.

(a) 485 MPa (b) 450 MPa (c) 400 MPa (d) 350 MPa

(e) 300 MPa (f) 275 MPa (g) 250 MPa

Figure 6.2: Optimization solutions resultant from 6 part cyclical symmetry and
various stress constraints. “Loose screw” physical constraints were used.
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(a) 485 MPa (b) 450 MPa (c) 400 MPa (d) 350 MPa

(e) 300 MPa (f) 275 MPa (g) 250 MPa

Figure 6.3: Optimization solutions resultant from 6 part cyclical symmetry and
various stress constraints. “Tight screw” physical constraints were used.

(a) 485 MPa (b) 450 MPa (c) 400 MPa (d) 350 MPa

(e) 300 MPa (f) 275 MPa (g) 250 MPa

Figure 6.4: Optimization solutions resultant from 6 part cyclical symmetry and
various stress constraints. “Rotating tight screw” physical constraints were used.
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(a) 485 MPa (b) 450 MPa (c) 400 MPa (d) 350 MPa

(e) 300 MPa (f) 275 MPa (g) 250 MPa

Figure 6.5: Optimization solutions resultant from 6 part cyclical, 1-plane symmetry
and various stress constraints. “Loose screw” physical constraints were used.

(a) 485 MPa (b) 450 MPa (c) 400 MPa (d) 350 MPa

(e) 300 MPa (f) 275 MPa (g) 250 MPa

Figure 6.6: Optimization solutions resultant from 6 part cyclical, 1-plane symmetry
and various stress constraints. “Tight screw” physical constraints were used.



46

(a) 485 MPa (b) 450 MPa (c) 400 MPa (d) 350 MPa

(e) 300 MPa (f) 275 MPa (g) 250 MPa

Figure 6.7: Optimization solutions resultant from 6 part cyclical, 1-plane symmetry
and various stress constraints. “Rotating tight screw” physical constraints were
used.
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Post-Processing and Analysis

7.1 Analysis of Existing Designs

It is necessary to compare the new design to existing designs to determine

quantitative improvements. Comparison with existing rotors also ensures that the

new design is safe for normal use even if the magnitudes of forces or strengths of

materials happen to be different than expected during optimization; all rotors are

evaluated under the same conditions and properties. The only difference is the

geometry of the rotor inside the designated design area (see §§5.2.1). Rotor de-

signs from HayesTM and ShimanoTM were chosen as base comparisons for the final

rotor design. Both companies are very popular and successful in the mountain

biking industry. Their rotors have a relatively long history of use and are widely

used in the mountain bike communities at all levels, including the most extreme

professional athletes[26][27]. Figures A.2 and A.3 show the respective Hayes and

Shimano rotors and the Solidworks models imported into Hyperworks for prepro-

cessing. From here on the Hayes rotor is referred to as “Rotor A” and the Shimano

rotor is referred to as “Rotor B.” The surface area of the rotor’s face1 for the Rotor

A and Rotor B are 11,199.15 mm2 and 10,956.31 mm2, respectively. With rotor

1This is the surface area of the model. Holes in the braking surface that exist in the actual
rotors are not included in models or analysis.
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thickness of 1.75 mm and material density of 7.85 g/cm3, this correlates to a mass2

of 153.85 g and 150.51 g for Rotor A and Rotor B, respectively. Considering mo-

ments of inertia, equivalent masses can be calculated using Equation 3.25 as well.

The moment of inertia3 about the rotors’ rotational axis for Rotor A and B are

617,255 g-mm3 and 566,232 g-mm3, respectively. Equivalent masses for Rotor A

and B are 177.96 g and 172.63 g, respectively.

Both rotors are 160 mm diameter discs, have the standard 6 bolt mounting

pattern, and brake pad contact surfaces, but have little more in common. The

holes in the brake pad contact surface (outer ring of the rotor) are primarily for

debris removal, prevention fluid film layers, and some heat dissapation; their size

and shape vary from rotor to rotor as well. The affect of the friction surface’s

geometric variations were not analyzed.

