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High brightness electron beams play an important role in accelerator based applications

such as driving x-ray free electron laser radiation. In this paper, we report on advances

in global beam dynamics optimization of an accelerator design using start-to-end sim-
ulations and a new parallel multi-objective differential evolution optimization method.

The global optimization results in significant improvement of the final electron beam

brightness.
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1. Introduction

High brightness, coherent x-ray free electron laser (FEL) light sources provide an

invaluable tool for scientific discovery in biology, chemistry, physics, and material

science. Most of these FEL light sources use an accelerator as a beam delivery

system to generate high quality electron beam needed for coherent x-ray radiation

in undulators. As the quality of the electron beam such as emittance, peak current,

and energy spread plays a critical role in the production of the x-ray radiation, it

is important to optimize the electron beam quality during the accelerator design.

In the accelerator community, multi-objective genetic algorithm (MOGA) such

as NSGA-II1 has been widely used for beam dynamics optimization. However, in

the evolutionary computation community, another population based optimization

method, differential evolution method, has been actively studied in recent years.2

The differential evolution method is a simple yet efficient population-based, stochas-

tic, evolutionary algorithm for global parameter optimization.3,4 In a number of

studies, the differential evolution algorithm performed effectively in comparison to

several stochastic optimization methods such as simulated annealing, controlled

random search, evolutionary programming, the particle swarm method, and genetic

algorithm.3–6 In past studies, multiple mutation strategies were proposed in the dif-

ferential evolution literature. The use of multiple mutation strategies makes the dif-

ferential evolution algorithm complicated to use appropriately. Recently, we devel-

1
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oped a new adaptive unified differential evolution (AuDE) algorithm for global opti-

mization.7 This algorithm uses only a single mutation expression, but encompasses

almost all commonly-used mutation strategies as special cases. It is mathematically

simpler than the conventional algorithm with its multiple mutation strategies, and

also provides users the flexibility to explore new combinations of conventional muta-

tion strategies during optimization. This single unified mutation strategy is further

tuned to improve the performance by using only three control parameters instead

of four control parameters in the original unified algorithm.8

The accelerator system for x-ray FEL typically consists of a photo-injector as

a front end to produce a high brightness electron beam, a linear accelerator (or

equivalent accelerator) to accelerate the electron beam to the designed energy and

to compress the beam to high peak current, and a final beam transport system

to deliver the beam for different undulator radiation stations. In past studies, the

accelerator design was typically divided into two sections, the injector section and

the linear accelerator (linac) section. The injector was designed using the theory of

space-charge emittance compensation and the multi-objective beam dynamics opti-

mization.9–17 After the injector optimization, an optimal solution from the injector

output was selected as an input to the downstream linear accelerator. Using the elec-

tron beam information from the injector, the linear accelerator was then designed

using analytical model, single pass tracking, and multi-objective optimization.18–21

However, the final beam quality does not only depend on the linear accelerator

settings, but also depend on the initial electron beam phase space distribution. An

optimal solution from the injector does not necessarily mean the best solution for

the final beam quality. In this paper, we report on advances in global optimization of

high brightness electron beam in a future x-ray FEL light source accelerator design

based on start-to-end beam dynamics simulation using a new variable population

with external storage (VPES) parallel multi-objective differential evolution method.

The organization of the paper is as follows: after the Introduction, we review

the conventional differential evolution algorithm for a single objective optimization

in Section 2; we present the new developed adaptive unified differential evolution

algorithm in Section 3 and the variable population with external storage parallel

multi-objective differential evolution algorithm in Section 4; we show some bench-

mark examples of the new optimization algorithms in Section 5; we present an ap-

plication to the global longitudinal beam dynamics optimization in a future x-ray

FEL accelerator design in Section 6.

2. Conventional Differential Evolution Algorithm for Single

Objective Optimization

The differential evolution algorithm starts with a population initialization like the

other evolutionary algorithms. Compared with the other evolutionary algorithms

such as the genetic algorithm, the differential evolution algorithm makes use of the

differences of parent solutions to attain the gradient information. This helps improve
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the convergence speed of the algorithm in comparison to the genetic algorithm.

