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Abstract

This paper studies the interaction between coordination and social learning in a dy-
namic regime change game. Social learning provides public information, to which
players overreact due to the coordination motive. Coordination affects the aggregation
of private signals through players’ optimal choices. Such endogenous provision of public
information results in informational cascades, and thus inefficient herds, with positive
probability, even if private signals have an unbounded likelihood ratio property. An
extension shows that if players can individually learn, there exists an equilibrium in
which inefficient herding disappears, and thus coordination is almost surely successful.
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1 Introduction

This paper analyzes the interaction between coordination and social learning. In many social
and economic environments that feature coordination, such as political revolutions, innova-
tions, investments, currency attacks, and bank runs, players must coordinate if they are to
achieve a discrete increase in their payoffs. However, players are usually uncertain about
the fundamentals that determine the payoffs from their coordination, which causes them to
hesitate in choosing a coordination action. Hence, players look at previous players’ actions
and coordination results, which partially aggregate previous information about the funda-
mentals. In this way, players “socially learn” the fundamentals. But does social learning
help players coordinate? If players’ coordination can bring them higher payoffs (although
they do not know this ex ante), will players eventually coordinate?

In a seminal paper, Smith and Sgrensen (2000) show that to the extent that any decision
maker’s payoff is independent of other players’ choices and all players have the same prefer-
ence, the public history will successfully aggregate private signals if and only if the strength
of private signals is unbounded.ﬂ However, such a well-known result is not obvious when
players need to coordinate. In particular, when there are incentives to coordinate, players
make inferences from their private signals not only about the unknown fundamentals, but
also about their opponents’ signals (and hence their opponents’ actions). Therefore, even if
a player is convinced by an extremely strong signal that coordination can bring good payoffs,
she is not confident that her opponent is also receiving such signals. As a result, the player
refrains from choosing a coordination action, coordination fails, and the history is prevented
from aggregating private information.

In this paper, I study the interaction between coordination and social learning in a
dynamic regime change game. There are two possible regimes: the status quo and an
alternative. The game continues as long as the status quo is in place. In each period,
there are two, new short-lived (one-period) players. They commonly observe previous plays,
and they each receive one piece of private information about the status quo. Based on
this information, they update their beliefs about the true state of the status quo, which is
unknown but fixed. These two new, short-lived players then simultaneously choose to attack
or not to attack the status quo. (Attacking the status quo is the coordination action that
favors regime change.) A player who chooses to attack receives a positive payoff if the regime

changes; she receives a negative payoff otherwise. Not attacking is a safe action, resulting in

IThe literature of observational learning was initiated by Banerjee (1992) and Bikhchandani, Hirshleifer,
and Welch (1992). These two papers show that informational cascades and herding behavior emerge when
each player receives a binary private signal. Lee (1993) analyzes a social learning model with continuous
action space and binary signal space, in which inefficient herding does not arise, because no information goes
unused. Bikhchandani, Hirshleifer, and Welch (1998) and Chamley (2004) provide surveys of this literature.



a zero payoff whether the regime changes or not. The strength of the status quo is drawn
at the beginning of the game from a set consisting of three elements: weak, medium, and
strong. If the status quo is weak, an attack by at least one player changes the regime; if the
status quo is medium, then synchronous coordination (i.e., both players choose to attack) is
necessary and sufficient to trigger regime change; if the status quo is strong, the status quo
can never be beaten.

The main result in this paper is that in any equilibrium, once coordination is commonly
known to be necessary for regime change, a herd emerges with positive probability. In such
a herd, players refrain from attacking, ignoring their private signals. Unlike in Smith and
Sorensen (2000), this result holds regardless of the strength of a player’s signal. It then
follows that the medium status quo survives with positive probability in any equilibrium.

That players may join a herd even if they may receive extremely strong private sig-
nals arises from the interaction between coordination and social learning. Let’s take as a
benchmark the equilibrium outcomes conditional on the weak state. In the weak state,
coordination is not necessary and, therefore, the status quo is in place only if there is no

“no-attack” outcome provides

attack. But, as the probability of attacking decreases, the
players with less information. This slow social learning is eventually dominated by players’
extremely informative private signals. As a result, in any equilibrium, if the status quo is
weak, an inefficient herd never forms, and the regime changes almost surely.

By contrast, when coordination is commonly known to be necessary (i.e., the weak status
quo is ruled out by a previous failed attack that was launched by one player), the current
players need to have a sufficiently high prior belief about the medium status quo in order to
attack. Hence, when the public history makes a player pessimistic ex ante, even if she receives
an extremely informative private signal favoring the medium state, she is not confident that
her opponent is also receiving an “attack” signal. Hence, in any equilibrium, inefficient
herds emerge in the medium state with positive probability, and the regime may not change.
Put differently, in the medium state, informational cascades result in the impossibility of
coordination, and social learning is a source of coordination failure.ﬂ

Coordination incentives lead to such different social learning outcomes because the re-
alizations of players’ signals and the players’ information structure both matter for the

possibility of coordination. Specifically, without coordination, because players are uncertain

2“Herd behavior” and “informational cascade” are significantly different terms, as Smith and Sgrensen
(2000) pointed out. In my model featuring coordination, an informational cascade emerges if the information
revealed from the public history makes coordination impossible despite players’ private signals. Obviously, if
an informational cascade emerges, players join a “no-attack” herd. However, a no-attack herd may be caused
purely by the failure of coordination on the risky action. In particular, if one player chooses not to attack,
regardless of her private signals, her opponent will choose not to attack too. If such a coordination failure
happens even when coordination is possible, the resulting no-attack herd is not caused by an informational
cascade.



only about the fundamentals, their prior beliefs can be overturned by extremely strong real-
ized signals and hence they will never ignore their signals. By contrast, with coordination,
players care also about their opponents’ signals. Because the precision of the players’ sig-
nals is finite, any player’s estimation of her opponent’s signal cannot be arbitrarily accurate.
Hence, when the prior belief about the medium status quo is low enough, a player will not
trust that her opponent is receiving a signal favoring the medium status quo, and she will
not trust that her opponent believes that she is receiving the signal favoring the medium
status quo either.

In an extension of the core model, I allow players to individually learn the strength of the
status quo. With individual learning, players’ estimations about their opponents’ signals will
become extremely accurate as time goes by. In the limit, if one player is almost convinced by
her own private signal that the status quo is medium, she will be confident that her opponent
is also convinced by a signal that the status quo is medium, even if the prior belief about the
medium status quo is low. It is therefore possible for the two players to coordinate an attack,
and individual learning helps them coordinate attacks, because it increases the accuracy of
their estimations of their opponents’ signals over time. Thus, there are equilibria in which
players never ignore their signals and, in such equilibria, informational cascades never arise:

if the status quo is medium, the regime changes almost surely.

1.1 Related Literature

The social learning literature (for example, Banerjee, 1992, Bikhchandani, Hirshleifer, and
Welch, 1992, and Smith and Sgrensen, 2000) has extensively discussed the necessary and
sufficient conditions for informational cascades and herding behavior in environments lack-
ing coordination incentives. However, coordination does interact with social learning in
various social, economic, and financial environments. This paper’s main contribution is the
discovery that coordination incentives dramatically change social learning outcomes. With
coordination, the realizations of signals and the players’ information structure both matter
for players’ choices. Therefore, the way the public history aggregates information in envi-
ronments with coordination differs significantly from how it does so in environments without
coordination. I show that even if players receive signals of unbounded strength, which is
sufficient for the no-informational cascade result when there are no coordination incentives,
informational cascades may start. Therefore, in any equilibrium, inefficient herding may
exist.

The paper contributes also to the discussion of the social value of public information,
which has been studied in a vast literature pioneered by Hirshleifer (1971). Morris and Shin
(2002, 2003) analyze the effects of public information in a model with payoff complementar-

ities. They show that increased provision of public information is more likely to lower social



welfare when players have more precise private signals. Angeletos and Pavan (2007) prove
that when the degree of coordination in the equilibrium is higher than the socially optimal
one, public information can reduce equilibrium welfare. In this literature, public information
is exogenous. In my paper, public information evolves endogenously as a result of players’
decisions. Therefore, coordination directly affects the provision of public information. Since
the public history may fail to aggregate all private signals and may therefore provide biased
public information, the players fail to coordinate.

There is a strand of social learning models that discuss herding behavior and asyn-
chronous coordination. In Dasgupta (2000), first movers and late movers can coordinate.
Therefore, first movers have incentives to signal their private signals by choosing the coordi-
nation action. Under private signal structures with an unbounded likelihood ratio property,

)

there are “weak herd behaviors,” in which players do not ignore their private signals. In Choi
(1997), coordination is also asynchronous, payoff complementarities arise only from network
effects, and learning is complete once an option is taken. Asynchronous coordination im-
poses a weaker belief requirement than synchronous coordination, which is my paper’s key
ingredient. In addition, it can be shown that in my model if coordination is asynchronous,
inefficient herds never form.

The present paper contributes also to the literature on global games, initiated by Carlsson
and Van Damme (1993). Absent of dynamic features, static global games have been applied
to currency attacks (Morris and Shin, 1998), bank runs (Goldstein and Pauzner, 2005),
debt crises (Morris and Shin, 2004), and political changes (Edmond, 2013). These static
regime change games are solvable by iterated elimination of strictly dominated strategies for
fixed prior beliefs and arbitrarily informative private signal structures (see Morris and Shin,
2003). In my model, if no attack has yet occurred, players are in a static global game. But,
in this static global game, multiple Bayesian Nash equilibria may exist. Such multiplicity
follows two characteristics of the model. First, because the state space is discrete, there
are some prior beliefs resulting in multiple Bayesian Nash equilibria, no matter how precise
private signals are. The necessity of the connectedness of the state space for the equilibrium
uniqueness is discussed in Carlsson and Van Damme (1993). Second, the precision of private
signals is fixed, while public beliefs evolve endogenously over time.

