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C H R O M O S O M E  M O V E M E N T  IN L Y S E D  M I T O T I C  C E L L S  IS I N H I B I T E D  

B Y  V A N A D A T E  

w. ZACHEUS CANDE and STEPHEN M. WOLNIAK, From the Department of Botany, University of 
California, Berkeley, California 94720 

ABSTRACT 

Mitotic PtK1 cells, lysed at anaphase into a carbowax 20 M Brij 58 solution, 
cont inue to move  ch romosomes  toward the spindle poles and to move  the spindle 
poles apart  at 50% in vivo rates for 10 min. C h r o m o s o m e  movements  can be 
blocked by adding metabolic  inhibitors to the lysis medium and inhibition o f  
movemen t  can be reversed by adding A T P  to the medium.  Vanadate  at 
micromolar  levels reversibly inhibits dynein ATPase  activity and m o v e m e n t  of  
demembrana ted  flagella and cilia. It does not  affect glycerinated myofibril  
contract ion or  myosin ATPase  activity at less than millimolar concentrat ions.  
Vanadate  at 1 0 - 1 0 0 / x M  reversibly inhibits anaphase movemen t  of  ch romosomes  
and spindle elongation.  Af te r  lysis in vanadate ,  spindles lose their fusiform 
appearance  and become more  barrel shaped.  In vitro microtubule polymerizat ion 
is insensitive to vanadate .  

KEY WORDS dynein anaphase cilium 
myosin lysed cel l  mi tos i s  vanadate 

The mitotic spindle is responsible for the equipar- 
tition of chromosomes during cell division. At 
anaphase the sister chromatids separate, the chro- 
mosomes move to the spindle poles, and the 
spindle elongates. Although these events have 
been described by light and electron microscopy, 
the mechanism by which the spindle moves chro- 
mosomes is not known. It is generally agreed that 
the fibrous components of the spindle are the 
mechanochemical elements that generate the 
forces necessary for chromosome movement. Mi- 
crotubules are found attached to the chromosomes 
at kinetochores and radiating out from each pole 
to form the overall framework of the spindle (14, 
16). Actin microfilaments are also found in the 
spindle, but their role during anaphase is not 
understood (4). It has been suggested that shear 
forces ample for chromosome movement are gen- 
erated within the spindle by microtubule-microtu- 
bule interactions mediated by dynein cross bridges 
analogous to the mechanochemical system found 
in cilia and flagella (reviewed in reference 16). 
Polymerization and depolymerization of microtu- 

bules may also play a role in force generation or 
in regulating the rates at which chromosomes 
move during anaphase (9, 16). Alternatively, 
actomyosin or an actomyosin-microtubule com- 
plex may be responsible for some aspects of 
chromosome movement (4, 16). 

Through the use of demembranated cell model 
systems the interactions between proteins that 
generate movement in flagella and in muscles are 
beginning to be understood. In vitro studies of 
mitosis using lysed cell models may also provide 
clues to the underlying mechanism of chromosome 
movement (2, 14, 19). We report here that ana- 
phase chromosome movement in lysed PtKI cells 
is an ATP-dependent process. Spindle structure is 
stabilized after lysis in the presence of calcium 
chelating buffer systems and carbowax 20 M and 
mild lysis is achieved by using appropriate concen- 
trations of the nonionic detergent Brij 58 (2). 

Recently, Cantley et al. (3) reported that vana- 
date in the V + oxidation state is an inhibitor of the 
oubain-sensitive Na+/K § ATPase, but that other 
ATPases such as myosin, the F~ ATPase of mito- 
chondria, and the Ca § ATPase from sarco- 
plasmic reticulum are unaffected except at very 
high concentrations. We have found that vanadate 
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in the V § oxidation state is a potent  inhibi tor  of 
the flagellar ATPase  dynein and of react ivated 
beat  in d e m e m b r a n a t e d  cilia and flagella. Dur ing 
the course of this investigation,  similar results 
were described by Gibbons  et al. (6) and by 
Kobayashi  et  al. (11). In this paper ,  we report  
tha t  vanada te  is also a potent  inhibi tor  of chro- 
mosome movemen t  in lysed cell models  of divid- 
ing mammal ian  tissue culture cells. 

