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Abstract

Differential mobility spectrometry (DMS)-based detectors are being widely studied to detect 

chemical warfare agents, explosives, chemicals, drugs and analyze volatile organic compounds 

(VOCs). The dispersion plots from DMS devices are complex to effectively analyze through visual 

inspection. In the current work, we adopted machine learning to differentiate pure chemicals 

and identify chemicals in a mixture. In particular, we observed the convolutional neural network 

algorithm exhibits excellent accuracy in differentiating chemicals in their pure forms while also 

identifying chemicals in a mixture. In addition, we propose and validate the magnitude-squared 

coherence (msc) between the DMS data of known chemical composition and that of an unknown 

sample can be sufficient to inspect the chemical composition of the unknown sample. We have 

shown that the msc-based chemical identification requires the least amount of experimental data as 

opposed to the machine learning approach.

1. Introduction

Differential mobility spectrometry (DMS) [1–7], capable of detecting both positive and 

negative ions, is one of the most critical technologies for developing small-scale and 

portable chemical sensing devices. Due to the less constrained operating conditions (no 

vacuum or temperature constraint) [7], DMS gets attention for various applications, 

e.g., diagnosing pulmonary diseases and respiratory infections, detecting explosives and 
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narcotics, and chemical signature detection [2, 7]. DMS is a powerful tool that distinguishes 

ions based on their divergent mobilities under oscillating high and low electric fields 

as applied field strength alters ion mobility. Several research groups have focused on 

understanding the working phenomena [1], improving data analysis techniques [8], and 

enhancing the efficiency of DMS [3, 6]. From a practical point of view, DMS has been 

studied for detecting biological and chemical agents [9], ion filtration [5], water [10] and 

air [11] quality monitoring, disease diagnostics [12–15], and differentiating chemicals [16]. 

Significant ongoing research focuses on formulating effective DMS data analysis strategies 

[1, 17, 18]. There are also reports showing a wide range of applications of hyphenated DMS 

devices, e.g., gas chromatography-DMS [19], DMS-mass spectrometry [5], DMS-DMS [20] 

for rapid separation and detection. Moreover, DMS has a simple design structure making it 

possible to be miniaturized [5, 6].

The dual separation voltage (SV) and compensation voltage (CV) scanning in DMS creates 

3-dimensional dispersion plots. These dispersion plots portray the fingerprints of ions 

that originate as the samples flow through the DMS device under a changing electric 

field. Several research groups have focused on single chemical identification [9, 21] and 

developing predictive models [17] to analyze the dispersion plots from DMS devices. In 

particular, the machine learning strategy has been greatly successful in interpreting and 

differentiating DMS data, extracting fundamental chemical properties, and even optimizing 

DMS performance. For example, there is a report showing the applicability of machine 

learning for determining molecular properties from the DMS data [22]. It is worth noting 

that machine learning has also been applied to successfully predict the DMS behavior [23], 

which would be helpful for optimizing the DMS operating parameters. Machine learning-

assisted differentiation of DMS data has been studied for differentiating chemicals from 

food [24, 25], controlled chemical sources [17], and diagnosing diseases [12–14]. In a 

pioneering work, Li et al. [26] adopted deep learning to identify specific substances in the 

DMS spectra and reported excellent accuracy.

The complex dispersion plots are almost impossible to analyze and differentiate based on 

pure human visual inspection. Robust software with data visualization, data processing, and 

user-friendly machine learning implementation capability will significantly help chemists, 

engineers, and researchers to analyze the data quickly. In Peirano et al. [27], our team 

published custom software, AnalyzeIMS (“AIMS”) to visualize raw DMS data, apply noise 

reduction techniques like Savitzky-Golay smoothing and baseline removal and included 

principal components analysis (PCA) and partial least squares (PLS) analysis. Building from 

that work, Rajapakse et al. [17] conducted the partial least squared discriminant analysis to 

distinguish chemicals in their pure form and mixtures. Later on, Yeap et al. [18] adopted 

