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Nonlinear Correlated Random Effects Models with Endogeneity
and Unbalanced Panels

Michael D. Bates∗, Leslie E. Papke†, Jeffrey M. Wooldridge ‡

July 18, 2024

Abstract

We present simple procedures for estimating nonlinear panel data models in the presence of

unobserved heterogeneity and possible endogeneity with respect to time-varying unobservables.

We combine a correlated random effects approach with a control function approach while ac-

counting for missing time periods for some units. We examine the performance of the approach

in comparisons with standard estimators using Monte Carlo simulation. We apply the methods

to estimate the effects of school spending on student pass rates on a standardized math exam.

We find that a 10 percent increase in spending leads to an approximately two percentage point

increase in math pass rates.
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1 Introduction
Unbalanced panel data – where some units do not have a complete set of observations in some

time periods – are prevalent in empirical work. Researchers have documented unbalancedness

stemming from both intermittent non-response and early attrition in panel surveys used in research

in labor, public, and development economics. Aughinbaugh (2004) and Falaris and Peters (1998)

note yearly non-response rates of three to four percent in the 1979 National Longitudinal Survey

of Youth. Fitzgerald (2011) notes that only one-third of the children from the 1968 round of the

Michigan Panel Survey of Income Dynamics remain in the data by 2007. Alderman et al. (1999)

find significant annual attrition rates in household surveys from seven different developing countries

that range from two to 20 percent.

As is well known, unbalanced panel data in a linear model context can be handled by fixed ef-

fects estimation provided the selection is based on observed variables or unobserved, time-constant

heterogeneity; see, for example, Wooldridge (2019). When explanatory variables are endogenous

with respect to time-varying unobservables, Joshi and Wooldridge (2019) show how linear fixed

effects and control function methods can be applied to unbalanced panels for estimation and spec-

ification testing. But as pointed out in Wooldridge (2019), unbalanced panels cause significantly

more difficulties in nonlinear panel data models. Wooldridge (2019) proposes a correlated random

effects (CRE) approach to allow the heterogeneity to be correlated with time-constant functions of

selection indicators for general nonlinear panel data models. The CRE approach allows explanatory

variables also to be correlated with time-constant unobservables – so-called “unobserved heterogene-

ity.” In some cases, however, one might be concerned that a key explanatory variable is correlated

with unobserved time-varying variables. In the panel data literature, this is called a failure of the

“strict exogeneity” assumption. Failure of strict exogeneity is often due to omitted time-varying

variables, or feedback from shocks to future outcomes of the explanatory variables. Simultaneity

and (time-varying) measurement error can also cause failure of strict exogeneity.

In this paper, we extend Wooldridge (2019) to the estimation of nonlinear models in the presence

of unbalanced panel data when the covariates may be endogenous with respect to time-varying un-

observables as well as time-constant heterogeneity. Our work can also be viewed as extending Joshi

and Wooldridge (2019), who consider linear models with unbalanced panels, to a nonlinear context.

When the outcome variable is limited in some way – such as being binary or a fractional response
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– nonlinearity can be important along with endogeneity as a function of idiosyncratic shocks, as

demonstrated in Papke and Wooldridge (2008) with balanced panel data. When explanatory vari-

ables are allowed to be endogenous with respect to idiosyncratic shocks, we require time-varying

instrumental variables that are exogenous with respect to those shocks. As in Wooldridge (2019) and

Joshi and Wooldridge (2019), our key assumption is that the missingness of data is not correlated

with idiosyncratic shocks.1 To summarize: we extend Wooldridge (2019) by allowing endogeneity

with respect to time varying shocks, we extend Joshi and Wooldridge (2019) by allowing a nonlinear

response function, and we extend Papke and Wooldridge (2008) to allow unbalanced panels.

The approach we take is to combine the CRE approach for unbalanced panels – which we refer

to as “CREU” for shorthand – with the control function approach when strict exogeneity fails. In

other words, we combine the best features from these two approaches to allow nonlinear models with

unbalanced panels and endogenous explanatory variables. We consider different strategies for allow-

ing correlation between unobserved heterogeneity and the selection indicators. We are specifically

interested in comparing the CREU approach for nonlinear fractional response models, implemented

using pooled quasi-maximum likelihood estimation (QMLE), with standard fixed effects estimation

strategies for linear unobserved effects models. We find that the CREU approaches perform compa-

rably to the CRE approach that ignores the unbalanced nature of the panel and linear fixed effects

estimation in uncovering average partial effects (APEs), but the CREU approach provides efficiency

gains in estimating APEs. Further, because the fractional response model is nonlinear, we are able

to study partial effects at different values of the key explanatory variables.

We illustrate our approach with an empirical application in the economics of education literature:

estimating the effects of school spending on school pass rates of fourth graders on the Michigan

state mathematics standardized exam. Papke (2005) used unbalanced school-level data and linear

models estimated by fixed effects and instrumental variables. Given the bounded nature of the

pass rate, a linear model may not be the best way to estimate average effects or effects at different

points in the spending distribution. Papke and Wooldridge (2008) showed how to adapt fractional
1While this assumption can be violated, all standard estimation methods – even in linear models – rule out the

possibility that selection is correlated with shocks. As with the usual fixed effects and fixed effects IV estimators of
linear models, we allow selection to be correlated with unobserved heterogeneity. Allowing selection to be correlated
with the shocks is considerably more difficult. Wooldridge (1995) and Semykina and Wooldridge (2010) show how to
allow this in the context of linear models. We leave to future research the possibility of extending selection methods
to fractional responses.
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response models to a panel data setting, but they assumed a balanced panel and applied a combined

correlated random effects/control function approach to balanced district-level data. We reexamine

the results from Papke (2005) while accounting for the unbalancedness of the school-level data

and the bounded nature of pass rates. While we find some evidence of correlation between school

spending and unbalancedness, our results largely uphold the evidence presented in Papke (2005):

a 10% increase in spending leads to an approximately two percentage point increase in math pass

rates, though our inference is sensitive to specification and level of clustering. These results are also

similar to those in Papke (2008) using the balanced district-level data.

We organize the remainder of the paper as follows. In Section 2 we present the model and

estimation methods, considering first the case where all explanatory variables are exogenous with

respect to the time-varying unobservables. We then derive a method that combines an extended

version of the Mundlak (1978) device and a control function method to allow some explanatory

variables to be correlated with time-varying unobservables. We present our simulation evidence in

Section 3. In our application in Section 4, we demonstrate estimation with and without requiring

school spending to be strictly exogenous with respect to idiosyncratic shocks in determining the

effects of spending on fourth-grade math pass rates. Section 5 concludes.

2 Model and Estimation
We begin with a population from which we draw a random sample of N cross-sectional units.

For each random draw i from the cross section, there are potentially T observations across time, t

= 1, ..., T , containing an outcome, yit, and a vector of observed covariates, xit. Except for specific

functional form and distributional assumptions, the approach proposed here applies to nonlinear

models in general, but we focus on the case where yit is a fractional response that may take values

at the endpoints in [0, 1]. Along with the xit, we expect unobserved heterogeneity, ci, to play a

role in determining yit. In non-experimental settings, it is likely that ci is correlated with at least

some components of xit. We use a correlated random effects strategy to allow all elements of xit

that vary somewhat across i and t to be correlated with ci. When one or more elements of xit is

correlated with underlying idiosyncratic shocks to yit – to be made precise shortly – we will assume

the availability of some time-varying instrumental variables. Then, zit will denote the vector of all

variables strictly exogenous with respect to shocks. We still allow all elements of zit to be correlated
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with ci.

To account for the unbalanced nature of the panel data, we introduce a selection indicator –

also known as a “complete cases” indicator, sit. This indicator is one if we observe the outcome, all

covariates, and any instrumental variables for unit i in time t. It is important in what follows that

only the complete cases are used, as using incomplete cases generally requires more assumptions and

more complications. The default of estimation methods in econometrics packages is to use a data

point only if all necessary variables are observed, and that is what the definition of sit captures.

Therefore, sit = 1 means we use observation (i, t) in the estimation and sit = 0 means we do not.

The series of selection indicators for unit i is {si1, ..., siT }.

2.1 Strict Exogeneity

We begin with the case where the explanatory variables are strictly exogenous conditional on

the heterogeneity. The population model, written for a random draw i, is

E(yit|xi, ci) = E(yit|xit, ci) = Φ(xitβ + ci), t = 1, ..., T, (1)

where xi = (xi1, ...,xiT ) is the entire history of the covariates and Φ(·) is the standard normal

cumulative distribution function. Our use of Φ rather than some other cumulative distribution

function leads to simple procedures in the presence of unobserved heterogeneity and easy calculation

of average partial effects. It is also convenient when we have endogenous explanatory variables

because mixing two normal distributions still gives a normal distribution.

