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RESEARCH ARTICLE COMPUTER SCIENCES

Wide and deep neural networks achieve consistency
for classification
Adityanarayanan Radhakrishnana,b,c , Mikhail Belkind,e , and Caroline Uhlera,b,c,1 ID

Edited by David Donoho, Stanford University, Stanford, CA; received May 21, 2022; accepted March 2, 2023

While neural networks are used for classification tasks across domains, a long-standing
open problem in machine learning is determining whether neural networks trained
using standard procedures are consistent for classification, i.e., whether such models
minimize the probability of misclassification for arbitrary data distributions. In this
work, we identify and construct an explicit set of neural network classifiers that are
consistent. Since effective neural networks in practice are typically both wide and deep,
we analyze infinitely wide networks that are also infinitely deep. In particular, using
the recent connection between infinitely wide neural networks and neural tangent
kernels, we provide explicit activation functions that can be used to construct networks
that achieve consistency. Interestingly, these activation functions are simple and easy
to implement, yet differ from commonly used activations such as ReLU or sigmoid.
More generally, we create a taxonomy of infinitely wide and deep networks and show
that these models implement one of three well-known classifiers depending on the
activation function used: 1) 1-nearest neighbor (model predictions are given by the
label of the nearest training example); 2) majority vote (model predictions are given by
the label of the class with the greatest representation in the training set); or 3) singular
kernel classifiers (a set of classifiers containing those that achieve consistency). Our
results highlight the benefit of using deep networks for classification tasks, in contrast
to regression tasks, where excessive depth is harmful.

neural networks | classification | consistency | neural tangent kernel

Deep learning has produced state-of-the-art results across several application domains
including computer vision (1), natural language processing (2), and biology (3). Despite
these empirical successes, our understanding of basic theoretical properties of deep
networks is far from satisfactory. In fact, for the fundamental problem of classification,
it has not been established whether neural networks trained with standard optimization
methods can achieve consistency, i.e., whether they minimize the probability of
misclassification for arbitrary data distributions (a property also referred to as Bayes
optimality in the statistics literature).*

There is a vast literature on the consistency of statistical machine learning methods,
which has traditionally focused on methods that do not interpolate or fit training data
exactly (4, 5). Given the recent successes of interpolating neural networks (6–8), there
is renewed interest in understanding the consistency of interpolating machine learning
models including nearest neighbor methods and kernel methods (9–13). While such
methods can be universally consistent in the noninterpolating regime, these models are
generally not consistent in the interpolating regime (12–14). Moreover, little is known
about the consistency of interpolating deep neural networks. Classical work (15) analyzing
the consistency of neural networks utilizes the results of Cybenko (16) and Hornik (17)
to show that the Bayes optimal classifier can be approximated by a neural network that is
sufficiently wide; i.e., these prior results are concerned with the existence of networks that
achieve consistency and do not present computationally feasible algorithms for finding
such networks.

By establishing a connection between interpolating kernel smoothers and deep
neural networks, we identify and construct an explicit class of interpolating neural
networks that, when trained with gradient descent, achieve consistency for classification
problems. Our results utilize the recent neural tangent kernel (NTK) connection
between training wide neural networks and using kernel methods. Several works
(18–21) established conditions under which using a kernel method with the NTK is
equivalent to training neural networks, as network width approaches infinity. Given
the conceptual simplicity of kernel methods, the NTK has been widely used as a tool

*Consistency refers to a property that holds in an asymptotic sense as the number of training samples approaches infinity.
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Fig. 1. Behavior of infinitely wide and deep neural networks trained with gradient descent. (A) Taxonomy of infinitely wide and deep networks. Depending on
the choice of the activation function, �(·), these models implement majority vote (blue), 1-nearest neighbor (red), or singular kernel classifiers (green), a subset
of which achieve consistency. (B) Regression versus classification using infinitely wide and deep networks. While these models are not effective in the regression
setting, since their predictions are near zero almost everywhere, they can achieve consistency for classification, where only the sign of the prediction matters.
(C) Illustration of the different behaviors of infinitely wide and deep networks for varying activation functions. Depending on the activation function, infinitely
wide and deep networks implement majority vote (blue), 1-nearest neighbor (red), or singular kernel classifiers that can achieve consistency (green). Singular
kernels that grow too slowly are akin to majority vote classifiers (dashed blue), whereas those that grow too quickly are akin to weighted nearest neighbor
classifiers (dashed red).

for understanding the theoretical properties of neural networks
(19, 21–24). Since neural networks in practice are often both
wide and deep, we consider the natural extension of networks
that are both infinitely wide and deep.