Geometry from Solidworks was imported into Hyperworks and preprocessed

the same way the optimization problems were set up without the optimization

parameters. By using the same BCs and mesh size it is possible to directly compare

the stress distribution within each rotor. Figures 7.2 and 7.3 show the stress

distribution within Rotor A and Rotor B, respectively. Localized stresses around

the mounting holes in the loose screw case for Rotor B are above the tensile stress

of the steel used. This analysis was done on a linear solver so plastic deformation

is not considered. Thus, this may not be an accurate representation of actual

stresses in the rotor, because it is near the tensile strength of the material, where

plastic deformation is likely to occur. However, it is also possible that the applied

loads to the rotor are actually higher than typically seen, or that the rotors were

never designed for the loose screw case; minimum torque levels for the screws when

mounting to the hub are provided with the rotor in the mounting instructions. The

rotors’ strength was determined by the maximum stress excluding localized stresses

around the mounting holes, here on referred to as the “stress limit”. Maximum

2This is the mass of the model. Holes in the braking surface that exist in the actual rotors are
not included in models or analysis. Also, the type of steel used in the actual rotors is unknown
so actual and used densities may differ slightly.

3Moments of inertia are from Solidworks models without holes in the braking surface that
exist in the actual rotors. Moments of inertia of actual rotors are lower than stated values due
to these holes.
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stresses including and excluding localized stress around mounting holes for each

mounting and load condition are shown in Table 7.1. The stress limits for the

Rotor A and Rotor B were 396.3 MPa and 349.6 MPa, respectively. A stress limit

in this range is desired for the new rotor design under the same BCs.

Figure 7.1: Legend for Figures 7.2 and 7.3: Stress in MPa

7.2 Reverse Loading and Buckling Analysis

Existing rotors are meant to be loaded in one direction only. The direction

of rotation is inscribed on each rotor. However, optimization results in Figures

6.3 and 6.4 show tiller patterns that are opposite the expected tiller pattern direc-

tion. To investigate how important it is to load the rotor in the correct direction,

stress analysis on Rotor B under reverse loading was conducted. Figures 7.5 and

7.6 show the stress distribution in the rotor under normal and reverse loadings.

There is little change in the stress distributions except that the tensile stresses

become compressive stresses and compressive stresses become tensile stresses of

the same magnitude even when the rotor is in the loose screw condition (except

areas around the mounting holes). Although this analysis and the optimization

solutions suggests that the direction of rotation of the rotor is not important, ad-

ditional buckling analysis is necessary to understand why one direction is preferred

over the other.
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(a) Load 1, Loose screw (b) Load 1, Tight screw

(c) Load 1, Rotate screw (d) Load 2, Loose screw

(e) Load 2, Tight screw (f) Load 2, Rotate screw

Figure 7.2: Von Mises Stress distribution in Rotor A under various load and mount-
ing conditions.
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(a) Load 1, Loose screw (b) Load 1, Tight screw

(c) Load 1, Rotate screw (d) Load 1, Loose screw

(e) Load 1, Tight screw (f) Load 1, Rotate screw

Figure 7.3: Von Mises Stress distribution in Rotor B under various load and mount-
ing conditions.
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Generally for ductile materials, the ultimate compressive strength of a ma-

terial is higher than its ultimate tensile strength because the cross-sectional area

increases, rather than decreases, as the limit is reached [28]. This would suggest

that the original direction of rotation is preferable. However, loading in the orig-

inal direction may make the rotor prone to buckling because of the compressive

loads on the long thin members that run from the braking surface to the center

of the rotor. The best direction of rotation is dependent on whether structural

failure due to tensile strength or buckling will occur first.

