UC Merced
Proceedings of the Annual Meeting of the Cognitive Science
Society

Title
Modifying Explanations to Understand Stories

Permalink
https://escholarship.org/uc/item/0Ohplv431|

Journal
Proceedings of the Annual Meeting of the Cognitive Science Society, 8(0)

Author
Kass, Alex

Publication Date
1986

Peer reviewed

eScholarship.org Powered by the California Diqgital Library

University of California

https://escholarship.org/uc/item/0hp1v431
https://escholarship.org
http://www.cdlib.org/

Modifying Explanations to Understand Stories*

Alex Kass
Yale University Department of Computer Science

ABSTRACT

We describe a system that learns new schemas by modifying old ones, in order to understand
anomalous events in stories that it reads. We discuss how these schemas (called Explanation Patterns
[Schank 86]) are structured in order to make them modifiable, and how the understanding process
applies and modifies them. This model bridges the gap between two previous models of understanding,
which were based on either application of prestored schemas or understanding-time inference chaining.
By employing modifiable schemas, our model is more flexible than the former and more efficient than

the latter.

Introduction

The crucial problem in story-understanding is infer-
ence. Inference is needed, among other things, to tie
different sentences together, to fill in ellipses, and to
resolve ambiguity. The story-understanding literature
contains several models of the inference process, but
for the purposes of this paper we can divide these
models into two principal categories: One group op-
erates via the application of prestored schemas; the
other builds inference chains from scratch at under-
standing time. Both models have something to offer,
but each has serious drawbacks as well. In this pa-
per we argue that in order for a system to overcome
these drawbacks it must be able to adapt its schemas
to new situations. We discuss a new model (imple-
mented in a computer program called SWALE) that is
based on modifiable schemas, called Explanation Pat-
terns (henceforth XPs).

Previous Work — Inference Chaining
and Schema Application

The inference-chaining approach to story understand-
ing is exemplified by Rieger’s Conceptual Infer-
encer [Rieger 75] and Wilensky’s PAM [Wilensky 78].

*This work is supported in part by the Air Force Office of
Systems Research under contract 85-0343

Rieger’s system was completely bottom up; his pro-
gram chained forward from each input sentence and
noticed where the chains intersected. Although this
simple model was able to generate many useful infer-
ences it was too unconstrained. The combinatorial
explosion of inferences caused the irrelevant to over-
whelm the useful. Wilensky was able to constrain
things somewhat by having knowledge of plans and
goals guide the inference process. PAM would at-
tempt to match inputs to known goals of the actor,
and to backward chain to those goals if they couldn’t
be matched directly. Guiding the inference process in
this way helps matters considerably but it remains the
case that PAM had to do a lot of work to understand
each story. Furthermore, because it didn’t store the
inference chains it built, it had to do as much work to
understand a story it had seen a hundred times as it
did to understand it the first time.

A response to the inference-chaining school is the
schema-application approach, as practiced, for exam-
ple, by Charniak’s Ms. Malaprop [Charniak 72|, and
Cullingford’s SAM [Cullingford 78]. These programs
avoid most understanding-time inference by using pre-
stored schemas that contain the expectations needed
to understand the story. For these programs, the in-
ference process is reduced to matching input from the
story against a schema in memory. They are therefore
very efficient at handling stories that closely match
their schemas, but fail badly unless there is a very
close match.

691

KASS

Our Approach — Schema Modification

Given that schema-based programs tend to be brit-
tle but efficient, while the inference-chainers are more
flexible but less efficient, one might be tempted to
propose that there are two different modes of story-
understanding; that a complete model would combine
SAM and PAM, using scripts when they were appli-
cable, and resorting to inference-chaining when neces-
sary. Such an either or system would be a good idea if
stories were generally totally novel or totally old-hat.
The fact is that most are neither; interesting stories
we read are usually reminiscent of things we under-
stand well, but not exactly like them1 — they are near
misses and we don’t want our model to have to un-
derstand these from scratch. Rather, we want to be
able to tweak our old schemas to make them applica-
ble. This way the understander learns new schemas
incrementally when old ones fail. Old schemas serve
as the starting points for creating the new, and the
wheel does not need to be reinvented in order to build
a slightly different schema. SAM-like scripts, how-
ever, are not good candidates for modification because
they don’t encode enough of the causal reasoning that
went into building them to make it clear to a tweak-
ing mechanism what modifications are reasonable to
make. In order to make the tweaking idea work, we
need to specify what these modifiable schemas should
look like and what the process will be that modifies
and applies them. These are exactly the goals of the
SWALE project, which we will spend the rest of this
paper describing.