In particular, we focus on infinitely wide and deep networks
in the classification setting and show that they have markedly
different behavior than in the regression setting. Indeed, prior
work (22, 25) showed that in the regression setting, infinitely
wide and deep neural networks simply predict near-zero values
at all test samples and, thus, are far from consistent (Fig. 1B). As
a consequence, these models were dismissed as an approach for
explaining the strong performance of deep networks in practice.
In stark contrast to regression, we show that the sign of the
predictor can be informative even when its numerical output is
arbitrarily close to zero (Fig. 1B for an illustration). In fact, as we
show in this work, this is exactly how infinitely wide and deep
neural networks can achieve Bayes optimal classification accuracy
even though the output of the network approaches zero.

To characterize the behavior of infinitely wide and deep
classifiers, we establish a taxonomy of such models and prove
that it includes networks that achieve consistency (Fig. 1A).
More precisely, we prove that infinitely wide and deep neural
network classifiers implement one of the following three well-
known classifiers depending on the choice of activation function:

1. 1-nearest neighbor (1-NN) classifiers: the prediction on a new
sample is the label of the nearest sample (under Euclidean
distance) in the training set (26).

2. Majority vote classifiers: the prediction on a new sample is the
label of the class with greater representation in the training set.

3. Singular kernel classifiers: the prediction on a new sample is
obtained by using the kernel K (x, x̃) = R(‖x−x̃‖)

‖x−x̃‖α , where α > 0

is the order of the singularity.† As is standard when using kernel
smoothers for classification, the prediction, m(x), on a new
sample x given training data {(x(i), y(i))}ni=1 is

m(x) = sign
( n∑

i=1
y(i)K (x(i), x)

)
. [1]

As a corollary of a result in ref. 13, it follows that singular kernel
classifiers achieve consistency when α is the dimension of the
data, d (SI Appendix, Appendix C). Hence, our taxonomy and,
in particular, Theorem 2 of this work provide exact conditions
under which infinitely wide and deep neural network classifiers
achieve consistency for any given data dimension. Notably,
we identify a simple class of activation functions that yield
singular kernel classifiers with α = d , and we thus identify
concrete examples of neural networks that achieve consistency.
For example, for d = 2, the infinitely wide and deep classifier
with activation function φ(x) = (x3 + (

√
6 − 3)x)/

√
12

achieves consistency. Interestingly, the popular rectified linear
unit (ReLU) activation φ(x) = max(x, 0) leads to an infinitely
wide and deep classifier that implements the majority vote
classifier and is thus not consistent. Similarly, the activation
function φ(x) = (x2

− 1)/
√

2 leads to an infinitely wide and
deep classifier that implements the 1-NN classifier and is thus
also not consistent.

We note that singular kernels provide a natural transition
between 1-NN and majority vote classifiers. Namely, as discussed
in ref. 13, for α > d , singular kernel classifiers behave akin to
weighted nearest neighbor classifiers since ‖x − x̃‖α is extremely
small for x̃ near x. Similarly, for α < d , singular kernel classifiers
behave akin to majority vote classifiers since ‖x− x̃‖α is no longer

†For this order to be well-defined, R(·) is nonnegative and satisfies inf
|u|<�

R(u) > 0 and

|R(u)| < C for some �, C > 0.
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small for x̃ far from x. We visualize this transition between the
three classes established in our taxonomy in Fig. 1C .

1. Taxonomy of Infinitely Wide and Deep
Neural Networks

In the following, we construct a taxonomy of classifiers im-
plemented by infinitely wide and deep neural networks. Our
construction relies on the recent connection between infinitely
wide neural networks and kernel methods (18). In particular, this
connection involves utilizing a kernel method known as a kernel
machine, which is related to the kernel smoother described in
Eq. 1. In contrast to the kernel smoother, a kernel machine with
kernel K is given by:

sign
(
yK−1

n K (X, x)
)

, [2]

where X = [x(1)
|x(2)
| . . . |x(n)] ∈ Rd×n denotes the training

data, y = [y(1), y(2), . . . y(n)] ∈ {−1, 1}1×n the labels, Kn ∈

Rn×n satisfies (Kn)i,j = K (x(i), x(j)) and K (X, x) ∈ Rn satisfies
(K (X, x))i = K (x(i), x). Both kernel methods can be used as
prediction schemes for classification (27). Note that while both
algorithms produce predictors with the same functional form,
their predictions are generally different. Indeed, understanding
the relation between kernel smoothers and kernel machines will
be critical to our proof of consistency.