Table 7.2 shows the buckling factors for the first 10 buckling modes. Buck-

ling shapes of each mode are shown in Appendix F. Negative buckling factors

mean that buckling is likely with loading in the opposite direction. Buckling fac-

tors for all three rotors at all modes are greater than one, which suggests that

buckling is unlikely with the 4000N load applied. Therefore, structural failure is

the limit that determines rotor direction, and the original loading direction that

puts the thin members in compression is preferred. Buckling analysis on Rotor A

using only trais elements was done for comparison. The higher buckling factors

are the result of an artificially stiff mesh caused by shear locking.

7.3 Final Rotor Design

The optimization solutions were exported to Solidworks as an IGES file to

be used as a guide for the new rotor’s geometry. The geometries were put back

into Hypermesh to be analyzed. Variations of initial designs were made to satisfy

stress requirements, determined by Rotor A and Rotor B. The new rotor design

is illustrated in Figure 7.7. The rotor design is based on the solution in Figure

6.6(e). This solution is under the tight screw constraint. Because rotation about

the mounting holes is not free, the solution tends to give geometries that will have

large moments on them when the mounting points become unconstrained in the

zr direction. The vertex, where the two lower arms of the “X” structure meet the

adjacent X structure above the mounting hole, was shifted to coincide with the

center of the mounting hole, eliminating stresses caused by the moments from that
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Figure 7.4: Legend for Figures 7.5 and 7.6: Stress in MPa (+tension, -compression)

(a) Recommend loading direction

(braking force to the right at top of

rotor).

(b) Reverse loading direction (braking

force to the left at top of rotor).

Figure 7.5: Signed Von Mises Stress distribution in Rotor B when loads are reversed
(backwards mounting) in tight screw conditions
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(a) Recommend loading direction (b) Reverse loading direction

Figure 7.6: Signed Von Mises Stress distribution in Rotor B when loads are reversed
(backwards mounting) in loose screw conditions

additional distance. Stresses for the design in Figure 7.7(a) can be found in Figure

D.1(a) in Appendix D. Note that the high stresses in the inner lower arms of the

X structure present in the first iteration design are not present in the final disc

design. Also, note that the final design also resembles the optimization solution in

Figure 6.5(e). This supports observations made in §6.

A new lighter rotor design with strength comparable to rotors A and B

was obtained, but possibilities for even lighter rotors with the same strength exist.

The new rotor is the final product of several iterations of analysis and geometric

tweaking. This can be done more effectively with size and shape optimization.

The area of the new rotor’s face is 9,594.24 mm2. With a rotor thickness of

1.75 mm and material density of 7.85 g/cm3, this corresponds to 131.80 g. This is

a 14.3% improvement over Rotor A and a 12.4% improvement over Rotor B. The

moment of inertia about the rotational axis of the new rotor is 538,234 g-mm3.

Thus its equivalent mass is 152.87 g. Using equivalent masses, improvements are

14.1% and 11.5% over Rotors A and B, respectively.

Analysis on the new rotor was done under both loading conditions and all

mounting conditions. The stress distribution of the new rotor in all cases can
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(a) First iteration design from solution (b) Final design (second iteration)

Figure 7.7: New disc brake rotor and its previous iteration designs. Designs based
off of optimization solution shown in Figure 6.6(e).

be found in Figure 7.9. The stress limit4 in the new design is 390.3 MPa. This

is a 1.4% improvement over Rotor A and 10.5% worse than Rotor B. However,

Rotor A is 11.5% weaker than Rotor B. Meeting only the stress levels of Rotor

B is sufficient, because Rotor B has worked without failure under normal use in

practice. If the maximum stresses are used the new disk is 20.1% stronger than

Rotor A and 29% stronger than Rotor B. In the new rotor, maximum stresses seen

are fairly uniform across all loading and mounting condition. Much larger stresses

are seen in rotors A and B under the loose screw condition. Maximum stresses

under each boundary condition can be seen in Table 7.1.