To account for sample selection, let si = (si1, ..., siT ) be the entire history of selection. We

assume that, conditional on xi and the unobserved heterogeneity, selection is strictly exogenous in

the following sense:

E(yit|xi, si, ci) = E(yit|xi, ci), t = 1, ..., T (2)

This assumption allows selection to be arbitrarily correlated with both the explanatory variables

and unobserved heterogeneity – because we are conditioning on them – but rules out correlation

between selection and unobserved idiosyncratic fluctuations in the outcome.

Following Wooldridge (2019), we use a correlated random effects approach to specify a model
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for the following conditional distribution:

D(ci|{(sitxit, sit) : t = 1, ..., T}), (3)

where multiplying the covariates by the selection indicator reflects our usage of complete cases only.

Generally, Wooldridge (2019) suggests modeling (3) as fairly simple time-constant functions, say wi,

of {(sitxit, sit) : t = 1, ..., T} that effectively act as sufficient statistics in the relationship between

the covariates and selection. It is natural to extend the Mundlak (1978) device to the unbalanced

case by using the time averages

x̄i = T−1i

Ti∑
t=1

xit,

where Ti =
∑T

t=1 sit is the number of complete cases for unit i. (If Ti = 0, then there are no complete

time periods for unit i, and such units are not used in the estimation). To handle correlation between

ci and selection, we use a flexible mean specification where the intercept and slopes can depend on

the number of complete cases, as given by the indicators 1 [Ti = r], which are one if and only if unit

i has r complete cases. Then,

E(ci|wi) =
T∑

r=1

ψr1[Ti = r] +
T∑

r=1

(1[Ti = r] · x̄i) ξr. (4)

If we also assume D(ci|wi) is a normal distribution, then we have

E(yit|xit,wi, sit = 1) = Φ

(
xitβ +

∑T
r=1 ψr1[Ti = r] +

∑T
r=1 1[Ti = r] · x̄iξr

{1 + V ar(ci|wi)}
1
2

)
, (5)

because a mixture of independent normal distributions is normal. Equation (5) extends Papke and

Wooldridge (2008), who assumed V ar(ci|wi) is constant, to the case of unbalanced panels. Rather

than assume V ar(ci|wi) is constant, it is natural to allow, at a minimum, the variance of ci to vary

with the number of complete cases. A simple way to do this is

V ar(ci|wi) = exp

(
τ +

T−1∑
r=1

1[Ti = r]ωr

)
, (6)

where exp (τ) is the variance for the complete-cases base group (Ti = T ) and each ωr captures the
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deviation from the base group.

Combining (5) and (6), we have

E(yit|xit,wi, sit = 1) = Φ

xitβ +
∑T

r=1 ψr1[Ti = r] +
∑T

r=1 1[Ti = r] · x̄iξr{
1 + exp

(
τ +

∑T−1
r=1 1[Ti = r]ωr

)} 1
2

 . (7)

For all r ≥ 2 these scaled coefficients are identified as long as there is some time variation in all

elements of xit and no perfect collinearity among the elements of xit.

Given the expression (7) for the conditional mean, we can follow Papke and Wooldridge (2008)

in estimating the parameters using a pooled quasi-maximum likelihood approach with the log-

likelihood being chosen to be that for the Bernoulli distribution. Given the functional form in (7),

the pooled quasi-log-likelihood function is equivalent to that from a particular heteroskedastic probit

model, where the heteroskedasticity function is 1 + exp
(
τ +

∑T−1
r=1 1[Ti = r]ωr

)
. As a practical

matter, we can drop the “1+” term because we allow an intercept τ inside the exponential function.

The resulting parameters in the “mean” function, xitβ+
∑T

r=1 ψr1[Ti = r]+
∑T

r=1 1[Ti = r]·x̄iξr, get

rescaled, but this does not affect estimating the magnitudes of the effects. It is easy to use software,

such as Stata, that has a command for estimating fractional response models with heteroskedasticity.

In obtaining proper standard errors and inference, we obtain a cluster-robust variance-covariance

matrix estimator that accounts for heteroskedasticity, serial correlation, and the fact that in the

fractional response case, the variance V ar(yit|xit,wi, sit = 1) does not have the same form as when

yit is a binary variable. Our approach applies immediately to the binary response case, as its mean

is the same as the response probability, which we take here to be probit.

Estimating the average partial effects – the quantities typically of interest – requires some care

if data are missing on the xit. At a minimum, we can plug in reasonable values of the covariates

and average across the functions of (xi, si) that act as proxies for the heterogeneity. This leads to

ÂPEj (xt) = β̂j

N−1 N∑
i=1

φ

xtβ̂ +
∑T

r=1 ψr1[Ti = r] +
∑T

r=1 (1[Ti = r] · x̄i) ξ̂r

1 + exp
(
τ̂ +

∑T−1
r=1 1[Ti = r]ω̂r

)
 .

It is harder to obtain an effect averaged across the distribution of xit because data may be missing
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as a systematic function of xit. The simplest approach is to average the APEs across the selected

observations:

ÂPEj = β̂j

N−1 N∑
i=1

T−1i

T∑
t=1

sitφ

xitβ̂ +
∑T

r=1 ψr1[Ti = r] +
∑T

r=1 (1[Ti = r] · x̄i) ξ̂r

1 + exp
(
τ̂ +

∑T−1
r=1 1[Ti = r]ω̂r

)
 .

As an extension, x̄i can be added to the variance function along with interactions between the

dummies 1[Ti = r] and x̄i.

2.2 Endogenous Explanatory Variables

In many applications, researchers are hesitant to assume strict exogeneity of covariates. In our

application, we worry that deviations in school spending may be linked with unobserved fluctuations

in student performance. This may come from unobserved demands of cohorts or accountability

pressure, as depicted in Chiang (2009).

Here we present a straightforward approach to handle endogeneity of an explanatory variable

yit2 in nonlinear panel data models in the presence of unobserved heterogeneity and panel imbal-

ance. We first assume the presence of instrumental variables zit2 that are both relevant to yit2 and

otherwise exogenous. We more precisely state these assumptions below. We allow there to be ad-

ditional exogenous covariates included in the model, denoted as zit1, with zit = (zit1, zit2) denoting

the complete vector of pertinent exogenous variables. We follow Papke and Wooldridge (2008) in

modeling the conditional mean as

E (yit1|yit2, zi, si, ci1, vit1) =E (yit1|yit2, zi, ci1, vit1) = E (yit1|yit2, zit1, ci1, vit1)

=Φ (β1yit2 + zit1δ1 + ci1 + vit1) ,

(8)

where ci1 is time-invariant unobserved heterogeneity across units and vit1 is an omitted factor that

varies over both units and time. Once we have already conditioned on the explanatory variables

and the source of endogeneity, the conditional mean is unaffected by conditioning on zit2. Thus,

zit2 is excluded from equation (8). Additionally, note that we continue to assume that selection is

ignorable conditional on the observed variables and the unobservables, ci1 and vit1.

In equation (8) the variable yit2 may now be endogenous with respect to vit1 as well as with
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respect to ci1. We handle the latter endogeneity similarly to the strict exogeneity case by using

a correlated random effects approach to specify a model for ci1, following the unbalanced case in

Wooldridge (2019). In particular, to account for the unbalanced panel, we allow the coefficients on

the time averages to change with the number of time periods observed for each i, in addition to

allowing separate intercepts for each Ti:

ci1 =
T∑

r=1

ψr11[Ti = r] +
T∑

r=1

(1[Ti = r] · z̄i) ξr1 + ai1, ai1|zi ∼ Normal(0, σ2a1), (9)

where z̄i = T−1i

∑Ti
r=1 sitzit is the time average over the complete cases and ai1 is an error term

that we assume to be independent of (zi, si). As before, conditional normality leads to a relatively

straightforward analysis.

Substituting equation (9) into equation (8) gives

E(yit1|yit2,zi, rit1, sit = 1) =

Φ

(
β1yit2 + zit1δ1 +

T∑
r=1

ψr11[Ti = r] +

T∑
r=1

(1[Ti = r] · z̄i) ξr1 + rit1

)
,

(10)

where rit1 = ai1 + vit1 is a composite error term. Researchers may also wish to follow Lin and

Wooldridge (2019) by including ȳ2i = T−1
∑T

r=1 y2ir to clearly separate the endogeneity due to ci1

from the endogeneity due to vit1. We omit it here to coincide with previous approaches in our

application.

Secondly, we must deal with the endogeneity of yit2. Following Mundlak (1978), we linearly

model yit2 as a function of the exogenous explanatory variables, excluded instruments, and their

time averages. As selection may be correlated with yit2, we generally include indicators for the

number of time-observations and interactions with time averages here as well. We present this

first-stage equation below:

yit2 = zitπ2 +
T∑

r=1

ψr21[Ti = r] +
T∑

r=1

1[Ti = r] · z̄iξr2 + vit2, (11)

where vit2 represents time-varying unobserved elements of yit2 and we have included a full set of

dummies and omitted an intercept. In equation (11) the endogeneity in yit2 is due to the correlation
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between rit1 and vit2. Following Rivers and Vuong (1988) and Papke and Wooldridge (2008), we

model rit1 as linear in vit2 and conditionally normal:

rit1 = η1vit2 + eit1, eit1| (zi, si, vit2) ∼ Normal(0, σ2e).