Meanwhile, compared with the particle swarm method, the differential evolution

algorithm has a cross-over stage to enhance the diversity of solutions. This helps

the differential evolution algorithm to avoid converging to a local minimum solution.

A set of NP solutions in the control parameter space is randomly generated

to form the initial population. This initial population can be generated by sam-

pling from a uniform distribution within the allowed parameter space if no prior

information about the optimal solution is available, or by sampling from a known

distribution (e.g., Gaussian) if some prior information is available.

After initialization, the differential evolution algorithm updates the population

from one generation to the next generation until reaching a convergence condition or

until the maximum number of function evaluations is reached. At each generation,

the update step consists of three operations: mutation, crossover, and selection.

The mutation and the crossover operations produce new candidates for the next

generation population and the selection operation is used to select the appropriate

solutions among these candidates to be included in the next generation.

2.1. Mutation strategies

During the mutation stage, for each population member (target vector) ~xi, i =

1, 2, 3, · · · , NP at generation G, a new mutant vector ~vi is generated by following a

mutation strategy. Some commonly used conventional mutation strategies are:3,4, 22

DE/rand/1 : ~vi = ~xr1 + Fxc(~xr2 − ~xr3) (1)

DE/rand/2 : ~vi = ~xr1 + Fxc(~xr2 − ~xr3)

+Fxc(~xr4 − ~xr5) (2)

DE/best/1 : ~vi = ~xb + Fxc(~xr1 − ~xr2) (3)

DE/best/2 : ~vi = ~xb + Fxc(~xr1 − ~xr2)

+Fxc(~xr3 − ~xr4) (4)

DE/current-to-best/1 : ~vi = ~xi + Fcr(~xb − ~xi)
+Fxc(~xr1 − ~xr2) (5)

DE/current-to-best/2 : ~vi = ~xi + Fcr(~xb − ~xi)
+Fxc(~xr1 − ~xr2) + Fxc (~xr3 − ~xr4) (6)

DE/current-to-rand/1 : ~vi = ~xi + Fcr(~xr1 − ~xi)
+Fxc (~xr2 − ~xr3) (7)
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DE/current-to-rand/2 : ~vi = ~xi + Fcr(~xr1 − ~xi)
+Fxc (~xr2 − ~xr3) + Fxc (~xr4 − ~xr5) (8)

DE/rand-to-best/1 : ~vi = ~xr1 + Fcr(~xb − ~xi)
+Fxc (~xr2 − ~xr3) (9)

DE/rand-to-best/2 : ~vi = ~xr1 + Fcr(~xb − ~xi)
+Fxc(~xr2 − ~xr3) + Fxc(~xr4 − ~xr5) (10)

where the integers r1, r2, r3, r4 and r5 are chosen randomly from the interval [1, NP ]

and are different from the current index i, Fxc is a real scaling factor that controls

the amplification of the differential variation, ~xb is the best solution among the NP

population members at the generation G, and Fcr is a weight for the combination

between the original target vector and the best parent vector or the random parent

vector. The strategy DE/rand/1 proposed in the original paper of Storn and Price

is the most widely used mutation strategy. It has stronger exploration capability

but may converge slower than the strategies that use the best solution from the

parent generation. The strategy DE/rand/2 uses two difference vectors to increase

the diversity of the mutant. The strategies DE/best/1 and DE/best/2 take advan-

tage of the best solution found in the parent population and have a faster conver-

gence towards the optimal solution.23 However, they may be stuck at a local min-

imum point during multimodal function optimization. The DE/current-to-best/1

and DE/current-to-best/2 strategies provide a compromise between exploitation of

the best solution and exploration of the parameter space. The DE/current-to-rand/1

and DE/current-to-rand/2 mutation strategies are rotation-invariant strategies.24

The DE/rand-to-best/ strategies are similar to the DE/current-to-best/ strategies,

but larger diversity of the solutions after mutation is attained by using a randomly

selected parent vector instead of the current target parent vector.

