
UC Santa Cruz
UC Santa Cruz Electronic Theses and Dissertations

Title
Towards Sustainable Non-Volatile Memory: Machine Learning and Memory-Aware Data
Structures for Energy Efficiency and Longevity

Permalink
https://escholarship.org/uc/item/0ht1n5d3

Author
Kargar, Saeed

Publication Date
2024

Copyright Information
This work is made available under the terms of a Creative Commons Attribution
License, available at https://creativecommons.org/licenses/by/4.0/

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/0ht1n5d3
https://creativecommons.org/licenses/by/4.0/
https://escholarship.org
http://www.cdlib.org/

UNIVERSITY OF CALIFORNIA
SANTA CRUZ

TOWARDS SUSTAINABLE NON-VOLATILE MEMORY:
MACHINE LEARNING AND MEMORY-AWARE DATA

STRUCTURES FOR ENERGY EFFICIENCY AND LONGEVITY

A dissertation submitted in partial satisfaction of the
requirements for the degree of

DOCTOR OF PHILOSOPHY

in

COMPUTER SCIENCE AND ENGINEERING

by

Saeed Kargar

September 2024

The Dissertation of Saeed Kargar
is approved:

Professor Chen Qian, Chair

Professor Faisal Nawab

Professor Katia Obraczka

Peter Biehl
Vice Provost and Dean of Graduate Studies

Copyright © by

Saeed Kargar

2024

Table of Contents

List of Figures vi

List of Tables ix

Abstract x

Dedication xiii

Acknowledgments xiv

1 Understanding Non-Volatile Memories: Challenges and Opportunities
for Enhanced Energy Efficiency and Endurance 1
1.1 Introduction . 1
1.2 Background . 3

1.2.1 NVM Properties . 3
1.2.2 NVM Technologies . 6
1.2.3 NVM challenges . 11

2 Prior work 15
2.1 Wear leveling . 17
2.2 Reducing write amplification . 20
2.3 Bit Flip Reduction . 24

2.3.1 RBW-based techniques . 27
2.4 Memory-awareness . 30

2.4.1 Content-aware methods . 30
2.4.2 AI-based methods . 32

3 Predict and Write: Using K-Means Clustering to Extend the Lifetime
of NVM Storage 34
3.1 Predict and Write . 35
3.2 Key-Value Store Design . 39

3.2.1 Overview and system model . 39

iii

3.2.2 Supported K/V Operations . 46
3.2.3 Additional design considerations 50

3.3 Evaluation . 51
3.3.1 Methodology . 51
3.3.2 Real-world textual and numerical data sets 53
3.3.3 Real-world multimedia data sets 55
3.3.4 Hard-to-cluster synthetic data sets 56
3.3.5 End-to-end write latency . 57
3.3.6 Training overhead . 62
3.3.7 Wear-leveling . 64

3.4 Conclusion . 67

4 E2-NVM: A Memory-Aware Write Scheme to Improve Energy Efficiency
and Write Endurance of NVMs using Variational Autoencoders 69
4.1 Introduction . 69

4.1.1 System Model . 71
4.1.2 Motivation: Software-Level Bit Flipping Reduction 71

4.2 E2-NVM Design . 74
4.2.1 Variational Autoencoder (VAE) 74
4.2.2 E2-NVM Design . 75
4.2.3 E2-NVM Integration and Operations 77
4.2.4 E2-NVM benefits . 83

4.3 The padding strategy . 85
4.3.1 Padding Strategies . 85

4.4 Experiments . 97
4.4.1 Methodology . 97
4.4.2 Overview and setup . 100
4.4.3 Evaluation Results . 102

4.5 Conclusion . 118

5 Hamming Tree: The Case for Energy-Aware Indexing for NVMs 119
5.1 System Model . 121

5.1.1 Software-Level Bit Flip Reduction 121
5.2 Hamming Tree Design . 126

5.2.1 Overview and System Model . 127
5.2.2 Hamming Tree Operations . 135
5.2.3 Compact Content Representation 138
5.2.4 Indexing granularity and Batching 143
5.2.5 Case Study: Augmenting with LSM Tree 145

5.3 Experiments . 147
5.3.1 Methodology . 147
5.3.2 Overview and setup . 149
5.3.3 Results . 156

iv

5.4 Conclusion . 165

6 Conclusion and future directions 166

Bibliography 170

v

List of Figures

1.1 Comparison of device properties of memory and storage technologies [82] 2
1.2 The number of studies that are done to improve the lifetime (LIF), energy

consumption (EC), and performance (Perf) of different NVM technologies. 10
1.3 An example of replacing a memory content with a similar content used in

PNW [81] . 13

2.1 The impact of capacity and swapping period on PCM’s lifetime when
the percentage of hamming distance between the write data and the
overwritten content changes. 25

2.2 The latency and memory energy consumption on a real Intel Optane
memory device for read and write operations with different percentages
of hamming distance. 27

2.3 Read Before Write (RBW) technique. 28

3.1 An example of procedures which serve K/V PUT and DELETE operations
for a) small and b) large keys. 38

3.2 PCA variance ratio according to the number of principal components. . 40
3.3 Sum of Square Error graph to find the optimal K. 42
3.4 Dynamic Address Pool. 44
3.5 The average number of actual bit updates per writing 512 bits as well as

the latency of prediction per item in PNW for the real-world textual and
numerical data sets (a-b), multimedia data sets (c-d), and synthetic data
sets (e-f). 53

3.6 End-to-end write latency comparison for various data sets. 58
3.7 The impact of choosing the number of clusters (K) on the average write

latency for the PubMed abstracts data set. 59
3.8 The average number of written cache lines for each request. 60
3.9 The performance change by converting the workload from MNIST into

Fashion-MNIST over time. 61
3.10 PNW’s average model training time for different data sets using single

core versus multi-core processing. 61

vi

3.11 The maximum update addresses as CDFs by applying PNW with a) k=5
and b) k=30 clusters. 66

3.12 Wear-leveling as CDFs by applying PNW with a) k=5 and b) k=30 clusters. 66

4.1 The average number of bit updates for different wear-leveling techniques
when swapping period changes. 72

4.2 Memory layout of a E2-NVM-based key-value store. 76
4.3 Comparison of E2-NVM with PNW (K-means alone and K-means+PCA)

in terms of the number of bit flips and latency. 84
4.4 An example of applying E2-NVM’s different padding strategies on an

input data d1:[0,0,0,1] based on the memory pool defined in Table 4.1. . 88
4.5 The anatomy of the LSTM model used in E2-NVM. 92
4.6 E2-NVM’s memory and energy consumption for indexing different numbers

of memory segments. 93
4.7 Sum of Square Error graph versus E2-NVM’s energy consumption to find

the optimal K. 95
4.8 The training and validation loss for feature extraction during training for

different datasets. 96
4.9 The average number of actual bit updates per PMem’s cache line access

granularity as well as the latency of prediction per item in E2-NVM for
the real-world textual and multimedia datasets. 98

4.10 The average amount of energy consumed per PMem’s cache line access
granularity when memory segment size changes for YCSB workloads. . . 102

4.11 The impact of augmenting E2-NVM to data stores in terms of the average
number of bit updates per writing 1 data bit. 103

4.12 E2-NVM’s performance in terms of the total memory energy for different
memory segment and memory pool sizes. 104

4.13 E2-NVM’s performance in terms of the average updated bits ratio for
different memory segment and memory pool sizes. 104

4.14 The average number of bit flips per word after applying different padding
strategies. 107

4.15 The number of bit flips when different percentages of the video frame size
is padded by the learned padding scheme for the CCTV dataset. 108

4.16 Tracking the package energy sampled every 1ms for E2-NVM when it goes
through periodic training, re-training and writing phases compared to the
wear-leveling technique over time. 112

4.17 Tracking the performance of E2-NVM by changing the memory content
and incoming writes over the course of time. 115

4.18 E2-NVM’s training costs in terms of latency and energy consumption per
epoch for indexing different number of memory segments. 115

4.19 The maximum update addresses and wear-leveling as CDFs by applying
E2-NVM with k=30 clusters. 116

vii

5.1 Total memory energy consumption on a real Intel Optane memory device
for read and write operations with different percentages of hamming
distance. 122

5.2 The write latency in a real Intel Optane memory device for different
percentages of hamming distance. 123

5.3 The average number of bit updates for different wear-leveling techniques
when the swapping period changes. (TBWL: Table-based Wear-Leveling [164],
Start-Gap [124], FNW: Flip-n-Write [31], DCW: Data Comparison Write [42])124

5.4 The storage and memory layout of Hamming Tree. 125
5.5 The comparison method in Hamming Tree. 127
5.6 An example of how Hamming Tree is formed. 130
5.7 An example of procedures which serve key-value PUT and DELETE

operations in Hamming Tree. 133
5.8 Hamming Tree’s compaction strategy with three calls (the highlighted

areas indicate the half with higher density of 1’s). 137
5.9 examples of Hamming Tree’s compaction strategy. 137
5.10 The compacted values for all the 4-bit inputs. 138
5.11 Hamming Tree’s memory consumption (line graph) and performance (bar

graph) for indexing different numbers of memory segments. 143
5.12 The energy consumption of persistent BTree before and after being augmented

by Hamming Tree. 151
5.13 The throughput of persistent BTree before and after being augmented by

Hamming Tree. 152
5.14 The average energy consumption for writing one memory segment, using

various data structures and data sets, both before and after augmentation
by the Hamming Tree. 154

5.15 Write latency of different methods before and after being augmented by
Hamming Tree. 154

5.16 Throughput of different methods before and after being augmented by
Hamming Tree. 155

5.17 The normalized number of cache lines per request. 155
5.18 The average amount of energy consumed for various methods. 156
5.19 The average updated bits ratio for different memory segment and memory

pool sizes in Hamming Tree. 158
5.20 Total memory energy consumption (joule) for different memory segment

and memory pool sizes in Hamming Tree. 159
5.21 The impact of Hamming Tree on key performance metrics of the system

when the memory pool size changes. 160
5.22 The maximum update addresses and wear-leveling as CDFs by applying

Hamming Tree. 162
5.23 PCM lifetime improvement before and after utilizing Hamming Tree for

different data zone sizes. 164

viii

List of Tables

1.1 Device properties of Emerging Nonvolatile Memories. 4
1.2 Selected studies categorized by their contribution. 5
1.3 Selected studies categorized by their SCM type. 6
1.4 Comparison of memory technologies [77,144] 7

3.1 An example of a PCM with 6 elements 36

4.1 An example of a PCM with 12 memory segments. 86

ix

Abstract

Towards Sustainable Non-Volatile Memory: Machine Learning and

Memory-Aware Data Structures for Energy Efficiency and Longevity

by

Saeed Kargar

Non-volatile memory (NVM) technology has revolutionized memory systems with its

non-volatility and near-zero standby power consumption, making it a promising alternative

to traditional DRAMs. However, NVMs also face significant challenges, particularly

limited write endurance and high energy consumption, which impede their widespread

adoption. This thesis contributes to the integration of NVM technologies into the

memory hierarchy, addressing these challenges with software-level solutions, including

AI-based techniques and data structure-based methods. These approaches enhance

energy efficiency and write endurance, improving the practicality and longevity of NVM

devices. This thesis is organized into four main parts:

In the first part, we conduct a comprehensive evaluation of real-world NVM

devices, such as Optane memory, to explore the effects of memory awareness on performance,

energy consumption, and lifetime. Our experiments reveal that memory-aware strategies

significantly increase device lifetime, decrease power consumption, and improve system

latency. This chapter underscores the importance of integrating recent advances from

the NVM storage community into existing and future data management systems.

Saeed Kargar
x

In the second part, we propose Predict and Write (PNW), a K/V-store that

uses a clustering-based machine learning approach to extend the lifetime of NVMs.

PNW reduces the number of bit flips for PUT/UPDATE operations by determining

the optimal memory location for updated values. By leveraging the indirection level

of K/V-stores, PNW organizes NVM addresses in a dynamic address pool clustered by

data value similarity. Our results demonstrate that PNW can reduce total bit flips by

up to 85% and cache lines by 56% compared to the state of the art.

In the third part, we introduce E2-NVM, a software-level memory-aware storage

layer designed to improve the Energy efficiency and write Endurance (E2) of NVMs.

E2-NVM employs a Variational Autoencoder (VAE) based design to judiciously direct

write operations to memory segments that minimize bit flips. This solution, which

can be combined with existing indexing and hardware-based methods, demonstrates a

reduction in energy consumption by up to 56% in real-world evaluations on an Optane

memory device.

The final part of this thesis presents a software-level data storage layer solution

that uses a indexing data structure to improve the energy consumption and write

endurance of NVMs. In this work, we presented the case for memory-awareness and

showed that by judiciously selecting memory locations for new writes and updates we can

reduce bit flipping and consequently improve the energy efficiency and write endurance

of NVM devices. We took this concept and built Hamming Tree, with which existing

data stores can be augmented, to make them memory-aware. Hamming Tree tackles

the challenges associated with mapping free memory locations based on the hamming

Saeed Kargar
xi

distance of their content. Our evaluations on an Intel Optane memory device show that

Hamming Tree can achieve up to a 67.8% improvement in energy efficiency.

Overall, the methods proposed in this thesis are software-level solutions aimed

at improving the performance of NVMs. PNW is the simplest, suitable for systems with

fixed memory segment sizes and basic hardware resources, though advanced components

can enhance its performance. E2-NVM is more advanced, handling large, variable-

sized memory segments and requiring GPUs for maximum efficiency. Hamming Tree,

implemented as an indexing data structure, is fast but sensitive to the number of

indexed items. This thesis presents a comprehensive framework for enhancing NVM

efficiency and longevity, addressing critical challenges like energy consumption and write

endurance.

Saeed Kargar
xii

Dedicated

to

my father, whose wisdom, unwavering support, and boundless belief in me have always guided my

path;

my mother, for her endless love and her heartfelt pride in my progress;

my sister, for standing by my side and helping me through tough times; and

my brother, for sharing in the joy of my successes.

xiii

Acknowledgments

I extend my sincere gratitude to my advisor, Professor Faisal Nawab, for his invaluable

support and mentorship. I am also deeply thankful to Professor Chen Qian for

graciously agreeing to serve as my co-advisor, and to Professor Katia Obraczka for her

invaluable contributions as a committee member.

xiv

Chapter 1

Understanding Non-Volatile Memories:

Challenges and Opportunities for

Enhanced Energy Efficiency and

Endurance

1.1 Introduction

Nowadays, we are witnessing the emergence of new non-volatile memory (NVM)

technologies that are remarkably changing the landscape of memory systems. They are

persistent, have high density, byte addressable, and require near-zero standby power [62],

which makes them of great interest in the database and storage systems communities.

Furthermore, NVMs provide up to 10x higher bandwidth and 100x lower access latency

compared to SSDs [23, 48]. However, because they also present some limitations, such

1

Figure 1.1: Comparison of device properties of memory and storage technologies [82]

as limited write endurance, which is significantly lower than DRAM write endurance,

and high write energy consumption (Figure 1.1), adopting the current systems to use

NVM while maximizing their potential is proving to be challenging. Additionally, unlike

flash storage, cells are written individually in many NVM technologies such as Phase

Change Memory (PCM). This means that some cells may receive a much higher number

of writes than others during a given period, and as a result wear out sooner. So, any

system design needs to take these limitations into consideration before deciding to utilize

NVMs.

The scientific community has conducted an extensive amount of research on

integrating these new technologies in current systems. Furthermore, these emerging

technologies are carving out their own place in the memory hierarchy. As persistent

2

memories are usually larger than DRAM in capacity, researchers in the database community

usually take advantage of its persistence to boost performance of the system by making

the in-memory database persistent, which results in capacity expansion and recovery cost

reduction [37,79,101,152,153]. However, when designing a database management system,

it is critical to fully consider the characteristics of NVMs, including their limitations, to

take advantage of their hardware potentials.

In this chapter, we survey recent work in both storage and database communities,

where a substantial amount of work has been done in the adoption of NVMs. In

particular, we focus on the common limitations that are shared among most NVMs—

i.e. low write endurance, high energy consumption, and intrinsic asymmetric properties

of reads and writes. Table 1.1 compares the main characteristics of these memory

technologies. This chapter provides information on how to integrate recent advances

from the NVM storage community into existing and future data management systems.

1.2 Background

We now introduce some concepts which will be useful throughout this thesis.

We refer the reader to previous works for a detailed background on NVM architecture [17,

112,151].

1.2.1 NVM Properties

Non-Volatile Memory (NVM) has the potential of transforming the memory

architecture in data management systems due to their characteristics such as persistency,

3

Storage Class Memory device property

C
os

t/
bi

t

R
el

ia
bi

lit
y

F
le

xi
bi

lit
y

W
ri

te
E

nd
ur

an
ce

W
ri

te
E

ne
rg

y

Sc
al

ab
ili

ty

W
ri

te
la

te
nc

y

D
en

si
ty

PCM ✓ ✓ ✓ ✗ ✗ ✓ ✗ ✓

FeRAM ✗ ✗ ✓ ✓ ✓ ✗ ✓ ✗

STT-RAM ✗ ✗ ✗ ✓ ✗ ✗ ✓ ✗

ReRAM ✓ ✗ ✓ ✗ ✗ ✓ ✗ ✓

SRAM ✗ ✗ ✗ ✓ ✗ ✗ ✓ ✗

NAND Flash ✓ ✗ ✓ ✗ ✗ ✗ ✓ ✓

NOR Flash ✗ ✓ ✓ ✗ ✗ ✗ ✗ ✗

3D XPoint ✓ ✓ ✓ ✗ ✗ ✓ ✗ ✓

Table 1.1: Device properties of Emerging Nonvolatile Memories.

high density, byte addressability, and requiring near-zero standby power [62]. However,

they also have their own drawbacks that may vary from technology to technology: some

have problems with write endurance, some have higher write latency than the read

latency, some have low density and do not scale well, and so on. So, researchers have

been trying to overcome these limitations to efficiently utilize them.

As far as write endurance is concerned, most NVM technologies, such as PCM,

ReRAM, 3D XPoint and Flash memory, have lower write endurance (usually between

105 to 109) compared to the traditional memory technologies, such as DRAM, which

have virtually unlimited lifetime (1016). Even in some NVM technologies such as STT-

RAM with higher lifetime (at least 1012), certain usage conditions, such as frequent

accesses with a high applied bias voltage or a long pulse, may aggravate their lifetime

4

Contribution Selected Studies

Lifetime Improvement [82], [2], [119], [52], [59], [1], [129], [130], [40], [133], [155]
[68], [120], [5], [149], [137], [16], [166], [81], [83], [69]

[100], [19], [163], [22], [126], [3], [61]
Performance [82], [40], [133], [155], [100], [83], [60], [32], [105], [37]

[98], [79], [18], [121], [99], [101], [12]
[49], [65], [147], [25], [161], [27], [150], [160], [88], [97]

[45], [33], [36], [141], [92], [96], [50], [134], [13]
Energy Efficiency [82], [119], [129], [16], [166], [81], [83], [68], [69], [60]

[18], [128], [138], [139], [77], [28], [95], [102]
[70], [162], [140], [136], [90], [135], [63]

Table 1.2: Selected studies categorized by their contribution.

and reliability [78, 127]. Furthermore, in many use cases, some of NVM technologies,

such as PCM, STT-RAM and ReRAM, are used in the lower-level cache hierarchies

instead of memory level, which expose them to aggressively high number of writes. So,

in these cases, write endurance can prevent the adoption of NVM in lower-level caches.