In addition, this paper contributes to the growing literature on dynamic global games with
endogenous information. Angeletos, Hellwig, and Pavan (2007) incorporate both individual

learning and social learning into a dynamic regime change game[f| They consider a continuum

3Dynamic regime change games are studied as examples of dynamic global games. Dasgupta (2007)
studies a two-period dynamic global game that allows asynchronous coordination. Tarashev (2007) discusses
a two-period currency crisis model, in which the interest rate informs investors about other investors’ actions
(and hence also about their information). Other papers contributing to this growing literature include
Giannitsarou and Toxvaerd (2007) and Heidhues and Melissas (2006).



of long-lived agents, each individually learning the true fundamentals. Players also learn from
the publicly observable fact that the regime has not changed. Due to the assumption of
continuous players, a period in which no attack occurs yields no new information to players.
The authors show that some status quos that can be overthrown nevertheless surviveﬁ My
model differs from that of Angeletos, Hellwig, and Pavan (2007) mainly in that players,
being short-lived, cannot individually learn. By assuming this, I can abstract away players’
individual learning and focus on the interaction between social learning and coordination.
In an extension of the core model, I allow players individually to learn. Unlike in Angeletos,
Hellwig, and Pavan (2007), in my model the absence of an attack in a given period can be
informative because there are finitely many players in each period. Moreover, because of the
finite state space, the status quo that can be overthrown will be overthrown almost surely.
The present paper is also related to Chen and Suen (2016), who study a different dynamic
global game. In their model, a one-period global game of regime change with a continuum
of players is played in every period. They assume that regimes in different periods are
independent, and so attacks will surely occur in any period. However, the model of the world,
which is either tranquil (regime change is difficult) or frantic (overthrowing the regime is
easy), is constant (or follows a Markov process) and is unknown to players. Hence, in every
period, players will first make inferences about the model of the world from all previous
regime change outcomes. Since such inferences are not drawn from previous players’ actions,
and players never ignore their private information, herding or informational cascades do not
emerge in Chen and Suen (2016). In my paper, because there are finitely many players in
each period, attacks do not occur even if they can occur with positive probability. Since
not only the previous regime change outcomes but also the previous players’ decisions are
informative about the fixed fundamentals, herding or informational cascades may emerge.
The rest of the paper is organized as follows. In Section [2] T introduce a dynamic regime
change game and provide an algorithm to characterize all equilibria. In Section[3] I study the
effects of social learning on both the dynamics of attacking and the regime change outcome.
Section [4] is devoted to two extensions of the core model. Section Bl concludes. All omitted

proofs are presented in the appendix.

4 In Dasgupta, Stewart, and Steiner (2012), players can also individually learn, but the success of co-
ordination does not require synchronous actions. In contrast to my results on informational cascades and
herding behavior, they show that coordination failure almost never arises in a sufficiently long asynchronous
coordination game.



2 A Dynamic Regime Change Game

2.1 The Model

Time is discrete and indexed by ¢t € {1,2,...}. There are two possible regimes: the status
quo and an alternative. Denote the state of the regime at the end of period ¢t by R; € {0,1}:
R; = 0 refers to the status quo, and R; = 1 refers to the alternative. Assume that the regime
is in the status quo at the beginning of the game; hence, Ry = 0. If R; = 1 for some ¢, then
R, =1 for all 7 > ¢. That is, once the regime changes, it remains in the alternative state
forever. The strength of the status quo is described by 6 € © = {w, m, s}, where w,m,s € R
with the order’| w < m < s. At the beginning of the game, 6 is chosen by nature according
to a common prior py, where p;(6) > 0, V0 € ©. Once picked, 0 is fixed forever.

In each period ¢, there are two new, short-lived players. Each player i chooses a;; € {0,1},
where a; = 1 denotes “attack,” and a; = 0 denotes “no attack.” Player i’s ex-post payoff

depends on both her choice and the state of the regime:
uit = (1 — Re—1)ay(Ry — ¢) + Re—1(1 — ).

Hence, suppose that the regime changes in period t. If player i attacks, she receives a payoff
of 1 —c (c € (0,1)); otherwise, she receives a payoff of 0. Once the regime changes, the game
endsﬂ Conditional on R, ; = 0, whether the regime changes or not in period ¢ depends on
both the strength of the status quo # and the number of attacks ay; + ao;. For the weak
status quo, one player’s attack is sufficient for regime change; for the medium status quo, an
attack by one player is not enough, but an attack by two players can trigger regime change;
if the status quo is strong, the regime never changes. The following table summarizes the

regime change outcomes conditional on R; 1 = 0:

apgt+ay | 0=w O6=m 6O=s
0 R=0 R=0 R,=0
1 R=1 R=0 R,=0
2 R=1 R=1 R =0

Before making a decision, period-t player i observes a private signal x; = 6 + &;. Here,

“

5Notations w, m, and s refer to “weak,” “medium,” and “strong,” respectively.

6This assumption, together with the assumption that the number of attacks in each previous period
can be publicly observed, implies that subsequent players may delete some states from the support of their
beliefs. This is a key assumption of dynamic regime change games; see, for example, Angeletos, Hellwig,
and Pavan (2007). If, however, I assume that the game does not end even when the regime changes, that is,
when the previous attack outcomes cannot be observed, then players in each period will play a static global
game because they never know that their coordination is necessary.



&t ~ N(0,1/8), where 8 € R, , denotes the precision of the players’ private signalsm The
noise term &; is independent of # and independent across 7 and across t. Thus, all players’
private signals are conditionally independent. In addition to private signals, at the beginning
of any period t > 2, players observe the public history about the number of players attacking.
Formally, period-t players observe the public history h* = (b1, ...,b;_1), where b, € {0,1,2}
is the number of players attacking in period 7, for all 7 < ¢. Let H' be the set of all possible
public histories at the beginning of period t. I define the strategy of player ¢ in period t as
sit » H' xR — {0,1}. Here, s;(h', z;) is the action player i chooses, given the public history
h' and the private signal x;. Let u:|h' be period-t players’ common prior belief about 6,

conditional on the public history A’. T call y; the public belief in period ¢.
Definition 1 An assessment {(szt)iiQ, (He)ir,..} is an equilibrium if

1. for any t, given ., (Si,S2) forms a Bayesian Nash equilibrium in the static game;

and
2. g s calculated by Bayes’ rule on the equilibrium path.

The first part of the definition is a natural requirement of the assumption that players are
short-lived. Because period-t players have no intertemporal incentives to make decisions,
their strategies need to form a Bayesian Nash equilibrium in a static game, given their
public belief ;. The second part of the definition specifies how to calculate public beliefs on
the equilibrium path. In fact, as in the definition of a sequential equilibrium, the consistency
requirement should be imposed on the off-equilibrium path. However, since players’ strategies
must form a static Bayesian Nash equilibrium, their equilibrium strategies are not affected
by plays on the off-equilibrium path. Therefore, to simplify the analysis, I require only that
public beliefs on the equilibrium path be calculated by Bayes’ rule.

2.2 Equilibrium Characterization

From the definition, an equilibrium can be characterized in two steps: first, given any gy,

calculate (sy4, so;), which constitutes a Bayesian Nash equilibrium in period ¢; second, given

i1, ht, and (SiT)izzll’i,l, employ Bayes’ rule to calculate u;. For simplicity, if the environment

"By the Gaussian assumption, it is easy to calculate players’ belief updates. In addition, the Gaussian
assumption has a very clear description of the precision of players’ signals. However, this assumption is not
necessary. The distribution of the signal can be fairly general, and the assumptions I have to make are the
following: (1) conditional on 6, the players’ private signals are independent and identically distributed; (2)
the support of x; is an open interval (X, X) C R, and the conditional density f(x|6) of the signal is strictly
positive for all z € (X, X) and all § € ©; (3) unbounded likelihood ratio: IIEI)I( f(x|0)/f(z|0") = +o0 and
lirr)lz f(z]0)/f(x]0') = 0, whenever § < ¢'; and (4) monotone likelihood ratio: if § < ', f(x]0)/f(x|¢) is
r—r

strictly decreasing in x.



is understood clearly, I use the term “equilibrium” for both the Bayesian Nash equilibrium
in the static game and the equilibrium in the dynamic game.

Three facts should be noted before a detailed analysis. First, since py(f) > 0 for all
0 € O, u(0) > 0 for all § € © after the public history without any attack, because any
type of status quo will survive along such a history. Second, if one player attacks in period
t and R; = 0, players in the subsequent periods immediately learn that 6 # w; that is,
pr(w) = 0 for all 7 > ¢t. Third, if both players attack in period ¢ and R; = 0, subsequent
players immediately learn that § = s. Therefore, for the analysis of a static game, only three
possible public beliefs are relevant: (i) p:(f) > 0 for all 6 € ©; (ii) wut(w) = 0, p(m) > 0,
and g (s) > 0; (iii) p(s) = 1. Note that in a monotone equilibrium, since u1(6) > 0 for all
0 € O, uy(0) > 0 implies that p,(6") > 0 for < @' in any period ¢. Out of these three cases,
the one with p(s) = 1 is trivial. Because no-attack is the dominant action in this case, the
unique Bayesian Nash equilibrium is that both players refrain from attacking regardless of
their private signals.