2.2. Crossover

A crossover operation between the new generated mutant vector ~vi and the target

vector ~xi is used to further increase the diversity of the new candidate solution. This

operation combines the two vectors into a new trial vector ~Ui, i = 1, 2, 3, · · · , NP ,

where the components of the trial vector are obtained from the components of ~vi
or ~xi according to a crossover probability Cr. In the binomial crossover scheme for

a D dimensional control parameter space, the new trial vector ~Ui, i = 1, 2, · · · , NP
is generated using the following rule:

~Ui = (ui1, ui2, · · · , uiD) (11)

uij =

{
vij , if randj ≤ Cr or j = mbri
xij , otherwise

(12)

where randj is a randomly chosen real number in the interval [0, 1], and the index

mbri is a randomly chosen integer in the range [1, D]. This ensures that the new

trial vector contains at least one component from the new mutant vector.
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2.3. Selection

The newly generated trial solution ~Ui is checked against the boundary of the control

parameter space. If the solution lies outside the boundary, a new trial solution is

generated by randomly sampling from solutions within the boundary.

The selection operation in DE is based on a one-to-one comparison. The new trial

solution ~Ui is checked against the original target parent solution ~xi. If the objective

value from the new trial solution produces is not worse than the original objective

function value from ~xi, it will be put into the next generation (G+ 1) population.

Otherwise, the original parent ~xi is kept in the next generation population.

The above procedure is repeated for all NP parents to generate the next gen-

eration population. Many generations are used to attain the final globally optimal

solution.

3. Adaptive Unified Differential Evolution Algorithm for Global

Optimization

Ten different mutation strategies have been proposed for the conventional stan-

dard differential evolution algorithm (Eqs. 1-10). The presence of multiple mutation

strategies complicates the use of the differential evolution algorithm. Recently, we

proposed a single mutation expression that can unify most conventional mutation

strategies used by the differential evolution algorithm. This single unified mutation

expression can be written as:

~vi = ~xi + F1(~xb − ~xi) + F2(~xr1 − ~xi)
+F3(~xr2 − ~xr3) + F4(~xr4 − ~xr5) (13)

Here, the second term on the right-hand side of equation (13) denotes the contribu-

tion from the best solution found in the current generation, the third term denotes

the rotationally invariant contribution from the random solution,24 and the fourth

and fifth terms are the same terms as those used in the original differential evolution

algorithm to account for the contribution from the difference of parent solutions.

Those last three terms divert the mutated solution away from the best solution and

help to improve the algorithm’s exploration of the decision parameter space. The

four parameters F1, F2, F3 and F4 are the weights from each contribution. This

unified expression represents a combination of exploitation (using the best found

solution) and exploration (using randomly chosen solutions) when generating the

new mutant solution.

From the above equation, one can see that for F1 = 0, F2 = 1, and F4 = 0, this

equation reduces to DE/rand/1; for F1 = 0, F2 = 1, and F3 = F4, it reduces to

DE/rand/2; for F1 = 1, F2 = 0, and F4 = 0, it reduces to DE/best/1; for F1 = 1,

F2 = 0, and F3 = F4, it reduces to DE/best/2; for F2 = 0 and F4 = 0, it reduces

to DE/current-to-best/1; for F2 = 0 and F3 = F4, it reduces to DE/current-to-

best/2; for F1 = 0, and F4 = 0, it reduces to DE/current-to-rand/1; for F1 = 0, and

F3 = F4, it reduces to DE/current-to-rand/2; for F2 = 1, and F4 = 0, it reduces
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Fig. 1. Evolution of the average error in the noisy quartic function with 50 dimensions.

to DE/rand-to-best/1; for F2 = 1, and F3 = F4, it reduces to DE/rand-to-best/2.

Using the equation (13), the ten mutation strategies of the standard differential

evolution algorithm can be included in a single expression. This new expression

provides an opportunity to explore more broadly the space of mutation operators.