XPs — Modifiable Schemas

XPs differ from scripts in that scripts are meant to pro-
vide an overall view of some group of events (such as a
doctor’s visit or a meal at a restaurant) while XPs are
designed to be a detailed trace of the reasoning that
was used to resolve a particular problem that could
arise in such a group of events (such as the waiter not
bringing your food). An XP is a set of beliefs and a
set of belief-support relations which link the beliefs
together in an inference network. The belief-support
links specify which beliefs depend on which others, and
what the type of the dependency is. This is what
makes XPs modifiable. The belief supports indicate
why a given belief is in the XP. This tells the modifi-
cation process what the effect of deleting or changing

beliefs will be.

692

Some of SWALE’s XPs

The best way to give a feel for what XPs are like is to
describe some the XPs we have equipped the SWALE
program with. Consider the following story: “Swale, a
successful 3-year old race horse, was found dead in his
stall a week after winning the Belmont Stakes race.”
Most people who read this story find the death to be an
anomalous event, which they feel the need to explain.
What follows are some death-related XPs that we have
built into SWALE, Some of these XPs are clearly rele-
vant to Swale’s death while others are connected only
in a more fanciful way. Our goal is to have SWALE
propose as many interesting explanations as possible
by applying the XPs we have indexed in its XP library
and tweaking them to create new variations of these
XPs; we are much more interested in having the system
develop interesting hypotheses than in having it avoid
bad ones.

The Jim Fixx XP: Joggers jog a lot. Jogging re-
sults in physical exhaustion because jogging is a kind
of exertion and exertion results in exhaustion. Phys-
ical exhaustion coupled with a heart defect can cause
a heart attack. A heart attack can cause death.

The Janis Joplin XP: Being a star performer can
result in stress because it is lonely at the top. Being
stressed-out can result in a need to escape and relax.
Needing to escape and relax can result in taking recre-
ational drugs. Taking recreational drugs can result in
an overdose. A drug overdose can result in death.

Too Much Sex XP: Too much sex can kill you.

Preoccupation XP: Being preoccupied about some-
thing can cause you to be inattentive. Being inatten-
tive can result in walking into traffic. Walking into
traffic can result in you being hit by a vehicle. Being
hit by a vehicle can cause death.

Despondent Suicide XP: Thinking about some-
thing you want but that you don’t have can make you
despondent. Being despondent can result in suicide.

The idea is that when an anomaly is encountered while
reading a story or having an experience in the real
world, the understander uses features of the anomaly
to retrieve XPs that might explain the anomaly. For
any anomaly an understander encounters, there are
four possible states of readiness its XP library might
be in:

1. An XP can be retrieved from memory that applies
perfectly to the anomaly. In this case it is easy

KASS

to explain the anomaly. It is a simple case of

schema-application.

2. None of the XPs retrieved from memory apply di-
rectly, but some relevant XPs can be modified (we
call this tweaking) to create new XPs that are ap-
plicable. This case is trickier, but it is also more
important, since, at the end of the process the
system has created and learned a new XP.

3. No XP is retrieved that can be tweaked to ap-
ply. An XP must be built from scratch out of the
primitive inference rules. This is the kind of situa-
tion for which PAM was designed. Under our cur-
rent model, understanders often give up on prob-
lems for which they are so unprepared unless the
anomaly is quite important. Although a complete
model should include a component to handle this
case, the SWALE program currently does not.

4. The system does not even have the inference rules
to allow it to build an appropriate XP. In this case
the system simply is not equipped to understand
the anomalous experience.

The SWALE Process Model

My claim is that most interesting experiences fall into
category 2; we understand them by retrieving an ex-
isting XP and modifying it to fit the new situation.
This is what the SWALE program does. Thus SWALE
is both an understanding program and a learning pro-
gram. Its actions are driven by the goal of discovering
an explanation that will help it understand an anoma-
lous event, and in doing so it learns new explanations,
and stores them for future use. After an anomaly is
detected the algorithm involves the following:

XP SEARCH: Search the XP library for an XP that
may apply to the anomaly.

XP EVALUATION: Attempt to apply XPs. If suc-
cessful then skip to XP INTEGRATION.

XP TWEAKING: If unable to apply XPs directly,
attempt to tweak them into XPs that might apply bet-
ter. If successful send tweaked XPs back to XP EVAL-
UATION.