It may seem unusual that such an improvement can be made when very few,

if any, single alloy bicycle brake rotors use this kind of truss-like design. However,

when motorcycle brake rotors and newly available multi-alloy bicycle disk brakes

are examined the result is less surprising (see Figure A.5 and Figure A.6). Both

tiller type designs and truss type design are widespread and common. It is possible

that because disc brakes on motorcycles have been around for a much longer time,

reach higher loads, and receive more stringent regulations as a motorized vehi-

4See §7.1
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cle component, their disc brake rotors have undergone more thorough designing.

Advanced computational resources are become more readily available, leading to

better designs in both motorcycle and bicycle rotors. In any case, parallels seen

between bicycle rotor design and motor cycle rotor design, support the findings in

this work.

Figure 7.8: Legend for Figure 7.9: Stress in MPa
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(a) Load 1, Loose screw (b) Load 1, Tight screw

(c) Load 1, Rotate screw (d) Load 2, Loose screw

(e) Load 2, Tight screw (f) Load 2, Rotate screw

Figure 7.9: Von Mises Stress distribution in the new rotor under various load and
mounting conditions.



Chapter 8

Conclusion

The structural design of rotors used for bicycle disc brake systems vary

greatly from company to company as well as within individual companies. The

lightest possible rotor without compromising strength is desired, however, which

design features that help lead to a light strong rotor are not obvious. Topology

optimization on a disc brake rotor was performed using linear finite element models

solved by Optistruct. Analysis and optimization does not account for any cyclic

loading, plastic deformations, or heat effects. Objectives were to design a lighter

rotor with similar strength relative to existing rotors available commercially and

to investigate the reasons behind the large variety in rotor designs. Although

multiple alloy rotors are becoming more commonplace, focus was on single alloy

rotors because of their reduced manufacturing costs. The reduced manufacturing

costs and their length of availability in the marketplace still make single alloy rotors

the large majority of rotors used. Popularity of single alloy rotors will probably

continue unless multi alloy rotor costs are significantly reduced.

Some optimization solutions from the finite element models resembled the

rotary “tiller” structure found almost exclusively in commercially available single-

alloy rotors. However, a large number of solutions for truss type structures were

found. The final rotor design is based on a truss type solution whose performance

was found to be better than existing rotors. The new rotor’s strength was similar

to commercially available Rotor A and Rotor B, while being 14.3% lighter than

60
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Rotor A and 12.4% lighter than Rotor B. The truss type design is unconventional

in single alloy bicycle disc brake rotors, however, the design’s validity is supported

by existing brake rotors found in multi-alloy bicycle rotors and motorcycle rotors.



Appendix A

Bicycle and Rotor Figures

Figure A.1: Diagram of the majors parts of a full suspension bicycle. [4]
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(a) Photo (b) Solidworks model

Figure A.2: A Hayes disc brake rotor (Rotor A).

(a) Photo (b) Solidworks model

Figure A.3: A Shimano disc brake rotor (Rotor B).
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(a) Ashima rotor [29] (b) Formula rotor

[30]

(c) Formula rotor [30] (d) Avid rotor [31]

(e) Avid rotor [31] (f) Avid rotor [31] (g) Avid rotor [31] (h) Avid rotor [31]

(i) Magura rotor [32] (j) Shimano rotor [33] (k) Shimano rotor

[33]

(l) Hayes rotor [34]

(m) Dirty Dog rotors [35]

Figure A.4: Examples of the widely varying designs within and throughout various
companies that sell bicycle disc brake rotors. Source: Listed with respective figures.
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(a) Hope rotor [36] (b) Hope rotor [36] (c) Magura rotor

[32]

(d) Avid rotor [31]

Figure A.5: Examples of multi-alloy designs for bicycle disc brake rotors. Source:
Listed with respective figures.