M A T E R I A L S  A N D  M E T H O D S  

Materials 

Sodium orthovanadate was obtained from Accurate 
Chemical and Scientific Corp., Hicksville, N. Y. Vana- 
date-free ATP prepared from yeast was obtained from 
Boehringer Mannheim Biochemicals, Indianapolis, Ind. 
Carbowax 20 M (polyethylene glycol, mol wt 20,000) 
was obtained from Sigma Chemical Co., St. Louis, Mo., 
and Brij 58 was a gift of the Atlas Chemical Industries, 
Inc., Wilmington, Del. Hog neurotubulin, prepared as 
described previously (21), was resuspended in 100 mM 
piperazine-N-N'-bis(2-ethane sulfonic acid (PIPES), pH 
6.94, 1 mM MgSO4, 1 mM GTP and assembly of 
microtubules was monitored by following changes in 
light scattering at 395 nm (5). Sperm were obtained 
from the sea urchin Strongylocentrotus purpuratus by 
injection with 0.5 M KC1. Demembranated sea urchin 
sperm were prepared and reactivated as described by 
Brokaw et al. (1). Bracken fern (Pteridium aquilinum) 
spermatozoids have 32 cilia clustered at one end of the 
cell and the cilia will continue beating normally for hours 
after the cells are stuck to polylysine coated glass slides 
at their proximal end (23). Cells were demembranated 
and reactivated as described by Wolniak and Cande 
(23). 

A TPase Preparations and Assay 

Heavy meromyosin (HMM) was prepared from rabbit 
skeletal myosin by the method of Lowey and Cohen (12) 
and actin was prepared by the method of Spudich and 
Watt (22). Dictyostelium myosin was a gift from Dr. 
James Spudich (Stanford University). Mg § activated 
ATPase activity was measured in a buffer containing 4 
mM MgCI2, 0.01 M imidazole, pH 7.0, 1 mM ATP, and 
actin activated ATPases were run in a similar buffer 
containing 24.3 /Ag/ml HMM or myosin and 71 p,g/ml 
actin. Axonemes were prepared from S. purpuratus 
sperm by the method of Gibbons and Fronk (7) with the 
modification that 1 mM CaC12 was added to all solutions 
and 10 mM 4-[2-hydroxyethyl]-l-piperazine propane 
sulfonic acid (EPPS), pH 8.0, was used as a buffer. The 
axonemes were extracted for 5 min at 4~ in 0.6 M KC1 
by the method of Gibbons et al. (6). The ATPase 
activity of the extracts was measured as above in an 
assay containing 0.15 M KC1, 2 mM MgSO4, 0.5 mM 
EDTA, 10 mM EPPS, pH 8, 1 mM dithiothreitol 

(DTF), and 1 mM ATP. All experiments were run at 
25~ Inorganic phosphate production was measured by 
the method described in Pollard and Korn (18). 

Tissue Culture Cells and Cell L ysis 

PtK1 cells were used in all experiments and were 
maintained and handled for light microscopy as de- 
scribed previously (2, 21). Coverslips were mounted on 
slides with coverslip fragments as spacers. Cells entering 
anaphase were lysed by flushing solutions under the 
coverslip in a two-step procedure: Step 1 medium con- 
tained 90 mM PIPES, pH 6.9, 0.05% Brij 58, 6 mg/ml 
bovine serum albumin, 0.1 mM DTT, 1 mM ethylene- 
glycol-bis-(fl-Amino-ethyl ether)N,N'-tetraacetic acid 
(EGTA), 1.25 mM ATP, 2.25 mM MgSO4. Step 2, 
which followed 60 s after step 1, used a similar medium 
that included in addition 2.5% carbowax 20 M and 
0.1% Brij 58. All experiments were run at 35~ 

Films were made for studying chromosome movement 
using Zeiss Nomarski optics and an Opti Quip (Opti 
Quip Inc., Highland Mills, N. Y.) 16 mm cine time lapse 
apparatus. Exposures of 0.5 s duration were made at a 
rate of 10 frames/rain. Rates of movement were esti- 
mated by measuring the slopes of the graphs drawn of 
chromosome-chromosome and pole-pole distances from 
the moment of addition of the second step medium to 
the position of maximum displacement of chromosomes 
or poles. The rate of chromosome-to-pole movement 
was calculated as one half the difference between the 
rates of chromosome separation and spindle elongation. 
Measurements of spindle birefringence were made using 
a Zeiss polarization microscope (21 ). 