Using a different set of parameters F1, F2, F3, F4, a new mutation strategy can

be achieved. For example, Fig. 1 shows a plot of errors in the objective function

value from a numerical test by using a new mutation strategy with F1 = F2 =

F4 = 0.2, F3 = 0.5 and Cr = 0.8 from the unified differential evolution algorithm

(pink). Also shown is the standard differential evolution algorithm DE/rand/1 with

F = 0.9, Cr = 0.9 (red), DE/rand/1 with F = 0.5, Cr = 0.9 (green), and DE/best/1

with F = 0.6, Cr = 0.3 (blue). Here the test function is a 50 dimensional quartic

function with noise given by:29

Fqrt(~x) =

N∑
i=1

ix4i + rand[0, 1); −1.28 ≤ xi ≤ 1.28 (14)

It is seen that by expanding the space of mutation strategies (using the unified mu-

tation strategy), it is possible to find a better solution than the conventional stan-

dard differential evolution algorithm in some applications. Moreover, by adaptively

adjusting these parameters during the evolution, the multiple mutation strategies

and their combinations can be used during different stages of optimization. Thus,

the unified mutation expression has the virtue of mathematical simplicity and also

provides the user with flexibility for broader exploration of different mutation strate-

gies.

The unified mutation strategy provides a method to combine and to use

different mutation strategies. However, choosing appropriate control parameters

F1, F2, F3, F4 by trial-and-error approach can be challenging and time consuming

for application users. Also, using a set of fixed control parameters does not necessar-

ily lead to the best performance of the algorithm since different mutation strategies
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might have superior performance at different generations during the process of evo-

lutionary optimization. A self-adaptive method to select these control parameters

will free the user from such a burden and also improve the performance of the

algorithm.

Parameter tuning has been widely used in evolutionary optimization.25–27 In

general, these methods can be classified as deterministic parameter control, adaptive

parameter control, and self-adaptive parameter control.28 In deterministic parame-

ter control, the parameters used in the algorithm evolve following a pre-determined

rule (which can be time-dependent). In adaptive parameter control, the parameters

are dynamically updated based on learning during the evolution. In self-adaptive

parameter control, the parameters are encoded within each individual solution and

evolve together with the solution during the process of optimization. In this study,

we follow the self-adaptive method in reference29 to allow the five control parameters

(F1, F2, F3, F4 and Cr) to evolve dynamically in the unified differential evolution

algorithm. This self-adaptive scheme is simple to implement and achieved good

performance in a number of benchmark tests.

During the mutation stage, the self-adaptive method used in this study assumes

that at generation G, each individual solution ~xGi , i = 1, 2, 3, · · · , NP has a set of

control parameters FG
1,i, F

G
2,i, F

G
3,i, F

G
4,i and CrGi associated with it. Before generating

a new mutant solution using the unified differential evolution expression (13), a new

set of control parameters FG+1
1,i , FG+1

2,i , FG+1
3,i , FG+1

4,i and CrG+1
i are calculated as:

FG+1
j,i =

{
Fjmin + rj1(Fjmax − Fjmin), if rj2 < τj
FG
j,i, otherwise

(15)

CrG+1
i =

{
Crmin + r3(Crmax − Crmin), if r4 < τ5
CrGi , otherwise

(16)

where rj1, rj2, j = 1, 2, 3, 4, r3, r4 are uniform random values in the interval [0, 1],

Fjmin and Fjmax for j = 1, 2, 3, 4 are the minimum and the maximum allowed

values of those control parameters, Crmin and Crmax are the minimum and the

maximum cross-over probability, and τj , j = 1, 2, 3, 4, 5 represents the probability

to use a new value or to keep the old value for the jth control parameter. The

values of τj are normally kept small so that better control parameters associated

with surviving solutions will be reused to generate the new trial solution. In this

study, we set τj = 0.1 following the reference.29 We also did numerical tests with

τj = 0.05, 0.15, and 0.2 using the benchmark functions in the following section

and did not see significant differences for most functions. The values of Fjmin and

Fjmax are set to 0 and 1 respectively in this paper. We also set Crmin = 0 and

Crmax = 1. The selection of these values is based on the consideration that the

various conventional differential evolution mutation strategies of Eqs. (1-10) can

be covered by the settings of those parameters, and in the literature, F3 and F4

are rarely greater than one. The new set of control parameters (Eqs. 15-16) are

used to generate the mutant solution in Eq. 13. The initial values of these control
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parameters are uniform random values between the minimum and the maximum

values.