(a) EBC rotor [37] (b) Brembo rotor

[37]

(c) Brembo rotor [37] (d) Brembo MotoGP

rotor [38]

(e) Galfer rotor [37] (f) CTS rotor [39]

Figure A.6: Examples of various motorcycle rotor designs. Both truss and tiller
type designs are common. Source: Listed with respective figures.



Appendix B

Screw Modelling Analysis

(a) loose screw condition (b) tight screw condition

(c) rotating tight screw condition

Figure B.1: Stress concentrations in the rotor at the mounting holes.
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Appendix C

Load Case Modeling Analyses

(a)

(b)

Figure C.1: Von Mises stress distribution comparison between equivalent point (a)
and distributed (b) loads on a Shimano rotor.
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(a) Load Case 1: Aligned with bolt holes.

(b) Load Case 2: Unaligned with bolt holes.

(c) Load Case 1 and 2

Figure C.2: Load cases considered individually versus simultaneously during op-
timization. Note that the intersection of beams that make the “X” structure is
closer to the circumference of the rotor in (c) than in (a).



Appendix D

Unsatisfactory Rotor Designs

(a) Figure 6.6(e) (b) Figure 6.7(e)

(c) Figure 6.5(e) (d) Figure 6.2(c)

Figure D.1: Stress distribution of failed designs under the rotating screw BC, based
on various optimization solutions shown in stated figures.
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Appendix E

Select Iterations During

Optimization

(a) Iteration 2 of 47 (b) Iteration 18 of 47 (c) Iteration 21 of 47 (d) Iteration 25 of 47

Figure E.1: Iterations of an optimization problem leading to an “X” pattern
solution.
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(a) Iteration 2 of 50 (b) Iteration 21 of 50 (c) Iteration 26 of 50 (d) Iteration 30 of 50

Figure E.2: Iterations of an optimization problem leading to a “tiller” pattern
solution.

(a) Iteration 2 of 48 (b) Iteration 21 of 48 (c) Iteration 25 of 48 (d) Iteration 29 of 48

Figure E.3: Iterations of an optimization problem leading to a reverse “tiller”
pattern solution.

(a) Iteration 2 of 48 (b) Iteration 19 of 48 (c) Iteration 22 of 48 (d) Iteration 30 of 48

Figure E.4: Iterations of an optimization problem leading to a “star” pattern
solution.



Appendix F

Buckling Mode Shapes

See Table 7.2 for buckling factors to corresponding figures below. Mode

shapes shown are from buckling result under Load Case 1 orientation only (see

Figure 5.3.

(a) Mode 1 (b) Mode 5

(c) Mode 7 (d) Mode 9

Figure F.1: Buckling mode shapes for the Hayes rotor under recommended loading
direction.

72



73

(a) Mode 2 (b) Mode 3

(c) Mode 4 (d) Mode 6

(e) Mode 8 (f) Mode 10

Figure F.2: Buckling mode shapes for the Hayes rotor under reverse loading
direction.
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(a) Mode 2 (b) Mode 6

(c) Mode 7 (d) Mode 9

Figure F.3: Buckling mode shapes for the Hayes rotor under recommended loading
direction.
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(a) Mode 1 (b) Mode 3

(c) Mode 4 (d) Mode 5

(e) Mode 8 (f) Mode 10

Figure F.4: Buckling mode shapes for the Shimano rotor under reverse loading
direction.
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(a) Mode 1 (b) Mode 4

(c) Mode 5 (d) Mode 8

(e) Mode 10

Figure F.5: Buckling mode shapes for the new rotor under recommended loading
direction.
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(a) Mode 2 (b) Mode 3

(c) Mode 6 (d) Mode 7

(e) Mode 9

Figure F.6: Buckling mode shapes for the new rotor under reverse loading direction.



