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Abstract

Accurately determining pain levels in children is difficult, even for trained professionals and 

parents. Facial activity and electro- dermal activity (EDA) provide rich information about pain, 

and both have been used in automated pain detection. In this paper, we discuss preliminary steps 

towards fusing models trained on video and EDA features respectively. We compare fusion models 

using original video features and those using transferred video features which are less sensitive to 

environmental changes. We demonstrate the benefit of the fusion and the transferred video features 

with a special test case involving domain adaptation and improved performance relative to using 

EDA and video features alone.
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1. Introduction

Accurate pain assessment in children is necessary for safe and efficacious pain management. 

Under-estimation can lead to patient suffering and inadequate care, while over-estimation 

can lead to overdosing of pain medication, which may predispose other issues, including 

opioid addiction [1]. The most widely used method of assessing clinical pain is patient self-

report [2]. However, this method is subjective and vulnerable to social and self-presentation 

biases and requires substantial cognitive, linguistic, and social competencies [2]. Objective 

pain estimation is required for appropriate pain management in the clinical setting.

HHS Public Access
Author manuscript
CEUR Workshop Proc. Author manuscript; available in PMC 2019 January 30.

Published in final edited form as:
CEUR Workshop Proc. 2018 July ; 2142: 208–211.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



In previous work, features extracted from facial action units (AUs) and elec-trodermal 

activity (EDA) signals have both been used to automatically detect pain events using 

machine learning methods, and transfer learning techniques have been applied to 

environmentally sensitive features like facial AU features for domain adaptation tasks [3–6]. 

In this work, we design a machine learning model that utilizes both facial and EDA features 

to recognize pain. We trained a unimodal model using either facial or EDA features to give 

pain scores, and then trained another fusion model using scores from the two models. We 

also applied transfer learning [6] to transfer video features into a domain-robust space, and 

analyzed the fusion model using transferred video features combined with EDA features. We 

observed performance improvement in a domain adaptation task with the fusion method.

An earlier and shorter version of this work was presented at the Joint Workshop on Artificial 

Intelligence in Health and appears in the proceedings [7].

2. Methods

2.1. Participants

Forty-two pediatric research participants (30 males, 12 females) aged 13 [10, 15] (median 

[25%, 75%]) years and primarily Hispanic (79%) who had undergone medically necessary 

laparoscopic appendectomy were recruited for a study examining automated assessment of 

children’s post-operative pain using video and wearable biosensors. Children and their 

parents provided assent and parental consent prior to study evaluations [8].

2.2. Experimental Design and Data Collection

Data were collected over 3 visits (V): (V1) within 24 hours after appendectomy in hospital; 

(V2) in hospital one calendar day after V1; and (V3) a follow-up visit in an outpatient lab up 

to 42 days postoperatively. At each visit, videos (60 fps at 853 × 480 pixel resolution) of the 

participant’s face and EDA responses (using Affectiva Q sensor) were recorded while 

manual pressure was exerted at the surgical site for 10 seconds (equivalent of a clinical 

examination). During hospital visit (V1, V2) data collections, participants were lying in a 

hospital bed with the head of the bed raised. In V3, they were seated in a reclined chair. 

Participants rated their pain level using a 0–10 Numerical Rating Scale, where 0 = no pain 

and 10 = worst pain ever. Following convention for recognizing clinically significant pain 

[9], videos and EDA with ratings of 0–3 were labeled as no-pain, and videos and EDA with 

ratings of 4–10 were labeled as pain. We obtained 22 pain samples from V1, 8 pain and 8 

no-pain samples from V2, and 22 no-pain samples from V3. The data distribution is 

illustrated in Figure 1.

2.3. Feature Extraction and Processing

Video Features: Each 10-second video during pressure was processed with iMotions 

software which automatically estimates the log probabilities of 20 AUs (AU 1, 2, 4, 5, 6, 7, 

9, 10, 12, 14, 15, 17, 18, 20, 23, 24, 25, 26, 28, 43) and 3 head pose indicators (yaw, pitch 

and roll) from each frame. We then applied 11 statistics (mean, max, min, standard 

deviation, 95th, 85th, 75th, 50th, 25th percentiles, half-rectified mean, and max-min) to each 

AU over all frames to obtain 11 × 23 features.
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EDA Features: EDA signals were trimmed to 30 seconds (10 seconds before, during, and 

after pressure was exerted at the surgical site respectively), smoothed by a 0.35 Hz FIR low 

pass filter, down-sampled to 1 Hz, and normalized with z-score normalization. We then 

applied timescale decomposition (TSD) with a standard deviation metric, and computed the 

mean, SD, and entropy of each row of each TSD to obtain a feature vector of length 90 [5].