4. Variable Population with External Storage Parallel Differential

Evolution for Multi-Objective Optimization

In many accelerator applications, one needs to optimize more than one objective

function. The problem of multi-objective optimization can be stated in the general

mathematical form as:

min


f1(~x)

· · ·
fn(~x)

subject to gi(~x) ≤ 0, hi(~x) = 0 (17)

Here, f1, · · · , fn are n objective functions to be optimized, ~x is a vector of control

parameters, and gi and hi are constraints to the optimization. The goal of multi-

objective optimization is to find the Pareto front in the objective function solution

space. The Pareto optimal front is a collection of all non-dominated solutions in the

whole feasible solution space. Any other solution in the feasible solution space will

be dominated by those solutions on the Pareto optimal front. In the multi-objective

optimization, a solution A is said to dominate a solution B if all components of

A are at least as good as those of B (with at least one component strictly better).

Here, a component of A corresponds to one objective function value, i.e. Ai = fi(~x).

The solution A is non-dominated if it is not dominated by any solution within the

group. An example of the Pareto front is shown as the green line within the feasible

solution space in Fig. 2 with two objective functions.

Fig. 2. Feasible solution space and the Pareto optimal front in a two-objective function optimiza-
tion.

Recently, we developed a new parallel multi-objective differential evolution al-

gorithm with varying population size in each generation and external storage to

save all non-dominated solutions. The use of variable population is based on the

observation that during the early stage of evolution, the number of nondominated

solutions is small. There is no need to keep many dominated solutions in the par-

ent population. As the search evolves, more and more nondominated solutions are
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obtained. Those nondominated solutions are stored in an external storage so that

they can be used to select for the new parent population. The advantage of using

a variable population size with external storage is to make more use of the non-

dominated solutions but less use of the dominated solutions to improve the speed

of convergence. The new algorithm is summarized in the following steps:

• Step 0: Define the minimum parent size, NPmin and the maximum size, NPmax

of the parent population. Define the maximum size of the external storage,

NPext.

• Step 1: An initial NPini population of parameter vectors are chosen randomly

to cover the entire solution space.

• Step 2: Generate the offspring population using the above adaptive unified dif-

ferential evolutionary algorithm.

• Step 3: Check the new population against the constraints.

• Step 4: Combine the new population with the existing parent population from

the external storage. Non-dominated solutions (Ndom) are found from this group

of solutions and min(Ndom,Next) of solutions are put back to the external

storage. Pruning is used if Ndom > Next. NP parent solutions are selected from

this group of solutions for next generation production. If NPmin ≤ Ndom ≤
NPmax, NP = Ndom. Otherwise, NP = NPmin if Ndom < NPmin and

NP = NPmax if Ndom > NPmax. The elitism is emphasized through keeping

the non-dominated solutions while the diversity is maintained by penalizing the

over-crowded solutions through pruning.

• Step 5: If the stopping condition is met, stop. Otherwise, return to Step 2.

The above population based differential evolution optimization algorithm natu-

rally leads to a multi-processor parallel implementation. Our method contains two

levels of parallelization. First, the entire population is distributed among a number

of groups of computer processors. Each group of processors contains a subset of the

population. Different subsets of the population will evolve simultaneously. Second,

for each population solution, the objective function values such as transverse emit-

tances and bunch length are extracted from the outputs of parallel beam dynamics

simulations using multiple processors within the group.

5. Benchmark Optimization Examples

The above adaptive unified differential evolution optimization algorithm is tested

using the following analytical functions:29,30

F1(~x) =

N∑
i=1

x2i ; −100 ≤ xi ≤ 100 (18)

F2(~x) =

N∑
j=1

(
j∑

i=1

xi

)2

; −100 ≤ xi ≤ 100 (19)
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Fig. 3. Evolution of the average error in the sphere function (left) and the Schewefel’s function
(right) from the adaptive unified differential evolution method and some conventional differential

evolution methods.