machine vision methods, natural language processing, and machine learning algorithms to 

identify chemicals from complex mixtures. AIMS was most recently updated to include 

automated peak detection algorithms for GC-DMS data and included random forests 

classification algorithms [28]. Both Rajapakshe et al. [17] and Yeap et al. [18] reported that 

incorporating chemical mixture data in training samples increases the classification accuracy 

of machine learning models while identifying the chemical composition of a mixture.
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In the current work, we implement the convolutional neural network (CNN) algorithm to 

our AIMS software and study its ability to distinguish chemicals and accurately identify 

chemicals in a mixture. We observe the CNN model outperforms all the previously 

reported algorithms in differentiating DMS data of pure chemicals and identifying chemical 

compounds of a mixture. We also demonstrate that magnitude-squared coherence (msc) can 

be an excellent tool to check the chemical composition of a sample. As opposed to the 

machine learning approach, the msc-based chemical composition detection requires a very 

small set of DMS data for chemical classification.

2. Methods

Dispersion plot data of individual chemicals and mixtures were generated from a 

MicroAnalyzer DMS (Sionex Corp, Bedford, MA) with a 5 mCi, 63Ni ionization source. 

We adopted the same experimental methodology as reported by Rajapakshe et al. [17] for 

collecting the dispersion plots of the pure chemicals and chemical mixtures. We introduced 

the chemical samples with a concentration of 500 ppb into the inlet of the DMS device. We 

conducted a series of dilution processes to feed the DMS with chemicals of a concentration 

of 500 ppb. Initially, a stock concentration of 1000 ppm was prepared by injecting the 

required volume of analyte into a Tedlar bag (SKC Tedlar Sample bag, SKC Inc. Eight Four, 

PA) with 3 L of nitrogen balance gas. Chemicals were allowed to equilibrate within the 

bags at room temperature for 10 minutes. A volume of the stock solution was injected into 

a second Tedlar bag with 3 L nitrogen balance with water content of 1 ppm to dilute the 

concentration to 100 ppm, The 100 ppm gas sample were loaded into a 1 μL glass syringe 

(Hamilton Co., Reno, NV), and we used a syringe pump to inject the samples to dilution 

nitrogen gas flow directed to the inlet of the DMS such that the chemicals entering the DMS 

have a concentration of 500 ppb. Chemical standards were obtained from MilliporeSigma 

(Missouri, USA). We used ultra-pure nitrogen with ~1 ppm humidity as the carrier gas (200 

mL/min) for the device, and the carrier gas temperature was maintained at 80 °C.

We varied the compensation voltage (separation voltage) from −10 V to +30 V (500 V 

to 1490 V) range to scan the dispersion plots of the samples. The separation voltage of 

the MicroAnalyzer ranges from 0 to 1500 V with a frequency of 1.2 ± 0.1 MHz, and the 

duty cycle of the separation field is 30%. The filter gap of the micro analyzer 500 μm and 

the maximum field strength is about 110 Townsends. The separation voltage scanning was 

performed with a step size of 10 V, and the number of separation voltage steps was 100. The 

CV step was 0.4 V, and the CV scanning was performed with step duration, scan duration, 

and step settle time of 10 ms, 1000 ms, and 3 ms, respectively. We only considered the 

DMS dispersion data of positive polarity; however, the approach of this study can be easily 

modified or extended for negative polarity.

For differentiating DMS dispersion plots of chemicals, we implement the convolutional 

neural network (CNN) within an updated AnalyzeIMS (AIMS) [27] software for 

differentiating the DMS plots of different chemicals. In the current work, we complete 

all the data visualization and analyses with this updated version of AIMS that operates in 

MATLAB r2021a. Before training and testing the CNN model, we perform noise reduction 

(through Savitzky-Golay filter) and baseline correction (through asymmetric least squares 
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smoothing) of the raw DMS data with the AIMS software [27]. The basic working principle 

of CNN algorithm can be found in any machine learning textbook. However, we briefly 

discuss the most important features of the CNN algorithm for a self-contained discussion.