R E S U L T S  

Effect o f  Vanadate on Dynein 
and Myosin 

Dynein extracts p repared  by brief,  high salt 
extract ion of d e m e m b r a n a t e d  sea urchin axo- 
nemes  are 5 - 1 0 %  dynein and  80% tubulin as 
de te rmined  by densi tometr ic  scans of sodium do- 
decyl sulfate polyacrylamide gels (Cande,  unpub-  
lished data).  Unl ike extracts p repared  by Gibbons  
et  al. (6), these prepara t ions  contain multiple 
dynein bands  including dynein band  2. The  ATP-  
ase activity of these extracts is inhibi ted 6 0 %  by 1 
/zM vanada te  and is 9 5 %  inhibi ted by 100 /zM 
vanada te  (Fig. 1). As has been  repor ted  previ- 
ously (3, 6, 11), norep inephr ine  is effective in 
prevent ing the inhibi t ion of ATPase  activity when 
added with vanada te  (Fig. 1). 

Vanada te  has no  inhibi tory effects on the Mg ++- 
activated or actin-activated ATPase  activity of 
Dictyosteliurn myosin or rabbi t  skeletal  H M M ,  
unless 1,000 /a2Vl vanada te  is included in the 
incubat ion mixtures (Fig. 1). We found a slight 
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FIGURE 1 Inhibition of ATPase activity by vanadate. 
(A) Dynein extracts are 10% dynein as described in 
Materials and Methods (0, A). Specific activity in 
absence of vanadate or in presence of vanadate and 2.5 
mM norepinephrine (N) is 0.165 wnol Pi x mg -1 total 
protein • min -1. (B) Mg +§ activated Dictyostelium 
myosin (�9 or rabbit skeletal heavy meromyosin (0). 
Specific activities in absence of vanadate are 0.011 and 
0.018 ~mol Pi • mg -1 x min -1, respectively. (C) Actin 
activated Dictyostelium myosin (O) or rabbit skeletal 
heavy meromyosin (0). Specific activities in absence of 
vanadate are 0.18 and 0.24 /anol Pi x mg -~ x min -1, 
respectively. 

but consistent stimulation of HMM ATPase activ- 
ity in the presence of 100 /xlVl vanadate. These 
results demonstrate that myosins from several 
sources are insensitive to vanadate over a concen- 
tration range that completely inhibits dynein ATP- 
ase activity. 

Effect of  Vanadate on Demembranated 

Cell Models 
Vanadate reversibly inhibits the flagellar beat 

of demembranated S. purpuratus sperm or the 
ciliary beat of partially demembranated bracken 
fern spermatozoids. Intact sperm or spermato- 
zoids are insensitive to millimolar vanadate;  how- 
ever, the detergent-treated cells are inhibited even 
at micromolar concentrations. Ciliary beat is in- 
hibited in seconds by 10-100 /zlVl vanadate,  al- 
though cilia will continue beating for 1 min in 1 
/xM vanadate before inhibition occurs. After inhi- 
bition by vanadate,  the cilia or flagella are straight 
or slightly curved. 

Beat can be restored to the demembranated 
fern cilia by dilution of the suspension with addi- 
tional reactivation medium, so that the vanadate 
concentration falls well below 1 /xM. Ciliary beat 
resumes within seconds of dilution. The inhibition 
of flagellar and ciliary beat by vanadate can be 
reversed by adding norepinephrine to the vana- 
date containing medium. Cilia or flagella when 
reactivated in norepinephrine plus vanadate dis- 
play normal beating. This result is consistent with 

reports that norepinephrine reduces vanadate to 
the inactive IV + oxidation state and may chelate 
the IV + salt (3, 6). 

Glycerinated rabbit myofibrils incubated for 
10-30 min in 1-5 mM vanadate will contract 
when ATP is added to the preparation. No inhi- 
bition of myofibril contraction was ever observed. 

Chromosome Movement in Lysed 

Mitotic Cells 

PtK] cells after lysis are permeable to small 
molecules such as calcium and the dye erythrosine 
B and to proteins such as tubulin and rhodamine- 
labeled immunoglobulin (reference 2; manuscript 
in preparation). Routinely, chromosome move- 
ments continue for 10 min after lysis in ATP-  
containing medium, and in 70% of the experi- 
ments run, chromosome separation in excess of 5 
t~rn is observed. During the first 10 min of ana- 
phase in unlysed cells, chromosomes and poles 
move apart at rates approaching 2 pan/min. Chro- 
mosome separation rates in lysed cells are main- 
tained at 55% in vivo rates, and spindle elonga- 
tion occurs at 40% in vivo rates during the first 
8-10 min after lysis (Tables I and II; Fig. 2). 