Here, the first sphere function F1 is a continuous, unimodal and separable func-

tion. The second function F2 is the Schewefel’s problem 1.2 that is a non-separable

unimodal function. Figure 3 shows the evolution of the error relative to the true

global minimum objective function value of these test functions using the above

adaptive unified differential evolution algorithms with dimension N = 50. At each

generation, the objective function value has been averaged over 25 random seeds.

It is seen that the adaptive unified differential algorithm performs quite well in

these test examples in comparison to the other conventional standard differential

evolution algorithms and quickly converges to the true minimum.

As a test of above parallel multi-objective differential evolution algorithm, we

used the following two objective functions:1

f1(~x) = x1

f2(~x) = g(~x)[1− (x1/g(~x))2]

g(~x) = 1 + 9(

n∑
i=2

xi)/(n− 1) (20)

The optimal Pareto front for these two objectives is:

f2 = 1− f21
x1 ∈ [0, 1]

xi = 0, i = 2, . . . , n (21)

The final optimal Pareto fronts from both the numerical solution using the variable

population differential evolution algorithm and the analytical solution are shown

in Fig 4. The multi-objective differential evolution algorithm converges to the true

Pareto front solution with less than 5000 thousand function evaluations.
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Fig. 4. The Pareto optimal front from the VPES solution and the analytical solution.

6. Application to Global Beam Dynamics Optimization

In this section, we apply the above parallel multi-objective differential evolution

algorithm to global longitudinal beam dynamics optimization in a next generation

x-ray FEL light source (LCLS-II) design with 20 pC charge. The LCLS-II is a high

repetition rate (1 MHz) x-ray FEL that will deliver photons of energy between 200

eV and 5 keV.31,32 It consists of a high repetition rate photo-injector to generate

and accelerate the electron beam to about 100 MeV, a laser heater (LH) to suppress

microbunching instability, a section of superconducting linac L1 to accelerate the

beam to 250 MeV, a bunch compressor BC1, a second section of superconducting

linac L2 to accelerate the beam to 1.6 GeV, a bunch compressor BC2, and a third

section of superconducting linac L3 to accelerate the beam to 4 GeV, a long bypass

transport line, and a magnetic kicker to spread the electron beam to a soft x-ray

transport beam line and to a hard x-ray transport beam line. The superconducting

linacs in all three sections are made of 1.3 GHz 9 cell superconducting cavities

except the two cryomodules of 3.9 GHz third harmonic cavities right before the

BC1 to linearize longitudinal phase space.

The objective functions used in the multi-objective optimization are outputs

from the start-to-end beam dynamics simulations using the 3D parallel beam

dynamics simulation framework IMPACT.33–35 This framework includes a time-

dependent 3D space-charge code module IMPACT-T for injector simulation and

a position-dependent 3D space-charge code module for linac and beam transport

system simulation. The simulation starts from the generation of photo-electrons at

the photo-cathode following the initial laser pulse distribution and the given initial

thermal emittance. The electron macroparticles out of the cathode will be subject

to both the external fields from a DC/RF gun and a solenoid, and the space-

charge/image charge fields from the Coulomb interaction of the particles among

themselves. After exiting from the injector, the electron macroparticle will pass

through a linear accelerator and beam transport system that includes laser heater,

bunch compressors, accelerating RF cavities, harmonic linearizer, and magnetic fo-
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cusing elements. Besides the 3D space-charge effects, the simulation also includes

coherent synchrotron radiation (CSR) effects through a bending magnet, incoher-

ent synchrotron radiation inside the bending magnet, RF cavity structure wakefield,

and resistive wall wakefield.