A convolutional neural network (CNN) [29] employs mathematical convolution kernels 

or filters that slide along input features to map the original features. The output of the 

convolutional and pooling layers in a CNN network are flattened and fed to a regular neural 

network for classification purposes [29, 30]. A simplified CNN structure is shown (Figure 

1). Since the DMS dispersion data are 100-by-100 dimensional for our study, the input 

layer for our CNN structure is 100-by-100, and we choose three convolutional layers, each 

of which is followed by a normalization layer, a nonlinear activation function layer, and a 

max-pooling layer, to build the CNN structure. Each of the convolutional layers consists 

of 8–32 filters, and the filter size is 3-by-3. We incorporate a max-pooling layer (pool 

size = 2 and stride = 2) after each convolutional layer to reduce the spatial extent of the 

feature map and remove the redundant information. We adopt rectified linear unit (ReLU) 

for the convolutional and down-sampling layers as it learns faster and performs better for a 

deep neural network. A fully connected layer follows the convolutional and down-sampling 

layers. The output size of the fully connected layers equals the number of classes of our data 

set. The final layer of the network is the classification layer that uses probabilities returned 

by the preceding activation layer to assign the input the most plausible class. We randomly 

split the total data into three segments: training data (60 %), validation data (20 %), and 

testing data (20%). We select all the hyperparameters of the machine learning models 

through careful experimentation such that the validation accuracy is higher than 95%. The 

nature of DMS data makes the CNN algorithm an obvious choice to differentiate the DMS 

data. However, to have a quantitative comparison, we have compared the performance of 

the CNN model and several previously reported models in identifying chemicals in our 

supplementary document [31].

In addition to applying a machine learning model to classify the DMS dispersion data of 

different chemicals, we study the effectiveness of the magnitude-squared coherence (msc) 

index of dispersion data to identify chemicals and mixtures of chemicals. Specifically, we 

calculate the msc index of two DMS signals. The msc of two signals X and Y is a function 

of their power spectral densities (PXX(ω) and PYY(ω)) and their cross power spectral 

density, PXY(ω); and msc is expressed as

mscXY (ω) = PXY (ω) 2

PXX(ω)PY Y (ω) , (1)

in which ω is the frequency, and mscXY(ω) represents the frequency dependent msc of the 

two signals: X and Y. If the msc of the new (unknown chemical composition) DMS data 

set and one DMS data of a known chemical (or a known chemical mixture) is higher than a 

threshold value in a certain frequency range, we can say that the sample corresponding to the 

new data set consists of the known chemical (or a chemical mixture).
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3. Results and Discussions

3.1 Dispersion plots of pure chemicals:

We report the dispersion plots of reactant ion peak (RIP), Ethyl Acetate (EA), Methanol 

(M), 2-Propanone (2P), 2-Butanone (2B), and Ethanol (E) in Figure 2. Protonation of 

moisture in the carrier gas results in the formation of hydronium [(H2O)nH+], which appears 

as the RIP in the dispersion plot of carrier gas (nitrogen in our study). It is noteworthy that 

the DMS plots of all five chemicals have a RIP signal in the background, resulting from the 

same carrier gas used throughout. We observe the signs of proton-bound monomer, IH+ (I = 

EA, M, 2P, 2B or E) and dimer, I2H+ in all five chemicals (Figure 2). The generic reactions 

for the monomer and dimer formation can be portrayed as below:

H+ H2O n + I IH+ H2O n − x + xH2O (2)

IH+ H2O m + I I2H+ H2O m − y + yH2O (3)

It is evident from Figure 2 that prominent fragment ions appear next to the RIP of the 

dispersion plots of Ethyl Acetate, 2-Butanone, and Ethanol. The trace of fragment ions in 

2-Propanone and Methanol seems obscured. Due to the complex nature of the dispersion 

plots, it is painstaking, if not impossible, to check visually even if two dispersion plots 

are alike. When it comes to comparing numerous DMS dispersion plots or identifying 

chemical signatures in the dispersion plots of a mixture, the complexity increases even 

further. Therefore, we rely on machine learning to distinguish chemicals and find chemical 

traces in a mixture.