Improving the lifetime of NVMs is only one aspect researchers must address.

NVM write operations demand significantly more current and power compared to DRAMs

and their own read operations. For instance, flipping an individual bit in PCM requires

around 50 pJ/b, compared to writing a DRAM page, which needs only 1 pJ/b [16].

Table 1.2 highlights recent studies aimed at enhancing the lifetime, performance, or

energy efficiency of various NVM technologies. Researchers address these issues through

different approaches, which can be categorized into three main strategies: (1) designing

new data structures and database management systems tailored to NVM limitations,

(2) redesigning existing data structures to be more NVM-friendly, and (3) creating

5

SCM Type Selected Studies

PCM [82], [68], [120], [5], [137], [16], [166], [81], [83], [163], [61]
[60], [32], [79], [99], [160], [139], [102], [135], [63]

ReRAM [2], [119], [52], [59], [155], [68], [138], [19], [70], [136], [90]
STT-RAM [2], [59], [1], [129], [130], [22], [126], [3]

[18], [121], [134], [128], [95], [162]
NAND Flash [40], [133], [100], [105], [12], [49], [25]

[27], [88], [45], [96], [13]
3D XPoint [81], [83], [69], [37], [79], [99], [101], [65], [147], [161]

[27], [150], [97], [33], [36], [141], [92], [50], [28]

Table 1.3: Selected studies categorized by their SCM type.

specialized hardware-level or software-level solutions to mitigate NVM drawbacks and

limitations.

1.2.2 NVM Technologies

Despite having many benefits over DRAMs, NVM technologies have some

limitations in common, such as high energy consumption, low write endurance and

asymmetric read/write costs (Table 1.4), which needs to be considered before using

them. So, researchers come up with different solutions to deal with these limitations,

from redesigning the conventional data structures to proposing hardware-level methods,

to deploy these new technologies in their systems. Among all the challenges that NVMs

face, in this thesis, we focus on (1) low endurance, high energy consumption, and

asymmetric read/write related problems and (2) how researchers in different communities,

from databases to storage systems to embedded systems and distributed systems, overcome

6

Table 1.4: Comparison of memory technologies [77,144]

Category Read Latency Write Latency Write Endurance
HDD 5ms 5ms ≥ 1015

DRAM 50 ∼ 60ns 50 ∼ 60ns ≥ 1016

PCM 50 ∼ 70ns 120 ∼ 150ns 108 ∼ 109

ReRAM 10ns 50ns 1011

SLC Flash 25µs 500µs 104 ∼ 105

STT-RAM 10 ∼ 35ns 50ns ≥ 1015

these limitations. Table 1.3 classifies the research studies from Table 1.2 based on their

memory technologies. The NVM technologies that we cover are:

Spin-Torque Transfer RAM (STT-RAM), which is a variation of MRAM,

switches the memory states using spin-transfer torque. Using spin-polarized current for

setting bits makes the cell structure simple and small. The most noticeable advantage

of this memory is to have a high efficiency and write endurance even compared to

DRAM. These characteristics make it as one of the top alternatives to the current

technologies such as DRAM and NOR Flash. Despite having the mentioned advantages,

this technology comes at a price: having low density which makes it hard to scale [122].

Resistive RAM(ReRAM) is one of the most promising NVM technologies

that can take the place of DRAM. It’s simple structure, easy fabrication, high scalability,

and compatibility with the existing CMOS technology make this technology a good

candidate to be used in many applications in various fields from Neuromorphic Computing

to logic applications. In ReRAM, by applying current to a cell, the state of the cell can

be switched. Despite all its advantages, it has some drawbacks, such as having low

7

write endurance and inconsistent switching mechanism, which makes researchers look

for methods to improve its performance and mitigate its disadvantages to use it in the

existing systems [157].

Phase-Change Random Access Memory (PCM), which is arguably the

most mature of the NVM technologies, consists of phase-change materials that switches

between two different phases with distinct properties: an amorphous phase, with high

electrical resistivity, and a crystalline phase, with low electrical resistivity. So, in PCMs,

there are two main operations: SET operation and RESET operation. These operations

are controlled by electrical current as follows: while in the RESET operation High-

power are used to place the memory cell into the high-resistance RESET state, for the

SET operation, moderate power but longer duration pulses are used to return the cell

to the low-resistance SET state. Although PCM scales well and has write endurance

comparable to that of NAND Flash (108–109), which makes it a viable alternate for

future high-speed storage devices. However, its asymmetric read/write costs in terms of

energy consumption and latency, and lower write endurance compared to DRAM (1016),

limit the PCM adoption in system architecture.

3D XPoint is a relatively recent NVM technology that is developed by the

Intel and Micron jointly since 2015. This technology is usually considered as a type

of PCM although Intel has never disclosed its technical details [157]. This technology

presents many advantages, such as having a high density and low access latency, which

makes it one of the best candidates to replace DRAM. However, this technology poses

some challenges, which need to be considered. First, its write energy consumption is

8

relatively high. Second, although its write latency is relatively low, it is still orders

of magnitude high compared to DRAM. Furthermore, its memory cell write endurance

(108–109) is orders of magnitude lower than that for DRAM although it is claimed that

it is enough to survive continuous operation as the main memory for a few years [4].

Flash memory is an electronic NVM storage medium that can be electrically

erased and reprogrammed. It is probably the most wide-spread NVM technology since it

has the performance better than traditional storage. There are two types of nonvolatile

semiconductor flash memory: NOR and NAND. While NOR Flash has low latency

and can be programmed at byte granularity, which is suitable for IoT system devices

like GPS and e-readers that do not require as much memory, NAND Flash is more

like HDD with page-based programming granularity, which is suitable for sequential

data such as video, audio, and so on [7]. Despite all the mentioned advantages, this

technology shares some disadvantages that most NVM technologies have in common:

having limited write endurance, low density, energy constraints, asymmetric read/write

latency and persistence.

FeRAM, which has similar structure as DRAM bit cell except, achieve non-

volatility, it utilizes a ferroelectric layer instead of a dielectric layer. This technology

has been gaining popularity, especially in industrial IoT applications and autonomous

vehicles field, for its unique characteristics such as having very high life endurance,

low write time speed, and low write energy consumption [4]. However, like any other

technology in NVM category, it faces some limitations that hinders this technology from

its widespread use, such as much lower storage densities than Flash, storage capacity

9

(a) PCM (b) NAND Flash (c) ReRAM

(d) STT-RAM (e) 3D XPoint (f) Others

Figure 1.2: The number of studies that are done to improve the lifetime (LIF), energy

consumption (EC), and performance (Perf) of different NVM technologies.

limitations and higher cost.

Figure 1.2 illustrates the number of studies that are carried out in the three

main categories, i.e., improving lifetime (LIF), performance (Perf), and energy consumption

(EC), on different types of NVM technologies from 2009. These results can reveal how

much each of the mentioned fields could draw researchers’ attention in different NVM

technologies over time.

10

1.2.3 NVM challenges

1.2.3.1 Write endurance

Most NVM technologies, such as PCM, ReRAM, 3D XPoint and Flash memory,

have low write endurance (the number of writes that can be applied to a segment of

storage media before it becomes unreliable.) The write endurance in these technologies

is on the order of 105–109 writes, which is significantly lower than DRAM write endurance

(in the order of 1016 write) [82,112]. Even in some NVM technologies such as STT-RAM,

which has an endurance of at least 1012 writes, certain usage conditions, such as frequent

accesses with a high applied bias voltage or a long pulse, may aggravate their lifetime

and reliability [78,127]. Furthermore, in many use cases, some of these technologies, such

as PCM, STT-RAM and ReRAM, are used in the lower-level cache hierarchies instead

of memory level, which expose them to aggressively high number of writes. So, in these

cases, write endurance can prevent the adoption of NVM in lower-level caches.

Table 1.2 illustrates some of the selected studies that are proposed recently

in an attempt to solve the limited write endurance of NVMs. Although most of the

solutions that are presented to improve the lifetime of NVM, such as reducing write

amplification, local write optimization and memory awareness, can be applied to various

NVM technologies with write endurance problem, in this thesis, we focus on Phase

Change Memory (PCM) and how its lifetime can be improved through bit flip reduction.

As mentioned earlier, Phase-Change Memory (PCM) is currently the most

mature and widely used NVM technology under research. It is employed in various

11

memory hierarchies, from L2 cache to storage medium, highlighting its potential to

replace conventional memory technologies. In Section 2.3, we examine the impact

of reducing bit flips on PCM performance, energy consumption, and lifespan. Our

experiments demonstrate that minimizing the number of written cells not only extends

the device’s average lifespan but also significantly reduces power consumption and improves

system latency. Additionally, this dissertation aims to bridge the gap between the NVM

storage and data management communities by integrating recent advances from the

former into existing and future data management systems.

1.2.3.2 Energy Consumption

Bit flip reduction represents the design principle of minimizing how many bits

are flipped from 0 to 1 or 1 to 0 when a write is applied to a memory segment. In a PCM

device, as the number of bit flips decreases, the write endurance improves. Reducing

the number of written cells also means that the energy consumption of the system drops

significantly. For instance, based on an experiment conducted by [138], when the number

of different bits in the write data and the overwritten content varies from 0% to 100%,

the energy consumption can vary from nearly 0 to over 10000 pJ . So, targeting bit flip

reduction is a worthy investment in the NVM context, and there are a large body of

research, such as [16, 68, 69, 81, 83, 138, 139], targeting bit flip reduction to extend the

NVM lifetime and decrease their energy consumption.

To see how this difference affects the system’s energy consumption, we have

conducted an experiment on a real Optane memory device (Section 2.3). For the

12

Figure 1.3: An example of replacing a memory content with a similar content used in PNW [81]

experiment, we have used the Persistent Memory Development Kit (PMDK) 1, formerly

known as NVML. As we will see in the results, reducing the number of bit flips can

have positive effects on the energy consumption of the NVM device. This experiment

alongside the ones that we have done to analyze the impacts of bit flip reduction on

latency and lifetime of PCMs show that reducing the number of bit flips in the NVM

devices, such as PCM, whose controllers are optimized by only flipping bits when the

old value of a cell differs from the value being written to it can lead to improvement in

lifetime, latency, and energy consumption of the device.

It is worth noting that although we tested our results primarily on Optane,

a type of PCM, our designs are applicable to other PCM-based technologies, such as

Phase-Change Random Access Memory (PRAM) and Resistive RAM (RRAM), which

can also benefit from bit flip reduction. For instance, our deep learning-based method,

E2-NVM (Section 4), focuses on improving system energy consumption. This method

is particularly attractive for applications using low-power PCM devices, such as those

relying on energy-harvesting systems or batteries, including the Internet of Things (IoT)

and mobile devices, where power conservation is crucial [15,21,113].
1Persistent Memory Development Kit https://pmem.io/pmdk/.

13

1.2.3.3 Latency

Not only does reducing the number of bit flips save the energy consumption

of the system, but also it can improve the latency of write operations. Figure 2.2 (the

top one) shows that write latency also improves when bit flips are reduced. The main

reason behind this is when the content of the old data and the data that is being written

is similar, the total number of writes can also be reduced, which results in improving

write latency. This process can reduce the number of writes in two ways: (1) the first

way is by writing new items in-place to replace a similar old value in terms of hamming

distance. This leads to decreasing NVM word writes (i.e., the number of modified words

in a cache line.) (2) In the second way, writing similar contents decreases the number of

NVM line writes, respectively cache lines needed to be written per item. For example,

suppose that the page size in a system is 4KB. In this scenario, if the items are similar

to each other in terms of the hamming distance, fewer number of cache lines are needed

to fulfill the request (suppose each part in Figure 1.3 is a cache line).

14

Chapter 2

Prior work

There have been plenty of methods proposed for improving NVM write endurance

and energy consumption from hardware-focused methods to software-focused ones. According

to their general strategies, these methods can be categorized into three main groups:

1) the storage community developed write optimization techniques that are

mostly based on a Read-Before-Write (RBW) pattern [154]. In RBW, a write operation

w to a memory location x is always preceded with a read of x. The value to be written by

w is compared with the old content of x, and only the bits that are different are written.

This reduces the number of flipped bits, which increases write endurance [154]. Other

approaches built on RBW to increase write endurance by masking or changing the value

to be written if it leads to reducing bit flips [6,31,42,73,118]. Flip-N-Write (FNW), for

example, checks whether flipping the bits of the write operation would lead to decreasing

the number of bit flips [31].

2) the data management community tackled the problem of write endurance

15

by minimize write operations via techniques such as caching [10, 29, 117] and delayed

merging [79,99], or by designing specialized data structures that require fewer writes [166].

Therefore, data structures that are designed to be deployed on NVM should be designed

in a way to exploit the advantages and avoid the disadvantages of the technologies. For

example, data structures for disks are block-oriented and work the best for sequential

access. However, those designed for flash reduce write amplification, which is the main

concern in flash technologies [16]. As we will explain later, techniques that focus on

reducing write amplification can result in increasing write endurance although this is

not always the case [16].

3) The proposed methods in the third group also increase the write endurance

of PCMs through a new approach called memory-awareness. The main idea behind

this approach is to take advantage of having knowledge of the memory content in

advance because read operations are less expensive than write operations in PCMs. Prior

methods pick the memory location for a write operation arbitrarily (new data items select

an arbitrary location in memory, and updates to data items overwrite the previously-

chosen location.) The methods in this group judiciously pick a memory location that is

similar to the value to be written. When the new value and the value to be overwritten

are similar, this reduces the number of bit flips required, as similar values result in fewer

changes. Numerous methods employing this approach as a foundation will be explored

in Section 2.4.

In the following, we present the main concerns, challenges, and limitations of

state-of-the-art methods that have utilized NVMs in their designs by dividing them into

16

three main groups based on the trends and solutions they propose to solve the problem

of write endurance and energy consumption. We also identify the short- and long-term

research opportunities in this space.

2.1 Wear leveling

Wear leveling has been studied extensively for Flash-based storage devices [14,

54, 89, 94, 103]. In these methods, the wear-leveling algorithms usually keep track of

the storage blocks and remap those blocks that are written heavily in a given time

quanta to the lowest wear-out blocks. In storage class memory, wear leveling has almost

the same objective, which is extending the lifetime of NVM devices by distributing

the writes evenly across the memory blocks of NVM so that no hot area reaches its

maximum lifespan by extremely high concentration of write operations [26, 31, 42, 68,

124, 138, 158]. These methods usually are implemented in the memory controller level

to protect NVMs. Wear-leveling is usually transparent for upper-level applications and

they can simply access to the same content using the same logical address (they are

unaware of the physical address where the data are stored.) According to the mapping

strategies, existing wear-leveling schemes can be divided into two main groups:

(1) table-based wear-leveling (TBWL) techniques that store the logical addresses

(LA), their corresponding physical addresses (PA), and the frequency of accesses. In this

way, the storage table of the wear-leveling can be eliminated. When the number of writes

to a specific physical address (PA) goes beyond a threshold, its content is swapped by

17

the wear-leveling method [68,164].

For example, In [123], the authors propose Fine-Grain Wear Leveling (FGWL),

which shifts cache lines within a page to achieve uniform wear out of all lines in the page.

Also, when a PCM page is read, it is realigned. The pages are written from the Write

Queue to the PCM in a line-shifted format. For a system with 4 lines per page, for

instance, the rotate amount is between 0 and 3 lines. The rotate value of 0 means the

page is stored in a traditional manner. If it is 1, then the Line 0 of the address is being

shifted one line and stored in Line 1 of the physical PCM page, line 1 of the address in

stored in line 2, line 2 in 3, and finally, line 3 of address space is stored in Line 0. When

a PCM page is read, it is realigned. The pages are written from the Write Queue to the

PCM in a line-shifted format.

Self-adaptive wear-leveling (SAWL) algorithm [68] is another wear-leveling scheme

that dynamically adjusts the wear-leveling granularity to accommodate more useful

addresses in the cache, thus improving cache hit rate. This method distributes the

writes across the cells of entire memory, thus achieving suitable tradeoff between the

lifetime and cache hit rate.

(2) Algebraic-based wear-leveling methods [124,132,143] are another group that

try to distribute the incoming writes to avoid concentrating writes on specific physical

locations and creating the hot areas. To this end, they usually replace the address-

mapping table in the table-based wear-leveling algorithms with hardware structure,

which are more space efficient [124]. In this way, they can increase the lifetime of

NVMs orders of magnitude compared to the based line where there is no wear-leveling.

18

Start-Gap [124] is one of the first methods that proposed a wear-leveling method

based on the algebraic mapping between the logical and physical addresses. In this

technique, there are two registers (Start and Gap) that do the wear-leveling. When a new

write comes to the memory, Start-Gap moves one line from its location to a neighboring

location. While the Gap register keeps track of the number of lines moved, Start register

counts the number of times that all the available lines have moved. Finally, the mapping

between logical and physical address is done by a simple arithmetic operation of Gap

and Start registers, which eliminates the need for storing the address-mapping table in

the memory.

In [156], the authors propose a hardware-based wear-leveling scheme named

Security Refresh, which performs dynamic randomization for placing PCM data. In

this method, an embedded controller inside each PCM is responsible for preventing

adversaries from tampering the bus interface or aggregating meaningful information via

side channels [156]. They also applied designed some attacks to analyze the wear-out

distribution using Security Refresh.

Although wear-leveling strategies have been successful in preventing creation

of hot locations and extending the lifetime of NVMs, the controller cannot guarantee

that some cells will not wear out much faster than the average. The reason is that

distributing writes evenly across the memory space does not necessarily mean that the

individual cells within the words also be flipped/written evenly. That is why, in some

extreme cases, even with the protection of state-of-the-art wear-leveling schemes, wear-

out attacks such as Remapping Timing Attack [66] and Row Buffer Hit [110] can wear

19

out NVM as fast as 137 seconds [110]. Therefore, hardware techniques such as FNW [31],

CDE [42], FPC [59], and Flip-Mirror-Rotate [118], which will be explained in the next

section, have been proposed to focus on reducing the number of bit flips within a given

word instead of just distributing writes uniformly across the device.

2.2 Reducing write amplification

Many data storage and indexing solutions target the reduction of write amplification

to optimize the utilization of I/O bandwidth. This is done via various techniques,

including delaying the consolidation of writes [79,99], caching [10,29,117], and others [166].

With the introduction of NVM to the memory hierarchy, it turns out that reducing write

amplification can have the positive side-effect of increasing NVM write endurance since

less data is written. However, this is not an easy task to do due to the fact that

all the existing data structures and database systems have been designed for DRAMs

and HDDs, where the challenges of the lifespan of memory segments and the energy

consumption of writes are not as significant in DRAM/HDD as they are in NVM.