Nucleotide hydrolysis is required for chromo- 
some movement.  If no ATP is included in the lysis 
medium, some chromosome movement  occurs 
after lysis; however, little or no movement  occurs 
if uncouplers of oxidative phosphorylation such as 
2,4-dinitrophenol (DNP) (Table I) or carbonyl 
cyanide, m-chlorophenylhydrazone (CCCP) (Fig. 
2) are included in the lysis medium. This inhibi- 
tion of movement  can be countered if ATP is 
added at the time of cell lysis; however, the 
nonhydrolyzable nucleotide analogue adenyl (/3, y- 
methylen)-diphosphate (AMPPCP) is ineffective 
in restoring chromosome movements.  

Anaphase Movements are Inhibited 

by Vanadate 

Vanadate inhibits poleward movement  of chro- 
mosomes and spindle elongation when the salt is 
included in the lysis medium (Table II; Figs. 2 and 
3). Inhibition is rapid and a reduction in the rate 
of chromosome separation is observed during the 
first 2 min after lysis. Chromosome separation is 
inhibited by 50% in 10 /~M vanadate, and inhibi- 
tion is essentially complete in 100 p.M vanadate.  
Chromosome-to-pole movements  and spindle 
elongation have a similar sensitivity to vanadate 
(Table II). Cells lysed late in anaphase display 
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TABLE I 

Effect of Metabolic Inhibitors on Chromosome Movements 

Inhibitors 

Rates of movement (tan/min) 

Chromosome Spindle Chromosome to 
Nucleotide separation einnsation pole movement 

10 -4 M DNP* 1.25 mM AMPPCP 0.24 0.14 
20 mM Arsenate 

10 -4 M DNP* 1.25 mM ATP 0.85 0.50 
20 mM Arsenate 

0.03 

0.23 

* Average of three separate experiments. 

TABLE II 

Effect of Vanadate on Chromosome Movements 

Treatment Rates of movement (#m/min) 

Vanadate No. of Chromosome Spindle Chromosome to 
concentration* experiments separation elongation pole movement 

None 11 1.07 • 0.01~: 0.71 • 0.09 0.18 - 0.09 
10 p,M 8 0.55 --- 0.01 0.42 • 0.01 0.05 --- 0.02 

100 tam 9 0.36 • 0.06 0.23 --- 0.03 0.02 • 0.02 
After reversal 3 1.04 0.61 0.22 

* All experiments were run in presence of 1.25 mM ATP. For reversal experiments, after 4 min in 100 /~I  
vanadate, a fresh solution containing 2.5 mM norepinephrine was added to the preparation. 
~t Variance. 

only spindle elongation since the chromosomes 
have already approached the spindle poles. These 
movements  are also inhibited by vanadate.  

The inhibitory effects of vanadate are reversi- 
ble. Chromosome-to-pole movements  and spindle 
elongation rates will increase several fold if the 
vanadate solution is replaced with another me- 
dium containing norepinephrine (Table II; Figs. 2 
and 3). Although vanadate reversals have been 
successfully repeated even after 4 min exposure to 
vanadate,  we have not been able to restore chro- 
mosome movement  if norepinephrine is left out of 
the wash step. 

Anaphase movements  in unlysed PtKx cells are 
not affected by 1 mM vanadate if it is added to 
the culture medium during metaphase.  Cells 
grown in 100 paVl vanadate for 4 h still undergo 
mitosis. 

Effects o f  Vanadate on 

In Vitro Tubulin Polymerization 

and Depolymerization 

The rate and extent of tubulin polymerization is 
not affected by millimolar vanadate in the polym- 
erization medium (Fig. 4). Microtubules formed 

in the presence of vanadate are cold-labile and 
calcium-sensitive and cannot be distinguished ul- 
trastructurally from control preparations. 

Effects o f  Vanadate on 

Spindle Birefringence 

Spindle birefringence after lysis is maintained at 
in vivo levels for 8-10 min before it begins to 
fade. Spindle birefringence is calcium-labile and 
will disappear in 20 s when 5 mM calcium is added 
to the lysis medium (2). 