Now, suppose that u;(0) > 0 for all @ € ©. Let p(-|z;) denote period-t player i’s posterior

belief over © after receiving signal x;. By Bayes’ rule, the posterior belief about 6 is

pu(0)p(VB(xie — 0))

p(Olzi) = 9;@ we (0o (v Bz — 0'))’

where ¢(-) is the standard normal pdf. Player i’s interim payoff from attacking given her

signal x;; and player j’s strategy s;; is:

By ui(1, 24, 55t)
— plwlaa) + Pr(sje = 1, ml) — ¢ )
= p(wl|zir) + p(m|zi) Pr(s; = 1m) —c (2)

_ _mw)eVBlan —w) | pu(m)o(VB(zi = m))

> (0B —0) >0 w(0)d(VB (i —0"))

0'cO 0'cO

Pr(sj; =1im) —c.  (3)

Here, implies because players’ private signals are independent conditional on 6. Note
that p(w|z;) — 1 as x; — —oo; hence, from the regime change rule, attacking is the
dominant action for player i, when z;; is extremely negative. By continuity of the interim
payoff function, there exists an x, € R such that E,  u (1, 24, 55) > Ey,,ui(0, i, 55¢), Vo <
z;, and Vsj;. I call the set (—oo,z,] the dominant region of attacking. Similarly, there is

an Z; € R such that B, uy(1, 2y, 55) < E

2, Uit (0, Tig, 55¢), Yoy > Ty, and Vsj. I call the
set [T, +00) the dominant region of not attacking. Therefore, in the case p:(0) > 0 for all
0 € O, players in period t play a static global game. Proposition [I| below not only proves
the existence of a Bayesian Nash equilibrium, but also provides the equation to characterize

the equilibrium in this case.



Proposition 1 In a static game with p,(6) > 0 for all € ©, a Bayesian Nash equilibrium
exists. In any Bayesian Nash equilibrium, players follow a symmetric cutoff strategy with
threshold poz’mﬂ xz; € R:

sy = .
0, o z>uzj.

) {1, if ©<af,

In addition, z; solves the equation

pu(w)o(VBE —w))  p(m)e(VBlx —m)) o
> u(0o(VB(x —0)) > u(0)e(vB(x —6))

0'cO 0'cO

G(xv :U’t> =

where ®(-) is the standard normal cdf.

Now consider the boundary public belief case: ui(w) = 0, u(m) > 0 and p(s) >
0. Because p;(w) = 0, there is no dominant region of attacking. Since py(s) > 0, the
dominant region of not attacking still exists. Hence, u;(m) > 0 implies that the regime may
change if and only if both players choose to attack. Hence, players in this case are playing
a coordination game. Obviously, the strategy profile with coordination failure (i.e., both
players refrain from attacking) is an equilibrium.

Let’s analyze whether there exists an equilibrium in which period-t players attack with
positive probability. T call such an equilibrium an equilibrium with attacks. Because the
only state in which the regime can change is # = m, players choose to attack only if both
their beliefs about # = m and their beliefs about their opponents choosing to attack are
sufficiently high. Therefore, if players’ public beliefs about § = m are high (players are
optimistic), cooperation is possible; conversely, when players’ public beliefs about § = m are
low (players are pessimistic), then even if one player observes an extremely negative signal
and is convinced that & = m, she will not attack. This is because she believes that the
probability of her opponent observing a signal favoring = m is very low. Proposition

below formally shows conditions under which an equilibrium with attacks exists.

Proposition 2 In the static game with p(w) = 0, p(m) > 0, and i (s) > 0, there is a
unique fi € (0,1) such that

1. if we(m) < i, there is no equilibrium with attacks;

2. if (m) > [i, there are at least two equilibria with attacks that are symmetric and in
cutoff strategies with the threshold bounded from below by m + ®~'(c)/v/B; and

8To simplify the notation, I denote a strategy by x} when there is no confusion. In particular, z} = —oo
represents the strategy of not attacking for all signals, and z} = 400 represents the strategy of attacking for
all signals.



3. if uy(m) = fi, there exists a unique T € R such that there is a unique equilibrium with

attacks in which both players employ cutoff strategies with threshold point T.

The key step in proving Proposition [2|is to analyze the solution to equation , with the
parameter (i (w) = 0, p(m) > 0, and p(s) > 0: if G(x, p;) = 0 does not have a solution,
then the no-attack strategy profile is the unique equilibrium; if G(z, y;) = 0 has a solution
x;y, then there exists an equilibrium in which players employ a symmetric cutoff strategy
with threshold point x}. The parameter [ is determined by the following equation:

max G(x, i) = 0, (5)

zeR

and Z is the solution to the equation G(x, i) = 0.
With Proposition [I]and Proposition [2] the following algorithm characterizes all equilibria

of the dynamic model:

1. in any period ¢, given p,;, compute all solutions to G(x; ;) = 0 and pick any solution
xf to be the threshold point in period t. If G(x; u;) = 0 does not have a solution, then

let x} = —o0;

2. on the equilibrium path, conditional on R; = 0, and given p, x;, and b;, employ Bayes’

rule to calculate 1.

3 Dynamics of Attacking, Regime Change, and Social
Learning

In this section, I describe the equilibrium dynamics of attacking, and, based on these dy-
namics, I analyze the regime change outcomes conditional on the strength of the status quo.
Because social learning is the driving force behind the dynamics of attacking, I investigate
how social learning plays a role in the dynamics of attacking and in determining regime
change outcomes.

Let ht = (0,...,0) denote the history without any attack. When 6 = w, ht is the only
history leading to R;_; = 0. Thus, the dynamics of attacking along ht determine the eventual

outcome of the regime change, conditional on 6§ = w.

Proposition 3 Fiz any equilibrium. Along h, p,(w) — 0 and Pr(b, > 0[|h') — 0. But if

0 = w, the regime changes almost surely.

The conclusions in Proposition [3| show that if coordination is not publicly known to be
necessary for regime change, private signals of unbounded strength will completely eliminate

informational cascades; that is, along ff’, players will never ignore their private signals when

10



making decisions. Hence, the existence of a dominant region of attacking implies that there
are always private signals that lead to attacks and trigger regime change at state § = w.
These results are essentially the same as those in Smith and Sgrensen (2000), and they
provide a good benchmark for analyzing the interaction between coordination and social
learning when coordination is commonly known to be necessary for regime change. For the

sake of completeness, the proof of Proposition [3|is included in the appendix.

Now let’s turn to the analysis of the medium status quo. In the first period, because
w1(0) > 0 for all # € ©, Proposition 1] implies positive probability of attacking in the first
period. It directly follows that the medium status quo changes with positive probability.
Hence, I focus on the question of whether the medium status quo changes almost surely.

For any prior beliefs, each player receives a private signal with the unbounded likeli-
hood ratio property, and so the player will be convinced by her private signal that 6§ = m
with positive probability. Therefore, it seems plausible to conjecture that in a nontrivial
equilibrium (in which players choose to attack with positive probability whenever possible),
with probability one, there is a period in which both players receive private signals favoring
0 = m, and, as a result, the medium status quo should change almost surely.

Surprisingly, I show that the medium status quo survives with positive probability in any
equilibrium, including equilibria in which players attack with positive probability whenever
possible. Consider the outcome h* = (1,0,...), in which there is an attack by one player
in the first period, but no subsequent attacks. If this outcome is reached, the medium
status quo does not change. This outcome may be consistent with many equilibria: for any
given subset @ C N\ {1}, only period-t € Q players attack the status quo with positive
probability, and players in all other periods adopt the no-attack strategy. In the strategy
profile with finite Q, the outcome h* is reached with strictly positive probability. Hence, in
any equilibrium, unless Q is unbounded, the regime survives with positive probability if the
status quo is medium.

Suppose there is an equilibrium in which Q is unbounded. Due to the failed attack in
the first period, players rule out the weak state. By Proposition [2, in any ¢t € Q, players
employ the cutoff strategy with the threshold z; bounded from below. Consequently, the
probability of attacking is bounded away from 0. Hence, the no-attack outcome in period
t € Q makes subsequent players more pessimistic, because it implies that both period-t
players receive signals above z;. This then leads to a decrease in py11(m), and so along
the outcome h! = (1,0,...), players will become more and more pessimistic ex ante. Recall
that a necessary condition for players to attack with positive probability in a period t € Q
is pi(m) > i, where i is a constant for any given f3; then, after a period T' € Q, pr(m)
will be smaller than i, implying that subsequent players cannot coordinate attacks. Hence,

Q@ cannot be unbounded, and so the median status quo survives with positive probability.
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Formally:

Proposition 4 There exists Q € N, such that in any equilibrium, along the outcome h™,
there are at most () periods in which players’ strategies specify positive probabilities of attack.
Hence, in any equilibrium, P,,(h>™) > 0, and the medium status quo survives with positive

probability.

The outcome h™ is just an example of all outcomes that result in the survival of the medium
status quo and are realized with positive probability in any equilibrium. All these outcomes
share three features: (1) there is no period in which both players attack; (2) there are finitely
many periods (at least one) in which one player attacks; and, (3) after a certain period in
which one player attacks, no subsequent attack occurs.

Proposition 4| shows that herding is an outcome in any equilibrium: players in later
periods join the no-attack herd, ignoring their own private signals no matter how strong
such signals are. Importantly, this result is not due to pure coordination failure, but arises
from the informational cascades formed by players’ social learning. In particular, players
learn from the failed attack in the first period that the status quo is not weak, and therefore
they need to coordinate. Hence, they learn from the no-attack history after the first period
that the status quo is very likely to be strong.

The effect of the interaction between social learning and coordination can be seen by
comparing the equilibrium outcomes in the weak state with those in the medium state.
Similar to that in Smith and Sgrensen (2000), the no-attack herd does not emerge in the
weak state. This is because players have a dominant region of attacking, such that their
own signals may determine their actions: once the realized signal lands in the dominant
region of attacking, a player will choose to attack, independent of her opponent’s choice. In
consequence, players never ignore their signals and, therefore, neither informational cascades
nor no-attack herds will emerge.