XP INTEGRATION: If results accepted, integrate
into memory making appropriate generalizations.

The program is divided into three modules. The main
driver is called the Accepter and is responsible for de-

SWALE Module Interconnection Diagram

- -ml IW..,.....

Accepter

e 7

Tweaker Explorer
=)

Figure 1: SWALE Module Interconnection diagram

tecting anomalies, evaluating explanations, and gener-
alization. One sub-system is devoted to retrieving XPs
and another to tweaking them. David Leake is work-
ing on the Accepter, Chris Owens on the Retriever,
and I am working on the Tweaker. Figure 1 presents
a simple description of the SWALE architecture.

Unfortunately, there isn’t enough room here to de-
scribe the entire SWALE program. There are, of course,
important issues that arise throughout the processing
of the story. For example, the reader might wonder
how SWALE notices anomalies, how it searches for rel-
evant XPs and how it evaluates explanations. These
are all interesting issues that we simply don’t have
room to touch on here — this paper is really only
about how XPs that have been retrieved and evalu-
ated as near misses can be modified. Some of the
other issues are discussed in [Leake and Owens 86].
A somewhat more detailed (albeit out of date) dis-
cussion of the entire SWALE program appears in
[Kass, Leake and Owens 86).

Tweaking XPs to Make Them Fit

When the Accepter rejects an XP as a near miss it
passes the XP and the reason for rejection to the
Tweaker. The goal of the Tweaker is to generate a
new XP (or set of XPs) that might fit better. These
are then sent back to the Accepter for re-evaluation.

The high level control structure of the Tweaker is very
simple. There are two main sub-steps:

Strategy Retrieval: Retrieve XP REPAIR STRATE-
GIES from a library of such strategies maintained by
the Tweaker. Retrieval of an appropriate set of XP

693

KASS

REPAIR STRATEGIES relies on using the XP FAILURE
TYPE, created during the evaluation stage, as an index
into the XP REPAIR STRATEGY library. Each XP RE-
PAIR STRATEGY is stored in the library along with a
failure pattern. The retrieval step essentially involves
matching the XP FAILURE TYPE, against these pat-
terns and collecting the strategies associated with pat-
terns that successfully match. These are the strategies
that will be applied in the application step.

Strategy Application: Each strategy is a program
designed to map an XP that suffers from some problem
to a set of modified XPs that don’t suffer from the prob-
lem. Apply each retrieved strategy in turn, collecting
and returning any resulting XPs. Of course, the de-
tails of what goes on during this phase of processing is
completely determined by the nature of the XP REPAIR
STRATEGY. Some of the XP FAILURE TYPEs generated
in the current version of the program, and some of the
associated XP REPAIR STRATEGIES are discussed be-
low. This list not intended to be exhaustive by any
means; we've just begun to build up SWALE’s library
of strategies. However, it should convey the basic form
that these things take.

In a sense, the SWALE Tweaker represents the appli-
cation to understanding of the same philosophy that
Hammond’s CHEF program [Hammond 84] applied to
planning. CHEF uses goal-failure configurations to in-
dex plan-repair strategies; SWALE uses XP FAILURE
TYPEs to index XP REPAIR STRATEGIES. Hammond’s
theoretical goal was a content-theory of plan repair;
ours is a content-theory of explanation repair. Of
course, the idea of using failures to index repair strate-
gies traces back at least to HACKER [Sussman 75|.

Some XP FAIURE TYPES

NORMATIVE-FILLER-VIOLATION: This fail-
ure indicates that the explanation hypothesizes that a
role in an action description be filled by an actor who
is not a member of the categories that the Accepter
expects to fill the role.

When the JIM FIXX XP is retrieved it generates this
failure description because it calls for SWALE be a jog-
ger, but the program expects joggers to be humans.

SCRIPT-LINE-VIOLATION: This failure is sim-
ilar, but not identical to the one above. It indicates
that the explanation called for an actor to fill a role
in a script that it is not valid for it to fill because one

694

of the lines in the script is an action that the actor is
actually incapable of performing.

When evaluating the JANIS JOPLIN XP this failure
is generated because the XP hypothesizes that Swale
was the actor in the recreational drugs script, but this
script involves injecting oneself, which Swale is not
capable of.

SCHEDULING-VIOLATION: This failure com-
plains that an explanation hypothesizes that an ac-
tion will occur at a particular time but the program
has reason to believe that it should have happened at
a different time (earlier or later) instead.