The start-to-end beam dynamics simulation is integrated with the parallel multi-

objective optimization program described above. Figure 5 shows a schematic dia-

gram of the global optimization including both the injector control parameters and

the linac control parameters in the start-to-end beam dynamics optimization. Here,

the outputs from the start-to-end simulation are treated as objective functions in the

parallel multi-objective optimizer. The parallel optimizer will call the IMPACT sim-

ulation by passing the injector control parameters and the linac control parameters

into the objective function. There are total 22 control parameters. The 12 control

parameters in the injector are laser transverse size, laser pulse flat-top length, VHF

gun RF phase, buncher cavity amplitude and phase, two solenoid strengths, the 1st

boosting cavity amplitude and phase, and the 2nd boosting cavity amplitude and

phase and the last cavity phase. The 10 control parameters in the linac are the linac

section one amplitude and phase, 3rd harmonic cavity amplitude and phase, bend-

ing angle in bunch compressor one, linac section two amplitude and phase, bending

angle in bunch compressor two, and linac amplitude and phase. Instead of starting

with direct global optimization in the entire control parameter space, we start the

optimization with reduced control parameter space that contains only the injector

control parameters. The two objective functions, final project transverse emittance

and rms bunch length (directly related to peak current) at the exit of the injector

are optimized subject to a number of constraints. These constraints are final elec-

tron beam energy and beam energy chirp. After a Pareto optimal front is attained

for these two objective functions at the exit of the injector, these optimal injector

control parameters are combined with randomly sampled control parameters in the

linac to form a vector of total 22 control parameters. Using the optimal injector

control parameters as a partial initial component in the global control parameter

solution space significantly saves the computational time and speeds up the conver-

gence of the final global solution. During the global beam dynamics optimization,

one of the objective (transverse emittance) from the original injector optimization

becomes a constraint to the new objective functions. Those solutions at the exit of

the injector that can not satisfy this constraint for final start-to-end optimization

will be automatically excluded during the global optimization. For the global longi-

tudinal beam dynamics optimization, we would like to attain a higher peak current

with flatter longitudinal phase space. The two objective functions are negative frac-

tion of charge and rms energy spread inside a given longitudinal window. The larger

fraction of charge inside the window, the higher peak current will be. The smaller

rms energy spread inside the window, the flatter longitudinal phase space will be.

A high peak current and flat longitudinal phase space will improve the x-ray FEL

radiation power and reduce the radiation bandwidth. The outputs from the injec-

tor such as energy, emittance, and energy spread are used as constraints for the
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global optimization. Besides the constraints at the exit of the injector, we also put

constraints at the final linac output such as energy and peak current. Figure 6

Fig. 5. A schematic diagram of the global beam dynamics optimization.

Fig. 6. The Pareto front from the injector beam dynamics optimization.

shows the Pareto front of two injector objectives (transverse rms emittance and

longitudinal bunch length) from the injector optimization. Here, we have set a final

peak current to be lower than 20 A, final rms emittance to be less than 1 um, final

electron beam energy to be greater than 85 MeV, final rms energy spread to be less

than 100 keV. It is seen that the rms emittance approaches to 0.1 um with the rms

bunch length close to 1 mm in the Pareto front.
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Fig. 7. The Pareto front from the global beam dynamics optimization and from the linac only

optimization using one optimal injector solution.

Fig. 8. The final electron beam current profile before (top) and after (bottom) global optimiza-
tion.

Figure 7 shows the Pareto front of the final two objective functions at the end of

the accelerator from the global beam dynamics optimization. These two objective

functions are the negative fraction of charge and the rms energy spread inside a

window between −7 and 9 um. In this plot, we also show the Pareto front from only

the linac optimization using a solution from the injector optimization as an initial

distribution. It is seen that the Pareto front from the global start-to-end accelerator

optimization is significantly better than that from the linac only optimization. For

the same amount of charge inside the window, the global solution has 40% less

energy spread in some region. For the same level of the final rms energy spread,

the global solution has 15% more electron charge. In this simulation, besides those

constraints for the beam at the exit of the injector, we also put constraints on the

final beam energy to be greater than 3.9 GeV, final rms energy spread to be less
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than 2.5 MeV, fraction of charge inside the window between 0.3 and 0.9. Figure 8

shows the final electron beam current profile from a solution without and with global

design optimization. It is seen that the final current profile is significantly improved

through the global optimization. This results in more than 50% improvement in the

final FEL radiation pulse energy.36
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