If, however, the status quo is medium, players will join a no-attack herd with positive
probability in any equilibrium. The difference stems from the coordination requirement in
the medium state and the signal structure of global games: when coordination is commonly
known to be necessary for regime change, not only the realizations of signals but also the
precision of the players’ private information matters for the players’ decisions. In particular,
in the medium state, once the weak status quo is ruled out, it is common knowledge that
coordination is necessary for successful attacks. As a result, one player will make her decision
based on her estimations about both the status quo’s strength and her opponent’s signal.
On the one hand, along the outcome h*, players become increasingly pessimistic about
the medium status quo and, eventually, the public belief about # = m will decrease below

fi. On the other hand, because period-t players’ signals are zx, = 0 + & (K = 1,2), we

12



have xj; = ;s — & + &+, and thus the variance of player i’s estimation of player j’s signal
(conditional on player i’s signal x;) is 2/ in period t. Since ( is fixed, the accuracy of
such an estimation is also fixed. Then, even if a player is convinced by an extreme signal
realization that 6 = m, she believes that it is very unlikely that the other player is also
receiving an “attack” signal and thus attacking. (Because players believe that § = m is very
unlikely ex ante, Bayes’ rule requires that the precision of one player’s private signal be large
enough for her to receive a signal sufficiently favoring # = m.) Such a player refrains from
attacking. Consequently, informational cascades and the no-attack herd form.

One interesting observation from both Proposition [3] and Proposition [ is that the no-
attack history delivers information to subsequent players. That is, players’ beliefs update
along history At in any equilibrium and along history h* in any nontrivial equilibrium. Such
an observation differs significantly from that in Angeletos, Hellwig, and Pavan (2007), where
players do not update their beliefs from the no-attack history. The difference stems from
the different numbers of players: in this paper, there are two players in each period, while in
Angeletos, Hellwig, and Pavan (2007), there is a continuum of players. With a continuum
of players, if the threshold of attacking is finite, the law of large numbers implies that a
positive measure of players attack; equivalently, if no player attacks, it must be that players
adopt the no-attack strategy in that period, regardless of their signals. Hence, in Angeletos,
Hellwig, and Pavan (2007), the no-attack outcome in any period is not informative about

players’ signals, and hence cannot deliver any information to subsequent players.

4 Extensions

4.1 Individual Learning

In the model described in Section [2], no player can individually learn the true status quo,
because the precision of the players’ signals is fixed at § < +oco. In this section, I analyze
the effect of players’ individual learning. In particular, I focus on whether the no-attack herd
in Proposition 4 will emerge, and whether the medium status quo can survive with positive
probability once individual learning is allowed.

A straightforward way to model individual learning is to extend the model in Section
by assuming that period-t players receive private signals of precision ¢5. Then, as time goes
by, the precision of players’ signals monotonically increases and diverges to co. In this way,
players’ signals are increasingly precise, even though they are still short-lived, such that the

model remains tractablel]

9In Angeletos, Hellwig, and Pavan (2007), players are long-lived, and so they can individually learn by
collecting signals in each period. However, in their model, there is a continuum of players, so long-lived
players behave myopically.
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The most interesting case is # = m, especially when # = w is ruled out by one player’s
failed attack. In such a case, players lose the dominant region of attacking, and it is common
knowledge that they need to attack simultaneously to trigger regime change.

However, unlike Proposition [} there are equilibria in which informational cascades do
not form, and the medium status quo will change almost surely. The key reason for this
result is that as the precision of players’ signals increases over time and diverges to oo, fi;, the
critical public belief above which period-t players can possibly attack, continues to decrease

and converges to zero.

Lemma 1 Suppose 0 = w has been ruled out. There is T > 1, such that for allt > T, ji; is

decreasing int. Ast — 400, [iy converges to 0.

By Proposition |2, there are equilibria in which attacks can occur with positive probability
in period ¢ if and only if p;(m) > fi;. In addition, when u,(m) > fi;, period-t players attack
with a probability bounded away from zero. Then, since ji; goes to 0 by Lemma [1| above,
unless the status quo is abandoned, attacks can occur in infinitely many periods. Therefore,

the medium status quo changes almost surely in such equilibria.

Proposition 5 There exist equilibria in which the regime changes almost surely when 6 = m.

Individual learning leads to regime change when # = m in some equilibria, because an
informational cascade never starts in such equilibria. That is, with individual learning, some
players will not ignore their signals when making decisions. Yet, because even period-1
players observe normal signals of non-uniformly bounded strength, the reason for the dis-
appearance of informational cascades differs from that given in Smith and Sgrensen (2000).
By contrast, players do not ignore their signals in this case precisely because, as their signals
become more accurate, they can estimate their opponents’ signals more accurately. There-
fore, based on her signal, one player can better predict the other player’s behavior. This is
an application of “common learning,” introduced by Cripps, Ely, Mailath, and Samuelson
(2008): because of individual learning, players can form a common g-belief about the true ¢
infinitely often, and the medium status quo is attacked infinitely often (with the attacking
probability bounded away from zero in each attacking period).

Proposition [5| differs from Angeletos, Hellwig, and Pavan (2007), which features coordi-
nation and individual learning. In Angeletos, Hellwig, and Pavan (2007), the strength of
the status quo is distributed over the whole real line. Therefore, if all players attack, the
status quo of the strength less than 1 cannot survive. However, the authors show that, given
the prior belief, if the status quo’s strength is in an open interval (z, 1), where z is strictly
less than 1, the regime will not change in any equilibrium. This result derives from the as-

sumption that the strength of the status quo is drawn from a continuous state space, which
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causes higher frictions for players’ coordination. In this paper, I show that with a discrete
state space, individual learning allows players to form common beliefs infinitely often and
thus coordinate attacks infinitely often. Therefore, if the status quo can be overthrown, it

will be overthrown almost surely in some equilibria.

4.2 Persistent Status Quo

In the model described in Section [2] the strength of the status quo is drawn at the beginning
of the game and is forever fixed. One interesting extension is that the strength of the status
quo persists, but is not constant over time. In this section, I analyze the regime change
result when the strength of the status quo is persistent. A more detailed analysis is included
in an online appendix.

To model the persistent status quo, I consider that #, the strength of the status quo,
varies over time. Without loss of generality, I consider two cases. First, both the medium
status quo and the strong status quo may become weak. Formally, I assume that in this

case,

Pr(0i1 = w|b; = k) = oy, € (0,1),Vk € {w,m, s}. (6)
Without loss of generality, I assume that
1> ay >, >a; >0. (7)

In such a case, in every period, the weak status quo is in the support of players’ beliefs. In
particular, even if the posterior belief about 6, ; = w in period ¢t — 1 is zero (for example,
bi—1 = 1 but the regime does not change), then in period ¢, 6; can become weak with a
probability of at least ag. Therefore, in any period t, players have their dominant region
of attacking, and the probability that any player will attack is bounded from below by the
attacking probability when the public belief is p(w) = as, p(m) = 0, and pi(s) = 1 — a.
Consequently, in any period, the regime changes with a probability bounded away from zero,
which directly implies that the regime will change almost surely.

Second, I consider the case where the weak status quo is constant, but the strength of
the status quo may vary between the medium state and the strong state. By Proposition
[} the weak status quo changes almost surely. Therefore, without loss of generality, I only

need to consider the case where 6, = w is ruled out. Thus, I assume that

Pr(6;11 = w|; = m) = Pr(6;41 = w|0, = m) =0, (8)
and™| '
Pr(0t+1 = m|0t = m) = Pr(0t+1 = S|9t = S) =7 c (5, ].) . (9)

0The symmetry assumption here is just for simplicity. The result is robust when the transition rule is
asymmetric.
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Suppose that in an equilibrium 67 = w has been ruled out by the beginning of period 7'
Therefore, without any other belief updating, there is a stationary objective distribution of
0 over {m, s}, in which Pr(# = m) = 1/2. Furthermore, without any other endogenous belief
updating, if pr(m) > 1/2, pu(m) is strictly decreasing for all ¢+ > T and converges to 1/2,
and if pr(m) < 1/2; py(m) is strictly increasing for all ¢ > T and converges to 1/2. The
regime change outcome in this case depends on whether fi > 1/2, because the coordination
of an attack by period-t players depends, by Proposition , on whether p,(m) > fi.

When i > 1/2, the status quo survives with positive probability in any equilibrium,
because an informational cascade will start in an equilibrium with attacks. In particular,
suppose that there is an equilibrium in which period-¢ players attack with positive probability
if t € Q. In that case, a long history without any attack will make players sufficiently
pessimistic, such that pp < i for some 7" € Q. Since i > 1/2, p,(m) is either strictly
decreasing to 1/2 (when fi > pp > 1/2) or strictly increasing to 1/2 (when i > 1/2 > ),
it follows that p;(m) < fu for all ¢ > T". Therefore, no attack can occur after period 7".
Since T” is finite, there are at most () attacks, where @ is also finite. Because the status
quo can survive such @) attacks with positive probability, the regime change probability is
strictly less than one.

By contrast, when i < 1/2; there are equilibria in which the regime changes almost
surely, because the belief updating due to the exogenous state varying can make players
sufficiently optimistic. The idea of constructing such an equilibrium is as follows. In any
period t > T, if u,(m) > fi, period-t players attack if and only if their signals land below
a threshold that is bounded from below according to Proposition . If uy(m) < fi, players
refrain from attacking. Such a no-attack outcome will not change subsequent players’ beliefs,
because period-t players’ choices are not based on their signals. Since p(m) < fi, p(m) <
1/2. Therefore, while players refrain from attacking, the public belief keeps increasing.
Importantly, suppose that in period 7, u.(m) = 1 — v (because of the transition rule in
equation (9), pr(m) > 1 —); then, there is 7", such that p. 7 (m) > fi, because p(m)
converges to 1/2. Hence, the public belief about § = m is higher than fi at least every 7"
periods, implying that players can attack (with a probability bounded away from zero) every
T’ periods. Since the regime changes with a probability bounded away from zero in infinitely
many periods, the regime will change almost surely.