Note that eit1 is also independent of yit2. Together with (11), the normality assumption effectively

rules out discreteness in yit2, and so our approach is applicable to cases where yit2 has a conditional

distribution well approximated by a normal distribution. Sometimes one may need to use a trans-

formation to make normality more plausible. In our empirical application, we use the logarithm of

school spending. As in the balanced case in Papke and Wooldridge (2008), given the assumptions,

we can replace rit1 = η1vit2 + eit1 and then integrate out eit1 using the properties of the normal

distribution. The resulting coefficients are scaled by (1 + σ2e)−
1
2 :

E(yit1|yit2,zi, vit2, sit = 1) =

Φ

(
β1eyit2 + zit1δ1 +

T∑
r=1

ψr1e1[Ti = r] +

T∑
r=1

(1[Ti = r] · z̄i) ξr1e+η1evit2

)
,

(12)

where subscript e denotes the scaling of the coefficients. The average partial effects – where we

necessarily average over the selected sample – depend on the scaled coefficients, as discussed in

Papke and Wooldridge (2008) in the balanced panel case. Therefore, in what follows, we drop the

e subscript from the parameters. Equation (12) constitutes the primary estimating equation, and

it was derived under several normality assumptions. It probably would do little harm to use the

logistic function in (12) in place of Φ, but the logit functional form does not follow from the primitive

assumptions.

We follow a two-step procedure to estimate equation (12). In the first step, we estimate (11) by

regressing our endogenous explanatory variable, yit2, on the exogenous variables, zit, that include

the instruments and time indicators, indicators for the number of time observations per unit, and

interactions between those indicators and time averages of the exogenous variables. We save the

residuals from that regression, v̂it2, for the complete cases. In step two, we substitute these residuals

for vit2 and estimate equation (12) using the complete cases and pooled probit QMLE of yit1 on
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zit1; the indicators, 1[Ti = r]; all interactions, 1[Ti = r] · z̄i; and the first-stage residuals, v̂it2.2

Due to the estimation of v̂it2 in the first step, the standard errors in the second stage should be

adjusted. Bootstrapping the entire procedure by resampling individual units with replacement is one

way to account for the first stage estimation. We adopt this approach in our empirical application.

We are mainly interested in the APEs of the endogenous explanatory variable, yt2. We can

compute APEs at different values of yt2 and zt1 using the average structural function (ASF), as

defined by Blundell and Powell (2003). This is easily obtained from the estimating equation (12) as

ASF (yt2, zt1) =

E(zi,Ti,vit2)

[
Φ

(
βeyt2 + zt1δe +

T∑
r=1

ψre11[Ti = r] +

T∑
r=1

1[Ti = r] · ziξre1 + ηevit2

)]
,

(13)

where the notation means that we average across the joint distribution of (zi, Ti, vit2) with yt2 and

zt1 fixed arguments of the ASF. The ASF can be estimated by replacing the expectation with a

sample average and replacing the unknown parameters with their consistent estimators (including

replacing vit2 with v̂it2):

ÂSF (yt2, zt1) = N−1
N∑
i=1

[
Φ

(
β̂eyt2 + zt1δ̂e +

T∑
r=1

ψ̂re11[Ti = r] +
T∑

r=1

1[Ti = r] · ziξ̂re1 + η̂ev̂it2

)]
,

One can then compute the derivative with respect to yt2 to obtain APEs that can vary by (yt2, zt1).

Often, we want to estimate APEs that measure the effect, on average, of yit2 on the mean

outcome of yit1. For a given t, this APE is consistently estimated as

β̂e ·

[
N−1

N∑
i=1

φ

(
β̂eyit2 + zit1δ̂e +

T∑
r=1

ψ̂re11[Ti = r] +

T∑
r=1

1[Ti = r] · ziξ̂re1 + η̂ev̂it2

)]
, (14)

where φ(·) is the standard normal probability density function. Notice how all arguments are

averaged out, including yit2 and zit1. To obtain a single APE, (14) can be averaged across the
2The resulting estimator is now often called “fractional” probit to emphasize that the outcome variable, yit1, can

take on any value in the unit interval. That we are using the Bernoulli log-likelihood function when yit1 is not a
binary variable is what makes our procedure a pooled quasi-maximum likelihood estimator. It is true that we have
made functional form assumptions and normal distributional assumptions on unobservables to derive the conditional
expectation in (12). Nevertheless, it is important to understand that only (12) is assumed to hold in our analysis; no
other feature of the distribution of yit1 given yit2, zi, vit2) and sit1 = 1 is being assumed to be correctly specified.
Moreover, we are not restricting the serial dependence across time in other yit1 or any of the explanatory variables.
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T time periods, and this average is what we report in the simulations and empirical application.

Again, applying a clustered bootstrap is a convenient way to obtain valid standard errors.

To summarize, the approach we describe uses a Chamberlain (1980) and Mundlak (1978) ap-

proach to handle the time-invariant heterogeneity and a control function to handle endogeneity. We

allow the unbalancedness of the panel to correlate with the unobserved heterogeneity by including

indicators for the number of time-observations a cross-sectional unit appears in the data. We do not

allow the data missingness to depend on the idiosyncratic error. Testing directly for selection based

on the idiosyncratic fluctuations typically requires a second instrument and exclusion restriction,

which we view as beyond the scope of this paper. Researchers may obtain indirect evidence of the

plausibility of this assumption by testing whether we may predict missing values by including an

indicator for whether the lead or lag observation is present. We demonstrate this approach when

we apply these methods to study the effect of school spending on academic achievement.

3 Simulation Evidence
We conduct a simulation study to investigate the performance of our approaches that handle the

panel unbalancedness against standard estimators that do not. In particular, we are interested in

the bias that correlated unbalancedness may produce in estimated APEs and the relative efficiency

of the estimators. For comparison, we first use POLS and FE as approximations of the APE

from linear models. We then consider standard nonlinear approaches; namely, pooled fractional

response probit QMLE (PFR), and PFR where we model the correlated random effects using the

time averages of covariates (CRE).

In using CRE in the linear case, once x̄i has been included, interacting the indicators, 1 [Ti = r],

with x̄i does not change the estimates; they are the usual fixed effects estimates. This follows from

Wooldridge (2019). To handle the imbalance of the panel in the linear model, we mimic fixed effects

estimation using time averages of all explanatory variables and add time-observation indicators in-

teracted with time averages of the explanatory variables (FEU). In nonlinear formulations, we add

to CRE time-observations indicators (CREU). We next add to CREU interactions between time-

observation indicators and covariate time averages (CREU1). We then add to CREU1 interactions

between time-observation indicators and the covariates themselves (CREU2). Finally, we also in-

clude triple interactions between time-observation indicators, the covariates, and their time averages
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(CREU3), which may provide robustness to other forms of correlation between panel unbalance and

the covariates.

3.1 Data Generating Process

We generate the data using a slight generalization of our single-stage model of interest and

approximating the data from our application. We consider two cases (g = 0, 1) and generate the

outcome, y, according to the following:

yit = Φ[α+ (β1 + uig)xit1 + β2xit2 + ci + vit], vit ∼ Normal(0, 0.2), (15)

where Φ is the standard normal CDF and β1 = β2 = 1. We first draw school-year variables xit1 ∼

Normal(0, 0.2) and xit2 ∼ Binomial(1, 0.3) over 500 “schools” across 5 “years,” and generate time

averages of these variables by school building. The standard deviation of xit1 is set to approximate

the standard deviation of our spending variable in the empirical application. The generalization

in this simulation is that unobserved school heterogeneity takes the form of fixed effects, ci, and

random coefficients, uig. Because we assume in estimation that the coefficient on x is constant we

are adding an additional term that is a function of x to the error term inside the probit. This has

the effect of misspecifying the functional form.

The two cases differ depending on the construction of the unobserved heterogeneity and which

form of heterogeneity is correlated with selection. In both cases, we generate the unobserved fixed

effects according to the following equation:

ci =
√
T x̄i1γ1 + ηi, ηi ∼ Normal(0, 0.14). (16)

However, in the first case, g = 0, the school-level, random slope of x1, ui0, is defined as the time

average of an independently distributed normal random variable, and thus, is not correlated with

x1 and selection into the panel. Consequently, it is not a far departure from the standard model

introduced above. In the second case, g = 1, we extend the data-generating process to include a

correlated random coefficient on x1. This random slope, ui1, is correlated with x1 and selection into

13



the panel. Specifically, the random slopes take the following form:

uig =


ui0 = T−1

T∑
t=1

eit0, eit0 ∼ Normal(0, 0.14) in simulation one,

ui1 =
√
T × x̄i1γ2 + γ3ci + ei1, ei1 ∼ Normal(0, 0.14) in simulation two,

(17)

where T represents the five possible time-observations, γ1 and γ2 are each set to 0.7, and γ3 is set

to 0.2, and ηi , ei0, and ei1 are each drawn from independent, mean-zero, normal distributions.