However, as discussed before, when it comes to NVMs, write operation needs to be

performed wisely. So, the proposed methods in this group reduce the write amplification

in an attempt to decrease the average number of updated cells and as a result increases

the lifetime of NVMs.

To achieve this, many methods re-design existing data structures and database

systems to mitigate the write amplification issue caused by them instead of designing and

20

building new ones from scratch. The reason behind this is that existing data structures

and database systems have undergone decades of research that makes them extremely

efficient and makes building alternatives from scratch an arduous task.

Log-Structured Merge-tree (LSM-tree) is one of those data structures that has

been widely adopted for use in the storage layer of modern NoSQL systems, and as a

result, has attracted a large body of research, from both the database community and

the storage systems community, that try to improve various aspects of LSM-trees by

using NVMs [37, 79, 105]. NoveLSM [79] is one of these methods. This method is a

persistent LSM-based key-value storage system designed to take advantage of having a

non-volatile memory in its design. To tackle NVM’s limited write endurance, NoveLSM

comes up with a new design, where only the parts of the key/value store that do not

need to be changed frequently, such as immutable memtables, are handled by NVM. On

the other hand, other parts, such as mutable memtables, which need constant updates

and data movements, are placed on DRAM, which do not have any restrictions on write

operation.

WiscKey [105] is another work, which proposes a persistent LSM-tree-based

key-value store, which has been derived from the popular LSM-tree implementation,

LevelDB. Although, like the other methods in this category, WiscKey focuses on decreasing

write amplification, it achieve this through a different and simple way, which is separating

keys from values. This method observes that since the indexing is done by keys, and

not values, they do not need to be bundled together when they are stored in the LSM-

tree. So, in this method, only keys are kept sorted in the LSM-tree, while values are

21

stored separately in a log. Through this insight, they have reduced write amplification

by avoiding the unnecessary movement of values while sorting. Although this technique

is originally proposed for SSDs, it can be generalized to storage class memories, which

suffer from the same limitation.

Another data structure that has been redesigned to utilize NVMs is B+-

Trees, which is used widely in K/V data stores [29, 65]. Fingerprinting Persistent

Tree (FPTree) [117] is a hybrid SCM-DRAM persistent and concurrent B+-Tree that

is designed specifically for NVMs. This method aims to decrease write amplification on

NVMs. To do so, in this method, leaf nodes are persisted in SCM while inner nodes are

placed in DRAM and rebuilt upon recovery.

LB+-Tree [101] is another method that changes the structure of the conventional

data structures to take advantage of NVMs. In this work, to improve the insertion

performance of LB+-Tree, three techniques are proposed: (1) entry moving, which

creates empty slots in the first line of a leaf node to reduce the number of NVM line

writes, (2) logless node split, which targets the logging overhead, and (3) distributed

headers. LB+-Tree improves the performance of the insertion operation compared to

the other methods.

DPTree (Differential Persistent Tree) [165] batches multiple writes in DRAM

persistently and later merge them into a PM component to decrease the persistence

overhead, which is imposed to the system because of the persist primitive that the

existing PM index structures use to guarantee consistency in case of failure.

In [30], the authors target the tail latency of tree-based index structures, which

22

the result of the internal structural refinement operations (SROs) and the inter-thread

interferences. To reach to this aim, uTree introduces a shadow linked-list layer to the

leaf nodes of a B+-tree to minimize the SRO overhead. This method has succeeded in

improving throughput and latency.

Hash-based indexing structures have also been good candidates to utilize NVMs

due to their nature of typically causing high write amplification and that they are vastly

used in various applications and systems [69,108,152,166]. A lot of effort has been made

to improve hash-based indexing structures for byte-addressable persistent memory, and

almost all of them focus on decreasing the write amplification to reach their goal. Path

hashing [166] is an example of these hash-based indexes, which is designed specifically

for NVMs. The basic idea of path hashing is to leverage a position sharing method to

resolve the hash-collision problem, which usually results in a high number of extra writes

or write amplifications.

Dash [104] proposes a persistent hashing scheme that aims to solve the performance

(scalability) and functionality challenges that persistent hash tables face by reducing

both unnecessary reads and writes. To achieve this, Dash takes advantage of some

previous techniques, such as fingerprinting, optimistic locking, and combine them with

some novel methods such as bucket load balancing technique. They have tested their

method on real Optane DCPMM and the results show that Dash can improve throughput

significantly. It is worth noting that the methods that the methods that we mentioned

in this section are merely some examples of the whole group of methods 1.2 that utilize

NVMs in their work in different ways.

23

Although the methods in this category tackle the problem of energy consumption

and write endurance by minimizing write amplification, they conflate the problem of

energy efficiency and write endurance with the problem of write amplification. While in

many cases a technique that leads to reducing write amplification has the side-effect of

increasing energy efficiency and write endurance, this is not always the case as shown

by prior work and our own evaluations [16,82].

All these methods offer different advantages and disadvantages. These methods

invite exploring how they can be integrated with existing data management systems to

enable them to improve the lifetime of NVMs. Some of these methods are independent

from the application (and often implemented as a hardware method) which means that

augmenting them within existing data management systems is a straight-forward task.

Other approaches—especially ones based on masking—require domain knowledge on the

application using them. There is an opportunity for data management researchers to

find ways to adapt these methods to work with existing data management systems. This

would entail learning the write patterns of data management systems and translating this

knowledge into appropriate masking techniques that are based on the methods presented

above.

2.3 Bit Flip Reduction

Although reducing write amplification is a promising way to extend the PCMs’

lifespan, it does not necessarily lead to the best opportunities to reduce bit flipping and

24

Figure 2.1: The impact of capacity and swapping period on PCM’s lifetime when the

percentage of hamming distance between the write data and the overwritten content changes.

increasing write endurance [16,81]. This is because—unlike flash—PCM cells are written

individually, which means that the number of flipped bits is more important to optimize

than the number of written words [16]. Therefore, focusing on reducing bit flips is a

viable solution that can both save energy and extend the life of PCMs.

To see how this difference affects NVM’s performance in terms of lifetime,

energy consumption, and latency, we have conducted some experiments on a PCM device

and a real Optane memory. Figure 2.1 shows the lifetime of a PCM device is affected by

the number of bit flips that occur during write operations. As we can see in this figure,

when the average percentage of the hamming distance between the old value of the cell

and the value that is going to be written increases, the lifetime of the device decreases.

25

This figure also shows swapping period plays an important role in the lifetime of the

device. Based on the results, for a certain hamming distance, when the swapping period

is high, the device lasts longer because having lower swapping period means more write

amplification, which increases the overall flipping bits. However, setting lower swapping

period increases the risk of certain cells being worn out sooner than others, especially

when there is a malicious attack. Figure 2.1 also shows that when the capacity of the

device is low, e.g., in mobile and embedded systems, memory cells can wear out faster.

To see how bit flip reduction affects the latency and energy consumption of a

NVM device, we have conducted a simple experiment on a real Optane memory device

(Section 2.3) using the Persistent Memory Development Kit (PMDK) 1, formerly known

as NVML. In this test, first, we allocate a contiguous region of N Optane blocks of 256B.

During each “round” of the experiment, we first initialize all the blocks with random data,

and then update the blocks with new data with content that is x% different than the

data that is already in the block (hamming distance). We use PMDK’s transactions

to persist writes. We measure the latency and energy consumption of the socket for

each round. Figure 2.2 shows that by overwriting similar content, which needs less bit

flipping, we can save a huge amount of energy and improve latency.

Generally, the existing bit flipping reduction methods can be divided into two

main categories: RBW-based techniques and Memory-awareness.
1Persistent Memory Development Kit https://pmem.io/pmdk/.

26

Figure 2.2: The latency and memory energy consumption on a real Intel Optane memory

device for read and write operations with different percentages of hamming distance.

2.3.1 RBW-based techniques

One of the most important characteristics of Read Before Write (RBW) technique

and its variants is their simplicity and efficiency in dealing with the lifetime issue of NVM.

So, there has been a large body of research that uses various types of this method in

their works. In this category, there are various techniques, such as caching [10, 29, 117]

and the Read-Before-Write (RBW) technique [154], to decrease the number of bit flips.

RBW is one of the most popular techniques, which has been widely utilized

by various approaches [6, 31, 42, 73, 118], to reduce the number of bit flips is the Read-

Before-Write (RBW) technique [154], in which the content of an old memory block is

read before it is overwritten with the new data (Figure 2.3). This technique replaces

27

Figure 2.3: Read Before Write (RBW) technique.

each PCM write operation with a more efficient read-modify-write operation. Reading

before writing allows comparing the bits of the old and new data, updating only the bits

that differ.

Flip-n-Write (FNW) [31] is one of the most popular methods and became the

building block of many other techniques in this area. This method compares the current

content of the memory location (the old data) with the content to-be-written (the new

data). This enables FNW to decide whether to write the new data in its original format

or to flip it before writing it if that leads to reducing the number of bit flips. (A flag is

used so that future operations know whether to flip the content before reading.) This

method guarantees that the number of bit flips in PCM is always less than half the total

number of written bits (excluding the flag bit).

DCW [42] finds common patterns and then compresses data to reduce the

number of bit flips in PCM. Like Flip-N-Write, DCW replaces a write operation with a

read-modify-write process. It starts comparing the new data and the old data from the

first bit to the last one. The most significant difference between DCW and Frip-N-Write

28

is that in DCW, the maximum number of bit flips is still N (the word width).

Captopril [73] is another recent proposal for reducing bit flips in PCMs. This

method masks some “hot locations”, where bits are flipped more, to reduce the number

of bit flips. In this method, the authors compare every write with 4 predefined sequences

of bits to decide which bits need to be flipped and which ones need to be written in their

original form. This method suffers from relatively high overhead. More importantly, it

is rigid and would only work on predefined applications.

Flip-Mirror-Rotate [118] is another method that is built upon Flip-N-Write [31]

and FPC [6] to reduce the number of flipped bits. Like Captopril, this method uses only

predefined patterns to mask some bits, which means it would only work on predefined

applications.

MinShift [107] proposes reduces the total number of update bits to SCMs.

The main idea of this method is that if the hamming distance falls between two specific

bounds, the new data is rotated to change the hamming distance. Although this method

is simple, it suffers from high overhead.

In [46], the authors use a combination of MinShift and Flip-N-Write to decrease

the number of written bits. They compute the minimum amount of some possible states

to choose a pattern to encode the data. This method has advantages and disadvantages

of both methods.

29

2.4 Memory-awareness

As discussed earlier, the writing operations in PCM takes much more energy

than reading operation. To save energy, the PCM controller can avoid writing to a

cell whose content is the desired value. It means that the lifetime of the cell and the

consumed energy in the write operation depends on the number of bits that are actually

being flipped by the write rather than the number of words or bits that are written.

Although focusing on bit flipping reduction technique seems a reasonable choice,

the methods in this category fail to achieve its full potential because the existing methods

miss a crucial opportunity. Prior methods pick the memory location for a write operation

arbitrarily (new data items select an arbitrary location in memory, and updates to

data items overwrite the previously-chosen location.) This misses the opportunity to

judiciously pick a memory location that is similar to the value to be written. When the

new value and the value to be overwritten are similar, this means that the number of

bit flips is going to be lower. Reducing the number of bit flips increases write endurance

and reduces power consumption. We call this approach “memory awareness.”

2.4.1 Content-aware methods

The methods in this group, by being aware of the memory content, try to

redirect write requests to overwrite specific memory locations based on their content-

aware replacement policies to decrease the energy consumption of the system and extend

the lifetime of the device. For example, the authors in [158] proposes an encoded content-

30

aware cache replacement policy to reduce the total switched bits in spin-torque magnetic

random-access memory (STT-MRAM) caches. To do this, instead of replacing the LRU

block, the victim block is chosen among the blocks whose contents are most similar to

the missed one. To avoid the comparison of the entire 512 bits of the blocks, each block is

encoded using 8 bits, which incur low space overhead. The reason behind this encoding

is that when the contents of two blocks are dominated by certain bit value, there is a

good chance that the content similarity of the two blocks is high, hence may lower the

switch bits when one double word replaces the other [158].

Data Content-aware (DATACON) [138] is a recent mechanism that reduces the

latency and energy of PCM writes by redirecting the write requests to a new physical

address within memory to overwrite memory locations containing all-zeros or all-ones

depending on the content of the incoming writes. DATACON is implemented inside the

memory controller. To keep track of the all-zeros and all-ones memory locations and

their address translations, the memory controller needs to maintain a table. Although

this method takes advantage of being content aware, it needs to be implemented inside

the existing memory controller, which is non-trivial task. Moreover, the average number

of bit flips it can save is highly dependent on the workload since it uses two fixed patterns

to save bit flips.

In [16], the authors modifies the common data structures based on the idea of

pointer distance to minimize the number of bit flips on PCMs. In this method, instead of

building a doubly-linked list, for instance, XOR linked lists are used, which allows each

node to store only the XOR between the previous and next node instead of storing the

31

previous and next nodes. The results show that storing the XOR of two pointers, which

are likely to contain similar higher-order bits, reduces the number of bit flips, which can

lead to reducing power consumption.

2.4.2 AI-based methods

Machine learning and deep learning are revolutionizing various fields, from

power systems and transport to storage and database systems [9, 51, 55, 91]. While the

use of machine learning in the area of database management and storage systems is not

entirely new, leveraging it to extend the lifetime, energy efficiency and latency of NVMs

has not been explored until our introduction of this approach in “Predict and Write.”

In our work, Predict and Write, we introduced the concept of “AI-based memory-aware”

methods for the first time in this domain. The core idea of AI-based methods is to

utilize machine learning techniques to learn the existing write patterns on Non-Volatile

Memory (NVM) devices. This enabled us to direct incoming write operations to the

optimal memory locations, minimizing the number of bit flips. By doing so, we can

significantly enhance the energy efficiency and longevity of NVM devices.

As discussed earlier in Section 2.3, our extensive tests demonstrate a positive

correlation between reducing bit flips and improving the lifetime, energy efficiency, and

latency of NVM devices. To achieve this reduction in bit flips, we leveraged AI-based

models that analyze the data distribution of existing data to identify the optimal free

memory locations for incoming writes. This approach minimizes bit flips and enhances

the overall performance and longevity of NVM devices.

32

Reducing bit flips using software-level solutions addresses two major challenges

faced by hardware solutions. First, hardware algorithms need to be small and simplistic

to fit within the memory controller, which limits their complexity and effectiveness.

Second, developing hardware-based methods is often inaccessible to researchers, as most

storage solutions for wear leveling and bit flip reduction are proprietary and require new

hardware manufacturing.

To achieve this, we designed various software-level memory-aware solutions

that harness the power of machine learning and deep learning models to enhance the

adaptability of NVM devices in existing database and storage systems. Our software-

level implementations map free memory locations based on their hamming distance,

avoiding the computational and space constraints of memory controller-based solutions.

Incoming write operations are intercepted and directed to free memory locations with

similar hamming distances. This mapping is facilitated by training machine learning and

deep learning models on the free memory locations available on the device. Implementing

these learning models in software, rather than in the memory controller, allows for more

efficient and sophisticated solutions. In this thesis, we present and discuss the challenges

encountered in applying learning models to this problem, including the use of efficient

models that combine clustering, dynamic address pools, and indexing data structures.

33

Chapter 3

Predict and Write: Using K-Means

Clustering to Extend the Lifetime of NVM

Storage

In this chapter, we introduce our first work “Predict and Write” (PNW) [81],

an NVM-based K/V store that uses a dynamic approach to minimize bit flips adapting

to new applications and dynamic workload changes. PNW decreases both the number

of NVM line writes as well as the number of NVM word writes (see section 3.3.1).

We leverage machine learning (ML) to continuously learn a model that reflects

the existing write patterns of a given workload. The model learns to cluster memory

locations in NVM enabling the placement of future writes to locations that minimize

the amount of bit flips. Furthermore, by periodically retraining the ML model, it adapts

dynamically to a changing workload without the need for user intervention. It is worth

34

noting that unlike the previous methods, which are based on the RBW technique, PNW

does not depend on NVM hardware modifications. This is because we do not require

using hardware-based read-modify-write operations before write operations as we can

avoid writing similar data at a larger granularity (e.g. a cache line). However, future

work on combining PNW with custom hardware support could further reduce the number

bit flips at the bit or byte level.

Our design consists of a ML model, a hash index, a table for storing metadata

named the dynamic address pool and a data zone to store the actual data or K/V pairs

(see section 3.2.1). We also show in the evaluation section that the performance benefits

obtained from the ML technique significantly outweigh its overhead in terms of space

cost and time. This is the case even when the ML models are running on CPUs without

using specialized hardware. Future extensions of our proposal to use methods that

process the ML model on specialized hardware such as accelerators and TPUs would

further improve the efficiency of our approach [91].

3.1 Predict and Write

Whenever there is a need for updating memory in-place, the number of bit

flips depends on the hamming distance between the old data—currently in the memory

location—and the new data, which is going to overwrite the memory location. PNW

reduces bit flips by avoiding in-place updates and, instead, finding a new memory

location for each write that would minimize the hamming distance. By placing the write

35

Table 3.1: An example of a PCM with 6 elements

Cluster Index Content

1
0 ’0’, ’0’, ’0’, ’0’, ’0’, ’1’, ’1’, ’1’
1 ’0’, ’0’, ’0’, ’0’, ’1’, ’0’, ’1’, ’1’

2
2 ’0’, ’0’, ’1’, ’0’, ’1’, ’1’, ’0’, ’0’
3 ’0’, ’0’, ’1’, ’1’, ’1’, ’1’, ’0’, ’0’

3
4 ’1’, ’1’, ’0’, ’1’, ’0’, ’0’, ’0’, ’0’
5 ’0’, ’1’, ’1’, ’1’, ’0’, ’0’, ’0’, ’0’

operation in the right memory location that minimizes the hamming distance between

the old and the new data, the number of bit flips can be significantly reduced. While

promising for reducing bit flips, this technique introduces several challenges. First, it

requires an indirection layer to map a logical value to its current physical location. As

the write unit size of NVMs is a byte, storing these mappings on the byte level introduces

a significant overhead. Second, the technique requires computing the hamming distance

between the new (to-be-written) data and all the available physical data locations.

Computing the similarity between all locations is prohibitive.

The first challenge is addressed by leveraging a K/V store that already implements

an indirection layer to map keys to values. To address the second challenge (finding the

right memory location for a write operation to minimize the hamming distance), we

introduce a machine learning approach based on k-means clustering.

The intuition behind our clustering approach is that we cluster similar memory

locations in terms of the bit patterns of their contents. Using this clustering, we can

quickly retrieve a new memory location for a PUT operation such that the hamming

36

distance between the new to-be-written data and the old memory location where it

will be written is minimized. We do not need to perform k-means clustering for each

PUT/DELETE operation; instead, it is sufficient to perform clustering periodically. We

evaluate the training frequency and its effect on reducing bit flips in Section 3.3.6.