Transferred Video Features: In [6], we collected videos from 73 children over 3 visits 

and had a human expert code videos along with iMotions, and then used the data to learn a 

mapping from iMotions features to human features. The mapped iMotions features gained 

the domain robustness property of human features. In this paper, we processed video 

features through the learned model to get domain-robust transferred video features.

2.4. Machine Learning Models

Support Vector Machine (SVM): A linear SVM was used to obtain a pain score as well 

as a pain prediction for each sample using transferred video features or video/EDA features 

after PCA. The number of principal components was chosen using cross-validation and the 

box constraint is set to 1. Inputs were normalized with z-score normalization over the full 

dataset as in [5].

Linear Discriminant Analysis (LDA): LDA was used to differentiate between pain and 

no-pain using output pain scores from the SVMs. Inputs were either one single pain score 

from one SVM, or a fusion of pain scores from both SVMs.

Neural Networks: Neural Networks with one hidden layer were used to map iMotions 

features to the human feature subspace. The number of hidden neurons was 506, twice the 

number of input features. Batch normalization and sigmoid activation were used for the 

hidden layer. The output layer used the linear activation function and mean squared error as 

the loss function.

2.5. Evaluation Metrics

Our primary objective was to classify pain in the hospital setting. For this reason we used V2 

(in hospital pain vs no-pain) as test data.

We use classification accuracy to quantify performance of the model. Classification accuracy 

reflects the percentage of correctly classified trials for a given learned threshold. We also 

report sensitivity and specificity along with overall accuracy to indicate whether the model is 

better at detecting pain or no-pain. In order to measure how well the classifiers are able to 

separate pain and no-pain classes, we also use AUC (Area under the ROC- curve) which is 

insensitive to the classification threshold. It measures the area under the curve that plots hit 

rate vs false alarm rate as the threshold is moved over all possible values. An AUC of I 

reflects perfect separation and an AUC of 0.5 reflects no separation.
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3. Results and Discussion

3.1. Performance Using Video/EDA Features

We first used VI pain and V3 no-pain samples to train an SVM for classification, following 

1 => 3 and 2 => 4 in Figure 2. Table 1 shows that SVM performance on V2 was good for 

EDA (accuracy = 0.75), but suboptimal for video features (accuracy = 0.5). The AUC for 

video was 0.66, which is higher than random, implying that the model learned a function 

output, or score, that correlated with pain self-report scores, but failed to find an appropriate 

classification threshold.

In a separate experiment, we trained an SVM with VI pain and V3 no-pain data, and tested 

the model with VI pain and V3 no-pain data. The classification accuracy was 0.8 for video 

features, much higher than performance tested on V2 pain and no-pain. We hypothesize that 

the observed difference was due to iMotions feature sensitivity to environmental differences 

between Vl/2 (in hospital) and V3 (in outpatient lab). When training with VI pain and V3 no 

pain, the classifier learns the difference between the hospital environment of VI and 

outpatient lab environment of V3, but in testing, such difference no longer exists between 

the two classes in V2, so the classification fails. This problem has previously been discussed 

in [6].

One solution to this problem was to use V2 to train the model. However, with only 16 data 

points in V2, results had large variance. Likewise, training with V1/3 and V2 data together 

did not improve V2 performance. Consequently, we needed to solve the domain adaptation 

problem which learns a model from a source domain (V1/3) and applies it on a different 

target domain (V2).

3.2. Fusion of Video and EDA

We hoped to improve performance on V2 by combining video and EDA features. Our first 

simple attempt at fusion was to fit an LDA model to distinguish between pain v. no-pain 

using the output pain scores from each of the SVM models trained with video and EDA 

features respectively (1, 2 ⇒ 5, 6 ⇒ 7, 8 ⇒ 9 in Figure 2). However, this method 

performed poorly (accuracy = 0.56 under “Video+EDA” column in table 1) compared to 

using EDA features alone. Nevertheless, the AUC of this model was 0.88, higher than the 

AUCs of both video and EDA alone, showing potential for the fusion model. In the next 

section, we demonstrate a method that better adjusts the decision boundary of the fusion 

model to get a higher classification accuracy.

3.3. Training with V2 Scores

Through fusion, our LDA classifier involved only two inputs: video and EDA SVM pain 

scores. In such structure, the SVM models can be regarded as encoders or feature extractors. 

Since the dimensionality of features was greatly reduced by the SVM, it became feasible to 

train a classifier using only V2 samples. Relative to Figure 2, we thus trained 1,2 with V1/3, 

and 7,8 with V2 data using cross validation. The accuracy using video scores alone as LDA 

inputs was 0.69, much higher than 0.5, showing the benefit of training on target domain V2, 

even if the features, V2 scores, were obtained from a model trained on V1/3. Finally, with a 
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fusion of SVM output scores for video and EDA, we achieved a comparative best accuracy 

of 0.84.