We model selection depending on the unobserved effect, c, in simulation one and on the un-

observed correlated random slope, u1, in simulation two. In both cases, the selection of each

time-observation is drawn from a binomial distribution with probability pig defined below.

pig =


Φ(ait + ci) in simulation one,

Φ(ait + ui1)in simulation 2,
(18)

where ait is an independent normal distributed random variable with a mean of 0.75 and a standard

deviation of 0.2.

3.2 Simulation Results

We present the resulting correlations from simulation one on the left and simulation two on

the right of Table 1. In the first case, only the unobserved fixed heterogeneity is correlated with

time-observation selection and with x1. The resulting average number of time-observations across

the 500 replications is 3.83, with a correlation of 0.299 between the number of time-observations and

the unobserved fixed effect. In contrast, the correlation between the number of time-observations

and the random slope is 0.001. The correlation between x1 and c is 0.315, while the correlation

between x1 and u is 0.0006.

Due to the positive correlation between x1 and c, we may expect POLS and PFR to exhibit an

upward bias for β1. Indeed, we see exactly this in Table 2. The first row of Table 2 provides the

“true” APEs of x1 when averaged over the population (as if the panel were balanced), the sample

(where the number of time-observations is non-randomly unbalanced), and then disaggregated by

each number of time-observations that the schools are present in the data. Over the population, the

APE of x1 is 0.2979, and averaged over the sample, the APE of x1 is 0.2953. Both POLS and PFR
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overstate this effect by 0.087. The bias is easily statistically significant, as the standard deviations

of the POLS and PFR estimates over the 500 replications are 0.0111 and 0.0102 respectively, .

Beyond POLS and PFR, all estimated APEs are quite close to the true APE, and none are

more than a third of a standard deviation of the estimated APEs away from the true APE over the

population. Still, the FE estimated APE is the furthest from the truth, with an estimated APE of

0.2939, 1.3 percent lower than the true effect. Adding time-observation indicators to the time-means

in FE estimation in FEU increases the estimated APE to 0.2947, 1.1 percent lower than the true

APE.

Even without accounting for the unbalancedness of the panel, with an estimated APE of 0.2947,

the CRE estimates are remarkably close to those estimated by FEU. Neither adding indicators

for the number of time-observations in CREU nor including time-observation indicators interacted

with time averages in CREU1 alter the estimated APEs to the fourth decimal place. Further, the

standard deviations of the APE estimates remain remarkably similar among CRE (0.0097), CREU

(0.0098), and CREU1 (0.0098).

We examine additional specifications by adding interactions between covariates and time av-

erages of covariates to the covariates used in CREU1 estimation (labeled CREU2), and second,

by including the triple interactions between the covariates, their time averages, and the number

of time-observations (labeled CREU3).3 Including these additional interactions makes sense for

a model that includes correlated random slopes, as shown in equation (15). Here, we model the

heterogeneous school-level slopes by interacting the time averages of covariates with each covariate

just as we model the fixed unobserved heterogeneity by inserting the time averages additively. In-

corporating the triple interaction between the covariates, the time averages, and indicators for the

number of time-observations in CREU3 addresses the potential that selection of time-observations

is related to random slopes.

Both estimators provide very similar APE estimates to those from CRE. The CREU2 approach

yields an estimated APE of 0.2949, while CREU3 estimates the APE of x1 at 0.2951. The estimates

become slightly less precise as we add covariates—the standard deviation of the CREU3 APE

estimates increases to 0.0092.
3We reran the simulation generating using data-generating processes from two non-normal distributions to inves-

tigate the performance of the estimator when the distribution is misspecified. The description and results appear in
the online appendix and reveal that the estimators perform well in both cases.
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We provide both the average standard error as well as the standard deviation of estimates across

repetitions to show how well the estimated standard errors reflect the precision of each estimator.

The standard errors of most estimators perform well, with the ratio of average standard errors to

Monte Carlo standard deviations ranging from 0.93 to 1.02.

We turn next to the case where the selection of time-observations depends on the random x1

coefficient, which is u1. The average number of time-observation across the 500 replications is 3.82.

The resulting correlation between the number of time-observations and the unobserved fixed effect

is 0.2065, and the correlation between the number of time-observations and the random slopes is

0.3300. The correlation between x1 and c0 is 0.3152, while the correlation between x1 and u1 is

0.3404.

The results of the simulation with selection based upon correlated random slopes appear in Table

3. The “true” APE of x1 is 0.2902, when averaged over the population with the panel balanced.

The correlation between selection and the heterogeneous slopes is apparent looking at the top row

across the true APEs averaged across schools with one, two, three, four, or five time-observations

appearing in the data. The relationship is monotonically positive with the APE among those with

only one time-observation being 0.2523, whereas the APE among those with five time-observations

is 0.3034. The true APE over the unbalanced sample is about 1 percent higher than the true APE

over the population. This positive correlation may be expected in many contexts where those with

favorable numbers may be more likely to report their data. In our application, schools that report

their data more frequently tend to be higher-performing.

In the presence of correlation between the heterogeneous slopes and selection of time-observations,

all estimators overstate the average effect of the endogenous regressor. All estimates are greater

than the true APE among the unbalanced sample. POLS and PFR overstate this effect most. POLS

estimates the APE to be 0.3823 (standard deviation 0.0101). PFR probit estimates the APE to

be 0.3827 (standard deviation 0.0094). Again, the true value lies far outside the 95% confidence

interval of both estimators.

FE and CRE estimates lie significantly closer to the true estimates at 0.2954 and 0.2945, re-

spectively. The CRE estimates (with a standard deviation of 0.0083) are more precise than the

FE estimates (with a standard deviation of 0.0094). This drop of almost 12% in the Monte Carlo

standard deviation in moving from the linear model to the fractional response model is not startling
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but it also is not trivial. Even in cross-sectional settings with binary response one rarely sees

huge improvements in precision in moving from a linear to a nonlinear model. Adding indicators

for the number of time-observations moves the FE estimates closer to the true APEs, though not

statistically significantly so. The FEU estimate of the APE of x1 is 0.2941 (standard deviation

0.0104).

Regarding the nonlinear estimators, adding indicators for the number of time-observations in

CREU only marginally affects the estimates of the APE (0.2946) and its precision (standard de-

viation of 0.0083). Adding interactions between time averages and time-observation indicators

marginally increases the estimate of the APE to 0.2947 (standard deviation of 0.0095), though

again not statistically significant. Only adding the triple interactions between the covariates, their

time averages, and time-observation indicators in CREU3 makes a somewhat larger impact. With

an estimated APE of 0.2937, CREU3 again provides the estimates closest to the true APE, though

it is less precise with a standard deviation across simulations of 0.0096. Still, all CREU estimates

fall within 0.3 percent of the estimated APE using the standard CRE approach.

Across specifications, the standard errors perform similarly to the standard deviations across

repetitions. The ratio of mean standard errors to the standard deviation of the APEs across replica-

tions is 0.89 to 1.1 in this second simulation. CREU provides the most conservative standard errors

relative to the standard deviation of estimates, and the ratio for CREU3 indicates that the standard

errors perhaps overstate the estimator’s precision. The nonlinear approaches mostly appear to be

more efficient than the approaches using a linear specification. The mean standard errors are ap-

proximately 10 percent smaller using one of the fractional response probit specifications as opposed

to an analogous linear specification. The relative precision of the nonlinear estimators makes sense

given the nonlinearity of the estimated effects. Panel C of Table 3 shows the estimated partial effects

at the tenth, thirtieth, fiftieth, seventieth, and ninetieth decile of x1 using the CREU1 approach.

The estimated partial effect at the tenth percentile is 11 percent larger than the partial effect at

the median and 31 percent larger than the estimated partial effect at the ninetieth percentile.

To summarize, under both formulations of selection of time-observations into the sample, all

estimators that account for unobserved heterogeneity do comparably well in avoiding bias. Nonlinear

estimators have the additional advantage of the ability to detect nonlinear effects, particularly at

the tails of the support. As is often the case, the nonlinear estimators also have somewhat smaller
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standard errors even when allowing for arbitrary correlations across observations within individual

units. In the next section, we apply the methods to study the effect of school spending on student

achievement.

4 Empirical Application
In revisiting Papke (2005), we initially treat spending as strictly exogenous and apply single-stage

estimation of both linear and nonlinear models. Then, following Papke (2005), Chaudhary (2009),

and Roy (2011), we use the 1994 centralization of school financing that occurred in Michigan under

Proposal A to provide plausibly exogenous variation in school expenditures.4 We use this policy

to apply instrumental variables to spending and demonstrate these methods with an endogenous

regressor. As in Papke (2005), we conduct our analysis at the school-building level over the time

period of 1993-1998 and measure spending as the log of average real expenditures over the current

and previous year. Our data contain 7,242 building-year observations from the 1,771 elementary

schools in the state over the five-year period when funding equalization was most dramatic. We

focus on the effects of spending on math4 – the fraction of fourth-grade students who pass the

mathematics section of the Michigan Education Assessment Program (MEAP).