Under certain conditions, training a neural network as width
approaches infinity is equivalent‡ to using a kernel machine with
a specific kernel known as the neural tangent kernel (18), which
is defined below.

Definition 1: Let f (L)(x;W) denote a fully connected network§

with L hidden layers with parameters W operating on data
x ∈ Rd . For x, x̃ ∈ Rd , the Neural Tangent Kernel (NTK)
is given by:

K (L)(x, x̃) = 〈∇W f (L)(x;W),∇W f (L)(x̃;W)〉.

To work with a simple closed form for the NTK and to avoid
symmetries arising from the activation function, we will consider
training data with probability density function on Sd

+, where Sd
+

is the intersection of the unit sphere Sd in d + 1 dimensions and
the nonnegative orthant.¶ We also assume that no samples are
repeated in the training data.

In this work, we analyze the behavior of infinitely wide and
deep networks by analyzing the kernel machine in Eq. 2, as
depth, L, goes to infinity. To perform our analysis, we utilize
the recursive formula for the NTK of a deep network originally
presented in ref. 18. Namely, K (L) can be expressed as a function
of K (L−1) and the network activation function, φ(·), yielding
a discrete dynamical system indexed by L. The exact formula
can be found in Eq. 5, and additional relevant results from prior
works that are used in our proofs are referenced in SI Appendix,
Appendix A.

‡This equivalence requires a particular initialization scheme on the weights known as the
NTK initialization scheme (18). Formally, this equivalence holds when offset terms corre-
sponding to the predictions of the neural network at initialization are added to those given
by using a kernel machine with the NTK (18). Like in prior works, e.g. (22, 23, 25, 28, 29),
we will analyze the NTK without such offset. This model corresponds to averaging the
predictions of infinitely many infinite width neural networks (30).
§Throughout this work, we consider fully connected networks that have no bias terms.
¶For example, min–max scaling followed by projection onto the sphere results in the data
lying in this region.

Remarkably, the properties of the resulting dynamical system
as L → ∞ are governed by the mean of φ(z) and its
derivative, φ′(z), for z ∼ N (0, 1). For simplicity, we will assume
throughout that E[φ(z)2] < ∞ and similarly E[φ′(z)2] < ∞,
an assumption that holds for many activation functions used in
practice including ReLU, leaky ReLU, sigmoid, sinusoids, and
polynomials. By defining A = E[φ(z)] and A′ = E[φ′(z)], we
break down our analysis into the following three cases:

Case 1: A = 0 , A′ 6= 0,
Case 2: A = 0 , A′ = 0,
Case 3: A 6= 0.

Under cases 1 and 2, 0 is the unique fixed point attractor of
the recurrence for K (L) and thus K (L)(x, x̃)→ 0 as L→∞ for
x 6= x̃. As a consequence, cases 1 and 2 lead to infinitely wide and
deep neural networks that predict 0 almost everywhere. Hence,
these networks are far from Bayes optimal in the regression setting
and were thus dismissed as an approach for explaining the strong
performance of deep networks. On the other hand, case 3 yields
nonzero values for any pair of examples, and thus, prior works
that analyzed the regression setting (22, 25) focused on activation
functions satisfying case 3.

In stark contrast to the regression setting, we will show that
infinitely wide and deep networks with activation functions
satisfying case 1 are effective for classification, with a subset
achieving consistency. In particular, we will show that networks
in case 1 implement singular kernel classifiers, while those in
case 2 implement 1-NN classifiers. Notably, we will identify
conditions and provide explicit examples of activation functions
in case 1 that guarantee consistency. We will then show that
infinitely wide and deep classifiers with activations satisfying case
3 generally correspond to majority vote classifiers. A summary of
our taxonomy is presented in Fig. 1A, and we will now discuss
each of the three cases in more depth.