The key reason for the different regime change outcomes in these two cases is that the
exogenous change in the status quo makes the public beliefs adjust toward 1/2. Once the
public belief drops below [i, players stop attacking, ignoring their private information. It
follows that subsequent players will stop learning from the public history (as in the model
with constant status quos), and so the only reason for the change in their public beliefs is

that the status quo may change exogenously. Since the exogenous change in the status quo
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makes the public beliefs adjust toward 1/2, in the case where i > 1/2, once the public belief
drops below fi, it stays there forever; but in the case where i < 1/2, the public belief will

go above [i after finitely many periods, making attacks possible again.

5 Conclusion

In this paper, I analyze the interaction between coordination and social learning in a dynamic
regime change game. I show that contrary to the existing conclusion in the social learning
literature, informational cascades will form with coordination, even if players’ signals have the
unbounded likelihood ratio property. Hence, in any equilibrium, inefficient herding emerges,
and the status quo that can be overthrown by players’ coordination survives with positive
probability.

The key intuition for this result is that players’ decisions depend not only on the re-
alizations of their signals but also on their information structure. When players cannot
individually learn, the accuracy of one player’s estimation about the other player’s private
signal is bounded. Therefore, as the public history makes the players pessimistic ex ante,
they refrain from attacking even if their private signals favor the attacking choice, because
they cannot be confident that their opponents are also receiving “attacking” signals. If play-
ers are allowed to individually learn, one player’s estimation about her opponent’s signal
is increasingly accurate over time and becomes perfect. Thus, even if players are ex-ante
pessimistic, when one player receives an extremely strong signal favoring the attack action,
she will believe that her opponent is also receiving a signal favoring # = m, because her
estimation about the other player’s signal is accurate. Hence, with individual learning, there
are some equilibria in which the status quo is attacked infinitely many times, and thus the
status quo that can be overthrown will change almost surely.

In addition to its theoretical contribution, this paper also has an applied contribution.
There are many social, economic, and financial environments in which social learning and
coordination interact with each other. For example, in foreign direct investments, new in-
vestors are uncertain about the host country’s investment environments. They look at past
investors’ decisions and investment outcomes to socially learn. Given the coordination fea-
ture in the foreign direct investment problem, the host country may want to design an infor-
mation disclosure mechanism that can increase the correlation between the foreign investors’

information, so that it can encourage coordination and boost foreign direct investments.
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Appendix A Omitted Proofs

This section includes proofs of propositions and lemmas that are stated in the text but not

proved.
Proof of Proposition [1:

Since this proposition is about the static game, I do not use any time index in order
to simplify the notation. I first show that if a Bayesian Nash equilibrium exists, it is in
the cutoff strategies. Because signals are conditionally independent, in equation fix any
s;, Pr(s; = 1|m) is a constant number less than or equal to 1. Therefore, for any fixed
sj, player ¢’s interim payoft E, u;(1,x;,s;) is strictly decreasing in x;. Note also that since
xil_i)rgoo B, ui(1,24,85) = 1—c > 0 (dominant region of attacking) and ycl_1>1r5r100 By ui(1, 24, 85) =
—c < 0 (dominant region of not attacking), the best response to any s; is a cutoff strategy
with threshold point z; € R. Therefore, if a Bayesian Nash equilibrium exists, it is in the
cutoff strategies. Hence, I represent an equilibrium profile by (Z1, Z9).

Second, I show that if a Bayesian Nash equilibrium exists, it is symmetric; that is,
T1 = Zy. Suppose, then, that there is an equilibrium (z,Z2) with &; > Z3. Because
players are ex-ante homogeneous, there exists another equilibrium (%1, .7:)2):([)2’2, 71). Because
By ui(1, 24, 85) is strictly supermodular and E, u;(1,%;,2;) = 0, &; is strictly increasing in
Z;. Thus 33"2 = 11 > Io implies that 2, = :%:1 > 21, a contradiction.

Now consider any symmetric cutoff strategy profile (z,x). Let’s fix any public belief u
(1(0) > 0 for all € ©). Then, the interim payoff from attacking given the signal x and the

opponent’s cutoff strategy with threshold point x can be written as:

 aw)eBe—w) | um)o(y/Bla—m)) o
R ST PV sy i S v ey A AL i) S
6'cO  peo _probability j attacks

Vv vV
posterior belief about =w posterior belief about 6=m

Because G(z, ) is continuous in x, the dominant region of attacking and the dominant
region of not attacking imply that there exists z* € R such that (z*,z*) is an equilibrium.
Finally, I claim that for any fixed 3, there exists pu with u(f) > 0 for all § € ©, such
that multiple equilibria exist in this static regime change game. To show this, I only need
to show that there exists p such that there is more than one solution to G(z,u) = 0.
Because ¢ € (0,1), there is 2/ < 2” such that ®(y/B(z' —m)) < ¢ < ®(v/B(z" —m)). Then
(%21 G(z',pn) = ¢(v/B(z' —m)) —c < 0 and (}3})&1G(xﬁ’m = ®(/B(z" —m)) —c > 0.
li“herefore, when p(m) is sufficiently large, the gominant region of attacking, the dominant
region of not attacking, and the continuity of G(x, 1) in « imply that there are three solutions

to G(z, ) = 0: one in (—oo, 2’), one in ( 2’, 2”), and one in (2", +00).
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Q.E.D.

Proof of Proposition [J:

This proposition is also about the static game and, as before, I exclude the time index.
In this proof, the public belief p satisfies p(w) = 0, u(m) > 0, and p(s) > 0. First, when
p(w) = 0, for a fixed s;, E, u;(1,2;,5;) is strictly decreasing in x;, and the regime change
game is supermodular. Similar to the proof of Proposition [I], if an equilibrium with attacks
exists, it is symmetric and in the cutoff strategies. Denote a symmetric cutoff-strategy profile
by (z,x); then (z*,z*) is a nontrivial equilibrium of the regime change game if and only if
G(z*, ) = 0. Therefore, the conditions for the existence of a nontrivial equilibrium are
equivalent to those for the existence of a solution to G(z, ) = 0. Note that G(z, 1) can be
equivalently written as G(z, u) = p(m|x)g(x, 1), where

g(@, p) = [@(V/Bx —m)) — ] - C(M(m)

For any = € R, p(m|z) > 0; therefore z* is a solution to G(x,u) = 0 if and only if it is a

- 1) exp[g(s —m)(2z —s —m)].

solution to g(z, u) = 0. The rest of this proof relies on the following sequence of lemmas.

Lemma 2 There exist ji(m), u(m) € (0,1) with p(m) > p(m), such that for all p(m) €
(0, u(m)], there is no solution to g(x,p) = 0, and for all u(m) € [fi(m),1), there is x* € R
such that g(x*, u) = 0.

Proof: First consider the case in which p(m) is close to 1. Since ¢ < 1, there is an
7’ € R such that ®(v/B(z' — m)) > c. Because there exists a u(m) close to 1 such that
c(— —1) exp[g(s —m) (22" — s —m)] is very close to zero, g(«’, ;1) > 0 when p(m) is large

p(m)
enough. Note that for all u(m) € (0,1), g(m + (DI/IB(C),M) < 0 and hlf g(x, ) < 0, and
T—r+00

so by the continuity of g(z, i) in x, there exist & € (m + %, ') and & € (z',400) such

that g(#,p) = 0 and g(Z, u) = 0. Therefore, there exists ji(m) € (0,1) such that solutions
to g(z, p) = 0 exist for all u(m) € [a(m), 1).
Now consider p(m) close to 0. The last term of g(x, ) is very negative for any x larger

than m + @73(0)’ so g(x,pn) < 0 for all x > m + @:/1/3(6). Combining this with the fact that

2 (c)
VB

g(z,pu) <0 for all x < m +
g(z,pu) < 0,Vx € R.

, we get pu(m) € (0,1) such that for all u(m) € (0, u(m)],
Finally, because fi(m) can be picked as a number very close to 1 and p(m) can be picked
as a number very close to 0, fi(m) > p(m).

Lemma 3 There exists ji € (f(m),u(m)), such that for all u(m) € (0,), there is no
solution to g(x,u) = 0, and for all p(m) € (@1, 1), there are two solutions to g(x;pu) = 0.
Therefore, claims (1) and (2) in Proposition[d are true.
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Proof: Suppose 1 > p/(m) > p”(m) > 0 and 32" € (m + & '(c)/v/B,+00) such that
g(z”, ") = 0 (because all z < m + & !(c)/y/B cannot be a solution to g(z, ) = 0). Since
g(x, ) is strictly increasing in u(m) for any fixed z € R, g(z”, 1) > g(2”, ") = 0. Then
by the continuity of g(x, ') and wgrfoog(x,u’) < 0, there exists 2’ € (2”,400) such that
g(a’, 1) = 0. Similarly, if 1 > p/(m) > p”(m) > 0 and g(x; ') < 0 for all z € R, then
g(z, ") <0 for all x € R. Define i = inf{u(m) € (0,1) : 3z € R such that g(z,u) =0} =
sup{u(m) € (0,1) : g(x,u) < 0 Vz € R} (since for a given u, g(x, u) either has a solution
or does not have a solution). Obviously, ii € (u(m), u(m)).