3.2 Differentiation of chemical compounds with convolutional neural network model

In this section, we first study the feasibility of convolutional neural network (CNN) 

algorithm to distinguish the dispersion plots of different chemicals. In particular, we train 

a CNN model with the dispersion plot data of 2-Butanone, Ethanol, 2-Proponone, Ethyl 

Acetate, and Methanol samples and then predict the presence of these chemicals in some 

unknown (not used for training) samples containing only a single chemical. We note that our 

training, validation, and testing data consists of 87, 29, and 29 dispersion plots, respectively. 

We choose the CNN structure through a careful experimentation method (described in the 

methods section) such that the model’s prediction accuracy for validation data set is more 

than 95%. We report the accuracy and loss of both training and validation data as a function 

of epoch number as the training progresses in Figure 3. It is evident that 25 epochs are 

sufficient to attain almost 100% accuracy and almost zero loss for training the CNN model. 

We then use the trained CNN model to identify the chemicals in testing DMS data set. We 

report the confusion metrics of the CNN model for the testing data in Figure 4, and the CNN 

model differentiates the dispersion plots of five distinct chemicals with 100% accuracy.

Since the CNN model has successfully differentiated pure chemicals, we now test the 

capability of the CNN model to identify the chemicals in binary and ternary mixtures. The 

dispersion plots of chemical mixtures can be found in our supplementary document [31]. We 
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adopt the same approach as that explained for pure chemicals to choose the hyperparameters 

and epoch numbers to train a CNN model for studying the chemical mixtures. In other 

words, the trained CNN models for mixture identification have almost 100% accuracy and 

almost zero loss. In Figure 5a, we report the performance of a CNN model to check the 

presence of 2-Butanone and Ethyl Acetate in a binary mixture, and it is evident that the 

CNN model can identify the presence of 2-Butanone and Ethyl Acetate in a binary mixture 

with 100% accuracy (for both validation and testing data). To recheck the generality of our 

findings, we report the validation and testing accuracy of the CNN model for identifying 

the existence of 2-Butanone and Hexanone in another binary mixture, and again we observe 

100% validation and testing accuracy (Figure 5b). It should be noted that none of the 

previously studied algorithms [17, 18] have provided this high accuracy of prediction for 

identifying the chemicals in a mixture. More specifically, the previous machine learning 

studies [17, 18] have reported the highest accuracy below 95%, while the CNN model, 

reported in this work, can reach 100% accuracy while identifying chemicals in a mixture.

To increase the problem complexity, we now develop a new CNN model to identify the 

chemicals in a ternary mixture (2-Butanone + Ethyl Acetate + Methanol). The validation and 

accuracy of the CNN model for identifying the chemicals in a ternary mixture also reach 

100% (Figure 6). As such, we believe that a CNN model can be a very useful tool to identify 

chemical (chemicals) in pure (mixture) samples. It is worth noting that the training data set 

in our study has been sufficient to get excellent prediction accuracy from the CNN model. 

However, the required training samples can vary from case to case.

While we have shown that CNN models successfully predict the chemical composition 

of samples, we should appreciate that collection of sufficient experimental data takes a 

significant amount of time and effort. It is essential to devise an alternative approach to 

identify chemicals in unknown samples with the least possible experimental data. In the 

following section, we compare the magnitude-squared coherence index of DMS plots to 

identify the chemicals in unknown samples.

3.4 Signal comparison to detect the chemical composition:

To predict the existence of certain chemicals in a sample, we propose and validate a simple 

but effective way in this section. Initially, we experimentally collected the dispersion data 

of several pure chemicals and several mixtures of chemicals, and later, we used those 

dispersion plots as standard to compare with other unknown samples. Then we calculate 

the magnitude-squared coherence (msc) index of the new data set and that of the previously 

collected standard (with known chemical composition) dispersion plot. If the msc of the new 

data set and one of the standard dispersion plots is higher than a threshold value in a certain 

frequency range, we can say that the sample corresponding to the new data set consists of 

chemicals pertaining to that standard dispersion plot. We study the msc for pure chemicals, 

binary, and ternary mixtures to validate our approach.