We note significant imbalance in the school-building-by-year panels. The bottom row of Table 4

shows 37 percent of schools are missing at least one of the five possible observations, and 23 percent

are missing at least two observations. Further, there is significant variation in fourth-grade math

pass rates, enrollment, student composition, and spending across schools that appear in the data for

each number of years, suggesting that the imbalance may be consequential for estimating the APE

of spending. In directly addressing this unbalancedness, we move beyond Papke and Wooldridge

(2008), who conduct analysis at the district level due to this issue.

4.1 Treating spending as strictly exogenous

The population linear model estimated in Papke (2005) can be written as the following:

math4it = θt + β1log(avgrexpit) + β2lunchit + β3lunch
2
it

+ β4log(enrollit) + β5log(enrollit)
2 + ci + eit

(19)

4Papke (2005), Chaudhary (2009), and Roy (2011) provide fuller discussion of this school finance reform.
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We control for year indicators and quadratics of both the percent of free and reduced-price lunch

students and the log of student enrollment. This model may be estimated using pooled ordinary

least squares (POLS). However, the estimated coefficients would be inconsistent if the unobserved

heterogeneity is correlated with any of the explanatory variables. Consequently, researchers may

opt to use fixed effects (FE) estimation or equivalently include time averages of all explanatory

variables. Further, the estimated coefficients may provide good approximations to the APEs when

the actual model is nonlinear, but there is no general result that says so.

Since we do not observe all time-observations for each school building, let sit represent an

indicator for whether school i appears in the data in year t. Equation (20) represents this linear

model in the presence of unbalancedness.

sitmath4it = sitθt + sitxitβa + sitci + siteit, (20)

where xit includes log(avgrexpit), lunchit, lunch
2
it, log(enrollit), and log(enrollit)

2. In order for

fixed effects estimation to be consistent in the presence of such unbalancedness, we must assume

strict exogeneity of the covariates and selection, conditional on the unobserved heterogeneity. Put

more formally,

E(uit|xi, si, ci) = 0, (21)

where xi = (xi1,xi2, ...,xiT ) and si = (si1, si2, ..., siT ). As an example, an idiosycratic low pass rate

in year t− 1 affecting selection in year t would violate this condition.

The dependent variable,math4, is bounded between zero and one. Papke and Wooldridge (2008)

estimate a fractional response probit unobserved effects model, where the unobserved heterogeneity

is modeled using time averages of each covariate as in Chamberlain (1980) and Mundlak (1978).

Their correlated random effects (CRE) estimation equation is:

E[math4it|xi1, xi2, ..., xiT ] = Φ(ψt + xitβ + xiξ) (22)

where xi includes the time averages of each covariate, Φ(·) represents the normal CDF, and ψt

allows for year-specific intercepts.5

5As discussed above, the coefficients remain scaled by the variance of the unobserved heterogeneity.
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We use indicators for each number of times a particular school appears in the data, Ti =

T1i, T2i, ...., T5i, as sufficient statistics for the dependence between the unobserved, school-level het-

erogeneity and the selection of time-observations into our data. Accounting for the imbalance of

the school-level data, we estimate:

E[math4it|xit,xi,Ti] = Φ(ψt + xitβ + Tiγ + xiξ) (23)

We term the above approach Correlated Random Effects for Unbalancedness (CREU).

In another specification, we interact time averages with indicators for the number of time-

observations in an approach we label CREU1 below:

E[math4it|xit,xi,Ti] = Φ(ψt + xitβ + Tiγ + xiξ + (Ti ⊗ xiδ)). (24)

Table 5 provides estimates of these linear and nonlinear models using each methodology. The

first two columns report estimates from POLS and FE linear regressions. The third and fourth

columns report estimates from the analogous pooled fractional response (PFR) and CRE estimation.

Columns five and six report the estimates from correlated random effects estimation accounting for

unbalancedness without (CREU) and with (CREU1) interactions between time averages and time-

observation indicators.

It is unclear how we should compute standard errors in this application. The observations are

school buildings appearing (or sometimes not appearing) over time, making school-level clustering

an obvious choice. However, the policy variation we next use to instrument for spending occurs at

the district level, similar to a situation studied in Abadie et al. (2023), where a policy intervention is

correlated within clusters. The Abadie et al. (2023) paper does not cover the panel data setting or

instrumental variables, but it seems reasonable to conclude here that clustering at the district level

is either correct or somewhat conservative. Consequently, we present school-building-clustered stan-

dard errors in parentheses and district-clustered standard errors in brackets, and use the generally

more conservative, district-clustered standard errors for inference in our discussion.

Across all estimators, the estimated effect of expenditures on fourth-graders’ achievement in

math is positive, but accounting for unobserved heterogeneity leads to a decrease in the estimated
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effect. From the first row of column one using POLS, a 10% increase in average spending leads to

an 0.84 percentage point (p-value < 0.001) increase in fourth-grade math pass rates. From column

2, the fixed-effects estimated effect of the same increase in spending is 0.72 percentage points (p-

value = 0.034). Thus, using fully-robust, district-clustered standard errors, the estimated effect is

statistically significantly positive using either linear approach.

PFR probit estimation yields similar results to POLS. Using this nonlinear approach, a 10%

increase in average spending leads to an 0.87 percentage point (p-value < 0.001) increase in fourth-

grade math pass rates. However, including time averages in the PFR probit causes the estimated

effect to fall to 0.49 percentage points (p-value = 0.136) under the CRE approach.

Accounting for panel imbalance in columns five and six does little to change the CRE estimates.

The estimated average effect of spending remains between 0.48 and 0.5 percentage points with

p-values between 0.13 and 0.15. The similarity of these CREU-estimated coefficients to those

estimated ignoring the selection of time-observations suggests that the unbalancedness of the panel

is not driving the estimates in this application. It appears that once spending is allowed to be

correlated with heterogeneity, allowing sample selection to be correlated with the same unobserved

heterogeneity has little effect. Naturally, one cannot know this without having a method that

explicitly allows for unbalanced panels – as we have provided in this paper.

Despite the similarity of the estimates, diagnostics provided in Table 6 support our interest

in data imbalance. Using Wald tests between nested models and clustering at the two levels, we

reject the hypothesis that the coefficients on the time averages are zero for the linear model (column

one) and the nonlinear model (column two). In the third column, we test the coefficient estimates

on the four indicators for the number of time-observations. We reject the null hypothesis that all

four coefficients are zero at the 5% confidence level when we cluster the data at the school-level.

However, clustering at the district-level, we fail to reject the null with a chi-squared test statistic

of only 6.2 corresponding to a p-value of 0.18. When testing the 30 interactions between indicators

for the number of time-observations and the time averages, we reject the null hypothesis that the

coefficient on each is zero.6 Thus, there appears to be significant unbalancedness and unobserved

heterogeneity, but the estimated effects of spending on pass rates remain robust to controlling for
6Note that due to collinearity, interactions between the indicator for 5 time-observations and time averages for

indicators for years 1995, 1996, 1997, and 1998 are omitted as is the interaction between the indicator for four
time-observations and the time average of the indicator for year 1997 and 1998.
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panel imbalance when treating spending as exogenous.

4.2 Allowing spending to be endogenous

The FE, CRE, and CREU results are robust to unobserved heterogeneity that may be correlated

with spending and math pass rates, but in this section, we use instrumental variables to address

the possible endogeneity of spending and violations of the strict exogeneity assumption. Michigan’s

Proposal A began to compress the variation in revenue to districts according to a non-smooth

function determined by district spending in 1994, and we use the log of the foundation grants

(lfoundit) as a time-varying instrument for spending (lrexpppit). Further, we control for the log

of real per-pupil expenditures in 1994 (lrexpppi94) to capture this initial heterogeneity in spending,

and model cumulative spending according to equation (25) below.

log(avgrexpit) =ηt + π1lfoundit + π2lrexpppi94 + π3lunchit + π4lunch
2
it

+ π5log(enrollit) + π6log(enrollit)
2 + ci + vit2

(25)

As a benchmark, we estimate equation (19) using pooled two-stage least squares (P2SLS) with

equation (25) serving as the first stage. The F-statistic on lfoundit from the first stage POLS

regression is 180.95 demonstrating that the state foundation grants are indeed predictive of spending.

We add the residuals from POLS estimation of equation (25), v̂it2, to the pooled fractional probit

model to accommodate the nonlinear functional form of fourth-grade math pass rates (PFR CF).

We address the unobserved heterogeneity, ci, by modeling it as a function of the building-level

time averages, and including them as regressors as in Chamberlain (1980) and Mundlak (1978).