For all u(m) € (fi, 1), note that % < 0 for all x > m and g(z, ) has a single peak in
(m, +00). Therefore, when p(m) € (fi, 1), there are two solutions to g(x, u) = 0.

Lemma 4 There ezists a unique T € (m,+00) such that g(Z, ft) = 0. Therefore, claim (3)

in Proposition [ is true.

Proof: Suppose Vz € R, g(x,i) < 0. Recall that because u(m) < 1, for any = €
(Z(f1), +00), g(x, 1) < 0 (dominant region of not attacking), where Z(u(m)) = inf{z € R :
By ui(1,24,85) < 0 for all s;}. Since E, u(1, 24, 8;) is increasing in p(m), z(u(m)) is an
increasing function in u(m). As a result, g(z, 1) < 0 for all z > Z((m)) because fi < fi(m).
Since ¢ € (0,1), there is an 2’ such that for any u, g(z, ) < 0 for all x < 2’. Now consider
the compact set [m,Z(i(m))]. By the continuity of g(z,u) in x, 3% € |[m,z(ji(m))] such
that g(z, 1) < g(@; 1) < 0. Pick a sequence {z*(m)} such that p*(m) € (i, i(m)), u*(m) >

pF 1 (m) and p*(m) — . Since g(z, ) is continuous in p(m) for any x € [m,z(u(m))],
lim g(x,u*) = g(x, ft). Defining M* = sup  |g(z, u*) — g(x, 1)], it can be calculated
Foeo w€[m.z(a(m))]
that
1 1
MF = sup —7|cexp[é(s—m)(2x—s—m)]
eelma(aimy)] HE(M)  Ji 2
1 1 3
= | == — =lcexp[5 (s = m)(22(ia(m)) — s — m)].
pr(m)  p 2
_1 c :
Therefore, Ve > 0, 3K such that for all k > K, | k(m ﬂ| < g -ty e which

implies that M* < e. Therefore, g(z, u*) converges to g(z, /i) uniformly, and there exists
K’ such that for all k > K', g(z, %) — g(z,7) < YZA thus g(z, u*) < —HZAL < o for
all x € [m,z(i(m))]. Note that for any x < m and x > x(u(m)), g(z, u¥) < 0, and so, for
all z € R, g(x, u*) < 0. But by the definition of fi, there must be some 2’ € R such that
g(z', u*) = 0. Therefore, when u(m) = i, there exists # such that g(z, i) = 0.

Now suppose that 2’ # % and g(z, 1) = 0. Because % < 0 for all z > m, there must
be z” between z/ and Z such that g(z”, i) > 0. Since g(x”,p) is continuous in p(m), for
any fixed € € (0, 42 “)) there exists v > 0 such that for all x/(m) € (g —~, 1), g(a”, p) >
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g(x”, i) —e > 0. Therefore, there exists 2" € (m, 2") such that g(z"'; 1) = 0. This contradicts
the definition of fi. Therefore, there exists a unique Z € R, such that ¢(Z, 1) = 0.

Q.E.D.

Proof of Proposition [3:

Given py and a fixed strategy profile, conditional on R;_; = 0, period-t players’ public

beliefs 11, after ht can be calculated as

12(0) TT[B(/B(60 — 22)]?

S () H (/B — 1))

0'c©

,Ut(9> , Vo ¢ @, (10)

where [®(1/B(0 — z7))]? is the conditional (on ) probability that both players in period 7
observe signals landing above the cutoff point z%. Because () > 0 for all § € ©, z7 € R by
Proposition [1} which in turn implies that p2(6) > 0 for all # € ©. Then, by induction, along
history A, () > 0 for all € ©, and z7 € R. Because of the monotone likelihood ratio
property of private signals, in any particular period t attacks occur with highest probability
in the weak state. Thus, the no-attack outcome in period ¢ lowers period-t+1 players’ beliefs
about § = w. As a result, along hf, {1 (w)}, is a bounded and strictly decreasing sequence
that converges to fioo(w) > 0. If oo (w) > 0, the dominant region of attacking has a positive
measure in the limit. Therefore, the probability of attacking is bounded away from 0, then
wy(w) — 0 by the belief updating equation ([10)). Hence, p;(w) must converge to 0. For the
probability of attacking along iLt, suppose that there is an infinite subsequence of attacking
probabilities that are bounded away from 0; that is, there exists € > 0 such that all terms in
this subsequence are greater than €. Therefore, there exists 7" such that after the history BT,
players’ public beliefs about 6 < s are so low that the cutoff points after period T should be
arbitrarily negative. But, in the subsequence, the fact that the probability of attacking is
bounded away from 0 implies that the corresponding cutoff points are bounded from below.
This contradiction implies that the probability of attacking converges to 0. Therefore, in

any fixed equilibrium, along hf, p,(w) — 0 and Pr(b, > 0|ht) — 0.

Now, let us consider the regime change probability at the state § = w. In a fixed
equilibrium, the strategy profile and the prior belief induce a probability measure P on the
outcome space © x {0, 1,2}>°. Suppose that P, and P are probability measures induced on
© x {0,1,2}* by P, conditioned on the state w and the set {m, s}, respectively. Hence,
P = pio(w)Py, + (1 = pio(w))P.
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The sequence {p(w)}; is a bounded martingale adapted to the filtration F*, which
is generated by the history H' under the measure P. Therefore, {u;(w)}; converges P —
almost surely to pe(w). Since P, is absolutely continuous with respect to P, u(w) —
oo (w), Py, — almost surely.

Now, suppose that there is a set A C {0, 1,2}* such that u.(w)la] = 0,Va € A, and
P,(A) > 0. Bayes’ rule implies that the odds ratio {(1—p(w))/u(w)}, is a P, —martingale,
and so E[=4ll] — il for all . However, B[1=Ltll] — E[alidy(A)] + B[E00) (1 —
X(A))], where x is the indicator function. Obviously, the second term is nonnegative, while

the first term is greater than %OSJ) for very large ¢, since poo(w)(a) =0, Va € A, which

leads to a contradiction. Therefore, pio(w) > 0,P,, — almost surely.
Since, along A, i, (w) = piee(w) = 0, ht is a 0 measure event under P,,. As a result, the
regime changes almost surely when the status quo is weak (because h>° is the only outcome

in which the weak status quo never changes).

Q.E.D.

Proof of Lemma [1]:

As t increases, the precision of players’ signals increases. Because players are still short-
lived, how [i; changes over time is equivalent to how £ changes as [ increases in the static
game.

Recall that i is the belief about § = m, where there is a unique * € R such that
G(z,1) = 0 (where fi(w) = 0). Since G(z,f) < 0 for all z # &, G'(Z,i1) = 0. As in
Proposition [2] instead of studying G(z, f1) directly, it is easier to study the function g(z, i) =
[D(+/B(x—m))—c|— c(% -1) exp(g(s —m)(2z —s—m)). Since 7 is also the unique solution
to g(z, 1) =0, ¢'(Z, 1) = 0. That is,

[B(/B(@ ~m) ] = (5 ~ Dexp( (s~ m)(25 5 - m)) = 0
1

¢(v/B(@ —m)) — /B(s — mje(z ~ 1) exp(g(s —m)(2 —s—m)) = 0.

A comparative static analysis shows that, for large £, i is decreasing in f3.

A necessary condition for the above system of equations is ®(v/8(z—m))—c = %

The right-hand side obviously goes to 0, as 8 goes to +00. Therefore, as S goes to +oo,
®(y/B(Z —m)) goes to ¢, which implies that /B(Z —m) goes to ®1(c). Hence, as § — +o0,
exp(2(s — m)(2% — s —m)) goes to exp(—%ﬁ + ®7!(c)(s — m)y/B). Suppose that ji is
bounded away from 0 as 5 goes to +o00; then (% -1) exp(—%,@—{— d~1(c)(s —m)/pB) and
VB(; —1) exp(—%ﬁ +®~1(c)(s —m)y/B) both go to 0. Hence, ¢'(Z, 1) > 0, which leads
to a contradiction. Hence, as § — 400, i — 0.
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Q.E.D.

Proof of Proposition [3]:

From part 2 of Proposition [2] after § = w is ruled out, when p,(m) > f, period-t
players can employ a cutoff strategy that they attack if and only if their signals are below
x> m+ & 1(c)/\/tB8. Then, as t goes to +oo, =} goes to m. That is, for any € > 0, there
is a 7' € N such that for all t > T, 2y > m — e. Therefore, x; is bounded from below.

Now we can construct an equilibrium in which the medium status quo changes almost
surely. When # = w has not been ruled out, period-t players employ the strategy specified
in Proposition If 6, is ruled out, period-t players refrain from attacking if p,(m) < fi,
and they employ the strategy with a finite threshold as in part 2 and part 3 of Proposition
if pi(m) > fig. Finally, if both § = w and 6 = m are ruled out, no subsequent player attacks.

I am now in the position to show that the medium status quo changes almost surely
in such an equilibrium. First, as in Proposition [3| the outcome of no attack in any period
cannot occur with positive probability. Therefore, § = w will be ruled out almost surely.
Second, after § = w is ruled out, if p;(m) < fi; in some period ¢, players do not attack, no
matter what their signals are. Thus, the no-attack outcome will not convey new information
to subsequent players, implying that the public belief about § = m stays at p;(m) until
some period 7 > t with p,(m) > fi;(m). By Proposition , such a 7 always exists for any
t. Therefore, period-7 players will attack if and only if their signals are above z}, which is
bounded from below. This implies that in period 7, the medium status quo changes with a
probability that is bounded away from zero. Since there are infinitely many periods in which
the medium status quo changes with a probability bounded away from zero, the medium

status quo changes almost surely.