For example, the TOO MUCH SEX XP calls for
Swale to be having sex around the time of his death.
The program knows, however, that race horses are kept
celibate until sent to stud after their racing days are
over. It therefore generates this failure.

UNCONVINCING-SUPPORT-LINK: This fail-
ure is quite different from those above. The Ac-
cepter isn’t complaining about any paritcular belief,
but rather about the jump from one to another. The
Accepter expects to have inference rules to back up
each link in an XP. When a link isn’t satisfactorily
supported this failure is generated.

Some XP REPAIR STRATEGIES

Associated with each XP FAILURE TYPE is one or more
XP REPAIR STRATEGIES. The best way to explain
these is to describe some examples. We give some
brief descriptions below. Examples of how some are
used appears in the description of the SWALE run near
the end of the paper.

SUBSTITUTE ALTERNATIVE THEME: This
is a fairly general strategy. It is a candidate for fixing
any INVALID-ACTION failure.

The notion here is to find out which line (or lines) in
the inappropriate script was actually important in the
XP (fe. which one supports other beliefs in the XP),
and to search for a theme associated with the actor
that can substitute. The new theme must be one that
is appropriate for the current actor, and one which
has the necessary line(s) in it. In other words, the
XP carries within it the knowledge of why a particular
belief is important to the XP, and this strategy uses
this information to find another theme that can fit in
in an analogous way.

KASS

SUBSTITUTE EQUIVALENT ACTION: This
is quite like the above strategy, and can fix the same
set of failures.

Sometimes there are no themes associated with the ac-
tor that can substitute for the action that he Accepter
has found objectionable. In this case, another way to
search for a substitution is to look at generalizations
of the objectionable action, and then find other spec-
ifications of those generalizations. Any of these other
specifications that support the inferences supported by
the original action are candidate substitutions.

SUBSTITUTE ANTICIPATION: This rather
specialized strategy applies to some SCHEDULING-
VIOLATION failures when the action in question was
expected to happen later than called for in the XP.

When this happens it is reasonable to entertain the no-
tion that thinking about the future event might play
a role in the explanation. Thus this strategy substi-
tutes the belief that the actor was thinking about the
event for the belief that the event actually occurred.
Sometimes this makes sense, although often it doesn’t.

It is up to the Accepter, rather than the Tweaker, to
decide.

FIND CONNECTING XP: This provides a way to
fix UNCONVINCING-SUPPORT-LINK failures.

It attempts to repair such a problem by finding another
XP that will connect the two beliefs in question. It
works by calling the Explorer. If no XP can be found to
connect the beliefs directly it will try a limited amount
of causal chaining. After each chaining step it will call
itself recursively, using the newly inferred belief. This
is used to find connections between thinking about sex
and death.

A Brief Description of a SWALE Run

SWALE is actually a running computer program. There
is no room here to present the actual output from the
system (which is rather verbose). The following is a
brief paraphrase of a SWALE trace in which it devel-
ops some variations on explanations contained in its li-
brary when it is set to work on the story about Swale’s
death. This is intended to give the reader a rough idea
.of the way that SWALE’s processing proceeds:

e Use routine search to find XPs concerning pre-
mature death in animals. Find DEATH FROM
ILLNESS XP. This XP can’t apply, since Swale

wasn’t sick. Because this is a severe failure do not
try to tweak.

Look for XPs indexed by unusual features of
Swale. Racehorses are in top physical condition;
death + top condition retrieves JIM FIXX XP.
The Evaluator rejects FIXX XP because Swale
can’t be a jogger.

Try to Tweak. The problem was a DEFAULT-
FILLER-VIOLATION, so try SUBSTITUTE
ALTERNATIVE THEME. Swale’s known themes
are horse-race and eat-oats. The horse-race theme
is selected because it involves running, which was
the aspect of jogging playing a role in the XpP. The
tweaked XP is: Since Swale had a heart defect, the
exertion from running overtaxed his heart.

Evaluate the new XP. It's reasonable, but since
the heart defect can’t be confirmed, continue look-
ing for other XPs. Other strategies fail to find
more XPs, so try folkloric explanations of death.
Pull up the old wives’ tale TOO MUCH SEX
XP. The evaluator notices that racehorses aren’t
allowed to have sex while racing, but they do have
a lot of sex when they retire to the stud farm. This
is a SCHEDULING-VIOLATION

Tweak. The tweaking strategy, SUBSTITUTE
ANTICIPATION applies to this fault. Could
Swale have died just from thinking about life on
the stud farm?