Equation (26) reflects the first stage of this approach.7

log(avgrexpit) = ηt + π1lfoundit + π2lrexpppi94 + π3lunchit + π4lunch
2
it

+ π5log(enrollit) + π6log(enrollit)
2 + π7lunchi + π8lunch2i + π9log(enrolli)

+ π10log(enrolli)2 + π11y96i + π12y97i + π13y98i + vit2.

(26)

Equation (26) is akin to the first stage in fixed effects instrumental variables (FEIV) except that we

use the base expenditures (lrexpppi94) to proxy for time-invariant spending as opposed to the time
7Note that due to the unbalancedness of the data, we also include time averages of the year indicators – y96i,

y97i, and y98i.

22



average of spending. To allow for nonlinearities, we incorporate the estimated residuals, v̂it2, from

the same first-stage regression into equation (22). This correlated random effects control function

(CRE CF) approach allows us to handle the endogeneity of spending while accommodating the

nonlinear functional form.

We handle the possibly endogenous unbalancedness of the panel by incorporating the number of

time-observations into the estimation of the model. We do this by first including indicators for the

number of time-observations to the CRE CF in both estimation stages in what we term a correlated

random effects unbalancedness control function (CREU CF) approach. Secondly, we incorporate

interactions between time averages (and lrexpppi94) and the number of time-observations to more

fully account for the unbalancedness of the panel (CREU1 CF).8

Across all instrumental variables approaches the point estimates range from 0.19 to 0.25. These

findings all lie within the P2SLS confidence interval reported in Papke (2005). The P2SLS estimated

average partial effect (APE) of a 10% increase in log(avgrexpit) is a 2.07 percentage point increase

in fourth-grade math pass rates (p-value = 0.013). Once we account for the endogeneity, modeling

the unobserved heterogeneity does little to change the point estimates.

The nonlinear estimators uncover slightly larger effects of spending than do the linear instru-

mental variables approaches. The coefficient estimates range from 0.2 to 0.24. Accounting for

unobserved heterogeneity and adjusting for panel imbalance leads to smaller effects, though these

differences are far from statistically significant. Including interactions between indicators for the

number of time-observations and the time averages of covariates (CREU1 CF) drops the CRE CF

estimated APE of spending by 9.5 percent, roughly the same amount as accounting for unobserved

heterogeneity (comparing PFR CF to CRE CF).

There is little loss of efficiency when accounting for panel imbalance. Due to the estimation

of the residuals in the first stage, we cluster-bootstrap the standard errors over 500 repetitions to

account for the estimation error. The standard errors hardly change between CRE CF and CREU

CF and the CREU1 CF standard errors are only 11 to 16 percent larger than those from CRE CF.

The test statistics on v̂it2 from these control function approaches conveniently provide evidence

regarding the prevalence of endogeneity of log(avgrexpit). The t-statistics for PFR CF, CRE CF,
8We provide additional robustness checks in the appendix where we include interactions between time averages and

time-observation indicators in the linear estimation (FEIVU), and standard differencing in the first-stage estimation
of our nonlinear approaches (CRE FECF, CREU FECF, CREU1 FECF).
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and CREU CF range from 2.04 to 2.28 with CREU1 CF having a t-statistic of 1.66. These results

provide some evidence against the hypothesis that spending is strictly exogenous, and it is important

to note that the estimated APEs from the instrumental variables approaches in Table 7 are two to

four times larger than the estimated APEs in Table 5 assuming strict exogeneity of spending.

Table 8 provides the results from Wald tests between nested two-stage models. We test the

constraints that the seven time averages have zero effect on 4th-grade math pass rates in the first

two columns. Despite the closeness of the estimated APEs, in both cases, we reject the hypothesis

that the coefficient estimates on the time averages are zero with p-values less than 0.001. In column

four, we test the coefficient estimates on the four indicators for the number of time-observations.

We are unable to reject the hypothesis that the coefficients on the four time-observation indicators

are zero at the 95% level. When testing the 27 interactions between indicators for the number

of time-observations and the time averages (and lrexpppi94), however, the results reject the null

hypothesis with p-values smaller than 0.001.9 While these Wald tests inform whether or not the

unobserved heterogeneity and unbalancedness affect test scores conditional on the covariates and

foundation grants, the stability of the estimated APEs of spending is reassuring. The effects of

spending on fourth-grade math pass rates are not driven by the unbalancedness of the panel.

The methods used here are robust to panel unbalance related to unobserved time-invariant

heterogeneity, though they are not robust to selection based on idiosyncratic shocks. In order to

gain indirect evidence of selection based on shocks, we attempt to predict missingness by including

an indicator for whether the lead observation is present. Conducting a standard t-test on the

coefficient of the lead of selection reveals whether there is a systematic relationship between future

missingness and math test pass rates. Table 9 reveals no systematic relationship between the

lead selection indicator and math test pass rates. While the indicator is statistically significantly

positive in the first two columns with school-clustered standard errors, controlling for the number

of time-observations causes the coefficient to fall in magnitude and lose statistical significance. The

coefficient is never statistically significant with our preferred district-clustered standard errors.

In summary, there is significant evidence of unobserved heterogeneity across schools and of

endogeneity in school spending. While the bulk of the evidence points to significant relationships
9Note that due to collinearity, interactions between the indicator for five time-observations and time averages

for indicators for years 1996, 1997, and 1998 are omitted as are the interactions between the indicator for four
time-observations and the time averages of the indicators for years 1996 and 1997.
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between panel imbalance and fourth-grade math pass rates, the estimated effects of spending on

pass rates remain robust to controlling for panel imbalance.

5 Discussion
This paper considers estimation of nonlinear panel data models when the panel is unbalanced in

the presence of endogeneity. We allow the selection of time-observations to be correlated with both

unobserved heterogeneity as well as explanatory variables. We take a correlated random effects ap-

proach and model the unobserved heterogeneity while controlling for selection of time-observations.

We incorporate a control function approach to handle endogeneity of explanatory variables. The

approach is easily extended to other nonlinear panel data models, such as ordered probit and Tobit.

Pooled (quasi-) MLE can be applied by combining the CRE and control function approach we pro-

pose here. In estimating average partial effects we adopt quasi-MLE such that consistency does not

require knowledge of the specific distribution. Our approach is straightforward to implement with

standard statistical software and may be used when the outcome is binary, fractional response, or

otherwise bounded with known upper and lower bounds. As cases of unbalanced panels are common

in many applied fields of economics as well as in other disciplines such as quantitative sociology and

political science, there is wide potential for application across the social sciences.

The approach we have proposed in this paper requires the existence of a time-varying instru-

mental variable for each explanatory variable allowed to be endogenous with respect to idiosyncratic

shocks. In our application, we exploit a change in the way schools were funded. Many other ex-

amples exist. Just a few include Levitt (1996), who exploits variation in litigation timing, Black

et al. (2002) who exploit coal price shocks, and Dahl and Lochner (2012), who exploit changes in

the earned income tax credit.

Our approach in this paper does not handle situations where the sample selection depends

on idiosyncratic shocks. Such an extension raises considerable difficulties, especially for nonlinear

models. Even in the linear case, methods that allow selection to depend on idiosyncratic shocks,

as well as unobserved heterogeneity, do not allow general missing data patterns; instead, data are

allowed to be missing on the outcome variable but not on explanatory variables. For more discussion,

see Wooldridge (1995). In many applications—including the one we consider in our paper—the

unbalanced panel is partly due to missing data on explanatory variables or instrumental variables,
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along with the outcome variable. How to allow missingness of both dependent and explanatory

variables to depend on heterogeneity and time-varying shocks is an open, and interesting, question—

even in the linear case. In this paper, we do for a class of nonlinear models what the fixed effects

instrumental variables estimator does for linear models: allow selection and all explanatory variables

to depend on unobserved heterogeneity, and at least one explanatory variable to also depend on time-

varying shocks. Further, our approach is suitable for use in cases with missing data on dependent,

explanatory, and instrumental variables. We have also proposed a simple test of the null hypothesis

that selection does not further depend on idiosyncratic shocks. When we apply it to our application,

we fail to reject the null hypothesis.

In estimating the effect of school spending on fourth-grade pass rates on state mathematics

exams, we see significant unbalancedness in the underlying data. Estimation is additionally com-

plicated by likely unobserved heterogeneity across schools and the potential of contemporaneous

endogeneity of school spending. Indeed, we find evidence supporting the existence of both. Using

instrumental variables to identify the effect of spending off of plausibly exogenous changes in the

funding structure is consequential. Whereas we estimate that a 10 percent increase in spending

leads to a 0.5 percentage point increase in pass rates when we ignore the potential of endogeneity in

school spending decisions, we estimate the same spending change to increase pass rates by around

2 percentage points with a variety of instrumental variables approaches.