In Figure 7, we report the msc of two dispersion plots of 2-Butanone, two dispersion plots 

of Ethyl Acetate. We observe that the msc of two dispersion plots of 2-Butanones is more 

than 0.7 in the normalized frequency range of 0.15 to 0.45. We observe the same trend 

for the msc of two dispersion plots of Ethyl Acetate. Therefore, we claim that if the msc 
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between a chemically unknown sample and a chemically known sample is very high, i.e., 

above a threshold in a certain frequency range, the unknown sample will have the same 

chemical composition as the known sample. It is noteworthy that the threshold msc value 

and frequency range should be chosen using the DMS data of our interest. We emphasize 

that the msc of dispersion plots of 2B and EA is extremely low in the normalized frequency 

range of 0.15 to 0.45, and this is expected because 2B and EA are two different chemicals, 

and their dispersion plots are very distinct (Figure 7a). Then we compare the msc of two 

dispersion plots of a binary mixture of 2B and EA, and observe that the msc of 2B+EA 

mixture is more than 0.7 in the normalized frequency range of 0.15 to 0.45. To reinforce 

our findings for binary mixture, we report the msc for another binary mixture of 2-Butanone 

(2B) and Hexanone (H). Similar to that of the 2B+EA mixture, we observe very high msc 

in the normalized frequency range of 0.15 to 0.45. We thus conclude that one dispersion 

plot of a known binary mixture is sufficient to check if a new unknown sample also has the 

composition of that known binary mixture.

To demonstrate the effectiveness of msc to identify the chemical composition of a more 

complex mixture, we now report the msc of two dispersion plots of a ternary mixture 

(2B+EA+M) in Figure 8. We observe that the msc of the two dispersion plots of a ternary 

mixture exhibit the same trend as that observed for binary mixture. In particular, the msc 

of two dispersion plots of 2B+EA+M mixture has a magnitude of more than 0.7 in the 

normalized frequency range 0.15 to 0.45. Based on our findings of the msc trends of pure 

chemicals, binary mixture, and ternary mixture, we can use a few standard dispersion plots 

to identify the chemical compositions of a new sample. We want to emphasize that only 

one dispersion plot of a standard chemical (pure or mixture) is sufficient to find out if a 

new sample has the same standard chemical. The msc calculation approach will significantly 

reduce the experimental data collection effort, which is essential to adopt a machine learning 

approach to identify chemicals in a system.

3.5 Discussions

In the current work, we did not consider the variation of chemical concentration while 

identifying chemicals. However, we can normalize the DMS plots while training and testing 

the machine learning model or adopting the magnitude-squared coherence approach if we 

have to deal with samples with varying chemical concentrations. We also note that the 

number of samples has been sufficient to get excellent prediction accuracy in our work 

due to measurements of pure chemical standards. In other studies, the required number of 

samples can largely vary based on the type (e.g., biological and non-biological) and source 

of training and testing samples. As such, we must consider the variability of testing data 

the machine learning model has to deal with before we deploy the model to a device for 

further prediction. If there is a concentration difference of chemicals among the samples, 

we recommend normalizing the data for implementing machine learning or msc analysis for 

identifying chemicals. We believe the msc approach would be an excellent substitute for 

machine learning in several situations, e.g., differentiating the VOCs of biological samples 

as they are challenging to collect, and this is our future study. While our approach of using 

machine learning and signal processing to identify chemicals in a controlled environment 
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has been successful, developing a generic library will require further investigation with 

changing relevant factors (e.g., the performance variance of devices of the same genre).