Case 1 (A = 0, A′ 6= 0) Networks Implement Singular Kernel
Classifiers and Can Achieve Optimality. We establish condi-
tions on the activation function under which an infinitely
wide and deep network implements a singular kernel classifier
(Theorem 1). We then utilize results of (13) to show that this
set of classifiers contains those that achieve consistency for any
given data dimension. Lastly, we will present explicit activation
functions that lead to infinitely wide and deep classifiers that
achieve consistency. We begin with the following theorem, which
establishes conditions under which the infinite depth limit of the
NTK is a singular kernel.

Theorem 1. Let K (L) denote the NTK of a fully connected neural
network with L hidden layers and activation function φ(·). For
z ∼ N (0, 1), define A = E[φ(z)], A′ = E[φ′(z)], and B′ =
E[φ′(z)2]. If A = 0 and A′ 6= 0; then, for x, x̃ ∈ Sd

+:

lim
L→∞

K (L)(x, x̃)

(A′)2L(L + 1)
=

R(‖x − x̃‖)
‖x − x̃‖α

,

where α = −2 log(A′2)
log(B′) , and R(·) is nonnegative, bounded from

above, and bounded away from 0 around 0.

The full proof is presented in SI Appendix, Appendix B,
and we outline its key steps in Section 2. Theorem 2 below
characterizes the activation functions for which the infinitely
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wide and deep network achieves consistency. In particular, we
establish the consistency of the infinitely wide and deep neural
network classifier, mn(·), given by taking the limit as L→∞ of
the kernel machine in Eq. 2 with K = K (L), i.e.

mn(x) = lim
L→∞

sign
(

y
(
K (L)

n
)−1K (L)(X, x)

)
. [3]

Theorem 2. Let mn denote the classifier in Eq. 3 corresponding
to training an infinitely wide and deep network with activation
function φ(·) on n training examples. For z ∼ N (0, 1), define
A = E[φ(z)], A′ = E[φ′(z)], and B′ = E[φ′(z)2]. If

A = 0 and A′ 6= 0 and −
log(A′2)
log (B′)

=
d
2

,

then this classifier is Bayes optimal.#

While the full proof of Theorem 2 is presented in SI Appendix,
Appendixes B and C, we outline its key steps in Section 2. In
particular, the proof follows by using Theorem 1 above, proving
that mn is a singular kernel classifier, and then using the results
of (13), which establish conditions under which singular kernel
estimators achieve optimality. The following corollaries (proofs
in SI Appendix, Appendix D) present concrete classes of activation
functions that satisfy the conditions of Theorem 2 for any given
data dimension d .

Corollary 1. Let mn denote the classifier in Eq. 3 corresponding
to training an infinitely wide and deep network with activation
function

φ(x) =


1
√

2
h7(x) + 1

√
2

x ifd = 1,
1

2d/4 h3(x) +
√

1− 2
2d/2 h2(x) + 1

2d/4 x ifd ≥ 2,

where hi(x) is the ith probabilist’s Hermite polynomial.|| Then, the
classifier mn is Bayes optimal.

Corollary 2. For d ≥ 2, let mn denote the classifier in Eq. 3
corresponding to training an infinitely wide and deep network with
activation function

φ(x) =
sin(ax)√
sinh(a2)

; −

log a2

sinh(a2)

log a2 cosh(a2)
sinh(a2)

=
d
2
.

Then, the classifier mn is Bayes optimal.

We note the remarkable simplicity of the above activation
functions yielding infinitely wide and deep networks that achieve
consistency. In particular, for d ≥ 2, Corollary 1 gives activations
are simply cubic polynomials, and Corollary 2 gives sinusoidal

#Let m(x) = arg max
ỹ∈{−1,1}

P (y = ỹ|x) denote the Bayes optimal classifier. Let Xn denote the

training data in Sd+ , let f (·) denote the density on Sd+ , and let mXn := mn denote the
classifier in Eq. 3. Formally, Theorem 2 implies that at almost all x ∈ Sd+ with f (x) > 0 and
for any � > 0, mXn (x) converges to m(x) in probability as n→∞, i.e.,

lim
n→∞

PXn
(∣∣mXn (x)−m(x)

∣∣ > �
)
= 0.