Once we address the contemporaneous endogeneity of school spending, we find our results to be

quite robust. Despite our Wald tests rejecting the null of no unobserved fixed heterogeneity, our

estimates remain relatively stable regardless of our approach to address the unbalancedness of our

panel. This stability may not carry over to other contexts, such as the effect of development on

inequality (Nielsen and Alderson, 1995), the effect of private school vouchers on academic achieve-

ment (Rouse, 1998), the effect of income on armed conflict (Miguel et al., 2004), or the effect of

voting history on turnout (Denny and Doyle, 2009), where researchers document panel unbalance

with bounded dependent variables. In our application, our estimates provide further evidence of

the positive effects of school spending on students’ academic achievement. This result has found

additional support in recent work, such as Jackson et al. (2016); Hyman (2017); and Lafortune et al.

(2018) – perhaps finally turning the prevailing narrative to more positively depicting the efficacy of

expenditures on public schooling.
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Table 1: Average correlations across simulation repetitions for both correlated fixed effects and
correlated random-coefficient data generating processes (DPGs)

Correlated Fixed Effect DGP Correlated Random Coefficient DGP
x1 c u0 T x1 c u1 T

x1 1 x1 1
c 0.3152 1 c 0.3152 1
u0 0.0006 0.0009 1 u1 0.3404 0.6294 1
T 0.0941 0.2986 0.0013 1 T 0.1119 0.2065 0.3300 1

Notes: Average correlations over 500 simulation repetitions. x1 is the primary variable of interest. c represents the
unobserved fixed effects, and u0 and u1 are random slopes. T represents the number of time-observations for a given
"school." Correlated fixed effect DGP used in simulations appearing in Table 2. Correlated random-coefficient DGP
used in simulations appearing in Table 3.

Table 2: Simulation evidence with selection based on unobserved fixed effects

True mean APEs of x1 over: Population Sample T =1 T =2 T =3 T =4 T =5

Mean APE 0.2979 0.2953 0.3252 0.3163 0.3068 0.2965 0.2851

Estimates POLS FE FEU PFR CRE CREU CREU1 CREU2 CREU3

Mean APE 0.3850 0.2939 0.2947 0.3850 0.2947 0.2947 0.2947 0.2949 0.2951
Mean SE 0.0112 0.0099 0.0099 0.0101 0.0086 0.0086 0.0086 0.0086 0.0086
SD 0.0111 0.0098 0.0098 0.0102 0.0087 0.0087 0.0086 0.0089 0.0092
Mean SE/SD 1.0096 1.0108 1.0055 0.9915 0.9950 0.9924 0.9919 0.9611 0.9298

Partial effects (PEs) from CREU1 at selected deciles 10 30 50 70 90

PE at decile 0.3314 0.3145 0.3001 0.2837 0.2576
SD of PE at decile 0.0104 0.0097 0.0091 0.0082 0.0069

Notes: Simulated over 500 repetition with 500 individual "buildings" and a mean of 3.83 out of 5 possible time-
observations (T). All standard errors (SE) clustered at the building level. FE regressions are estimated as POLS
including time averages. PFR includes the same covariates as POLS with a nonlinear functional form (normal GLM).
CRE incorporates individual time averages into PFR. CREU incorporates indicators for the number of individual
Tobs into CRE. CREU1 adds interactions between Tobs indicators and covariate time averages to CREU. CREU2
incorporates interactions between covariates and the time averages into CREU1. CREU3 adds triple interactions
between covariates, their time averages, and indicators for Tobs.
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Table 3: Simulation evidence with selection based on correlated heterogeneous slopes

True mean APEs of x1 over: Population Sample T =1 T =2 T =3 T =4 T =5

Mean APE 0.2902 0.2933 0.2523 0.2670 0.2812 0.2931 0.3034

Estimates POLS FE FEU PFR CRE CREU CREU1 CREU2 CREU3

Mean APE 0.3823 0.2954 0.2941 0.3827 0.2945 0.2946 0.2947 0.2945 0.2937
Mean SE 0.0109 0.0099 0.0099 0.0099 0.0090 0.0090 0.0090 0.0089 0.0086
SD 0.0101 0.0094 0.0091 0.0094 0.0083 0.0083 0.0083 0.0085 0.0096
Mean SE/SD 1.0756 1.0494 1.0840 1.0584 1.0795 1.0798 1.0794 1.0458 0.8941

Partial effects (PEs) from CREU1 at selected deciles 10 30 50 70 90

PE at decile 0.3321 0.3147 0.3000 0.2833 0.2568
SD of PE at decile 0.0103 0.0095 0.0087 0.0078 0.0064

Notes: Simulated over 500 repetition with 500 individual "buildings" and a mean of 3.82 out of 5 possible time-
observations (T). All standard errors (SE) clustered at the building level. FE regressions are estimated as POLS
including time averages. PFR includes the same covariates as POLS with a nonlinear functional form (normal GLM).
CRE incorporates individual time averages into PFR. CREU incorporates indicators for the number of individual
Tobs into CRE. CREU1 adds interactions between Tobs indicators and covariate time averages to CREU. CREU2
incorporates interactions between covariates and the time averages into CREU1. CREU3 adds triple interactions
between covariates, their time averages, and indicators for Tobs.

Table 4: Summary statistics by number of time-observations per school

Number of time-observations Total 1 2 3 4 5

Pass rate on fourth-grade math test 0.64 0.72 0.60 0.64 0.57 0.65
(0.20) (0.23) (0.21) (0.20) (0.23) (0.19)

Average real per-pupil expenditures 3, 897.43 3, 949.25 4, 081.85 3, 968.45 3, 875.25 3, 874.76
(626.21)(1, 181.29)(1, 051.42) (663.45) (519.66) (613.66)

Percent FRL eligible 0.37 0.19 0.49 0.40 0.57 0.31
(0.25) (0.27) (0.25) (0.26) (0.26) (0.22)

Number of enrolled students 419.91 282.13 366.40 411.40 540.24 397.97
(164.77) (172.61) (222.63) (153.23) (222.59) (137.03)

Number of schools 1, 771 54 42 506 259 910
Notes: Sample means with standard deviations appearing in parentheses.
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Table 5: APE estimates assuming spending to be strictly exogenous

Linear Fractional Probit
VARIABLES POLS FE PFR CRE CREU CREU1

lavgrexpp 0.084 0.072 0.087 0.049 0.049 0.048
(0.017) (0.026) (0.018) (0.025) (0.025) (0.025)
[0.023] [0.034] [0.025] [0.033] [0.033] [0.033]

lunch −0.447 −0.067 −0.439 −0.071 −0.070 −0.070
(0.012) (0.044) (0.012) (0.043) (0.043) (0.042)
[0.026] [0.047] [0.026] [0.046] [0.046] [0.045]

lenrol −0.015 −0.022 −0.014 −0.019 −0.019 −0.019
(0.009) (0.021) (0.008) (0.021) (0.021) (0.021)
[0.010] [0.023] [0.010] [0.022] [0.022] [0.022]

Observations 7,242 7,242 7,242 7,242 7,242 7,242
Notes: School-clustered standard errors appear in parentheses. District-clustered standard errors are in brackets.
CREU estimation includes indicators for each number of time-observations. CREU1 includes indicators for time-
observations as well as interactions between time-observations and time averages of covariates. All regressions include
year indicators. Regressions including time averages also include time averages of year indicators.

Table 6: Wald testing between nested single-stage models

Model Comparison POLS vs FE PFR vs CRE CRE vs CREU CREU vs CREU1

Panel A: School-level clustered standard errors
χ2 (constraints) 13.7(9) 114.7(9) 9.7(4) 93.7(30)
Prob > χ2 < 0.001 < 0.001 0.046 < 0.001

Panel B: District-level clustered standard errors
χ2 (constraints) 13.2(9) 107.2(9) 6.2(4) 145.1(30)
Prob > χ2 < 0.001 < 0.001 0.184 < 0.001

Variables tested
time averages X X
time-observation X
time-observation interactions X
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Table 7: APEs allowing spending to be contemporaneously endogenous

Linear model Fractional response probit
VARIABLES P2SLS FEIV PFR CRE CREU CREU1

CF CF CF CF

lavgrexpp 0.207 0.191 0.24 0.223 0.222 0.201
(0.055) (0.056) (0.061) (0.064) (0.064) (0.074)
[0.083] [0.083] [0.093] [0.093] [0.095] [0.107]

residuals −0.219 −0.197 −0.194 −0.178
(0.069) (0.073) (0.074) (0.082)
[0.096] [0.095] [0.097] [0.107]

lunch −0.454 −0.022 −0.655 −0.037 −0.043 −0.053
(0.015) (0.062) (0.014) (0.062) (0.062) (0.06)
[0.030] [0.066] [0.048] [0.065] [0.066] [0.064]

lenrol −0.005 −0.037 −0.197 0.018 0.035 −0.009
(0.012) (0.033) (0.011) (0.033) (0.033) (0.034)
[0.015] [0.042] [0.015] [0.042] [0.045] [0.046]

Observations 4,853 4,853 4,853 4,853 4,853 4,853
Notes: School-clustered standard errors appear in parentheses. District-clustered standard errors are in brackets.
Control function standard errors are from 500 cluster-bootstrap repetitions to handle residuals’ estimation error.
CREU estimation includes indicators for each number of time-observations. CREU1 includes indicators for time-
observations as well as interactions between time-observations and time averages of covariates. All regressions include
year indicators. Regressions including time averages also include time average of year indicators.