Q.E.D.
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Appendix B Online Appendix (Not for Publication)

Appendix B.1 Belief Convergence in Different Equilibria

After the weak status quo is ruled out, Proposition [4] implies that, in all equilibria, along
the outcome h*, public beliefs about the medium status quo converge to pi.o(m) € (0,1).
This convergence exists because players stop learning from the public history after some
period. Now, let’s consider an outcome along which players never stop learning from the
public history after the weak status quo is ruled out; that is, public beliefs about the medium
state change over time. Will y;(m) necessarily converge to 1, if the status quo is medium?
This subsection shows that the answer to this belief convergence question differs in different
equilibria.

Let’s first define two classes of equilibria that have nice properties and are easily analyzed.

Specifically,

Definition 1 E™* = {(z},})i=1._, (14} )t=1,...} is the equilibrium in which, given uf, for any

(x},x}) forming a static equilibrium in period t with prior belief u}, x, < xj.

Definition 2 E™" = {(x}, 2} )t=1,..., (147 )t=1,.. } 1s the equilibrium in which, given pf, for
any (x;,x}) forming an equilibrium in period t with prior belief u; and x, € R (if it exists),

xf € R and xf < xy; if there is no such x}, then xj = —oo.

Therefore, E™* is the equilibrium in which players choose the most aggressive strategy in
their own period, and E™™" is the equilibrium in which players choose the lowest possible
cooperation strategy in their own period. Figure [l|shows how the cutoff points in £ and

E™" are determined, when p(w) = 0 and p(m) > fi.
Gx, u)

E™n cutoffs Em=* cutoffs

G(x, u3)

Figure 1: Function G(xz; u) with pg(m) > pa(m) > i(m) > pi(m).



Fix an equilibrium. Suppose the weak status quo has been ruled out by period ¢, and
there is an attack by one player in period t. Then, given u;, how period-t + 1 players form
their public beliefs about the medium status quo depends on the threshold point of period-t

players’ strategies.

Lemma 1 Given uy, suppose the attack by one player in period t fails. Then |peiq(m) — p(m)]

m+s
2

m+s

18 strictly increasing in ‘xt — 5 -

|. Moreover, pyi1(m) > p(m) if and only if x; <

Proof 1 (Proof of Lemma Suppose the weak status quo has been ruled out by period t.

Given pu, by =1, and xj, Bayes’ rule implies

pipi(m) = () @y/B(w; — m)|@V/B(m — 7))
! ne(m) @[V/B (27 —m)]@[\/Blm — xp)] + (1 = pue(m))@[V/B(x; — )| @[VA(s — a7
pe(m)

o[y/B(a;—s)O[VB(s—z})]
we(m) + (1 — Mt(m))@{ﬂ(x;t—m)]é[x/ﬁ(m*;m

)]

Obviously, if x; = ™52 1 (m) = pu(m).
In the equilibrium, when p,(w) =0, 7 > m. Now, consider the case ' and x, such that

m <z’ <x <™. (The case ™ > x > 2 is similar.) Then

O[VB(2' —s)] < ©[V/B(z — )] < % < ®[V/B(z' —m)] < ®[y/Blx —m)).

Because the function f(y) = y(1—y) is strictly concave and has the maximum value at y = %,

we get

O[VEB(z — s)Ie[VB(s —2)] _ PVB(' — s)]R[VB(s —a')]

OBz —m)|@[VB(m — )]~ O[VB(z' —m)]®[VB(m —a')]’
which implies that given p; and by = 1, pe1(m) is strictly decreasing in x}. Since ®[\/B(zx —
s)] < 5 < ®[V/B(x —m)] for x € (m,™=2), we get

C[VB(x — 5)]@[VB(s — z)]
O[vB(x —m)]|@[VB(m — z)]

m+s
5 -

< 1.

Therefore, jies1(m) > po(m) if 2} <

Because only the medium state and the strong state are in the support of period-t + 1

players’ public beliefs, if z; = m;r £ then b, = 1 is neutral in terms of belief updating. Hence,

m+s
2

the further z7 is away from , the more informative the attack by one player in period ¢

is.

To simplify the analysis, I assume that z < m;“ 2. (Recall that T is the solution to the
equation G(z, i) = 0, where fi(w) = 0 and max G(x, 1) = 0.) Also, denote by x the public
belief that y/(w) = 0 and ™} is the largest solution to the equation G(z, ') = 0. I focus

on the evolutions of the public belief along the history h> = (1,1,...), in which exactly one

2



player chooses to attack in every period. Note that though A% occurs with 0 probability,
any t-period long history ht = (1,1,...,1) occurs with positive probability.

Proposition 1 When 6 = w is ruled out, the public belief about 8 = m evolves differently in

m+s .

different equilibria along the same history. In particular, suppose that T < ; then, along

the outcome h™, we have

1. in E™ |y (m) monotonically converges to p'(m) € (0,1). Thus, conditional on 6 = m,
the probability of attacking converges to CD[\/TB(S —m)l;

2. in E™" uy(m) converges to 1. The probability of attacking is strictly decreasing over
time; and conditional on 6 = m, the probability of attacking converges to c, the cost of

attacking.

Proof 2 (Proof of Proposition (1)) Part 1: When the weak status quo is ruled out, fi;11(m)
is a function of u(m). Then Lemma implies that this function has a unique fixed point in
(fi,1). Therefore, I only need to show that this fized point is stable, which is equivalent to
showing that the slope 0 < dp41(m)/du(m) < 1. Since

s (m) = pue(m) @[/ Bl — m)]@[y/B(m — 7))
: pu(m)@[y/B(; — m)|@[VB(m — x)] + (1 = ju(m)) [/B(w} — )| @[v/B(s — a7)]

"
Ox;

L,E Ot (m)

it follows that M&fn)) =1, and -1 < 8‘“8*;( m)
i@ i

fore, 0 < dptpy1(m)/dpe(m) < 1.
Part 2: Along the history h',

<0 when B is large. There-
0,z

fre+1(m) = E )(D B s :
p(m) + (1= () 11 SRR,
m+s m+s

Because & < , the smallest solution to the equation g(x, p;) = 0 is strictly less than

2
for all t. Combmmg this with the fact that =7 > m, we get uy(m) — 1. Since g(x}, ;) =0

for all t, ®[/B(z; —m)] — c.

The intuition of Proposition [1]is illustrated in the following figures. Figure[2|and Figure
present u.41(m) as a function of 1, (m) along the outcome A% in E™* and E™" respectively.

In Figure , 1/ (m) is the unique fixed point in (f,1). Therefore, in E™* along hee, pe(m) —

/(m), which implies that the cutoff point converges to ™ and that the probability of
attacking converges to @[‘/TE(S —m)]. In Figure , the unique fixed point greater than f is 1,
and it is stable. This means that along h*°, u;(m) — 1. Hence, the probability of attacking
converges to c. Thus, the equilibrium strategy profile in the limit purifies the mixed strategy

Nash equilibrium of the complete-information normal-form game when 6 = m. (In fact, in

3



the complete-information normal-form game, when 8 = m the mixed strategy equilibrium is
the lowest possible coordination equilibrium.) The monotonicity stated in Proposition |1} can
be seen in Figure [I} if py1(m) > pe(m), g(x, pry1) > gz, pe), V& > m, and so xj,, >} in

E™®® and x| <z} in E™,

B (m) '
/',./'
>
T R — -
ﬁm /’J:\.
-
o
b
».g
#
A
ol
° fim ) )

Figure 2: Evolution of Public Beliefs in E™%*.

o, (m)

0 - u (m)

Figure 3: Evolution of Public Beliefs in £™™",

Proposition |1{shows that along the outcome h>°, the convergence of y;(m) differs in £

and E™". In E™* the failed attack by one player in period ¢ results in pyy1(m) strictly

between p;(m) and g/(m), which in turn implies that xy,, is strictly between z; and 5=
(see Figure [I]). Hence, b;y; = 1 is less informative than b, = 1 by Lemma |1} Because the
attack by one player is less informative over time, the public belief about the medium status
quo converges to p'(m) € (0,1). Conversely, in E™" the attack by one player is increasingly
informative over time because the threshold points of players’ strategies are decreasing over
time (in Figure|l] all threshold points in E™" are less than *£™). As a result, in E™", along
h®, i (m) converges to 1. Put differently, along the same outcome h*, in E™** the public

history provides decreasingly informative evidence over time, and so the social learning is

4



incomplete. But in E™", the public history provides increasingly informative evidence over

time, and so the social learning is complete.

Appendix B.2 Persistent Status Quo

In this section, I study the extension with persistent, but not constant, status quos (described
in more detail in Section of the paper).

I assume that the strength of the status quo, €, changes over time according to a first-
order Markov process. To make the symbols simple, I consider two cases separately. In the
first case,

Pr(0yy1 = wlby = k) = ag, k € {w, m, s}. (1)

Without loss of generality, I assume that o, > «,, > a, > 0. In the second case, I assume
that
Pr(6;1 = w|f, = m) = Pr(0,51 = w|0, = s) =0, (2)
and]
1

Pr<9t+1 = m|9t = m) = Pr(9t+1 = S’et = S) =7v7c (5, 1) (3)

That is, once the status quo becomes medium or strong, it will no longer be weak. Yet, a
medium status quo can become strong, and a strong status quo can become medium.

Let us first analyze the first case. Denote by (;_; the posterior belief about # at the end
of period ¢t — 1, given the period ¢t — 1 public belief (y;_1), period-t — 1 players’ actions (b;_1),
and the no-regime-change outcome in period-t — 1 (R; = 0). Then, (;_;, together with the
transition rule in equation , leads to period-t players’ public beliefs about 6; = w:

pe(w) = Go1(w)ouy + Go1 (M) + Go1(s) s > . (4)
Therefore, in each period t, the players’ public beliefs about 6 = s are at least a,. Now,
consider the most pessimistic public belief in period t:
p(w) = ag, pe(m) =0, and fu(s) =1 — a;.