To illustrate our approach, consider a storage system that is using a PCM as

its persistent memory with a capacity of six equal sized (8 words) entries, managed by

a free-list which we refer to as the dynamic-address-pool (Table 3.1). Now, suppose that

we have two PUT operations that write the following new data items, d1: [’0’, ’0’, ’0’,

’0’, ’1’, ’1’, ’1’, ’1’] and d2: [’1’, ’1’, ’1’, ’1’, ’0’, ’0’, ’0’, ’0’].

In a regular system, where updates are applied in place, there exists only one

option to write the data and hence the reduction of bit flips with techniques such as

FNW is limited. PNW, on the other hand, determines the best memory location to

write the new data by computing the minimum hamming distance between the new

data and existing free memory locations maintained in a table called “dynamic address

pool”. Computing all hamming distances grows in complexity with the number of entries

in the dynamic address pool and hence becomes intractable. To overcome this problem,

PNW groups the entries in the dynamic address pool into clusters according to their

hamming distance.

For instance, we can group the elements from the example in Table 3.1 into

three clusters where indexes 0 and 1 form cluster 1, indexes 2 and 3 form cluster 2, and

indexes 4 and 5 form cluster 3. Now, if we receive the same new items d1 and d2, we

direct them to clusters that are closest to them, which are clusters 1 and 3, respectively.

37

(a) Proposed architecture for small keys (b) Proposed architecture for large keys

Figure 3.1: An example of procedures which serve K/V PUT and DELETE operations for a)

small and b) large keys.

These items are grouped together because the K-means model assigns data points to

a cluster such that the sum of the squared distance between the data points and the

cluster’s centroid (arithmetic mean of all the data points that belong to that cluster) is

at the minimum. In this example, the centroids for the first, second, and third clusters

would be [0. 0. 0. 0. 0.5 0.5 1. 1.], [0. 0. 1. 0.5 1. 1. 0. 0.], and [0.5 1. 0.5 1. 0. 0.

0. 0.], respectively. Because the variations within clusters are minimal, the data points

are homogeneous (similar) within the same cluster. In this scenario, wherever we decide

to write the items within their corresponding clusters, we will end up writing only 1 bit

for each item, without any extra flag bits. This is a simple example of how PNW works.

It is worth noting that PNW reduces the number of writes in two ways: (1)

the first way is by writing new items in-place to replace a similar old value in terms of

hamming distance. This leads to PNW decreasing NVM word writes (i.e., the number

of modified words in a cache line.) (2) In the second way, PNW decreases the number of

NVM line writes, respectively cache lines needed to be written per item. For example,

38

suppose that the page size in our system is 4KB as shown in Figure 1.3. In this scenario,

if the items are similar to each other in terms of the hamming distance, fewer number of

cache lines are needed to fulfill the request (suppose each part in Figure 1.3 is a cache

line). This enables PNW to decrease NVM word writes in addition to NVM line writes.

3.2 Key-Value Store Design

In this section, we present the design of our K/V store utilizing the Predict-

and-Write technique. We first describe the ML model and then discuss the capabilities

supported by our proposed K/V store.

3.2.1 Overview and system model

Our design consists of a ML model, a hash index, a table for storing available

(free) NVM addresses dynamic address pool, and the K/V data zone to store the K-V

pairs. In Figure 3.1, we show a K/V store on a DRAM-NVM hybrid memory layout using

our PNW method. Our data store implementation supports K/V operations including

GET, PUT, and DELETE.

3.2.1.1 Machine Learning Model

Our proposed machine learning method learns the existing data distribution

among real-world workloads to decrease the bit flips in write operations. We utilize an

unsupervised ML model that is able to cluster data elements into a number of clusters

based on their similarity. In particular, we leverage K-means clustering to cluster the

39

Figure 3.2: PCA variance ratio according to the number of principal components.

available data on PCM. The size of the buckets (the unit of the value size) can vary

ranging from a word size to the size of a page or even the size of a document depending

on the system.

In our system, each memory location is encoded as a vector of bits, each of

which is used as a feature/dimension. The entire data zone can be encoded as a 2D

tensor (that is, an array of vectors) of shape (n, m), where the first axis (n) represents

the samples (old data) and the second axis (m) represents the features. Because the size

of the buckets can be very large (thousands of bits), it can lead to a problem referred to

as the “curse of dimensionality”, which increases the training time and space complexity

of the model significantly.

Addressing the Curse of Dimensionality To tackle the curse of dimensionality

problem, we use Principal Component Analysis (PCA) on the data sets used in PNW

40

reducing the number of dimensions before training the model. Although PCA is applicable

to all data sets, it is especially useful for the ones with a very large number of features.

Projecting data to a lower dimensional subspace is very common in different areas such

as meteorology, image processing, and genomics analysis, especially before K-means

clustering is applied [44,75,114,159]. The main basis of PCA-based dimension reduction

is to keep only the principle components (features) which explain the most variance in

the original data [20]. Figure 3.2 shows the PCA variance ratio according to the number

of principal components for MNIST, which is one of the data sets we use in our tests. In

this example, we only keep the first 1000 principal components (features) because they

are enough to represent more than 80% of the variance in the data.

Determining the Number of Clusters Another important decision that

needs to be made before training the model is to determine the number of clusters (K).

There are a number of ways to determine the optimal value for K [24]. In this work, we

use one of the most common techniques called the “elbow method” [76, 109, 142]. The

elbow method is expressed as the following Sum of Squared Error (SSE) [142]:

SSE(X,Π) =
K∑
i=1

∑
xj∈Ci

∥xj −mi∥22 (3.1)

where ∥.∥2 denotes the Euclidean (L2) norm, mi= 1
|Ci|

∑
xj∈Ci

xj is the centroid

of cluster Ci where the cardinality is |Ci|, Π={C1, C2, ..., CK}, and X={x1, ..., xi, ..., xN}

(N is the feature vector).

In this method, the value for SSE is calculated as we increase the number of

clusters. To determine the optimal number of clusters, we identify a sharp decrease

41

Figure 3.3: Sum of Square Error graph to find the optimal K.

known as the “elbow” or “knee”, which suggests the optimal value for K [109, 142, 145].

Figure 3.3 shows an example of choosing the optimal K by seeing the significant decrease

in the SSE graph, which is in K = 5 (the data set is MNIST).

The ML model is constructed on DRAM as it does not need to be persistent

and can be reconstructed after a crash. By constructing the model on DRAM, we take

advantage of both DRAM’s high write endurance and DRAM’s high speed. Another

advantage of our proposed method is that this model can be replaced by any customized

learning model.

3.2.1.2 Dynamic address pool

The dynamic address pool is a table that contains a number of entries, equal

to the number of clusters in the ML model (Figure 3.4). Each entry in the dynamic

42

address pool contains a free-list of the available memory locations that belong to the

same cluster, as it is learned by the ML model.

Initialization. The first step of initialization is creating a K-means clustering

model based on the number of clusters we want to have, and then training the model

on all the available data in the NVM storage called the data zone (Algorithm 1). The

next step is to label data items in each memory location (line 3). Finally, we add

the available addresses on the data zone to their corresponding entry in the dynamic

address pool (lines 4 and 5). Now, when a PUT request is received by the system, the

ML model finds its label, and based on that label, the dynamic address pool returns one

address from corresponding cluster. We maintain a flag for each address in the dynamic

address pool to indicate whether it is available. We also remove memory addresses out

of the dynamic address pool when they are allocated to a K/V pair and reinsert them

afterwards to ameliorate the cost of keeping a flag per address in terms of lookup time.

It is worth noting that the storage overhead of the dynamic address pool is

proportional to the number of pointers that are stored per value. As a result, for large

values, the size of the table does not grow significantly. For small values, however, the

number of addresses that needs to be stored per value can grow substantially. To limit

the table size, we set a fixed number of entries in the table, so the size of the table cannot

not grow to more than a specific maximum threshold. In this way, the table is used by

adding addresses in and removing them from the table until the number of available

addresses goes under a minimum threshold, called the load factor, which is described in

details in section. 3.2.3.

43

Figure 3.4: Dynamic Address Pool.

Algorithm 1: Initialization
// n_clusters: number of clusters

// D’ and A: content and addresses of the data zone

// DAP: Dynamic Address Pool

// N: len(D’)

1: model = KMeans(n_clusters)

2: model.train(D’)

3: labels = model.labels_

4: for (i:=0, i<N, i++)

5: DAP[labels[i]].append(A(i))

44

3.2.1.3 Hash index

Indexing is critical in designing K/V stores. Our hash index component maps

each key to the memory location that contains its value in the NVM data zone. To build

indexes that support K/V operations, there exists a variety of choices ranging from B+-

Tree to LSM trees to hashmaps. The operational efficiency of each indexing structure

varies from one implementation to another and hence the optimal implementation is

application specific. For the existing implementation, we choose hash indexing, however,

it can be replaced with any other indexing data structure. The only requirement of the

indexing structure is that it can map logical keys to arbitrary physical memory addresses.

We have two choices to store the indexing structure:

• If we place the indexing structure into PCM (Figure 3.1(b)), there is no need to

rebuild it during the recovery from a crash. However, it also introduces extra writes

to the NVM because of the write amplification problem induced by indexing data

structures such as B+Trees and hash indexing. It is a good design choice when the

size of the keys are large because in that case the wear-out cost of the hash index

is negligible. However, for small keys, it represents a problem which we mitigate

by leveraging data structures such as NVM-friendly hashing indexes [166].

• Another design choice is to build the indexing structure on DRAM (Figure 3.1(a)).

This architecture is particularly beneficial when the size of the keys are small. In

this case, we do not pay any cost for the extra bit flipping that is caused by the

write amplification of the indexing structures. Nonetheless, we need to build the

45

whole data structure from scratch during recovery after a crash.

In the evaluation, we build and persist a write-friendly hash index in PCM as

introduced in [166]. We perform the tests based on this design to explore the worst

case scenario of putting the hash index on PCM in terms of extra bit flips introduced by

write amplification. Also, for every entry in the hash index, there is a flag bit that shows

whether the corresponding key is available or not. In particular, whenever we receive a

delete request, we can reset its corresponding bit in the hash index to reflect that the

corresponding index does not exist anymore instead of deleting it. We can do the same

procedure for deleting a K/V pair from the data zone.

3.2.2 Supported K/V Operations

3.2.2.1 PUT Operation

PUT and UPDATE operations are executed as follows. As shown in Figure 3.1,

when our system receives a write request such as PUT, the model is queried to determine

the cluster that is closest to the value-to-be-written in terms of their hamming distance.

Then, a memory address is returned from that cluster by using the dynamic address

pool. Then, the K/V pair is written into the returned address, which is in the K/V zone

on NVM. Finally, the newly-added index entry is added to the hash index (step 3).

Algorithm 2 illustrates the pseudo-code of the write operation under the PNW

scheme (Figure 3.1). The first step of PNW is to find its label, which is equal to its

corresponding entry in dynamic address pool, using the ML model (line 1). Next, we

46

Algorithm 2: Write operation
// D’ and D: old and new (key,value)

// DAP: Dynamic Address Pool

Write (D: (key,value)){

1: E = model.predict(D); //predict the entry

2: A = DAP.get(E);//get the address

3: D’= Read(A); //old (key,value)

4: DAP.remove(A) //remove the address from DAP

5: for each bit in {D} and {D’}

6: if they differ, update memory bit

7: HI.put(D, A) //update the hash index}

Algorithm 3: DELETE operation
// D’: old key

// DAP: Dynamic Address Pool

// HI: Hash Index

Delete (D’: key){

1: A = HI.get(D’); // get the address

2: Reset-Flag-Bit(A); // delete

3: E = model.predict(Read(A)); // predict the entry

4: DAP.update(A:address, E:entry); // add the address

back to DAP

}

47

select one of the available addresses from the corresponding entry in the dynamic address

pool, and write the data to the address (lines 2 and 3). Next, we need to remove the

selected address (A) from the cluster’s free-list in the dynamic address pool (line 4).

Finally, only the bits (in the buffer D) that are different than the data in PCM (D’) are

actually updated (lines 5 and 6). We also need to update the hash index at the end to

enable finding the value for future lookups (line 7).

3.2.2.2 DELETE operation

Algorithm 3 illustrates PNW’s delete operation (also see Figure 3.1). The

delete procedure is accomplished by the following steps. In step 1, to find the item

in the K/V data zone, the delete request is directed to the hash index, and then the

associated entry is deleted from the K/V data zone by resetting the associated flag bit

(lines 1 and 2). In this step, the delete operation is completed; however, to make the

system more efficient, we recycle the recently freed address back to the dynamic address

pool by finding the label of the deleted data (line 3), and then adding the freed address

to the corresponding entry in the dynamic address pool (line 4). In this way, the address

can be used again in the future, and the model is re-trained less frequently.

3.2.2.3 UPDATE Operations

An update operation can be implemented in two different ways:

• If we care about the write endurance more than latency, the update operation

consists of the delete operation plus the PUT operation in order to prevent bit

48

flipping as much as possible. It means that the item that has to be updated is

first deleted from NVM (delete operation), and then its new place is found by

in a dynamic address pool (PUT operation) using the model. It is worth noting

that we can do the DELETE-PUT process asynchronously to mitigate the latency

problem. In other words, the system can retain synchronous updates to K/V items

and the hash index in NVM, and for the dynamic address pool in DRAM, it can

be asynchronously updated through the model in the background to hide the extra

latency.

• On the other hand, if the application cares about latency more than the other

factors, especially wear-leveling, the request just needs to go through the hash

index to find its place in the K/V data zone and then update the item in place

without any further changes since it does not affect the dynamic address pool. In

this way, we sacrifice wear-leveling to achieve lower latency.

In our system and evaluations, we follow the first approach as our main goal

is to increase write endurance. However, it turns out—as we present in experimental

evaluations—that minimizing bit flips is also good for performance alleviating the trade-

off between write endurance and latency.

3.2.2.4 GET Operation

Read operations in our system are straight-forward as they do not lead to

changing any data structures. Specifically, a get request goes through the hash index

49

to find its corresponding value from the K/V data zone, and then the read value is

returned.

3.2.3 Additional design considerations

It is possible that all the available addresses of a cluster (called cluster C) are

utilized. In this case, if the model sends a request that requires a new address from

cluster C, the dynamic address pool will not be able to serve this request because there

are no more addresses available in that cluster. To avoid this problem, we define a load

factor for the K/V data zone on the NVM. Setting the load factor to x percent, means

that when x percent of the available addresses in the K/V data zone are used, the K/V

data zone needs to be extended. To add new memory addresses to the data zone, we

need to train a new model. It is worth noting that, unlike traditional methods, we do

not need to move or change anything in the hash table on NVM because they still have

valid information. The only things that need to be changed are the model and dynamic

address pool, which are both located on DRAM. So, our method to expand the size of

a cluster does not impose any extra writes to the NVM.

The main reason behind defining the load factor is to prevent latency spikes

or stalls in the system. The load factor is similar in principle to the load factors that

are used in hashing schemes as a way to monitor the space utilization of the system

to prevent hash collisions. In other words, the load factor is going to warn us that the

system will need to be retrained in the near future. So, before this happens, we can

re-train a new model, by adding some new memory locations to the K/V data zone, in

50

the background while the system is running. Then, we can switch to the new model

and table before the previous model gets stuck. In this case, we can hide the re-training

latency and the system works without disruptions due to retraining. We have done some

tests in the next section to figure out the best time to start training a new model before

the old one is full to keep the system working smoothly. PNW supports any size of

key/values from 32-bit word size to the page sizes of 4KB to the size of a document.

Thereby, the way in which data elements are provided to the models depends on the

K/V pair size. For instance, small (e.g. 64 bit) data elements can be directly passed

to the model, while for large data element (e.g. 4KB) we first apply dimensionality

reduction using PCA before passing the data to the model.

3.3 Evaluation

3.3.1 Methodology

In this section, we evaluate our proposed method using different metrics focusing

on the reduction in writes and bit flips. We leverage a collection of real and synthetic data

sets. Since only insert and delete requests cause mutating the state of the NVM, we insert

n items into the K/V store followed by deleting 0.5n items (except for section 3.3.6).

Also, we do not make any assumption about the access pattern within or across clusters.

So, we simply apply the K-means clustering (from the scikit-learn library) based on the

available memory locations on PCM. We compare PNW with both RBW solutions and

K/V stores. For the former, we compare with the writes on the storage component of

51

PNW, which is the data zone.

We compare our results against other methods described in Section 2, such as

FNW [31], DCW [154], Captopril [73] and MinShift [107]. For synthetic data sets, our

sample K/V store system has at least 10M buckets. When there are 10M buckets, for

instance, we first warm-up K/V stores with 10M key/values. This means that we store

some items as “old data” before starting our tests. The data type and distributes of

these items differ depending on the test. “old data” is used for the initial training of the

ML model.

To compare PNW’s results with other methods, we tune their parameters in

such a way that they achieve their best performance. For example, we allow MinShift to

shift n times, where n is the size of the item instead of the size of the word, which means

it always results in its best performance in terms of the number of bit flips [107]. With

respect to Captopril, we also considered its best case, which happens when the blocks

are partitioned into n = 16 segments [73].

Unless we mention otherwise, we execute the K/V operations with randomly

selected key/values from the same generator. As real NVM DIMMs are not available

for us yet, we emulate NVM using DRAM similar to prior works [67, 116, 146, 152]. We

assume an access latency of the latest 3D-XPoint of 600ns [72,115].

The experiments are executed on an Intel Core i7 processor running at 2.2 GHz

with 2 cores (4 logical cores), each of which has 256KB L2 Cache and 4MB L3 Cache

using 8 GB of RAM, running macOS Catalina (version 10.15.4). The reason that we

run the tests on a local computer without any GPU support is to get a sense of how

52

(a) Amazon samples (b) 3D road network (c) Sherbrooke

(d) traffic surveillance (e) normal distribution (f) uniform distribution

Figure 3.5: The average number of actual bit updates per writing 512 bits as well as the

latency of prediction per item in PNW for the real-world textual and numerical data sets (a-b),

multimedia data sets (c-d), and synthetic data sets (e-f).

our methods work on an ordinary system without any unique capabilities. We test our

proposed method using various data sets, which can be categorized as real-world textual

and numerical data, real-world multimedia data including image and video data sets,

and finally, hard-to-cluster synthetic data sets. In the following subsections, we show

the results of the tests on these data sets and analyze them.

3.3.2 Real-world textual and numerical data sets

The first data set is called Amazon Access Samples Data Set 1, containing 30K

log entries. Although this data set has 20K attributes, in this test, only less than 10%

of them are used for each sample. For this test, we first have set aside 5K buckets as the
1https://archive.ics.uci.edu/ml/datasets/Amazon Access Samples

53

“old data” on the NVM memory and then warmed up the system by writing 5K items

from the data set into our buckets. Then, we replaced this “old data” with new incoming

data from the same data set (the remaining 25K items). Figure 3.5(a) illustrates that

when there are one or two clusters, the number of written bits in our method is more

than FNW. Nevertheless, when the number of clusters is more than 2, we start to get

better results until we reach between 15%(compared to CAP16) to 70%(compared to the

conventional method) improvements compared to the other methods when the number

of clusters is 30.