Table 8: Wald testing between nested two-stage models

Model Comparison IV vs PFR CF vs CRE CF vs CREU CF vs
FEIV CRE CF CREU CF CREU1 CF

Panel A: School level clustered standard errors
χ2 (constraints) 78.7(7) 85.9(7) 8.2(4) 80.1(27)
Prob > χ2 < 0.001 < 0.001 0.083 < 0.001

Panel B: District level clustered standard errors
χ2 (constraints) 73.1(7) 55.7(7) 2.5(4) 59.4(27)
Prob > χ2 < 0.001 < 0.001 0.644 < 0.001

Variables tested
time averages X X
time-observation indicators X
time-observation interactions X
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Table 9: Evaluating selection based on shocks

VARIABLES PFR CRE CREU CREU1
CF CF CF CF

lavgrexpp 0.252 0.199 0.237 0.202
(0.068) (0.069) (0.069) (0.075)
[0.107] [0.107] [0.109] [0.121]

residuals −0.238 −0.189 −0.227 −0.192
(0.079) (0.081) (0.081) (0.088)
[0.114] [0.115] [0.117] [0.125]

lunch −0.473 0.014 0.018 0.005
(0.016) (0.069) (0.070) (0.068)
[0.049] [0.076] [0.078] [0.075]

lenrol −0.008 0.006 0.014 0.009
(0.013 (0.040) (0.040) (0.040)
[0.015] [0.048] [0.048] [0.049]

1[Sit+1 = 1] 0.033 0.042 0.029 0.015
(0.020) (0.021) (0.021) (0.019)
[0.033] [0.027] [0.021] [0.017]

Observations 3,602 3,602 3,602 3,602

Notes: School-clustered standard errors appear in parentheses. District-clustered standard errors are in brackets.
Control function standard errors are from 500 cluster-bootstrap repetitions to handle residuals’ estimation error.
CREU estimation includes indicators for each number of time-observations. CREU1 includes indicators for time-
observations as well as interactions between time-observations and time averages of covariates. All regressions include
year indicators. Regressions including time averages also include time average of year indicators.
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6 Online appendix
6.1 Simulated distributional misspecification

To investigate the performance of the estimator when the distribution is not normal we reran

the simulation using data-generating processes from two other distributions. In both,

yit =
exp [α+ (β1 + uig)xit1 + β2xit2 + ci + vit]

1 + exp [α+ (β1 + uig)xit1 + β2xit2 + ci + vit]
. (27)

We further add complication, by drawing vit from a logistic distribution in the first case. In the

second case, we draw vit from a uniform [-1,1] distribution.

We present the results from these simulations in Table 10 and Table 11 respectively. Our

estimators perform well in both cases. This is perhaps unsurprising. Given our expression for

the conditional mean, we can estimate the parameters using a pooled quasi-maximum likelihood

approach with the log-likelihood being chosen to be that for the Bernoulli distribution. This QMLE

approach in estimating average partial effects allows for consistency without requiring knowledge of

the specific distribution.

6.2 Application robustness

We also perform several robustness checks. First, we incorporate the interactions between time

averages of each covariate and indicators for the number of time-observations of each school in the

linear fixed effects model. We term this approach FEIVU, which serves as the linear analogous

methodology to the CREU1 CF approach. Second, we treat the time-constant heterogeneity in

schools by demeaning each covariate in the first stage to generate the residuals used in each of the

three control function approaches. Naturally, the differencing eliminates time-constant covariates,

such as the number of time-observations and the level of expenditures in 1994, from the first stage

estimation. These three approaches (CRE FECF, CREU FECF, CREU1 FECF) appear in Table 12.

The point estimates across specifications are close to those presented in the main text. In

the linear model, accounting for the unbalancedness of the panel drops the point estimate of a

10% increase in spending to 1.69 percentage points (p-value = 0.069) from 1.94 (FEIV), though

it remains economically significant. The APEs from approaches using fixed effects estimation in

the first stage range from 0.212 to 0.25, making them only slightly larger in magnitude than those

previously discussed. The primary difference in these estimates is in their precision. Demeaning the
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Table 10: Simulation evidence with selection based on correlated heterogeneous slopes with logistic
DPG

True APEs of x1 over: Population Sample T =1 T =2 T =3 T =4 T =5

Mean APE 0.2105 0.2135 0.1763 0.1886 0.2011 0.2128 0.2241

Estimated APEs of x1 POLS FE FEU PFR CRE CREU CREU1 CREU2 CREU3

Mean APE 0.2786 0.2153 0.2141 0.2785 0.2140 0.2140 0.2141 0.2140 0.2137
Mean SE 0.0074 0.0064 0.0064 0.0073 0.0063 0.0063 0.0063 0.0062 0.0060
SD 0.0069 0.0062 0.0060 0.0067 0.0058 0.0058 0.0058 0.0060 0.0067
Mean SE/SD 1.0795 1.0371 1.0741 1.0806 1.0753 1.0758 1.0759 1.0407 0.8933

Notes: Simulated over 500 repetition with 500 individual "buildings" and a mean of 3.83 out of 5 possible time-
observations (T). All standard errors (SE) clustered at the building level. FE regressions are estimated as POLS
including time averages. PFR includes the same covariates as POLS with a nonlinear functional form (normal GLM).
CRE incorporates individual time averages into PFR. CREU incorporates indicators for the number of individual
Tobs into CRE. CREU1 adds interactions between Tobs indicators and covariate time averages to CREU. CREU2
incorporates interactions between covariates and the time averages into CREU1. CREU3 adds triple interactions
between covariates, their time averages, and indicators for Tobs.

foundation grants in the first-stage fixed-effects estimation rather than incorporating base-period

expenditures in the first-stage increases the magnitude of the district-cluster-bootstrapped standard

errors by roughly 20 to 30%.
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Table 11: Simulation evidence with selection based on correlated heterogeneous slopes with mixture
DPG

True APEs of x1 over: Population Sample T =1 T =2 T =3 T =4 T =5

Mean APE 0.2010 0.2040 0.1664 0.1792 0.1917 0.2034 0.2144

Estimated APEs of x1 POLS FE FEU PFR CRE CREU CREU1 CREU2 CREU3

Mean APE 0.2668 0.2060 0.2052 0.2668 0.2052 0.2052 0.2053 0.2051 0.2056
Mean SE 0.0146 0.0163 0.0158 0.0145 0.0156 0.0156 0.0156 0.0156 0.0154
SD 0.0143 0.0161 0.0157 0.0141 0.0155 0.0155 0.0155 0.0186 0.0269
Mean SE/SD 1.0265 1.0099 1.0084 1.0275 1.0063 1.0079 1.0081 0.8360 0.5710

Notes: Simulated over 500 repetitions with 500 individual "buildings" and a mean of 3.83 out of 5 possible time-
observations (T). All standard errors (SE) clustered at the building level. FE regressions are estimated as POLS
including time averages. PFR includes the same covariates as POLS with a nonlinear functional form (normal GLM).
CRE incorporates individual time averages into PFR. CREU incorporates indicators for the number of individual
Tobs into CRE. CREU1 adds interactions between Tobs indicators and covariate time averages to CREU. CREU2
incorporates interactions between covariates and the time averages into CREU1. CREU3 adds triple interactions
between covariates, their time averages, and indicators for Tobs.

Table 12: Robustness: APEs allowing spending to be contemporaneously endogenous

Linear Nonlinear
VARIABLES FEIVU CRE CREU CREU1

FECF FECF FECF

lavgrexpp 0.168 0.25 0.248 0.212
(0.063) (0.073) (0.073) (0.076)
[0.092] [0.127] [0.126] [0.129]

residuals −0.223 −0.22 −0.19
(0.081) (0.081) (0.083)
[0.126] [0.126] [0.127]

lunch −0.014 −0.039 −0.044 −0.056
(0.061) (0.065) (0.065) (0.063)
[0.064] [0.070] [0.070] [0.068]

lenrol 0.025 0.01 0.023 −0.032
(0.034 (0.03) (0.03) (0.03)
[0.042] [0.036] [0.036] [0.035]

Observations 4,853 4,853 4,853 4,853
Notes: School-clustered standard errors appear in parentheses. District-clustered standard errors are in brackets.
Control function standard errors are from 500 cluster-bootstrap repetitions to handle residuals’ estimation error.
CREU estimation includes indicators for each number of time-observations. CREU1 includes indicators for time-
observations as well as interactions between time-observations and time averages of covariates. All regressions include
year indicators. Regressions including time averages also include time average of year indicators.
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