This is the same notion of consistency, i.e., weak consistency, established for the Hilbert
kernel estimator in ref. 13.
||The closed forms for these polynomials are as follows: h2(x) = x2

−1√
2

, h3 = x3
−3x√
6

, and

h7(x) = x7
−21x5+105x3

−105x
12
√

35
.

activations where the frequency a increases with dimension (e.g.,
a2
≈ 2.676 leads to consistency for d = 2 and a2

≈ 6.135
leads to consistency for d = 3). Lastly, we note that our results
are easily extended to the case where data have density on a
submanifold of Sd

+ by simply selecting α to be the dimension of
the data manifold in Theorem 1.

Case 2 (A = 0, A′ = 0) Networks Implement 1-NN. We now
identify conditions on the activation function under which
infinitely wide and deep networks implement the 1-NN classifier.

Theorem 3. Let mn denote the classifier in Eq. 3 corresponding
to training an infinitely wide and deep network with activation
function φ(·) on n training examples. For z ∼ N (0, 1), define
A = E[φ(z)] and A′ = E[φ′(z)]. If A = A′ = 0, then mn(x)
implements 1-NN classification for almost all x ∈ Sd

+.

The proof of Theorem 3 is provided in SI Appendix, Appendix E.
The proof strategy is to show that the value of the kernel between
a test example and its nearest training example dominates the
prediction as L → ∞. In particular, assuming without loss of
generality that xT x(1) > xT x(j) for j ∈ {2, 3, . . . , n}, we prove
that:

lim
L→∞

K (L)(x, x(j))

K (L)(x, x(1))
= 0.

As a result, after rescaling by K (L)(x, x(1)), we obtain that
mn(x) = sign(y(1)). We note that this proof is analogous
to the standard proof that the Gaussian kernel K (x, x̃) =
exp

(
−γ ‖x − x̃‖2

)
converges to the 1-NN classifier as γ →∞.

Case 3 (A 6= 0) Networks Implement Majority Vote Classifiers.
We now analyze infinitely wide and deep networks when the
activation function satisfies E[φ(z)] 6= 0 for z ∼ N (0, 1). In this
setting, we establish conditions under which the infinitely wide
and deep network implements majority vote classification, i.e.,
the prediction on test samples is simply the label of the class with
the greatest representation in the training set. More precisely,
the following proposition (proof in SI Appendix, Appendix F)
implies that when the infinite depth NTK is a constant nonzero
value for any two nonequal inputs, the resulting classifier is the
majority vote classifier.

Proposition 1. Let mn denote the classifier in Eq. 3 corresponding
to training an infinitely wide and deep network with activation
function φ(·) on n training examples such that the sum of the labels
y(i) is not 0. For any x, x̃ ∈ Sd

+ with x 6= x̃, if the NTK K (L)

satisfies

lim
L→∞

K (L)(x, x̃)
C(L)

= C1 and lim
L→∞

K (L)(x, x)
C(L)

6= C1, [4]

with C1 > 0 and 0 < C(L) <∞ for any L, then mn implements
the majority vote classifier, i.e.,

mn(x) = sign

( n∑
i=1

y(i)

)
.

We now analyze which activation functions satisfy Eq. 4. As
described in ref. 31–34, under case 3, the value of B′ = E[φ′(z)2]
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for z ∼ N (0, 1) determines the fixed point attractors of K (L) as
L→ ∞. Thus, the infinite depth behavior under case 3 can be
broken down into three cases based on the value of B′. Using the
terminology from ref. 31, these cases are:

(i) B′ > 1 (Chaotic Phase),
(ii) B′ < 1 (Ordered Phase),
(iii) B′ = 1 (Edge of Chaos).

In Lemma 5 in SI Appendix, Appendix G, we demonstrate that in
the chaotic phase, the resulting infinite depth NTK satisfies the
conditions of Proposition 1 and thus implements the majority
vote classifier. In Lemma 6 in SI Appendix, Appendix G, we
similarly show that in the ordered phase, the infinite depth NTK
also corresponds to the majority vote classifier.** The remaining
case known as “edge of chaos” has been analyzed in prior works for
specific activation functions; for example, the NTK for networks
with ReLU activation satisfies Eq. 4 with C1 = 1

4 and C(L) =
L + 1 (22, 25). Hence, by Proposition 1, the corresponding
infinite depth classifier for ReLU networks corresponds to the
majority vote classifier.