Equation in the paper thus implies that each period-t player attacks if and only if her

signal is below zf, which is determined by

asp(VB(r} — w))
asd(vVB(x} —w)) + (1 — ay)d(VB(z] — s))

Due to the monotone likelihood ratio property and the unbounded likelihood ratio property

= c. (5)

of the standard normal distribution, there is a unique solution, x*, to equation ({5), which is

determined by «y, 5, and c.

IThis is robust if the transition rule is asymmetric.



In any period t, because p;(m) = as > 0, players have the dominant region of attacking.
Thus, in every period, players will employ a cutoff strategy in which they attack if and
only if their signals land below some threshold. In particular, the threshold in any period is

bounded from below by x*. This leads to the prediction of the status quo.

Proposition 2 When the status quo is persistent, but not constant, over time, and the

transition rule satisfies the property in Equation , the regime changes almost surely.
Proof 3 (Proof of Proposition In each period t, the regime changes with probability

Pr(b; > 1 and 0, = w)
Pr(b; > 116, = w) Pr(6; = w)

> BB} —w))m(w)
> B(\/B(r" —w))as
> 0.

Since the regime change probability is bounded away from zero in every period, the regime

changes almost surely.

Now, let us analyze the second case, in which once the status quo becomes medium or
strong, the status quo can no longer be weak. In this case, I allow the strength of the status
quo to vary between § = m and § = s, and the transition probability to follow equation (/).

If the weak status quo is constant over time, Proposition [3| shows that the weak status
quo is overthrown almost surely. If the weak status quo is only persistent, but not constant,
over time, then, because the state will not change from medium or strong to weak, the status
quo will become medium or strong almost surely. Therefore, without loss of generality, I
analyze the case where 6 = w is ruled out. Proposition [3| below summarizes the regime

change results in this case.

Proposition 3 Suppose the strength of the status quo is mot constant but persistent. In
addition, let the transition rule of the strength of the status quo satisfy equation and
equation ; then

1. if i > 1/2, in any equilibrium the status quo survives with positive probability; and

2. if i < 1/2, there are equilibria in which the status quo changes almost surely.

Proof 4 (Proof of Proposition Without loss of generality, I assume that 0 = w 1is
ruled out in period Ty due to a failed attack by one player. Because of equation , all

subsequent players know that 6 must be either m or s in subsequent periods. It follows from



the transition rule described by equation that there exists a unique stable distribution over
{m, s} in which the probability of 6 = m is 1/2. I can now show that the regime change result
depends upon whether fi > 1/2.

Let us look at part (i) first. There are two cases. First, if ur,+1(m) < fi, no player
attacks in period Ty+ 1, and thus the no-attack history will not convey any new information.
Yet, subsequent players’ public beliefs about 6 = m will all be below fi: if pr,41(m) < 1/2,
the public beliefs are increasing over time, but it is bounded above by 1/2, and so, for any
t>To, ue(m) < fi; if 1/2 < pry41(m) < fi, the public beliefs are decreasing, and so, for any
t > To, pe(m) < fi. Therefore, in any equilibrium, if pr,+1(m) < fu (recall that period Ty is
the time when 0 = w is ruled out), the regime will not change.

In the second case, pr,+1(m) > fi, and so, at least in period Ty + 1, players can employ
a strateqy that induces a positive attacking probability. However, if there is no attack in
a period when players attack with positive probability, the subsequent players’ public beliefs
about 0 = m, p(m), will decrease. Then, after Q) attacking periods, p(m) will be below [,
which leads to no subsequent attack. Since Q) is finite, such a history will be reached with
positive probability. Hence, in any period, with positive probability the regime will not change.

Next, I show that part (i) is valid. Let us consider the lowest public belief about 6 = m.
Because even if 0, = s, Pr(0,.1 = m) = 1 — ~, the lowest public belief about 6 = m 1is
1 —~. I construct an equilibrium as follows. When p,(m) < fi, no player attacks; if the
attack in period T fails, all players refrain from attacking from period T + 1 to period T+ Q,
and period-T + Q) + 1 players attack. Here, () is sufficiently large, so that if in period t,
pe(m) =1 —~, we still have pyo(m) > fi. Since fi < 1/2, when p,(m) < fi, the public belief
keeps increasing, and there will be a finite Q) such that the above conditions hold. Therefore,
in such an equilibrium, there are a potentially infinite number of attacking periods.

In each attacking period, we must have p,(m) > 1 — . Also, given this, we also see that
the players’ threshold in an attacking period is higher than x, implying that if period t is an
attacking period, the probability that both period t players attack is bounded from below. Now,
since there are infinitely many periods in which the regime change probability is bounded from
below, the probability that there is one period in which & = m and both players attack is one.

That is, the regime changes almost surely.

Appendix B.3 N-Player (N + 1)-State Dynamic Regime Change
Game

The core model has three possible levels of strength of the status quo (|©] = 3) and two
new, short-lived players in each period. I now extend the core model to a dynamic regime
change game with N new, short-lived players in each period and N + 1 possible levels of the

status quo strength.



Suppose that © = {my,...,myy 1} with N > 2 and that m; < mg < -+ < my,1 is the
set of states. When 6 = my, the regime changes if and only if at least k players choose to
simultaneously attack. Hence, when 6 = m;, attacking is the dominant action for players
because one player can trigger regime change by attacking. When 6 = my.1, not attacking
is the dominant action for players, because at least N + 1 attacks are required to trigger
regime change, but the maximum number of possible attacks is N. In all other states, players
may cooperate at different levels.

Unlike in Proposition [T] and Proposition 2] given some strategy profile of other players
s_;, the best response of player ¢ need not be a cutoff strategy. For example, when all other
players choose to attack the status quo if and only if their private signals are in a small
neighborhood of my, player ¢’s best response is to attack the status quo when x; convinces
player ¢ that 6 = my. Therefore, in this extension, I focus only on monotone equilibria in
which players’ strategies are decreasing in their own private signals (i.e., the players attack
for low private signals, and do not attack for high private signals). Lemma [2| below shows
that if all other players follow these kinds of strategies, player i’s best response is a cutoff

strategy to attack for low signals, and not to attack for high signals.

Lemma 2 In an N-player N + 1-state static regime change game, if S; is a cutoff strategy
such that S; =1 if v; < z; and S; = 0 if x; > z; for all players j # i, then player i’s best
response is a cutoff strateqy such that S; =1 if x; < x; and S; =0 if z; > T;.

Proof 5 (Proof of Lemma I prove this lemma using the general private signal struc-
ture mentioned in footnote 4 of the paper. Let Ly(x) = ;Ezm’;; be the likelihood ratio, then
Li(z) is increasing in x for all k and Ly(x)/Ly(z) is increasing in x for any k > k.
Giwen S; such that S; = 1 if x; < Z; and S; = 0 if x; > Z; for all players j # 1, if

player i chooses to attack, then conditional on 0 = my, the probability of regime change is

Zy. = Pr(there are at least k — 1 players choosing to attack besides player i|lmy). Note that
Zy 1s independent of x;, and Zy1 < Z < 1 for all k = 1,2,...,N. Hence, the interim

payoff of player i when she observes private signal x; and chooses to attack is:

N
> pLi(xi) Zy,

ui(zi, S—;) = k;il

1;::1 pie L () |

Now, consider two private signals of player i: x and x’' with x < z’. Denote Ly(x) = Ly and



Ly(«") = L. Then,

Ui(% S—i) - Ui($/, Sfi)

— %[(Z MkLka)(Z L) — (Z NkL;cZk)(Z po L))

N

N
= é{z > g LiLl — LyLo)(Zk — Zg) + piner Y (Llyoy Li — Lve1 L) Zi ).
k=1 q<k k=1

Each term in the first part is positive because Ly Ly — L) Ly < 0 and Zy,— Z; < 0 for all ¢ < k.
Every term in the second part is also positive because Ly, Ly — Ly L), > 0 for all k < N.
Therefore, u;(x,S_;) is decreasing in x. Together with the dominant region of attacking and
the dominant region of not attacking, this monotonicity implies that player i’s best response
1s also a cutoff strategqy such that S; = 1 if x; < x; and S; = 0 if x; > T;.

Because of the strategic complementarity, if a monotone equilibrium exists, it is symmet-
ric. Similarly to the proof of Proposition [I} a monotone equilibrium can be shown to exist
for any interior prior belief. Also, there exists fi(my41) € (0,1) such that when my is ruled
out (and hence all states my, k' < k are ruled out) and the public belief about 6 = my,4 is
greater than ji(my.1), the unique rationalizable action for any private signals is not to at-
tack. Hence, restricting attention to monotone equilibria, the static game analysis is similar
to that of the core model.

For any fixed monotone equilibrium, the eventual outcome of regime change in this
extended model is similar to that of the core model. When 6 = m;, an N + 1 state version
of Proposition [3| implies that the status quo changes almost surely. When 6 = my_4, by
assumption, the status quo never changes. For any state my (1 < k < N+1), inefficient herds
form, and the informational cascades result in coordination failure. This result can be shown
by analyzing the dynamic of attacking along the outcome h* = (1,0,0,...). The attack
in the first period by one player cannot be successful conditional on my (1 < k < N + 1),
and so players lose the dominant region of attacking from the second period on. Then the
fact that no attack occurs in a large number of periods promotes players’ public beliefs
about 8 = myy; above fi(my.1). Consequently, inefficient herds emerge, and coordination

is impossible.
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