It should be noted that we performed leave-one-sample-out cross-validation on V2 samples 

in order to train and test both on V2, so AUCs were not measurable.

To better understand our problem, we plot EDA SVM output scores versus video SVM 

output scores in Figure 3 for data points from two domains (V1/3 and V2) and two classes 

(pain and no-pain). We also plot score distributions for EDA and video along corresponding 

axes. These scores were obtained by SVM trained on V1/3 domain. We can see that for both 

EDA and video features, pain and no-pain classes are well-separated on V1/3. However, for 

video features, no-pain on V2 drifts towards pain and will clearly be classified as pain if the 

threshold differentiating pain and no-pain on V1/3 is used. This supports our hypothesis that 

the video SVM model learned to classify “in hospital” versus “in outpatient lab” instead of 

pain versus no-pain during training with V1/3 data, so that V2 no-pain test data are classified 

by their “in hospital” properties.

As we can see from the video score plot, if we adjust the classification threshold based on 

V2 pain scores, we obtain improved performance (Table 1 “Video-V2”). The scatter plot on 

the other hand explains why we should benefit from the fusion of EDA and video since the 

optimal decision boundary that partitions the two distributions is oblique, which means the 

decision model should weight both dimensions.

3.4. Transfer Learning for Video Features

We introduced a transfer learning method in [6] to map automated video features to a 

subspace of manual pain-related video features which loses sensitivity to domain changes 

while keeping necessary information to recognize pain. We applied the same method to the 

video features in our experiment and show the results in Table 2 under “TF” (TF = 

transferred video feature). Accuracy using video features on target domain V2 improved 

from 0.5 to 0.81 with transfer learning when the SVM model was trained on source domain 

V1/3. Unlike original video features, in the plot of score distribution for transferred video 

features in Figure 4, no-pain (V2) is distributed similarly to no-pain (V1/3), showing the 

domain robustness of video features after transfer learning.

3.5. Fusion of Transferred Video and EDA

We then combined transferred video and EDA as we did in section 3.2, following 1, 2 ⇒ 5, 

6 ⇒ 7, 8 ⇒ 9 in Figure 2 where we replaced video by transferred video. The accuracy is 

0.75 under “TF+EDA”, no higher than using TF or EDA alone, but the AUC (0.88) beats 

both (Table 2).

In section 3.3 we retrained the LDA model on V2 to improve accuracy. Since transferred 

video features and EDA features are both invariant to domain changes, we did not have to 

exclude V3 during training. Instead we could leave one sample in V2 test data out at each 

iteration, use the remaining V2 samples and all V1/3 samples together for training, and 

produce a decision for each V2 sample. The accuracy of this fusion model was 0.86. To 

compare with Table 1, we also report accuracies training LDA with V2 in Table 2. The 
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accuracies are slightly lower than training with V1–3 together, possibly due to decreased 

training sample size.

4. Conclusion

We present preliminary results using a fusion approach to automatically detect pain in 

children. While the results demonstrate improvement with our domain adaptation fusion 

methodology over approaches using video, transferred video, or EDA features alone, we 

believe these results can be further improved by tailoring the two modalities to be more 

sensitive to their relative benefits and limitations.
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Fig. 1. 
Data distribution over three visits and two environmental domains.
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Fig. 2. 
Graph of Model Hierarchy.

Xu et al. Page 8

CEUR Workshop Proc. Author manuscript; available in PMC 2019 January 30.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 3. 
Scatter plot and distributions for EDA and Video pain scores output by SVM models, 

grouped by data domain and class.
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Fig. 4. 
Scatter plot and distributions for EDA and transferred video pain scores output by SVM 

models, grouped by data domain and class.

Xu et al. Page 10

CEUR Workshop Proc. Author manuscript; available in PMC 2019 January 30.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Xu et al. Page 11

Table 1.

Performance for Classi_cation on V2.

Video EDA Video+EDA Video-V2 EDA-V2 Video+EDA-V2

Acc 0.5 0.75 0.56 0.69 0.71 0.84

Sensitivity 0.75 0.75 0.87 0.62 0.62 0.84

Specificity 0.25 0.75 0.25 0.75 0.80 0.83

AUC 0.66 0.80 0.88 - - -
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Table 2.

Performance for Classification on V2 (Transfer Learning).

TF EDA TF+EDA TF-V2 EDA-V2 TF+EDA-V2

Acc 0.81 0.75 0.75 0.76 0.71 0.80

Sensitivity 0.87 0.75 0.87 0.77 0.62 0.81

Specificity 0.75 0.75 0.62 0.75 0.80 0.78

AUC 0.81 0.80 0.88 - - -

TF-V123 EDA-V123 TF+EDA-V123

Acc 0.81 0.73 0.86

Sensitivity 0.87 0.86 0.87

Specificity 0.75 0.59 0.84

AUC - - -
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