The next real-world data set, i.e., 3D Road Network Data Set [57,86], contains

information of road networks in North Jutland, Denmark (covering a region of 185 x 135

km2). We used the same setup as above for this data set containing 434874 entries. In

this test, we chose 100K buckets as “old memory” and warmed up the system by 100K

entries from the 3D Road Network Data Set. The results are shown in Figure 3.5(b).

When the number of clusters is big enough (here k = 14), PNW starts to outperform all

the other methods in terms of the number of bit flips until it gets its highest performance

when k=30 (between 10% to 63% improvements compared to the other methods).

Finally, the last real-world data set is one of the collections of a database

called DocWord, which consists of five text collections in the form of “bags-of-words”.

This collection, which is called PubMed abstracts [47], consists of 730 million words in

total. For doing the tests, we first created 100M buckets as the “old data” storing data

from the PubMed data set. Then, we wrote the new incoming data items from the same

data set on the previous data items stored on the buckets and kept track of the number

54

of the updated bits per 512 bits.

3.3.3 Real-world multimedia data sets

In the first set of tests, we have used some video data sets to see what happens

if a system, for instance, a CCTV recorder, uses an NVM media as its persistence

memory. We have used two video data sets: 1) The Sherbrooke video data set [74],

representing a two-minute-long video (with resolution 800x600). 2) A Traffic Surveillance

video [11], collected from seven intersections in the Danish cities of Aalborg and Viborg,

containing 21 five-minute sequences of two cameras including RGB and thermal data.

The resolution of both cameras is 640x480 pixels, and the frame rate is fixed at 20 fps.

In this test, we just used one sequence of RGB camera called “day sequence 2”.

For the first data set (Sherbrooke), we stored the first 30 seconds of this video

as the old data, and for the second one (Seq2), we stored the first one minute of the

video as the old data and used the remaining of the video as the new data. The results

are shown in Figure 3.5(c) and 3.5(d), respectively. These figures show that our method

outperforms the other ones in both data sets. For the first data set (Sherbrooke), PNW

improves the other methods between 14% to 60% and for the second one (Seq2), we

outperforms the other ones between 21% to 67%.

The next data set is one of the most widely used data sets for machine learning

research, and especially for computer vision algorithms, i.e., CIFAR-10 data set [93].

This data set is a subset of the 80 million tiny images data set and consists of 60,000 32x32

color images, grouped into ten different classes. Similar to the previous experiments, we

55

first set aside 10K of these images as the old data to fill out the 10K buckets we created

as our NVM system. Then, the new incoming data items are written in place of the old

ones one by one.

3.3.4 Hard-to-cluster synthetic data sets

In this section, we are going to observe the behavior of PNW on some synthetic

data sets that do not follow any specific data distribution. The reason of doing these

tests is to discover the limitations of our ML-based method and analyze them to give

the readers a clearer view of the possible applications of PNW. To perform these tests,

we start with a synthetic data set that shows a clear pattern and then test two more

data distributions that are completely different in terms of their data pattern.

For the synthetic data sets, we used 32-bit keys and values. We also generated

two types of integer data (normal and uniformly distributed), ranging from 0 to 232. For

random integers, we generated them via a pseudo-random number generator. For the

normal data set, we generated a synthetic data set of 100M unique values sampled from

a normal distribution with µ = 231 and σ= 228 to test our method. In all synthetic data

set tests, the confidence interval was less than 103 for 95% confidence level.

First, we show the results of the first synthetic data set, following a regular

pattern. Figure 3.5(e) shows the results for different number of clusters ranging from

k=1 to k=30 for normal distribution. We have compared the performance of PNW to

the other ones in terms of the number of bits updated/written per 512 bits. In this

figure, we observe that when we pick k=1, the result for PNW is not different from

56

DCW since both do the same thing if there is no clustering. Our approach enhances the

results of DCW and FNW more than 40% and 25%, respectively, when the number of

clusters is more than 10. It also outperforms MinShift and Captopril more than 15%

and 10%, respectively. Also, the delay is almost 5µs to 6µs most of the time.

In the second experiment, we did the same, but for a different data distribution,

i.e. uniform random distribution, to learn more about the behavior of our method. Data

sets like this one are highly random, and as a result, difficult to learn using an ML

model. The results are depicted in Figure 3.5(f) showing that although our method has

succeeded in improving the results for DCW, MinShift, and the conventional method by

almost 15%, 5%, and 60%, respectively, it lags behind FNW and CAP16 for this data

set as expected for the random data set.

In some of the previous results, there are anomalies where the number of bit

flips suddenly jumps while increasing the number of clusters. Such anomalies are due

to the unpredictability of ML-based methods. However, we expect that such anomalies

would be normalized during extended operation.

3.3.5 End-to-end write latency

In the following, we are going to measure the write latency, which includes

the time spent on 1) predicting a cluster number, 2) finding an empty bucket within

the dynamic address pool, and 3) writing the key/value on NVM. We do this test to

measure the overhead of our method.

In Figure 3.6, we show the write latency comparisons for various data sets. In

57

Figure 3.6: End-to-end write latency comparison for various data sets.

this test, we use the normal and uniform data distributions, Amazon Access Samples,

3D Road Network, CIFAR, and the day sequence 2 traffic surveillance video. For

our method, we had to train the model based on the old data, filling out the dynamic

address pool, and then writing the new data. The write latency is calculated based on

the number of cache lines that are written per item. In this test, we observe that each

method that updates fewer bits has a higher chance of having a lower write latency

because it has to update fewer cache lines than the others.

Figure 3.6 shows the normalized time of the write operation required by different

methods. As illustrated in this figure, our proposed method, when the number of clusters

is enough, can outperform the others even though it has to perform two additional steps.

The reason is that our method performs fewer write operations than the other ones, and

it makes up the time it spends on the extra steps. However, for the uniform data

distribution, we could not do the same since PNW is not able to find a clear pattern

58

Figure 3.7: The impact of choosing the number of clusters (K) on the average write latency

for the PubMed abstracts data set.

among the data items to make up the extra steps.

Figure 3.7 compares the average write latency for different number of clusters

(K) on the PubMed abstract data set. In this test, to see the impact of K on latency, we

invoke insert and delete operations on the system in a 1:1 ratio. Note that the value of K

does not affect the lookup request latency because in the lookup, the request does not go

through the model or the dynamic address pool. This test shows that by increasing K,

latency decreases because all the items within a cluster become more similar (in terms

of hamming distance). So, the new items can be written by replacing old ones with a

fewer number of cache line writes, which leads to decreasing latency.

In the next test, we compare PNW with recent K/V stores to see its performance

in terms of the number of written cache lines. Like the previous test, since only insert and

delete requests cause writes to NVMs, we first insert n items into the system and then

delete 0.5n items. FP-Tree [117] is a hybrid SCM-DRAM persistent B+-Tree method

59

Figure 3.8: The average number of written cache lines for each request.

that we implement and compared PNW with. The second persistent K/V store that

we compare PNW with is NoveLSM [79], which is a persistent LSM-based K/V storage

system. It is designed to exploit non-volatile memories in an attempt to provide low

latency and high throughput to applications. We also implement a hashing scheme that

is designed for NVMs called Path hashing [166]. It is worth noting that for this test, we

implement PNW as shown in Figure 3.1(a).

Figure 3.8 shows the average number of written cache lines for each request.

The number of written cache lines per request in FPTree and NoveLSM is higher than

others because they modify more items to process a request. Although the number of

written lines in path hashing is fewer than the others, its written lines are higher than

PNW because: 1) It incurs more writes when re-hashing to handle conflicts, and 2)

like other methods, it is not “memory-aware”. PNW has the fewest written cache lines

mostly because it can save some cache lines per request because of replacing the old

60

Figure 3.9: The performance change by converting the workload from MNIST into Fashion-

MNIST over time.

(a) Seq_2 (b) Seq_8 (c) Seq_16

(d) Sher_2 (e) Sher_8 (f) Sher_16

Figure 3.10: PNW’s average model training time for different data sets using single core versus

multi-core processing.

61

items by similar new items. We also observe that for some data sets the average number

of written cache lines is higher for all methods because of the larger item size.

3.3.6 Training overhead

To see how rapidly can our method adapt to changing workloads, we conduct

the last experiment to track the behavior of our method while changing the workload.

You can see the results in Figure 3.9. In this test, we use two data sets from the Keras

library, i.e., MNIST database of handwritten digits and Fashion-MNIST database of

fashion articles, each of which contains 60,000 28x28 gray scale images, along with a test

set of 10,000 images. For this test, we did the follows steps:

• Phase 1: we stored 28K images from the MNIST data set as the old data. After

training the model and creating the dynamic address pool, we started streaming

27K images from the same data set (MNIST) as the new data into the system to

overwrite the old data. As we can see in Figure 3.9, there is no noticeable change

in the performance of the system in the first 27K frames. Even at the end of this

stage, where the old data is almost completely replaced with the new one, we still

do not see any substantial change in the performance.

• Phase 2: we send a mixture of items from two different data sets, i.e., Fashion-

MNIST and MNIST, at the ratio of 2 to 1. We shuffled 15K of MNIST images with

30K of Fashion-MNIST and then sent them to the system as the new incoming

data. As it is obvious in the figure, the performance is affected immediately (the

62

number of updated bits increases) since two-third of the incoming data are entirely

different from the previous ones and as a result have a larger hamming distance.

• Phase 3: In this phase, we sent 12K images only from the second data set, i.e.,

Fashion-MNIST. The number of updated bits fluctuated less since the old data

contains the items mostly from Fashion-MNIST, and the incoming data is also

from the same one too.

• Phase 4: In this phase, we continued sending 28K images from the second data set

(Fashion-MNIST) with one difference: we re-trained our model on the old data,

which contains the images from the Fashion-MNIST data set now. As you can see

in the figure, the results got better and fluctuated less.

As a result, we have seen that, depending on the application and the workload,

we do not always have to re-train the model rapidly, and we can use the same model

for a certain amount of time before it needs to be re-trained. This allows us to do the

retraining in the background lazily and update the model periodically.

PNW is designed to enable re-training in the background while the current

model is serving requests. However, to set the load factor to its correct value, PNW

needs to know when to start re-training the model before the old one becomes inefficient,

i.e. the system’s performance decreases in terms of the number of bit flips. This is of

great importance because we might not want to give all the available resources to the

model since the system needs to serve the requests without any problem while the new

model is being re-trained. We performed additional experiments to evaluate the costs

63

for re-training a new model using different number of the available cores (Figure. 3.10).

These experiments are performed on the traffic surveillance [11] and the Sherbrooke

video data sets [74].

In this test (Figure. 3.10), we calculate the time needed for re-training the

model for 2, 4, 8, and 16 clusters. In each case, we did the test on two different modes:

1) running the model on a single core; and 2) running the model on all 4 cores. As we

can see from the results, as the value of k and the sample size increases, the model needs

more time to be re-trained. For instance, for training a model with k=16 clusters on

more than 8000 samples/frames (Figure. 3.10(a)), we need almost 20 and 13 seconds if

we use one and 4 cores, respectively. This can give us an idea of setting the load factor

in a way that we have enough time to finish re-training the new model before the old

model becomes inefficient. So, if we have more than one core available for us in the

system to train the model, multi-core processing is worth it when the sample size is big

enough.

3.3.7 Wear-leveling

Aside from decreasing the number of writes, wear-leveling is equally important

to extend the lifetime of PCM. The reason is that some blocks of PCM may receive a

much higher number of writes than the other blocks, and as a result, wear out sooner [112,

151]. Therefore, to observe the performance of PNW in terms of the distribution of the

maximum number of bit flips and the wear-leveling of PCM, we conduct two more tests.

In these tests, we run PNW in two different modes, i.e. for k =5 and k = 30 clusters,

64

on the combination of MNIST and Fashion-MNIST data sets. Like the previous test,

we first warm up the data zone with 28K items from the combination of both data sets.

Then, we stream 112K writes from the same data sets to the system. During the test,

we also perform delete actions to make space for incoming writes. In other words, each

word in the data zone is updated 4 times on average.

Figure. 3.11 shows the maximum number of times the addresses in the data

zone are written as a cumulative distribution function (CDF). In other words, this figure

illustrates the estimation of the likelihood to observe an address in the data zone of PCM

that is written less than or equal to a specific number of times. For example, as we can

see in Figure. 3.11, the estimated likelihood to observe an address in the PCM data zone

to be written less than or equal to 5 (P (X ≤ 5)) is 85% and 86% when we have k = 5

and k = 30 clusters, respectively. We also observe that more than 99% of the addresses

in the data zone experience no more than 10 writes for k = 5 and 15 writes for k =

30. This results show that, regardless of the number of clusters, PNW distributes write

activities across the whole PCM chip.

Finally, we analyze the wear-leveling of memory bits as CDFs. Figure. 3.12

illustrates the estimation of the likelihood to observe a memory bit in the data zone

of PCM that is written less than or equal to a specific number of times. For instance,

we observe that while the estimated likelihood of a memory bit being written less than

or equal to 4 times is 74% for k=5 clusters (Figure. 3.12(a)), this likelihood rises to

98% when k=30 (Figure. 3.12(b)). This important observation shows an interesting fact

about PNW: By increasing the number of clusters, bit flips are distributed more evenly

65

(a) k = 5 (b) k = 30

Figure 3.11: The maximum update addresses as CDFs by applying PNW with a) k=5 and b)

k=30 clusters.

(a) k = 5 (b) k = 30

Figure 3.12: Wear-leveling as CDFs by applying PNW with a) k=5 and b) k=30 clusters.

66

across the whole data zone of the PCM chip, and as a result, the lifetime of PCM is

extended more. The reason behind this is that when the number of clusters increases,

the items within the clusters become more similar to each other. Therefore, regardless

of the number of clusters, PNW evenly distributes writes not only in the address level

but also in the bit level.

3.4 Conclusion

Building storage systems, such as K/V stores, on hybrid memory, creates

unprecedented opportunities to utilize fast memory access to achieve enhanced performance

compared to those on traditional hard disks or flash-based solid-state drives (SSDs).

In this work, we improve the write bandwidth, write energy, write latency, and write

endurance of NVMs through Predict and Write (PNW), a K/V store that uses a clustering-

based machine learning approach to extend the lifetime of NVMs using machine learning.

To this end, we bring a well-known unsupervised machine learning algorithm,

called K-means clustering, into NVMs territory. In our proposed method, we have built

the model on DRAM based on the existing old data on PCM. In this way, we try to

prevent data items from being moved on PCM by making the model change, which is on

DRAM. In other words, by bringing all the extra writes from NVM to DRAM, PNW does

not impose any extra writes to NVM. We examined the performance of our proposed

approach with others in terms of different factors such as the number of writes and

the latency for various workloads, on both synthetic and real-world data, with different

67

distributions of data. The results show that our method outperform existing solutions

and that the benefit of using a ML model outweigh its overhead. Based on the results, by

choosing the right target memory location for a given PUT/UPDATE operation, PNW

has succeeded in reducing the number of total bit flips and cache lines over the state of

the art.

68

Chapter 4

E2-NVM: A Memory-Aware Write Scheme

to Improve Energy Efficiency and Write

Endurance of NVMs using Variational

Autoencoders

4.1 Introduction

Although our initial work, PNW [81], paved the way for utilizing machine

learning to extend the lifetime of NVMs, in E2-NVM, we made significant advancements

to enhance its speed and adaptability. As you will see later in this chapter, these

improvements are evident in both performance enhancements and new design considerations.

Performance-wise, incorporating Variational Autoencoders (VAE) has improved accuracy

and reduced latency, addressing fundamental overheads in our previous machine learning-

69

based design. In terms of new designs and considerations, we have (1) introduced

padding strategies to manage data with variable sizes, (2) addressed the swapping nature

of underlying memory controllers, and (3) last but not least, thoroughly studied and

evaluated the implications of our work on energy efficiency.

In this chapter, we present E2-NVM [80], a software-level memory-aware solution,

which is implemented in software and does not suffer from the compute and space

constraints of solutions implemented in the memory controller. E2-NVM is implemented

as a storage layer that maps free memory locations according to their hamming distance.

Incoming write operations are then intercepted, and placed on a free memory location

that is similar in terms of their hamming distance. To perform this mapping, E2-NVM

trains a deep learning model using the free memory locations. The use of deep learning

is possible because E2-NVM is implemented in software rather than in the memory

controller. In this section, we present and discuss the challenges we faced in applying

VAE to this problem. This includes using an efficient model, which is a combination

of a VAE and a clustering model, to overcome the limitations of traditional clustering

methods when they have to deal with high dimensional data. We also tackle the problem

of supporting memory segments of variable sizes. We propose a data padding strategy

that allows using the same VAE model for memory segments with different sizes. What

distinguishes E2-NVM from content-aware methods is that it works in the software-level

instead of the memory controller. This means that it has access to more compute and

state to perform more complex mapping operations. In particular, using deep learning

requires more compute (to train and process the model) and state space (to store the

70

mappings and model).

4.1.1 System Model

The system model consists of hardware and software components. E2-NVM

does not require any special hardware. We consider a hybrid DRAM-NVM architecture,

where both devices are placed on the memory bus. The NVM device, in addition to the

memory segments, contains a memory controller that intercepts all operations to NVM.

The memory controller may utilize a wear leveling solution that swaps memory segments

periodically. The details of wear leveling methods are typically proprietary. However,

prior work has indicated that wear leveling approaches perform a memory segment swap

every ψ write operations. Typically, the value of ψ is in the order of 10s of writes [68].

E2-NVM is a storage layer that sits between software applications (such as data stores)

and the hardware components.

4.1.2 Motivation: Software-Level Bit Flipping Reduction

To see how bit flip reduction affects the latency and energy consumption of

a NVM device, we have conducted an experiment on a real Optane memory device,

which is one type of PCM, using the Persistent Memory Development Kit (PMDK) 1,

formerly known as NVML. In this test, first, we allocate a contiguous region of N Optane

blocks of 256B. During each “round” of the experiment, we first initialize all the blocks

with random data, and then update the blocks with new data with content that is x%
1Persistent Memory Development Kit https://pmem.io/pmdk/.

71

Figure 4.1: The average number of bit updates for different wear-leveling techniques when

swapping period changes.

different than the data that is already in the block (hamming distance). We use PMDK’s

transactions to persist writes. We measure the latency and energy consumption for each

round. Figure 2.2 shows that by overwriting similar content, which needs less bit flipping,

we can achieve an average energy savings of up to 56%. The experiments also show the

potential of improving write latency which is important as it can offset some of the

overhead that is incurred by software-level solutions that aim to reduce bit flips. This

improvement in latency is due to the ability to write fewer cache lines when the cache line

to be written is identical to the one in the memory segment. In this case, the memory

controller avoids writing them, which reduces the average latency [81].