Classifiers Implemented by InfinitelyWide and Deep Networks
with Standard Activation Functions. We now discuss activation
functions commonly used in practice and the classifiers imple-
mented by infinitely wide and deep networks with such activation
functions. The conditions of Theorem 1 are satisfied by several
commonly used activation functions in practice including sine,
erf, tanh, and hard tanh. However, as we prove in SI Appendix,
Appendix H the order of singularity, α, in Theorem 1 for all of
these activation functions is near 0.5, which is the value of α that
is required for consistency for data on the unit circle.

On the other hand, activation functions including ReLU,
sigmoid, cosid (i.e., cos x − x) (35), and swish (i.e., x

1+e−x ) (36)
satisfy the conditions of Proposition 1 and, thus, implement
majority vote.

In SI Appendix, Appendix I and Fig. S3, we provide experi-
ments across several data distributions in which we compare the
performance of infinitely wide and deep classifiers using standard
activation functions such as ReLU, erf, and sine, which have
closed forms for the NTK, against those that lead to consistent
classifiers according to Theorem 2 above. In all cases, we observe
a strong accordance between our experiments and theoretical
results, showing that infinitely wide and deep networks using
standard activation functions are far from consistent.
Practical relevance of our results. While this work derives activa-
tion functions that lead to infinitely wide and deep networks that
are consistent for fixed data dimension as the number of training
samples approaches infinity, we demonstrate the practical value
of the derived activation functions in SI Appendix, Appendix J
and Fig. S4 on a variety of benchmarking datasets in the context
of finitely deep networks and finite sample sizes, concentrating in
particular on the small-sample regime. Namely, in SI Appendix,
Appendix J and Fig. S4, we show that grid searching over the
activation functions provided in Corollaries 1 and 2 lead to
improved performance over standard classifiers including 179
models from (37), fully connected ReLU networks, as well as
ReLU NTKs from (38) on a variety of benchmarking datasets
including i) the 90 benchmarking classification tasks in the
small-sample regime (with fewer than 5000 training samples)

**More precisely, we consider the behavior of the infinite depth classifier under ridge
regularization, as the regularization term approaches 0.

considered in ref. 38 and ii) the 3 classification tasks in the small-
dimensional large-sample regime (with fewer than 15 features and
greater than 10,000 training samples) considered in ref. 37.

2. Outline of Proof Strategy for Theorems 1
and 2

In the following, we outline the proof strategy for our main
results. This involves analyzing infinitely wide and deep networks
via the limiting NTK kernel given by K (L) as the number of
hidden layers L→∞. As shown in ref. 18, K (L) can be written
recursively in terms of K (L−1) and the so-called dual activation
function, which was introduced in ref. 39.

Definition 2: Let φ : R → R be an activation function
satisfying Ex∼N (0,1)[φ(x)2] <∞. Its dual activation function
φ̌ : [−1, 1]→ R is given by

φ̌(z) = E(u,v)∼N (0,3)[φ(u)φ(v)], where 3 =
[

1 z
z 1

]
.

While all quantities in our theorems are stated in terms of
activation functions, these can be restated in terms of dual
activations as follows:

A2 = φ̌(0) and (A′)2 = φ̌′(0) and B′ = φ̌′(1).

Assuming that φ is normalized such that φ̌(1) = 1,†† the
recursive formula for the NTK of a deep fully connected network
for data on the unit sphere was described in ref. 18 and 40 in
terms of dual activation functions as follows.

A. Recursive Formula for theNTK. Let f (L)(x;W) denote a fully
connected neural network with L hidden layers and activation
φ(·). For x, x̃ ∈ Sd , let z = xT x̃. Then, K (L) is radial, i.e.,
K (L)(x, x̃) = K (L)(z), with K (0)(z) = z and

K (L)(z) = φ̌(L)(z) + K (L−1)(z)φ̌′
(
φ̌(L−1)(z)

)
, [5]

where φ̌(L)(z) = φ̌(φ̌(L−1)(z)) with φ̌(0)(z) = φ̌(z), and φ̌′(·)
denotes the derivative of φ̌(·).