Vanadate does not quantitatively alter the level 
of spindle birefringence after lysis, nor does it 
alter the stability of the spindle (Fig. 5). However ,  
vanadate does subtly alter the overall pattern of 
spindle birefringence. After  several minutes the 
spindles lose their fusiform appearance and as- 
sume a barrel shape. The chromosomal fibers no 
longer bend in towards the spindle poles but begin 
to straighten out (Fig. 5). During this process the 
spindle does not shrink but retains its original 
length. In some cells the chromosomal fibers 
become very diffuse and individual fibers take on 
a broad, fan shape spreading out from each chro- 
mosome. These changes have been observed both 
in metaphase and anaphase cells lysed in vanadate 

5 7 6  RAPID COMMUNICATIONS 



$.0 
p m  

7.1 

A,B= CCCP + AMPPCP 

�9 ~ ~ ,~ ,'2 
Minutes 

182 
pm 

13o 

A 

C 
� 9  

i .  "I"-- 

o,, L)'';" 
A,B = No Vonodote 

=t i ./..:S--: 
I,L./' 

A,B =CCCP + ATP 

Minutes 

t8.2 

pm 

7.8 

,..L, 
I0 JaM Vanadote 

B 

D 

~ff  ~ ~ ~ ~ ,g ,~ ,~ ~ : ~ ~ ,'o ,~ ,'~ 
Minutes Minutes 

~3.0 

pm ~ 

B 
e~ 0,, ~ o~0  

V ~..,..r 

" \ . J  

E 
182 

.urn 
F 

~!  ~ /  A,B= IOOpM Vonodote 

'** *~* C = 2.5 mM Norepinephrine 

A,B = IOOpM Vonadate 

Minutes Minutes 

FIGU~ 2 A - F .  Separation of sister chromatids (lower lines) and spindle poles (upper lines) after lysis. 
Lysis medium added at A and B as described in the text. All solutions contained 1.25 mM ATP except A,  
which contained 1.25 mM AMPPCP. In A and B the lysis medium contained in addition 10 -s M CCCP, 
in C, no inhibitors, in D,  10 g.M vanadate, in E, 100 #M vanadate. In F a cell is lysed in 100 
vanadate at A and B, then this solution is replaced by solution C, which contains 2.5 mM norepinephrine. 

but have not been observed under any other lysis 
conditions including lysis in the presence of  meta- 
bolic inhibitors or 10 m M  E G T A .  Upon  addition 
of  norepinephrine the spindles revert back to their 
original shape. 

D I S C U S S I O N  

In this report, we demonstrate that chromosome 

movement  during anaphase is an ATP-dependent  
process that is sensitive to vanadate in the V § 
oxidation state. Vanadate blocks ciliary beat in 
demembranated cells by inhibiting dynein ATPase  
activity; it does not block glyerinated myofibril 
contraction, nor does it inhibit cytoplasmic or 
skeletal muscle myosin ATPase activity except at 
millimolar concentrations. With regard to sensitiv- 
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FIGURE 3 A-H.  Micrographs of anaphase in lysed PtK1 cells demonstrating reversible inhibition of 
chromosome separation and spindle elongation by 100/,tM vanadate. After 4 min in vanadate, a solution 
containing 2.5 mM norepinephrine is added, a: 0.1 min before lysis, b: 1 min after lysis, c: 2 min, d: 3.8 
rain, e: 4.2 min, f: 6 min, g: 8 rain, h: 12.5 min after lysis, x 2000. 
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FmURE 4 Extracts containing 5 mg/ml tubulin (T), 
tubulin and 1 mM vanadate (T + V), or buffer solutions 
and vanadate (V) are warmed to 37~ and changes in 
turbidity are monitored spectrophotometrically. At the 
end of the experiment, CaCI2 to 1 mM is added to each 
extract. 

ity to vanadate and to reversal of inhibition in the 
presence of norepinephrine,  chromosome move- 
ment and spindle elongation resemble those in a 
cilium more than in a muscle. 

The basis of the requirement for nucleotide 

triphosphates such as ATP for mitosis is not 
known. Mechanochemical ATPases such as dy- 
nein and myosin have been postulated to play a 
role in force generation for chromosome move- 
ment and spindle elongation (reviewed in refer- 
ences 4, 14, 16). Hydrolysis of GTP or related 
nucleotides may be involved in microtubule po- 
lymerization (17). Although there is no known 
nucleotide requirement for microtubule depolym- 
erization, ATPases such as the Ca ++ transport 
ATPase found in the sarcoplasmic reticulum may 
play an indirect role in mitosis by regulating or  
creating the physiological conditions that promote 
selective depolymerization of microtubules near 
the spindle poles (8). 