This potential of reducing bit flips using software-level solutions overcomes two

challenges that faced hardware solutions: The first is that to be deployed on hardware,

72

algorithms need to be small and simplistic—in terms of computation power and memory

space—to fit in the memory controller. The second is that developing hardware-based

methods is not accessible to researchers. This is evident by how most storage solutions

for wear leveling and bit flip reduction are proprietary and requires manufacturing new

hardware to implement a new solution. It is worth noting that although we provided

our results on Optane, which is one type of PCM, E2-NVM is applicable to other

phase change material-based technologies, such as phase-change random access memory

(PRAM) and Resistive RAM (RRAM), which can benefit from bit flip reduction. Since

E2-NVM’s main focus is to improve energy consumption of the system, our proposed

method can be especially attractive to the applications that use low power PCM devices

due to relying on energy-harvesting systems or batteries [21], such as the Internet of

Things (IoT) and mobile devices.

Figure 4.1 shows how E2-NVM can achieve its goals despite the interference

and segment swapping from the underlying memory controller. We used Amazon Access

Samples Data Set 2, which is described in the evaluation section. We also show how E2-

NVM compare with prior hardware-based bit flip-reduction techniques that we describe

in more detail in the evaluation section [31, 73, 81, 107, 154]. The figure shows the

performance of E2-NVM while varying the frequency, ψ, of the underlying wear-leveling

swapping of memory segments (this experiment utilizes an emulation of the memory

controller as such parameters cannot be manipulated on typical real memory controllers.)

When the frequency ψ is 1, then the swap is performed for every write operation, which
2Amazon Access Samples. UCI Machine Learning Repository, 2011

73

means that E2-NVM judicious memory segment choice is swapped. This leads to not

observing the benefits of the software-level approach. (A low ψ value is also not good

for hardware-based methods because it means that more bit flips are incurred due to

frequent swapping.) As we increase ψ to normal levels, E2-NVM shows that software-

level approaches are capable of significant improvement.

4.2 E2-NVM Design

4.2.1 Variational Autoencoder (VAE)

The representation ability of dimensionality reduction techniques like PCA

is limited at scale. Many applications from power systems to health care to storage

systems and database systems use deep learning as a feasible alternative that can

provide low dimensional learned features with lower preprocessing and training delay

while preserving intrinsic local structure in data [9, 55, 58, 148]. In this work, we choose

Variational Autoencoders as our model of choice for several reasons: high representation

ability, fast training, and the ability to jointly perform clustering and model training [58].

VAE can be considered as a generative variant of Auto Encoder (AE), as it enforces the

latent code of AE to follow a predefined distribution [111].

Our VAE consists of an encoder, a decoder, and a loss function. The encoder

part is a deep neural network with weights and biases θ, which takes a memory segment

x as input and encodes it into a latent (hidden) representation space z, which has much

less features/dimensions than x. The main responsibility of the encoder is to learn an

74

efficient compression of the data x into this lower-dimensional space z. The decoder

part is another deep neural network with weights and biases ϕ, which takes the latent

representation z produced by the encoder and outputs the parameters to the probability

distribution of the data. Finally, since the loss function of the VAE is the negative

log-likelihood with a regulizer, the total loss is
∑N

i=1 li for the total data points, where

the loss function li for a single data point xi is calculated as bellow:

li(θ, ϕ) = −Ez∼qθ(z|xi)[log pϕ(xi|z)] +KL(qθ(z|xi)||p(z))

where qθ(z|xi) and pϕ(xi|z) denote the encoder’s and decoder’s distributions, respectively.

The first term is the reconstruction loss (expected negative log-likelihood of the ith data

point). The expectation is taken with respect to the encoder’s distribution over the

representations. This is the reason that makes the decoder learn to reconstruct the data.

The second term is the Kullback-Leibler divergence between the encoder’s distribution

qθ(z | x)q and p(z), which measures how p is close to q. It is worth noting that, in the

VAEs, p is specified as a standard normal distribution with mean 0 and variance 1 [8].

4.2.2 E2-NVM Design

At the core of E2-NVM is a VAE, an unsupervised ML model, which in

combination with K-means clustering maps memory locations into clusters based on the

similarity of their content. The VAE-based clustering model is trained/re-trained based

on the bit-wise contents of the available memory locations/segments on PCM, and learns

the existing data distribution in memory. E2-NVM integrates the VAE’s reconstruction

75

NVM

DRAM
DRAM

K-
m

ea
ns

cl

us
te

rin
g

Encoder
DRAM

Cls Addr

1 0xA

2 0xB

… …

1

Bucket 1 Bucket 2 Bucket 3 Bucket 4 Bucket 5 Bucket 6 Bucket 7 Bucket 8

2

3 4

1

2
3

4

Put

Delete

Figure 4.2: Memory layout of a E2-NVM-based key-value store.

loss and the K-means clustering loss to jointly train cluster label assignment and learning

of suitable features for clustering. In other words, E2-NVM jointly optimizes (a) reduction

of high-dimensional input to low-dimensional latent space representation and (b) clustering

in the low-dimensional latent space. E2-NVM can scale to much larger input sizes

compared to prior work since clustering is performed on the latent space. Moreover,

latent space generated by the jointly optimized VAE-based clustering model has better

representation ability compared to traditional techniques such as PCA.

Each memory location is encoded as a vector of bits, each of which is used as

a feature/dimension. The entire data zone/memory pool can be encoded as a 2D tensor

(that is, an array of vectors) of shape (n, m), where the first axis (n) represents the

samples (old data) and the second axis (m) represents the features. The model takes

the input of size m and downsizes it to a low-dimensional latent space (e.g., size 10)

and feeds it to the K-means clustering model. E2-NVM also employs a padding strategy

(§4.3) to accommodate data items of arbitrary size.

76

4.2.3 E2-NVM Integration and Operations

We present a persistent key/value store that is built on a hybrid DRAM-NVM

memory using E2-NVM (Figure 4.2.)

4.2.3.1 System Model

The components of the system are:

E2-NVM. This component includes the VAE and k-means clustering models.

This component is trained using the data on NVM to enable creating k clusters based on

hamming distance similarity. After training, only the encoder part of the VAE and the

K-means clustering models are needed. In operation, this component is used to predict

the cluster of a given data object.

Cluster-to-memory dynamic address pool. This component is responsible

for tracking the free memory segments that belong to each cluster. It is implemented as

a simple mapping data structure where the key is the cluster id and the value is a list of

all the free memory addresses that belong to the cluster. This map is initially populated

in the initialization phase when E2-NVM is trained. The population is performed by

running the prediction algorithm using E2-NVM on the free memory addresses. During

normal operation, the mapping structure is mutated in response to operations. A PUT

operation would result in removing the chosen address from the pool and the DELETE

operation results in adding (recycling) the deleted memory address back to the pool. It

is worth noting that, when a write request comes to the system and its corresponding

cluster is found, E2-NVM returns the first available address in the cluster. Although

77

searching within clusters can result in finding the perfect matches, we do not do that

since all the similar addresses in terms of their hamming distance are grouped into one

cluster. So, we just take the first available address in the cluster knowing that it will have

a very similar content to the request. Our evaluation shows that this design decision

allows good bit flip reduction even without having to search for the ideal address within

a cluster.

The storage overhead of the dynamic address pool is proportional to the number

of memory segments (or buckets) in the memory pool. Given a specific memory pool

size, for large memory segments, the size of the table does not grow significantly. For

small values, however, the number of addresses that needs to be stored per memory

segment can grow substantially. To limit the table size, we have two options: (1) Setting

a fixed number of entries in the table, so the size of the table cannot not grow to more

than a specific maximum threshold. (2) Depending on the size of the memory pool,

choosing the size of the memory segments in a way that while limiting the size of the

table within a specific threshold, we achieve the expected energy performance. To find

the most efficient segment size for a specific size memory pool, we have conducted some

tests, which are discussed in section 4.3.1.4.

Data index. This is the component that corresponds to the application. In

this case, it is a key-value store. This indexing component maps each key to the memory

location that contains its value in NVM. Although we use red-black tree in our example,

depending on the application, it can be replaced by any indexing data structure such as

skip lists, hash indexing, LSM trees, etc. Our tree indexing component maps each key

78

to the memory location that contains its value in NVM.

NVM storage. This component represents the NVM persistent storage

used to store data for the key-value store. The storage is divided into fixed-sized

memory segments. It contains free memory addresses that can be used for future

write requests and is mapped by the dynamic address pool. Also, it contains allocated

memory segments that are mapped by the data index structure. In our abstraction we

divide NVM storage into fixed sized buckets. An implementation may utilize different

instances of this architecture with buckets of different sizes. This allows utilizing memory

with different bucket sizes, similar to how memory allocation techniques may maintain

different allocations with multiple fixed sizes.

4.2.3.2 Data operations

Key-value operations can be divided into operations that write data (PUT and

UPDATE), delete data (DELETE), and read data (GET and SCAN). Each one of these

three types is implemented via an algorithm that would potentially mutate the state of

the four components in Figure 4.2. Performing these operations needs to be performed

carefully to ensure that the state of each component is consistent—e.g., after deleting

a data object, the memory segment that corresponds to it must be recycled and added

back to the dynamic address pool so it can be used by future write operations.

Write operation algorithm. Algorithm 4 illustrates the pseudo-code of the

write operation under the E2-NVM scheme (shown by the green arrows in Figure 4.2).

To locate the appropriate memory location for an incoming key/value write, i.e., new

79

Algorithm 4: Write operation
// D’ and D: old and new (key,value)

// DAP: Cluster to Memory Dynamic Address Pool

Write (D: (key,value)){

1: E = E2-NVM-model.predict(D); //predict the entry

2: A = DAP.get(E);//get the address

3: D’= Read(A); //old (key,value)

4: DAP.remove(A) //remove the address from DAP

5: for each bit in {D} and {D’}

6: if they differ, update memory bit

7: RB-Tree.put(D, A) //update the index}

Algorithm 5: DELETE operation
// D’: old key

// DAP: Dynamic Address Pool

// RB-Tree: Red-Black Tree

Delete (D’: key){

1: A = RB-Tree.get(D’); //get the address

2: Reset-Flag-Bit(A);//delete

3: E = E2-NVM-model.predict(Read(A)); //predict the

entry

4: DAP.update(A:address, E:entry);//add the address

back to DAP}

80

PUT or UPDATE operations, the input data is first processed by E2-NVM’s encoder (step

1). In E2-NVM, the input data is transformed to the latent space representation using

the VAE encoder. Then, using K-means clustering, the low-dimensional representation

is mapped to the cluster that is closest to the value-to-be-written in terms of hamming

distance (line 1 of the algorithm). Then, the chosen cluster is passed to the dynamic

address pool (step 2 in the figure and line 2 in the algorithm). The dynamic address

pool chooses a memory segment from the cluster and assigns it to the write operation.

After removing the address from DAP (line 4), the write operation is applied to the

chosen address in NVM (step 3 and lines 5 and 6). Finally, an index entry is added to

the application’s data index (step 4 and line 7).

It is worth noting that for serving an incoming write request, E2-NVM chooses

the first available memory segment within the cluster. Although searching within clusters

can result in finding the perfect matches, we do not do that since all the similar addresses

in terms of their hamming distance are grouped into one cluster. So, we just take the

first available address in the cluster knowing that it will have a very similar content to

the request. Our evaluation shows that this design decision allows good bit flip reduction

even without having to search for the ideal address within a cluster.

DELETE operation algorithm. Algorithm 5 illustrates the delete operation

(shown by the red arrows in Figure 4.2). To perform a DELETE operation, the key is

first sent to the tree to find the item’s location in the key-value store in NVM (step 1,

line1). The associated entry is then deleted from the key-value store by resetting the

associated flag bit (step 2, line 2). We recycle the recently freed address back to the

81

free list; the address (and its content) is sent through the encoder and then K-means

clustering to find a suitable cluster (step 3, line 3). Then, the memory address is added

to the corresponding cluster in the dynamic address pool so it can be used for future

operations (step 4, line4).

Read operation algorithm. The GET operation is sent through the data

indexing tree to find its location in NVM storage.

SCAN operation algorithm. Similar to GET operations, a SCAN operation

is directed to the indexing data structure to find the range of key-value pairs to be read

and returned to the user.

Resilience and concurrency considerations. For ease of exposition, the

algorithms presented above did not factor in complications due to resilience and concurrency

concerns. Specifically, a machine crash in the middle of a write or delete algorithm might

lead to an inconsistent state. For example, if a crash occurs after step 2 in the write

algorithm (a memory address is chosen and deleted from the dynamic address pool)

but before the rest of the steps (so that the data index was not updated to include

the newly-written data object) would create an inconsistency. This can be problematic

because the chosen memory segment is now neither in the dynamic address pool nor the

data index, rendering it wasted. To overcome this type of anomalies, standard recovery

and logging methods—such as redo and undo logging—that ensure the atomicity of the

operations are applied (i.e., an operation would be either performed to completion or

not at all.) Similarly, performing operations concurrently might lead to unexpected

anomalies. To overcome these anomalies, standard concurrency control mechanisms—

82

such as locking—can be applied. Both resilience/recovery and concurrency control are

parts of many key-value stores, which enables the integration with E2-NVM to utilize

these methods instead of building another layer of recovery/concurrency control.

4.2.4 E2-NVM benefits

VAE-based clustering employed by E2-NVM offers several benefits over prior

memory-aware techniques: lower training time, higher accuracy, and better scalability.

To demonstrate the benefits of E2-NVM, in Figure 4.3, we compare E2-NVM with

two methods: K-means clustering and K-means clustering in combination with PCA as

employed by a recent memory-aware clustering method PNW [81]. In the comparison,

we use the MNIST dataset. We measure two key metrics of performance, latency and

number of bit flips. A system with lower latency (preprocessing and training) and lower

number of bit flips has better performance.

We train the clustering models on NVIDIA Tesla K80 GPU. We group the

incoming data of different sizes into 20 clusters. The size of the input data is 70, 000

and the number of features or the latent space representation is varied from 32 to 16384.

Figure 4.3 shows that when the number of features—here the number of bits—increases

beyond a couple of thousands, pre-processing latency of K-means clustering is extremely

high. The results show that using K-means clustering alone (without PCA) is not a

feasible choice for item sizes of kilobytes or more since the pre-processing time goes up

exponentially with the increase in the number of features (the number of bits). For

large data sizes, the second mode (PCA + K-means) is the only viable choice under

83

Figure 4.3: Comparison of E2-NVM with PNW (K-means alone and K-means+PCA) in terms

of the number of bit flips and latency.

PNW due to latency constraints. However, due to loss of information arising from

dimensionality reduction with PCA, clustering efficiency is affected. Hence, the number

of bit flips increases when moving from K-means to K-means+PCA. For example, in

Figure 4.3, the number of principal components (features) for each size of the data is

enough to represent more than 90% of the variance in the data. However, this increases

the number of bit flips.

Figure 4.3 also presents the results for the VAE-based clustering model of E2-

NVM. This model needs significantly less time than PNW for training, which includes

both VAE and K-means clustering training. This is because the VAE can decrease the

dimensionality from tens of thousands to hundreds very fast while also minimizing data

loss. E2-NVM minimizes both latency and the number of bit flips significantly. This

enables E2-NVM to support memory-awareness for data with larger sizes in the order

84

of kilo to megabytes.

4.3 The padding strategy

4.3.1 Padding Strategies

Overview. In machine learning methods, the input size needs to be defined

when the model is created. To support inputs of various sizes, we propose a padding

strategy. In this strategy, first, our deep learning model is trained on fixed-sized features,

for instance w, like the other deep learning models. When the model is ready, it can

serve input data with size w. But, for input data with a different size, p, which is smaller

than w, we need to transform it into an item with size w. To do that, we use padding,

which is adding q=w-p bits to the item to fit the input layer of our DL model. The

ultimate goal is to pad the inputs of smaller sizes in such a way that it ends up in the

cluster with the most similar items, which means minimizing the number of bit flips. It

is worth noting that the padded part with size q is not a part of the main data and is

added to the data just for clustering purposes. Only the actual data of size p is written

to the target memory and the remaining q bits are ignored (not written to storage).

Figure 4.4 shows an example of E2-NVM’s different padding strategies on an input data

d1:[0,0,0,1].

Challenges. The padding strategy decides (a) where the padded bits should

be placed relative to the original input data, and (b) what bits to use in padding. The

padding strategy influences the accuracy of detection and consequently finding a suitable

85

Table 4.1: An example of a PCM with 12 memory segments.

Cluster Index Content

0

0 [0, 0, 1, 1, 1, 1, 0, 1]

1 [0, 0, 1, 0, 1, 1, 0, 0]

2 [0, 0, 1, 1, 1, 1, 0, 0]

3 [0, 0, 1, 1, 1, 0, 0, 0]

1

4 [1, 0, 0, 0, 1, 0, 1, 1]

5 [0, 0, 0, 0, 1, 0, 1, 1]

6 [0, 0, 0, 0, 1, 1, 1, 1]

7 [0, 0, 0, 0, 1, 0, 1, 0]

2

8 [1, 0, 1, 1, 0, 0, 0, 0]

9 [0, 1, 1, 1, 0, 0, 1, 0]

10 [1, 1, 1, 1, 0, 0, 0, 0]

11 [1, 1, 0, 1, 0, 0, 0, 0]

memory segment. However, there is a trade-off between the complexity of the padding

strategy and the effect on the accuracy of the deep learning model. In the remainder of

this section, we discuss a number of strategies (see Figure 4.4) in the spectrum of this

trade-off.

Padding location. The location of the padded bits can be one of the followings:

(i) padding bits before the input data (beginning-padding), (ii) padding bits after the

input data (end-padding), or (iii) padding bits are split, with one half before the input

data and the other half after the input data (middle-padding).

4.3.1.1 Padding Type: Universal data-agnostic padding

The simplest padding strategy—in terms of complexity and overhead—is universal

data-agnostic padding, where the padding bits are generated given a simple fixed rule

86

independent of data. Specifically, there are three types that we experiment with: (i)

zero padding where all the padded bits are 0 bits, (ii) one padding where all the padded

bits are 1 bits, and (iii) random padding where the padded bits are chosen randomly.

To illustrate how our padding strategy works, consider a storage system that

is using a PCM as its persistent memory with a capacity of 12 equal sized memory

segments, managed by a free-list, which we refer to as the dynamic-address-pool (Table 4.1).

In this example E2-NVM groups these memory locations into 3 different clusters. Now,

suppose that we have a new data object d1: [0,0,0,1] that we want to insert into the

PCM using universal data-agnostic with beginning-padding location ([?,?,?,?,0,0,0,1]).

Using one padding, 8-4=4 bits are added before the input data (in the question marks)

to get [1,1,1,1,0,0,0,1]. Then, when it is sent to the model, cluster 2 is predicted to be

the best cluster and one memory location is selected within this cluster (Figure 4.4).

Note that the leftmost 4 bits are not written to the memory since they were added to

the data to be able to utilize the deep learning model. Although this padding type is

very simple, our DL model might not be utilized to its full potential since the padded

bits added to the input data might not reflect the existing distribution in the memory

content.