We utilize the dynamical system in Eq. 5 to analyze the
behavior of K (L)(·) as L → ∞. Theorem 1 implies that
upon normalization by (L + 1)φ̌′(0)L, this dynamical system
converges to a singular kernel with singularity of order α =
− log

(
φ̌′(0)

)
/ log

(
φ̌′(1)

)
. We now present a sketch of the

proof of this result.
We first derive the order of the singularity upon iteration of φ̌

since, as we show in SI Appendix, Appendix B, the order of the
singularity of the infinite depth NTK is the same as that of the
iterated φ̌. Since we consider that data in Sd

+, φ̌(·) is a function
defined on the unit interval [0, 1], understanding the properties
of infinitely wide and deep networks reduces to understanding
the properties of iterating a function on the unit interval. To
provide intuition around how the iteration of a function on the
unit interval can give rise to a function with a singularity, we
discuss iterating a piecewise linear function as an illuminating
example; Fig. 2 for a visualization.
††Such normalization is always possible for any activation function satisfying E[�(z)2] <
∞ for z ∼N (0,1) and has been used in various works before including (22, 24, 25, 33, 40,
41).
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A B

Fig. 2. Iteration of a piecewise linear function on a unit interval leads to a function with a singularity at x = 1, upon appropriate normalization. (A) We consider
the piecewise linear function f (x) given by 1 − b(1 − x) on (c,1] and ax on [0, c], where a = .5, b = 1.5 and c = b−1

b−a . (B) We observe that upon iterating f (·)
numerically to the limit of machine precision, the resulting function strongly agrees with the theoretical limit of Lemma 1 given by a function with singularity of
order − logb a ≈ 1.7.

Lemma 1. For 0 < a < 1 and b > 1, let f : [0, 1] → R and
c = b−1

b−a such that

f (x) =
{

ax if x ∈ [0, c]
1− b(1− x) if x ∈ (c, 1]

.

Then,

lim
L→∞

f (L)(x)
aL =

R(x)
(1− x)− logb a ,

where R(x) is nonnegative, bounded from above and bounded away
from 0 around x = 1.

Proof: For any x ∈ [0, c], we necessarily have:

lim
L→∞

f (L)(x)
aL = lim

L→∞

aLx
aL = x.

Now, for fixed x ∈ (c, 1), since x = 0 is an attractive fixed-
point of f , let L0 denote the smallest integer such that f (L0)(x) ≤
c. Hence, since f (L0)(x) ∈ [0, c], we obtain:

lim
L→∞

f (L)(x)
aL = lim

L→∞

f (L−L0)(f (L0)(x))
aL−L0

1
aL0

= f (L0)(x)a−L0 .

[6]

We next solve for L0 by analyzing the iteration of g(x) := 1−
b(1− x). In particular, we observe that g(L)(x) = 1−bL(1− x),
and thus L0 is given by

1− bL0(1− x) ≤ c

H⇒ L0 =

⌈
loga

(
1− x
1− c

)− logb a
⌉

H⇒ a−L0 ∈

[(
1− c
1− x

)− logb a
,

1
a

(
1− c
1− x

)− logb a
]
.

Hence, by Eq. 6, we conclude that for x ∈ (c, 1), it holds that

lim
L→∞

f (L)(x)
aL =

R(x)
(1− x)− logb a ,

where R(x) is nonnegative, bounded from above and bounded
away from 0 around x = 1, which completes the proof. �

In SI Appendix, Appendix B, we extend this analysis to
the iteration of dual activations on the unit interval, thereby
establishing the order of a singularity obtained by iterating dual
activation functions. We then show that this order equals the
order of the singularity given by the infinite depth NTK.

Next, we discuss the proof strategy for Theorem 2, which
establishes conditions on the activation function under which
infinitely wide and deep networks achieve consistency in the
classification setting. The proof builds on results in ref. 13
characterizing the consistency of singular kernel smoothers of
the form

g(x) =
∑n

i=1 y(i)K (x(i), x)∑n
i=1 K (x(i), x)

, where K (x(i), x) =
1

‖x − x(i)‖α
.

In particular, it is shown that if α = d , then g(x) achieves
consistency. Since Theorem 1 establishes conditions under which
the infinite depth NTK implements a singular kernel, to complete
the proof, we show that infinitely wide and deep classifiers achieve
consistency by 1) showing that the classifier mn implements a
singular kernel smoother and 2) selecting φ such that α = d for
the corresponding singular kernel.