4 Conclusions

In this work, we have shown that the convolutional neural network (CNN) model shows 

excellent accuracy in differentiating differential mobility spectrometry (DMS) data of pure 

chemicals. We also observed that the CNN model demonstrates unprecedented accuracy 

consistently while identifying chemicals in binary and ternary mixtures. We updated the 

custom AnalyzeIMS (“AIMS”) software with a user-friendly implementation of the CNN 

model. Moreover, we have shown that the calculation of magnitude-squared coherence (msc) 

of the DMS data is very effective in identifying the chemical identity of a sample. Chemical 

library building with standard DMS plots and msc analysis can significantly reduce the 

burden of collecting substantial DMS data to train machine learning models for constituent 

chemical identification in a sample.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1: 
Simplified schematic of a convolutional neural network (CNN) structure. The CNN structure 

consists of several convolution and max pooling layers. The nodes in fully connected layer 

equal the number of classes.
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Figure 2: 
Dispersion plots of (a) Reactant Ion Peak, RIP, (b) Ethyl Acetate, EA (c) Methanol, (M), (d) 

2-Propanone, 2P, (e) 2-Butanone, 2B, and (f) Ethanol, E. Here, I, II, III, F represents reactant 

ion, proton-bound monomer, proton-bound dimer, fragment ion, respectively. The samples 

have a concentration of 500 ppb and the drift tube temperature is maintained at 80°C.
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Figure 3: 
Variation of accuracy and loss for the training and validation data as the training of the 

convolutional neural network model progresses. Training and validation data consist of the 
dispersion plots of 2-Butanone, 2-Propanone, Methanol, Ethanol, and Ethyl acetate.
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Figure 4: 
Confusion matrix of the convolutional neural network (CNN) machine learning model for 

differentiating the pure chemicals in test data. Testing data consists of arbitrability chosen 5 

number of 2-Butanone, 6 number of Ethanol, 7 number of 2-Propanone, 6 number of Ethyl 

acetate, and 5 number of Methanol samples. True class and the model-predicted class match 
exactly for the test data set of samples containing single pure chemicals. The confusion 
matrix corresponds to the trained model reported in Figure 3.
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Figure 5: 
a) Validation and testing accuracy of the convolutional neural network model for identifying 

the existence of 2-Butanone (2B), and Ethyl Acetate (EA) in a binary mixture of 2B and 

EA, b) Validation and testing accuracy of the convolutional neural network model for 

identifying the existence of 2-Butanone (2B) and Hexanone (H) in a binary mixture of 2B 

and H. Training, validation data for the CNN model of consists dispersion plot data of pure 

chemicals and their respective mixtures.
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Figure 6: 
Validation and testing accuracy of the convolutional neural network model for identifying 

2-Butanone (2B), Ethyl Acetate (EA), and Methanol (M) in the ternary mixtures of 2B, EA, 

and M. Training, validation data for the CNN model of consists DMS dispersion data and 

their respective mixtures.
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Figure 7: 
Calculated magnitude-squared coherence (msc) of different dispersion plots. a) Mix. Vs. 

Mix. represents the msc for two dispersion plots of a binary mixture of 2-Butanone (2B) and 

Ethyl Acetate (EA). 2B vs. 2B, EA vs. EA, 2B vs. EA correspond to two 2B dispersions, 

two EA dispersions, and one 2B and one EA dispersions, respectively. b) Mix. Vs. Mix. 

represents the msc for two dispersion plots of a binary mixture of 2-Butanone (2B) and 

Hexanone (H). 2B vs. 2B, H vs. H, 2B vs. H correspond to two 2B dispersions, two H 

dispersions, and one 2B and one H dispersions, respectively.
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Figure 8: 
Calculated magnitude-squared coherence (msc) of different dispersion plots. Mix. Vs. Mix. 

represents the msc for two dispersion plots of a ternary mixture of 2-Butanone (2B) and 

Ethyl Acetate (EA), and Methanol (M). 2B vs. EA, EA vs. M, M vs. 2B correspond to 

one 2B and one EA dispersions, one EA and one M, and one M and one 2B dispersions, 

respectively.
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