4.3.1.2 Padding Type: Universal data-aware padding

In this scheme, we aim to find a padding strategy that chooses the padding bits

based on the content of the data objects in NVM or the content of the input items. The

intuition behind data-aware padding strategies is that if the padding pattern matches

87

Input [0, 0, 0, 1]

Pa
dd

in
g

Te
ch

ni
qu

e
Lo

c Beginning Padding: [?, ?, ?, ?, 0, 0, 0, 1]

Ty
pe Universal data-agnostic Universal data-aware

Learned
Zero One Rand IB DB MB

Output [0, 0, 0, 0,
0, 0, 0, 1]

[1, 1, 1, 1,
0, 0, 0, 1]

[1, 1, 0, 1,
0, 0, 0, 1]

[0, 1, 0, 0,
0, 0, 0, 1]

[1, 1, 1, 1,
0, 0, 0, 1]

[0, 0, 1, 1,
0, 0, 0, 1]

[1, 1, 1, 1,
0, 0, 0, 1]

Pred Cls [1] [2] [2] [1] [2] [0] [2]

Pa
dd

in
g

Te
ch

ni
qu

e
Lo

c Middle Padding: [0, 0, ?, ?, ?, ?, 0, 1]

Ty
pe Universal data-agnostic Universal data-aware

Learned
Zero One Rand IB DB MB

Output [0, 0, 0, 0,
0, 0, 0, 1]

[0, 0, 1, 1,
1, 1, 0, 1]

[0, 0, 1, 0,
0, 1, 0, 1]

[0, 0, 1, 0,
0, 0, 0, 1]

[0, 0, 1, 1,
1, 1, 0, 1]

[0, 0, 0, 1,
1, 0, 0, 1]

[0, 0, 1, 0,
1, 1, 0, 1]

Pred Cls [1] [0] [0] [0] [0] [0] [0]

Pa
dd

in
g

Te
ch

ni
qu

e
Lo

c End Padding: [0, 0, 0, 1, ?, ?, ?, ?]

Ty
pe Universal data-agnostic Universal data-aware

Learned
Zero One Rand IB DB MB

Output [0, 0, 0, 1,
0, 0, 0, 0]

[0, 0, 0, 1,
1, 1, 1, 1]

[0, 0, 0, 1,
1, 1, 0, 1]

[0, 0, 0, 1,
1, 0, 0, 0]

[0, 0, 0, 1,
1, 1, 1, 1]

[0, 0, 0, 1,
1, 1, 0, 0]

[0, 0, 0, 1,
1, 0, 1, 1]

Pred Cls [2] [1] [0] [0] [1] [0] [1]

Figure 4.4: An example of applying E2-NVM’s different padding strategies on an input data

d1:[0,0,0,1] based on the memory pool defined in Table 4.1.

88

patterns in data, the VAE can perform more efficient clustering. In other word, we

want to choose the content of padded parts in a way that maximizes the probability

of mapping input items to right clusters and minimizes the number of bit flips. For

the universal data-aware padding strategy, we propose three different padding schemes:

(i) input-based padding (IB), (ii) dataset-based padding (DB), and (iii) memory-based

padding (MB).

In input-based padding, the content of the padded part for an incoming data

item is determined based on the distribution of ones and zeros in the input item. For

instance, for the system we described in this section, if it receives d1:[0,0,0,1], the padded

part will contain 1s and 0s with probability of 0.25 and 0.75, respectively, which is the

same as the probability of 1’s and 0’s in d1. So, for the middle padding, the output

format would be [0,0,1,0,0,0,0,1], which results in cluster dataset-based padding uses

the distribution of 1’s and 0’s in all the items it has received so far. For memory-

based padding, we choose the probabilities based on the content of the existing memory

locations on NVM that are going to be replaced by the new incoming items.

Although universal data-aware padding strategies generally result in better

clustering decisions compared to data-agnostic padding, there are still some items that

are directed to the wrong clusters. This is because the distribution of 0’s and 1’s might

not reflect the best padding to be performed on the input item. The next strategy aims

to overcome this challenge. In the last padding strategy, we have designed a padding

strategy to not only generate the padded content based on the incoming new data items

but also be aware of the content of the whole old memory, which is going to be written

89

by the incoming items.

4.3.1.3 Padding Type: Learned padding

The main shortcoming of both data-aware and data-agnostic padding techniques

is that they do not always generate a padding that is tailored specifically to both the

input item as well as prior data, some of which that are used in training the DL model.

We overcome this by designing a learning-based strategy, where we train a model that

enables us to predict the best padding strategy for a given input item which takes into

account all the existing data. The learned padding model takes an incoming data item

of arbitrary size as input and generates the padding bits as output. The intuition behind

this padding strategy is that the padding model is trying to predict the best padding

strategy that will place the incoming item in the right cluster.

To this aim, we utilize an Long Short-Term Memory (LSTM) model to generate

more meaningful padded data, so E2-NVM can predict similar memory locations with

higher accuracy, which in turn improves the energy consumption of the system. Figure 4.5

shows the architecture of our proposed LSTM whose underlying algorithm was developed

by Hochreiter and Schmidhuber in 1997 [64]. This figure shows that the model has a

hidden state where it represents the state of the current timestamp, which is known as

short term memory. In addition to that LSTM also has a cell state represented by Ct−1

and Ct for previous and current timestamp respectively (known as long term memory).

As it is shown in Figure 4.5, E2-NVM utilizes an LSTM with a sliding window

strategy which takes as input 64 bits and predicts 8 bits in a single step. The window is

90

slid by 8 bits after each prediction to generate the required number of padded bits. To

illustrate the goal of our learned padding approach, consider the same storage system in

Table 4.1. For the sake of simplicity, suppose that, in this example, our LSTM model

takes input size of 7 bits and predicts 1 bit at a time. Now, let’s further assume that our

system receives [1,0,1,1,0,0,0],[0,1,1,1,0,0,1], [1,1,1,1,0,0,0], [1,0,0,0,1,0,1], [0,0,0,0,1,0,1],

and [0,0,0,0,1,1,1]. Since the memory contents are 8 bits and E2-NVM works on input

sizes of 8 bits, we feed them to our following simple LSTM model to make them 8 bits:

define model

model = Sequential ()

model.add(LSTM(10, input_shape =(1 ,7)))

model.add(Dense(1, activation='linear '))

compile model

model.compile(loss='mse', optimizer='adam')

model.fit(X, y, epochs =20, shuffle=False , verbose =0)

make predictions

yhat = model.predict(X, verbose =0)

As it is clear in Table 4.1, the best case scenario happens when their eighths

bits are predicted as 0, 0, 0, 1, 1, and 1, which is congruent with the results of the

LSTM model: [0.006], [0.024], [-0.027], [1.056], [0.869], and [1.038]. As a result, all the

mentioned items are assigned to their correct clusters, which in turn improves system’s

energy efficiency.

91

Outputt-1 Outputt ...

[xi,…,xi+64]

[xi+64,…,xi+72]

[xi+8,…,xi+72]

[xi+72,…,xi+80]

Ct Ct+1
Ct-1

Input

State

Carry

Output

Ct

[xi+8x,…,xi+8(x+8)]

[xi+8(x+8),…,xi+8(x+9)]

...

...

Figure 4.5: The anatomy of the LSTM model used in E2-NVM.

4.3.1.4 Additional design considerations

As we discussed before, E2-NVM is built on DRAM, and might need to index

a large portion of NVM, which usually comes at much bigger sizes than DRAM. This

means that if the memory segments that we use in the system are small (for example

1KB) and we want to index a NVM of size 1 TB, we will need to have E2-NVM index

around 1 billion memory segments, which takes a lot of space in DRAM. To solve this

problem, in E2-NVM, instead of indexing the whole NVM device at the beginning, a

dynamic incremental approach can be adopted, which starts by indexing a portion of the

memory, and as time progresses, more addresses that were not initially mapped can be

added incrementally to DAP. Also, free memory locations are dynamically added back

(recycled) to the free lists of DAP after DELETE operations.

Figure 4.6 illustrates the amount of memory that E2-NVM uses for indexing

different number of memory segments for the PubMed data set [47]. The results show

that although indexing a smaller number of memory segments takes less space, it also

92

Figure 4.6: E2-NVM’s memory and energy consumption for indexing different numbers of

memory segments.

means that not only do we need to retrain the DL model more frequently, but we will also

have fewer choices to find the most similar location for incoming writes, which results in

increasing the number of bit flips and energy consumption. From the results presented

in Figure 4.6, we observe that by having 100K to 1M memory segments, we can have

the best of both worlds. While we do not see any tangible performance degradation in

terms the energy consumption, indexing this number of memory segments will consume

a couple of MBs in memory. Furthermore, by indexing more than 1M memory segments,

we do not see any significant improvements in energy consumption.

To overcome the overhead incurred due to small key-value pairs, batching can

be applied so that small writes are grouped together to form larger writes to memory

segments. This way, E2-NVM needs to map the free memory locations based on the batch

size rather than the key-value pair size, which leads to reducing E2-NVM footprint. It is

worth noting that we do not make assumptions about word/byte-alignment. However,

93

we want to note that padding bytes are not stored. So, it does not impact the storage

of the data. Rather, padding is only performed for the prediction part of E2-NVM. The

reason for this is that we want to allow data with variable size to be applied to the

model.

As a result, selecting very small memory segments (less than 1KB) when the

memory pool size is very big (64 GB or more) is not a good design decision because

although the NVM’s write energy consumption is very low, the system suffers from

scalability issues (dynamic address pool takes a big space in DRAM). Likewise, although

selecting big memory segments takes up small space in DRAM, it is not energy efficient

because we will have fewer choices to find the most similar locations for the incoming

writes, which results in increasing the number of bit flips and energy consumption.

Therefore, this test can help us find the most efficient memory segment size. This

depends on (1) the size of the area in NVM that we want to index (memory pool size),

(2) the size of DRAM that we use, and (3) the amount of energy consumption that the

system can tolerate.

Another important design consideration is to guarantee that the dynamic address

pool will never run out of free memory addresses and E2-NVM will always be able to

serve the incoming requests. To this end, we set a minimum threshold to number of

addresses in each cluster and will trigger the re-training process in the background when

one of the clusters reaches to the threshold. After the new model is ready, we switch to

the new model. It is worth noting that we do not need to train the model in E2-NVM as

long as the performance is not affected substantially (please see Section 4.4.3 for more

94

Figure 4.7: Sum of Square Error graph versus E2-NVM’s energy consumption to find the

optimal K.

details).

Determining the Number of Clusters. A decision that needs to be made

before E2-NVM starts training its DL model is to determine the number of clusters

(K). There are a number of factors that need to be taken into consideration: (1) As the

number of clusters increases, the memory contents inside clusters become more similar

to each other, and it saves more bit flips, which means consuming less energy (see

Section 4.4). (2) Although having more clusters saves more energy when writing on

NVM, it also means that E2-NVM needs more time to finish training its DL model,

which means increasing latency and energy consumption of the system.

Figure 4.7 shows the results of the test that we conducted to determine the

optimal value for K. For energy-consumption, our experiments show a“valley” trend (the

blue bar graph in the figure): the energy-consumption is relatively high at both the lowest

and highest Ks, and is relatively low at intermediate Ks. This is because, in low Ks, the

95

(a) AMZ (b) CCTV

Figure 4.8: The training and validation loss for feature extraction during training for different

datasets.

number of clusters is too small and the contents inside each cluster are not very similar to

each other, which leads to high energy consumption in NVM. Conversely, increasing the

number of clusters beyond a certain level increases the total energy consumption while

providing only a limited return on bit flip reduction, also leading to energy inefficiency

in DRAM and CPU. This “energy-valley” trend indicates that choosing the best value

for K in an energy-aware fashion requires a good trade-off between the amount of energy

that the system requires for writing on NVM and the energy that E2-NVM needs to

train its DL model.

In this work, we use the “elbow method” [81, 109], which is one of the most

common techniques that is used to find the optimal value for K in K-means clustering.

96

The elbow method is expressed as the following Sum of Squared Error (SSE) [142]:

SSE(X,Π) =
K∑
i=1

∑
xj∈Ci

∥xj −mi∥22 (4.1)

where ∥.∥2 denotes the Euclidean (L2) norm, mi= 1
|Ci|

∑
xj∈Ci

xj is the centroid

of cluster Ci where the cardinality is |Ci|, Π={C1, C2, ..., CK}, and X={x1, ..., xi, ..., xN}

(N is the feature vector).

To determine the optimal number of clusters, we identify a sharp decrease

known as the “elbow” or “knee”, which suggests the optimal value for K [81, 109, 142].

Figure. 4.7 shows an example of choosing the optimal K by seeing the significant decrease

in the SSE graph, which is in K = 6 (the data set is CIFAR-10). As we can see in this

figure, this value is also a good estimation for the energy consumption of E2-NVM for

different values of K.

4.4 Experiments

4.4.1 Methodology

The experiments are executed on (1) an Intel Core i7 processor running at 4.7

GHz with 4 cores, each of which has 1MB L2 Cache and 12MB L3 Cache using 32GB

of Intel® Optane™ Memory Series 3D Xpoint™ and 16 GB of DRAM, and (2) an Intel

Xeon® @2.6GHz with 16 cores, an Nvidia Tesla K20m GPU with 5GB memory using

32 GB DDR4 main memory and a 256 GB SSD hard drive. The machine has 32GB

DDR3 main memory, 128GB of Intel® Optane™ Persistent Memory 200 Series (PMEM

97

(a) Amazon Samples (b) 3D Road Net (c) Sherbrooke

(d) Traffic Surveillance (e) CIFAR-10 (f) PubMed

Figure 4.9: The average number of actual bit updates per PMem’s cache line access granularity

as well as the latency of prediction per item in E2-NVM for the real-world textual and multimedia

datasets.

98

Module), and a 256 GB SSD hard drive. We use the latter machine to get the results

in Figures 4.6, 4.10, 4.16 and 4.18. Although the amount of energy might be different

for different setups, both machines showed similar behavior in terms of the relationship

between the number of flipped bits and energy consumption. We utilize thread-safe

methods in E2-NVM. This is the case for the data structures that we utilize to maintain

address pools and mapping (contention in other parts such as the VAE would not lead

to concurrency anomalies since operations on them are read-only).

There are two methods to measure energy consumption: (1) Power Monitors,

which use hardware tools to measure the actual power of the device. Despite being very

precise, they are extremely difficult to set up. (2) Energy Profilers, which are vastly

used by researchers, do not require any special hardware, or power sensors, and estimate

the power cost of different hardware using estimation models 3. In this thesis, we use

an energy profiler named Perf, which is a performance analysis tool and a part of the

Intel’s RAPL interface [56, 87]. we measured the energy and power consumption of the

memory (both DRAM and PMEM), while running our tests using the perf [39] tool:

1 $ perf stat -a -r 5 -e power/energy -cores/, \

2 power/energy -ram/, power/energy -gpu/, \

3 power/energy -pkg/, power/energy -psys/ ./test

This tool provides the collection of energy measurements from various components

of a computer system such as: cores, Intel’s GPUs, package (all the core and un-core

components), DRAM, total power consumption of a node, and so on. Also, the sampling
3http://luiscruz.github.io/2021/07/20/measuring-energy.html

99

rate in our tests is 1000 samples per second.

4.4.2 Overview and setup

In this section, we evaluate our proposed method in terms of bit flips, energy

efficiency, and performance. We perform experiments on a real Intel Optane memory

device to measure energy efficiency and performance overhead. Also, we perform experiments

with emulated Optane memory to measure bit flip reduction (which cannot be measured

using the real device.)

We compare E2-NVM with two main groups of solutions: 1) persistent K/V

stores that use specialized data structures to deal with the limitations of NVMs [79,

81, 106, 117, 166]. These methods generally focus on reducing write amplification. 2)

hardware-based bit flip optimization methods that use the RBW technique to alleviate

the limitations of NVMs [31,73,107,154]. Unlike the previous category, this group focuses

directly on decreasing the number of bit flips.

4.4.2.1 Workloads

We have used various types of real-world and synthetic workloads in our evaluations.

Synthetic workloads. In the first synthetic workload, we run the YCSB

benchmark [34] to evaluate E2-NVM. We load a 10-GB data set into the database as the

“old data” in the load phase. Then, we run the workloads one by one, and compare the

results. The six core workloads that we used in our tests have different read-write ratios

and access patterns: Workload-A has 50% reads and 50% updates, Workload-B has

100

95% reads and 5% updates, and Workload-C has 100% reads; the keys are chosen from

a Zipfian distribution, and the updates operate on already-existing keys. Workload-

D involves 95% reads and 5% inserting new keys (temporally weighted distribution).

Workload-E involves 95% range queries and 5% inserting new keys (Zipfian distribution),

while Workload-F has 50% read-modify-writes and 50% reads.

Real-world workloads (Numerical). We use Amazon Access Samples [47]

that contain 30K access log entries. We also use the 3D Road Network Data Set [57,86]

that contains 434874 entries of road networks information of North Jutland, Denmark.

Finally, we use the collections of the DocWord database named “PubMed”, which consists

of 730 million entries [47].

Real-world workloads (Images). We use two of the most widely used

datasets for machine learning and computer vision research, MNIST and CIFAR-10

datasets [93]. The former is a dataset of 60,000 28x28 grayscale images of the 10 digits,

along with a test set of 10,000 images. The latter dataset is a subset of the 80 million

tiny images dataset and consists of 60,000 32x32 color images, which are grouped into

10 different classes.

Real-world workloads (Videos). In the last set of tests, we use two video

datasets: 1) The Sherbrooke video dataset [74], which is more than two-minute-long

video (with resolution 800x600), which was filmed at the Sherbrooke/Amherst intersection

in Montreal by a camera located a couple of meters above the ground, and 2) Traffic

Surveillance video [11], which is collected from seven intersections in the Danish cities of

Aalborg and Viborg. In this test, we use two sequences of RGB cameras called CCTV1

101

1KB 2KB

4KB 16KB

Figure 4.10: The average amount of energy consumed per PMem’s cache line access granularity

when memory segment size changes for YCSB workloads.

and CCTV2. For the first dataset, we stored the first 30 seconds of this video as the

old data and then we replaced it with the rest of the video as the new data. We did the

same with the second datasets with one difference and that is storing first one minute

of the video as the old data and using the rest of the video as the new data.

4.4.3 Evaluation Results

Deep learning model characteristics. In the first set of experiments,

Figure 4.8 shows the E2-NVM’s learning curves, which is a metric to show how well

the DL model is “generalizing” the learned patterns. We have evaluated our DL model

102

0

1

2

Without E2_NVM With E2_NVM

Av
e.

 N
o.

 o
f

bi
tf

lip
s/

da
ta

 b
it

B+Tree
Path hashing
FP-Tree
NoveLSM
Wisckey

(a)Amazon Samples

0

1

2

Without E2_NVM With E2_NVM

Av
e.

 N
o.

 o
f

bi
tf

lip
s/

da
ta

 b
it B+Tree

Path hashing
FP-Tree
NoveLSM
Wisckey

(b)3D Road Network

0

0.5

1

Without E2_NVM With E2_NVM

Av
e.