3. Discussion

In this work, we identified and constructed explicit neu-
ral networks that achieve consistency for classification when
trained using standard procedures. Furthermore, we provided
a taxonomy characterizing the behavior of infinitely wide and
deep neural network classifiers. Namely, we showed that these
models implement one of the following three well-known types of
classifiers: 1) 1-NN (test predictions are given by the label of the
nearest training example); 2) majority vote (test predictions are
given by the label of the class with the greatest representation in
the training set); or 3) singular kernel classifiers (a set of classifiers
containing those that achieve consistency). We conclude by
discussing implications of our work and future extensions.

A. Benefit of Depth in Neural Networks. An emerging trend
in machine learning is that larger neural networks capable
of interpolating (i.e., perfectly fitting) the training data can
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generalize to test data (6–8). While the size of neural networks
can be increased through width or depth, works such as (6, 7)
primarily identified a benefit to increasing network width.
Indeed, it remained unclear whether there was any benefit in
using extremely deep networks. A line of prior work analyzed
the impact of selecting activation functions and initializations to
enable the training of deep networks (31, 32, 42), while other
works (24, 43, 44) empirically demonstrated that drastically
increasing depth in networks with ReLU or tanh activation
could lead to worse performance. In this work, we established
a remarkable benefit of very deep networks by proving that they
achieve consistency with a careful choice of activation function.
In line with previous empirical findings, we proved that deep
networks with activations such as ReLU or tanh do not achieve
consistency.

B. Regression versus Classification. Our results demonstrate
the benefit of using infinitely wide and deep networks for
classification tasks. We note that this is in stark contrast to the
regression setting, where infinitely deep and wide neural networks
are far from consistent, as they simply predict a nonnegative,
near-zero constant almost everywhere (22, 25). Thus, our work
provides concrete examples of neural networks that are effective
for classification but not regression. A key difference between
regression and classification is that classification requires only the
sign of the prediction. In particular, as we show in this work, the
sign of the prediction of an infinitely wide and deep network can
be meaningful for classification even though the prediction itself
is close to 0.

C. Edge of Chaos Regime. An interesting class of models that
are only partially characterized by our taxonomy corresponds
to networks with activations in the edge of chaos regime, i.e.,
when the activation function, φ(·) satisfies E[φ(z)] 6= 0 and
E[φ′(z)2] = 1 for z ∼ N (0, 1). We proved that all activations
in this class that have been described so far (22, 25), including
the popular ReLU activation, give rise to infinitely wide and
deep networks that implement the majority vote classifier. While
it appears that all activations in this class lead to the majority
vote classifier, it remains open to understand whether there
exist other activations in this regime that implement alternative
classifiers. Moreover, works analyzing the edge of chaos regime
typically consider infinite width networks with bias terms. While
these bias terms are often set to avoid exponential convergence
of predictions with increasing depth, they can be detrimental
in the classification setting. For example, the work of ref. 25

shows that with appropriate bias, the tanh activation function
leads to an infinitely wide and deep network that satisfies our
Proposition 1 and thus implements majority vote. However,
without the bias, this activation function satisfies Theorem 1
and thus leads to a singular kernel classifier. It is an interesting
question to characterize how the addition of bias terms may
influence our taxonomy.

D. Finite vs. Infinite Neural Networks. In this work, we iden-
tified and constructed infinitely wide and deep classifiers that
achieve consistency. In particular, our results imply weak
consistency of infinitely wide and deep networks, which means
that these models converge in probability to the Bayes optimal
classifier as the number of training samples approaches infinity.
While recent work (14) demonstrated that finite depth NTKs
are not universally consistent, i.e., they are not consistent for
arbitrary distributions, it remains open as to whether these
models are consistent in a weaker sense. An important next
question is to understand whether interpolating neural networks
that are finitely wide and deep can achieve consistency for
classification and provide specific activation functions to do
so. Some evidence in this direction is given by recent work
demonstrating that sufficiently wide and deep ReLU networks
correctly classify points on disjoint curves on a sphere (45). We
also note that Bayes consistency considers the setting when the
number of training examples approaches infinity. Another natural
next step is to characterize the number of training examples
needed for infinitely wide and deep classifiers to reasonably
approximate the Bayes optimal classifier. Recent work (46)
identified a slow (logarithmic) rate of convergence for singular
kernel classifiers, thereby implying that many training examples
are needed for these models to be effective in practice. An
important open direction of future work is thus to determine
not only whether finitely wide and deep networks are Bayes
optimal for classification but also whether these models require
fewer samples to perform well in practice.

Data, Materials, and Software Availability. There are no data underlying
this work.
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