Appendix G

Supplemental Rotor Symmetrical

Instance Analysis

Additional investigations on whether similar results in design would occur

for different number of optimization cyclic symmetry constraint instances. It is seen

in Figure G.1 that the same design types of “tiller”, “X”, and “star” exist, but

with different number of arms depending on the number of symmetric instances. In

some cases, the number of symmetric instances chosen do not create any real rotor

symmetry with the six hole mounting pattern. This makes it difficult to choose

where to put the loads acting on the rotor. Figure G.2 shows the result of using

a load case at each point of mounting hole symmetry, using a load case at each

optimization constraint symmetry, and using a load case at each optimization

constraint symmetry for half the disc to account for the non-symmetric nature

of the disc when considering both symmetries (Figures G.2(a), G.2(b), G.2(c),

respectively). Figure G.2 also shows that even for non-symmetric rotors, a tiller

type design is a possibility for a feasible rotor design.

It can also be observed that better, or more well defined, solutions are

given for some cases. The solutions for 5, 7 and 8 optimization symmetry con-

straint instances (Figures G.1(b), G.1(d), and G.1(e), respectively) give thickness

to elements that serve no structural purpose. Although feasible designs for any

number of symmetrical instances may exist, these solutions suggest that using the
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true rotor symmetry of 6 instances give the best possibility for an optimal design.

(a) cyc sym 4 (b) cyc sym 5 (c) cyc sym 6

(d) cyc sym 7 (e) cyc sym 8 (f) cyc sym 9

(g) cyc sym 10 (h) cyc sym 11 (i) cyc sym 12

Figure G.1: Optimization result under various cyclic symmetry constraints.
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(a) loads at 0 and 330 deg (b) loads at 0 and 334.286

deg

(c) loads at 0 and every 360
14

deg CCW for 8 reps

Figure G.2: Optimization result under 7 part cyclical symmetry constraint with
various tangential loads at the same radial distance.



Bibliography

[1] B. Breuer and K. H. Bill, eds., Brake Technology Handbook. Warrendale, PA:

SAE International, 1st english ed., 2008.

[2] Altair Engineering, Inc., RADIOSS, MotionSolve, and OptiStruct, 2008.

[3] H. Zhu and D. B. Bogy, “DIRECT Algorithm and Its Application to Slider

Air-Bearing Surface Optimization,” IEEE Transactions on Magnetics, vol. 38,

pp. 2168–2170, Sep 2002.

[4] <http://www.gelioscope.com/?tag=/saddle>, 2009. Website.

[5] S. Griffith, “Mountain Biking Before Mountain Bikes.” <http://www.rsf.org.

uk/history.htm>, 2009. Online posting.

[6] “Marin Story.” <http://www.marinbikes.com/2010/bike pages.php?page=

About-Marin Marin-Story>, 2009. Online posting.

[7] <http://www.interbike.com>, 2010. Website.

[8] <http://www.seaotterclassic.com/index.cfm/trade show expo attendees.

htm>, 2010. Website.

[9] “Requirements for Braking System.” Code of Federal Regulations. Title 16

Part 1512.

[10] G. R. Watts, “Brakes on Pedal Cycles,” in Braking of Road Vehicles: I Mech

E Conference Publications 1983-2, (London), pp. 25–28, The Automobile Di-

vision of The Institution of Mechanical Engineers, Mechanical Engineering

Publications Limited for the Institution of Mechanical Engineers, 1983.

81



82

[11] F. R. Whitt and D. G. Wilson, Bicycling Science. Massachusetts Institute of

Technology, 2nd ed., 1982. ISBN 0-262-23111-5.

[12] T. J. R. Hughes, The Finite Element Method. Mineola, NY: Dover Publica-

tions, 2000. ISBN 0-486-41181-8.

[13] P. Kinney, “Cleanup: Improving Quadrilateral Finite Element Meshes,” tech.

rep., Ford Motor Company, Dearborn, MI, Feb 2008.

[14] F. E. Talke. Class Lecture, 2008. Computer-Aided Design and Analysis.
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