The new XP is unconvincing. There’s no link from
thinking about sex to death. Tweak.

Fault is UNCONVINCING-SUPPORT-LINK,
use the strategy FIND CONNECTING XP.
Possible effects of thinking about sex are, excite-
ment, and depression (if you’re thinking about not
having it). Distraction can be linked to death by
two XPs, Excitement can cause death by heart-
attack. Depression can cause death from suicide.

Search continues but no more XPs are found. Each
of the new explanations depends on conditions
which can’t be confirmed. Since the Fixx XP was
the possibility located most directly by the Ex-
plorer, the tweaked version of Fixx is accepted
as the most likely explanation. The causally-
significant feature Fixx and Swale shared was that
they did physical exertion. The XP is generalized
to apply to actors who have an exertion theme
and this is installed in memory for future use.

695

KASS

Some Explanations Created by SWALE

The Jim Fixx Reminding Explanation: Swale
had a congenital heart defect. The exertion of running
in horse races strained his heart and brought out the
latent defect. He had a heart attack and died.

The Drug Overdose Explanation: Swale’s owner
was giving him drugs to improve his performance. He
accidentally gave him an overdose, which killed him.

The Stud Farm Pair

SWALE’s processing brings it to consider the idea that
thinking about sex too much caused Swale’s demise.
It then attempts to imagine ways in which this might
have occurred and develops the explanations that fol-
low:

The Sexual Excitement Explanation: Swale
was thinking about his future life on a stud farm.
Since he was an excitable creature, thinking about the
prospects proved to be too much strain for his heart.
He had a heart attack and died.

The Despondent Suicide Explanation: Swale
was thinking about his forced chastity during his rac-
ing career. He became despondent and killed himself.

Conclusion

Explanation Patterns represent frozen inference chains
in a way that preserves the reasoning pattern used to
develop them. This allows a model using XPs to bridge
the gap between schema appliers and inference chain-
ers. SWALE understands stories in terins of its pre-
established schemas, but those schemas are not rigid
in the way that scripts are. When a schema is a near
miss, SWALE it in in order to make it apply. Of course,
the further the story strays the more tweaking will be
needed, so this model predicts that there will be a con-
tinuum of difficulty, from straight application through
more and more major tweaking, to building the expla-
nation from scratch.

SWALE is still in its formative stages but we are very
excited by the preliminary results. The program pos-
sesses an important trait that previous understanders
did not: When its knowledge structures fail, the pro-
gram attempts to build new hypotheses for under-
standing the events and then stores these for future
use. This is an important component of flexible,
human-style understanding.

Acknowledgements

All of the other members of the SWALE team, Roger
Schank, Chris Riesbeck, David Leake and Chris Owens
helped develop the ideas in this paper. Chris Riesbeck
and David Greenberg provided helpful comments on

References preliminary drafts.

[Charniak 72] Charniak, E., Towards a Model of Children’s Story Comprehension, Technical Re-
port 266, MIT Artificial Intelligence Lab, 1972.

[Cullingford 78| Cullingford, R., Script Application: Computer Understanding of Newspaper Stories,
Ph.D. Thesis, Yale University, 1978. Research Report #116.

[Hammond 84] Hammond, K., Indezing and Causality: The organization of plans and strategies in
memory, Technical Report 351, Yale University Department of Computer Science,
December 1984.

[Kass, Leake and Owens 86] Kass, A. M. and Leake, D. B. and Owens, C. C., SWALE: A Program that Ezplains,
1986. In [Schank 86].

[Leake and Owens 86] Leake, D. B. and Owens, C. C., Oragnizing Memory for Explanation, Proceedings of
the Eighth Annual Conference of the Cognitive Science Soctety, Cognitive Science
Society, Lawrence Erlbaum Associates, 1986.

[Rieger 75] Rieger, C., Conceptual Memory and Inference, Conceptual Information Processing,
North-Holland, Amsterdam, 1975.

(Schank 86] Schank, R.C., Ezplanation Patterns: Understanding Mechanically and Creatively,
1986. Book in press.

[Sussman 75] Sussman, G.J., Artificial Intelligence Series, Volume 1: A computer model of skill
acquisition, American Elsevier, New York, 1975.

(Wilensky 78] Wilensky, R., Understanding Goal-Based Stories, Ph.D. Thesis, Yale University,

1978. Research Report #140.
696

	cogsci_1986_691-696