We consider it unlikely that vanadate affects 
chromosome movement  by directly altering rates 
of microtubule polymerization or depolymeriza- 
tion in the mitotic spindle. The level of spindle 
birefringence and spindle lability to calcium after 
lysis is unaffected by vanadate,  and in vitro micro- 
tubule polymerization proceeds at normal rates 
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FIGURE 5 A-C. Anaphase PtKI cell lysed in 100 /,tM vanadate as seen with polarization optics. 
Spindle becomes more barrel shaped after lysis. Micrographs are taken at the same compensator settings. 
a, before lysis; b, after 5 rain in vanadate; c, after 11 min in vanadate, x 2200. 

even in the presence of 1 mM vanadate. Microtu- 
bules assembled in vitro are not stabilized against 
calcium- or low-temperature induced depolymeri- 
zation by vanadate. 

It has been suggested that calcium fluxes regu- 
late selective depolymerization of kinetochore mi- 
crotubules and allow chromosomes to approach 
the spindle poles (8). Well described calcium 
ATPases such as that found in the sarcoplasmic 
reticulum are insensitive to vanadate (3). The 
membrane bound Ca ++ ATPase that accumulates 
in the spindles of dividing sea urchin eggs (13) is 
also insensitive to 100 #M vanadate (C. Petzelt, 
Heidelberg, personal communication). Inhibition 
of calcium transport systems should have little 
effect on spindle elongation. However, we ob- 
serve that spindle elongation and poleward move- 
ment of chromosomes share a similar sensitivity to 
vanadate. Cells lysed late in anaphase after chro- 
mosome-to-pole movements have ceased are also 
vanadate sensitive. 

We suggest that vanadate blocks chromosome 
movement during mitosis by reversibly inhibiting 
dynein ATPase activity in the spindle of the lysed 
cell. This interpretation of our results is consistent 
with several recent observations. Cross bridges 
between microtubules are found in many different 
spindles, although the number of cross bridges is 
quite small and their biochemical identity is un- 
known (reviewed in references 14, 16). Dynein 
has been localized in sea urchin spindles by im- 
munocytological and biochemical means, but it 
cannot be ruled out that these proteins are cyto- 
plasmic contamination from ciliary dynein pools 
(15, 20). Sakai et al. (19) have reported that the 
slow ATP-dependent spindle elongation observed 

in isolated sea urchin spindles is inhibited by 
dynein antisera but not by myosin antisera. We 
have also reported that dynein extracts will alter 
rates of chromosome movement in lysed PtK1 
cells under some circumstances (14). 

The alteration of the fusiform appearance of 
the spindle after vanadate treatment requires fur- 
ther comment. Lateral interactions between var- 
ious classes of spindle microtubules mediated by 
cross bridges like dynein may be essential for 
preserving spindle shape (14, 16). If inhibition of 
dynein ATPase activity leads to less cross bridging 
between microtubules, destabilization of spindle 
structure will also occur. The changes observed 
around the spindle poles are unlikely to be a result 
of selective microtubule depolymerization, since 
this effect is observed in both anaphase and meta- 
phase cells, does not lead to decrease in spindle 
length, and is reversible. 

We think it is unlikely that vanadate blocks 
chromosome movement by inhibiting myosin like 
ATPases. Dictyostelium myosin and rabbit skele- 
tal HMM are insensitive to vanadate at concentra- 
tions that inhibit anaphase. Although the vana- 
date sensitive component of the mitotic spindle is 
not likely to be myosin, it is possible that acto- 
myosin plays a role in mitosis by acting in cooper- 
ation with a dynein-microtubule system to move 
chromosomes. However, myosin antisera injected 
into sea urchin eggs blocks cleavage but not 
mitosis (10), and anaphase in spindle isolates is 
inhibited by dynein but not myosin antisera (19). 

Complete inhibition of chromosome movement 
requires more vanadate than inhibition of ciliary 
or flagellar beat. The lysed cell contains many 
other organelles besides the spindle that may bind 
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vanadate or retard its movement into the interior 
of the cell. The difference in vanadate sensitivity 
may also reflect fundamental physiological differ- 
ences between the two mechanochemical systems. 
Spindle dynein may be less sensitive to vanadate. 
Alternatively, it may be a reflection of the differ- 
ent organization of the two organelles. The dynein 
arms in the cilium are numerous, highly ordered, 
and interact many times with neighboring micro- 
tubules during ciliary movements. The cross 
bridges in the spindle are few and scattered 
throughout the spindle (14, 16). It is not known 
how often they may break and reform during 
mitosis. Inhibition of ciliary beat by vanadate may 
occur after only a few dynein cross bridges are 
inactivated whereas inhibition of anaphase may 
require that most dyneins in the spindle are inac- 
tive. 
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