 N
o.

 o
f

bi
tf

lip
s/

da
ta

 b
it

B+Tree
Path hashing
FP-Tree
NoveLSM
Wisckey

(c)Sherbrooke

0

2

4

Without E2_NVM With E2_NVM

Av
e.

 N
o.

 o
f

bi
tf

lip
s/

da
ta

 b
it

B+Tree
Path hashing
FP-Tree
NoveLSM
Wisckey

(d)Log-normal distribution

0

2

4

Without E2_NVM With E2_NVM

Av
e.

 N
o.

 o
f

bi
tf

lip
s/

da
ta

 b
it

B+Tree
Path hashing
FP-Tree
NoveLSM
Wisckey

(e)Zipf data distribution

0

1

2

Without E2_NVM With E2_NVM

Av
e.

 N
o.

 o
f

bi
tf

lip
s/

da
ta

 b
it

B+Tree
Path hashing
FP-Tree
NoveLSM
Wisckey

PubMed

Figure 4.11: The impact of augmenting E2-NVM to data stores in terms of the average number

of bit updates per writing 1 data bit.

103

Figure 4.12: E2-NVM’s performance in terms of the total memory energy for different memory

segment and memory pool sizes.

Figure 4.13: E2-NVM’s performance in terms of the average updated bits ratio for different

memory segment and memory pool sizes.

104

on the training dataset and on a hold-out validation dataset, which is completely isolated

from the training dataset. In this figure, we have used the loss metric whereby smaller

values indicate better learning and a value of 0 indicates that the training dataset was

learned perfectly, and no mistakes were made. As we can see from the results, our deep

learning model converges very quickly, which shows the ability of E2-NVM to learn and

generalize the existing patterns in memory segments.

Comparison with RBW and memory-aware methods. Figure 4.9 shows

the results for comparing E2-NVM with the following RBW methods: DCW [154],

MinShift [107], FNW (Flip ’n Write) [31], and Captopril [73]. We also compare with a

clustering-based memory-aware solution, PNW [81]. We vary the number of clusters, k,

ranging from k=1 to k=30 for different datasets (note that k=1 is a baseline that aims

to show the performance without getting the benefits of the clustering-based methods.

Also, the only methods that are impacted by increasing the number of clusters are the

clustering-based methods, PNW and E2-NVM.). We have compared the performance of

E2-NVM to others in terms of the number of bits updated/written per PMem access.

In this figure, when we pick k=1, the result for E2-NVM, PNW, and DCW are the same

since they all behave similarly with no clustering. Figure 4.9 shows that our method

enhances the previous ML-based method (PNW [81]) by up to 3.2x and the baseline bit

flip optimized methods by up to 4.23x.

We have also calculated the model prediction latency for both PNW and E2-

NVM. In our method, the delay is higher compared to PNW because E2-NVM performs

two predictions, one by the DL model and the other by the clustering ML model.

105

This highlights a performance-accuracy trade-off (where performance is the prediction

overhead and accuracy is the accuracy of finding a similar memory segment) where

E2-NVM favors accuracy but introduces more overhead compared to PNW.

In the next experiment, we calculate the average amount of energy that is

consumed per PMem’s cache line access granularity when the memory segment size

changes for YCSB workloads on a real Optane memory device. Figure 4.10 shows that

by choosing smaller segment size, our method can save more energy since the model can

predict memory segments with higher accuracy, which leads to minimizing the number

of bit flips. This figure also shows another factor that affects the energy consumption

of our method—the number of clusters. When there are more clusters, the similarity

among the items within a cluster increases, which leads to fewer number of bit flips and

less energy consumption.

Augmenting E2-NVM to existing NVM data structures. In the next

experiment, we tested the performance of the implemented methods, such as B+-Tree [29],

Wisckey [105], Path Hashing [166], FP-Tree [117], and NoveLSM [79]), in terms of the

number of updated bits in two different ways: before plugging to E2-NVM, and after

plugging to E2-NVM. The results are shown in Figure 4.11. When not plugged to E2-

NVM, B+-Tree has the worst performance because, in a regular B+-Tree [29], the items

in leaf nodes need to be sorted, which increases the number of movements and bit flips.

After we tested the performance of the methods in terms of bit flips, we plugged them

to E2-NVM and repeated the same tests. After plugging each method to E2-NVM, their

performance improves by up to 91% by preventing a lot of unnecessary bits from being

106

0

256

512

768

1024

0 1

ra
nd IB DB M

B LB 0 1

ra
nd IB DB M

B LB 0 1

ra
nd IB DB M

B LB 0 1

ra
nd IB DB M

B LB

MNIST Sherbrooke video Data Set CCTV CIFAR-10

Av
e.

 N
o.

 o
f b

it
fli

ps
 p

er

PM
em

's
ca

ch
e

lin
e

padding at the end padding in the edges padding in the beginning

Figure 4.14: The average number of bit flips per word after applying different padding

strategies.

flipped. These tests validate the ability to plug existing data indexing structures to

E2-NVM to reduce bit flipping.

The effect of memory pool size and memory segment size on the total

memory energy. Figures 4.12 and 4.13 illustrate the overall performance of E2-NVM

in terms of energy efficiency and updated bits for different memory segment and pool

size choices for the mixture of all the real workloads in this work. For the overall energy

efficiency shown in Figure 4.13, we observe that the E2-NVM’s power consumption

increases as the ratio of the memory segment size to the memory pool size increases,

which also aligns with results of the average bit flips ratio shown in Figure 4.12. Based

on this observation, we conclude that the smaller we choose the size of the memory

segments compared to the size of the data zone (pool size), the more tree nodes are

available for E2-NVM, which also results in fewer bit flips and less energy consumption.

Padding evaluations. In multimedia applications, such as CCTV and video

storage, the size of data objects is typically fixed depending on the chosen resolution.

107

0

20

40

5 10 20 30 40 50 60Sw
itc

h
bi

ts
 p

er
 P

M
em

 a
cc

es
s (

%
)

Padding percentage

Base line (0% padding)

Figure 4.15: The number of bit flips when different percentages of the video frame size is

padded by the learned padding scheme for the CCTV dataset.

This enables us to use E2-NVM directly as we can fix the input size of the model to

match the data object size. However, to generalize our solution to handle data items

of arbitrary sizes using the same model, we introduced padding methods. Figure 4.14

shows the performance of our proposed padding strategies. In this experiment, there

are three padding positions. In the first one, the original data is at the beginning and

the padding part is concatenated to the rightmost side of the data (padding at the end).

In the second position, the data stays in the middle of the frame and padded bits are

split into equal parts and appended to both sides of the data (padding in the edges).

Finally, in the third position, the data is placed at the rightmost side of the frame and

the padding part is attached to the left side of the data (padding in the beginning).

For each test, first, the DL model is trained on the training dataset (80% of the

complete dataset). To generate the test set, we crop one-third of the data items in the

positions that we mentioned and then pad it. So, for each dataset, we test 7 padding

108

strategies and across 3 different padding positions.

In Figure 4.14, we make several observations about padding strategies, i.e.,

input-based (IB), dataset-based (DB), memory-based (MB), learned-based(LB), zero

(0), and one (1) paddings. First, data-aware padding schemes outperforms the data-

agnostic schemes in terms of reducing the number of bit flips. Second, learned padding

scheme has the highest performance in terms of the average number of bit flips. Third,

padding in the edges has higher variance compared to padding at the beginning or

end. To summarize, the performance of padding improves with increasing complexity of

models, from data-agnostic schemes to data-aware schemes and the learned padding.

The accuracy of mapping a data item to the most appropriate cluster drops

when a large fraction of bits are padded bits. In Figure 4.15, we evaluate the impact of

padding by measuring the number of bit flips under different percentages of data frames

are being padded. In this experiment, we first trained the DL model on the CCTV’s

training dataset. Then, we cut off different percentages of the frames of the testing

dataset and feed them to E2-NVM. Since the size of the input is smaller than what the

model has been trained on, E2-NVM uses the learned padding strategy to fit the data

items into the original frame sizes. In other words, in this experiment, we generate the

missing parts of the frames in the testing dataset, so we can compare it with the baseline

where the frames of the testing dataset were intact (the 0% padding line in the figure).

Figure 4.15 shows that when there is no padding (0% padding), the number

of bit flips is minimum, the best performance. The reason is that when the input data

frames are the same size as the training data frames, E2-NVM can find the best cluster

109

for the incoming data items and minimize the number of bit flips. For padded data,

we measure the number of bit flips per word based on the written bits only (padded

bits are not written to NVM.) When the percentage of padding increases, it becomes

more difficult for the system to predict the best padded part and find the most similar

clusters. However, when the percentage of padding is low (10%), there is minimal

loss in performance. This motivates combining the padding strategy with batching—as

described in the padding section—to reduce the percentage of padding.

Memory overhead analysis of E2-NVM in terms of energy consumption.

To see how training and re-training of our deep learning model affect the energy consumption

of the system, we conducted an experiment to track the behavior of our method as time

goes by. In this test, we first created a transactional object store with a total pool size

of 8GB and element/segment size of 64KB in the Intel Optane DC PMM (in the App

Direct Mode) and seeded it with data items from ImageNet [41], which contains over 14

million labeled images. Also, we re-sized the images to fit the size of the elements (64KB)

in the pool. Figure 4.16 shows the result in terms of the amount of total package energy

that is consumed after a specific time. In this test, we did the following steps, which

are marked on Figure 4.16 from 1 to 4: (1) We trained our DL model on the memory

contents of the pool before we start accepting the write requests (stage 1 in the figure).

(2) After our DL model is trained, we started writing new data items on the existing

memory contents of the pool from the ImageNet data set. In this step, we overwrote

the pool with the items from the same data set (combination of both existing and new

images) five times. (3) In step 3, we retrained the model to reflect the changes in the

110

data distribution. It is worth noting that, for the sake of this experiment, we stopped

writing on NVM until the retraining process finishes although, in E2-NVM, the writing

process does not have to be stopped because the retraining is done in the background

lazily. (4) In the last step, we resumed writing new data on NVM. We overwrote the

pool with ImageNet data for four more times. As we saw this test, the total energy that

E2-NVM saves up by writing similar contents will make up its energy overhead caused

by training, retraining and prediction.

Another important observation that we can make from this test is that we

can make a precise estimation of the cost of the re-training process in terms of energy

consumption and latency by looking at the the cost of the training process of the

same model at the initialization phase (stage 1 in Figure 4.16). The reason behind

is that the training/re-training cost depends on the size of the data set (memory pool),

dimensionality (memory segment), the complexity of the deep learning model that we

use, and the hardware that we run our model on, which all are the same for both training

and re-training processes.

Adaptability of E2-NVM to the dynamic changes. To analyze the

behavior of E2-NVM in different scenarios and its adaptability to the system’s changes,

we conduct the last experiment in a dynamic environment when the content of the

memory and the incoming workload changes over the course of time. You can see the

results in Figure 4.17. In this test, we use three image data sets from Tensorflow, i.e.,

MNIST, Fashion-MNIST, and CIFAR-10. For this test, we did the following scenarios:

111

1 2 3 4

Figure 4.16: Tracking the package energy sampled every 1ms for E2-NVM when it goes through

periodic training, re-training and writing phases compared to the wear-leveling technique over

time.

112

Scenario 1: we seeded the data zone in NVM with a completely random content

and then trained the E2-NVM model on this content. After training the model and

creating the cluster-to-memory dynamic address pool, we started streaming 54K images

(Figure 4.17 part I) from MNIST as the new data into the system to overwrite the old

data followed by deleting half of the items to make the system dynamic. As we see from

the results (Fig 4.17 part I-a), because the content that the model is trained on and

the incoming writes are different, the number of bit flips fluctuates a lot, but as time

goes by, fluctuations become narrower toward the bottom (Figure 4.17 part I-b) due to

the fact that E2-NVM updates the cluster contents by recycling the deleted items and

bringing them back to the cycle.

Scenario 2: we trained the model one more time with the current content and

updated the dynamic address pool. Then, we continued streaming 27K images from

the same data set (MNIST) as the new data into the system to overwrite the old data.

Figure 4.17 shows that fluctuations and the average number of bit flips decrease. Even

at the end of this stage, where the old data is almost completely replaced with the new

one, we still do not see significant changes in performance (Fig 4.17 part II).

Scenario 3: Starting from this point, we send a mixture of 27K items from two

different data sets, i.e., Fashion-MNIST and MNIST, at the ratio of 1 to 2. Figure 4.17

part III shows that the performance is affected immediately (the number of updated bits

increases) since two-third of the incoming data are entirely from the content that the

model has never seen before and results in a larger hamming distance.

113

Scenario 4 (part IV in the figure): we sent 30K images from the third data

set, i.e., CIFAR-10. The number of updated bits fluctuated more since (1) the old data

contains the items from completely different data sets and (2) the model has never seen

(been trained) the incoming data.

Scenario 5: In this phase, we continued sending 28K images from CIFAR-10

with one difference: we re-trained our model on the existing content. Figure 4.17 part

V-c shows that the results improve very fast since the data set and the content that the

model is trained on are from the same type. As a result, we have seen that, depending on

the application and the workload, we do not always have to re-train the model rapidly,

and we can use the same model for a certain amount of time before it needs to be re-

trained. This allows us to do the re-training in the background lazily and update the

model periodically while the current model is serving the requests. To this aim, E2-NVM

needs to know when to start re-training the model before the old one becomes inefficient,

i.e. the system’s performance decreases in terms of energy consumption. This is of great

importance because we might not want to give all the available resources to the model

since the system needs to serve the requests without any problem while the new model

is being re-trained. We performed additional tests to evaluate the costs for re-training

a new model (Figure 4.18). This experiment is performed on ImageNet [41].

In Figure 4.18, we measured the re-training time of the model per epoch for

a different number of memory segments. We run these tests on the second hardware

setup. Based on the results, the model needs more time and energy to be re-trained as

the number of memory segments increases. This gives us an idea of setting the load factor

114

Figure 4.17: Tracking the performance of E2-NVM by changing the memory content and

incoming writes over the course of time.

Figure 4.18: E2-NVM’s training costs in terms of latency and energy consumption per epoch

for indexing different number of memory segments.

115

Figure 4.19: The maximum update addresses and wear-leveling as CDFs by applying E2-NVM

with k=30 clusters.

so that we have enough time to finish re-training the new model before the old model

becomes inefficient. Training the model sooner than this threshold would not result in

a noticeable performance improvement since the pattern of the bits in the content is

almost the same as the training time. Also, by waiting too long before re-training the

model, the system misses the opportunity to improve the performance considerably.

Although decreasing the number of writes is important, wear-leveling is equally

important to extend the lifetime of PCM. The reason is that some blocks of the memory

device may receive a much higher number of writes than the other blocks, and as a

result, wear out sooner [81]. Therefore, to observe the performance of E2-NVM in terms

of the distribution of the maximum number of bit flips and the wear-leveling of PCM,

we conduct two more tests. In these tests, we run E2-NVM when k = 30 clusters, on

the mixture of MNIST and Fashion-MNIST data sets. For this test, we first warm up

116

the data zone with 28K items from the combination of both data sets. Then, we stream

112K writes from the same data sets to the system. During the test, we also perform

delete actions to make space for incoming writes (each word in the data zone is updated

4 times on average).

Figure 4.19 shows the maximum number of times the addresses in the data zone

are written and the wear-leveling of memory bits as a cumulative distribution function

(CDF). This figure illustrates two results: (1) the estimation of the likelihood to observe

an address in the data zone of PCM that is written less than or equal to a specific

number of times, and (2) the estimation of the likelihood to observe a memory bit in the

data zone of PCM that is written less than or equal to a specific number of times. For

example, as we can see in Figure 4.19, the estimated likelihood to observe an address

in the PCM data zone to be written less than or equal to 10 (P (X ≤ 10)) is 81% (red

color). Similarly, we observe that the estimated likelihood of a memory bit being written

less than or equal to 5 times is 85%. This likelihood rises to 98% when a memory bit

being written equals to 7 times (blue color). This important observation shows that

(1) E2-NVM distributes write activities across the whole PCM chip, and (2) E2-NVM

distributes bit flips evenly across the whole data zone of the PCM chip, and as a result,

the lifetime of PCM is extended more.

117

4.5 Conclusion

In E2-NVM, we have explored the use of software-level approaches to improve

energy efficiency and write endurance of NVMs. Specifically, a deep learning model is

used to map memory locations based on the hamming distance of their content. This

mapping is used when new writes arrive to assign them to memory location with similar

content. This reduces the number of bit flips, which leads to better write endurance and

energy efficiency.

118

Chapter 5

Hamming Tree: The Case for

Energy-Aware Indexing for NVMs

As stated earlier, the existing methods, in which writes are generally updated

in place, miss a crucial opportunity to increase energy efficiency and write endurance

significantly. This opportunity is to be memory-aware. Picking the memory location for

a write operation arbitrarily (new data items select an arbitrary location in memory, and

updates to data items overwrite the previously-chosen location.) misses the opportunity

to judiciously pick a memory location that is similar to the value to be written (in terms

of their hamming distance.) When the new value and the value to be overwritten are

similar, this means that the number of bit flips is going to be lower. Reducing the number

of bit flips increases write endurance and reduces power consumption [68,81–84,138,158].

To enable memory-awareness, the supported data structure needs to perform

out-of-place updates. This may introduce some performance overhead when updating

119

data. However, the advantage of enabling memory-awareness outweighs the overhead

caused by making the data structure perform out-of-place updates. Later in this chapter,

we will show this experimentally with evaluations with a high percentage of updates in

the workload.

In this chapter, we introduce a novel approach distinct from the methodologies

discussed earlier in this thesis. This new work involves an indexing-based data structure,

implemented at the software level in the data storage layer, called Hamming Tree [83,

85]. Hamming Tree is designed for NVM-based data management systems to increase

energy efficiency and write endurance by enabling existing indexing structures to select

a memory location for their writes that would minimize bit flips. To this end, Hamming

Tree maps all available (free) memory locations according to their hamming distance.

When a write w is invoked, Hamming Tree is traversed to find a free memory location

with content similar to the value of w. Hamming Tree’s design innovation is based on

employing a recursive method of comparing the density of 0/1 bits for each free memory

segment.

In our evaluation, we augment Hamming Tree with four existing indexing

structures: B+-tree, LSM-based persistent K/V store called NoveLSM [79], a cache

optimized NVM index called FP-Tree [117], and a write-friendly hashing scheme [166].

We performed real evaluations on an Optane memory device that show that Hamming

Tree can reduce energy consumption by up to 67.8%.

120

5.1 System Model

The system model consists of hardware and software components. We assume

the use of existing hardware components and do not require any special hardware. In

hardware, we consider a hybrid DRAM-NVM architecture, where both devices are placed

on the memory bus. The NVM device, in addition to the memory segments, contains a

memory controller that intercepts all operations to NVM. The memory controller may

utilize a wear leveling solution that swaps memory segments periodically. The details

of wear leveling methods are typically proprietary. However, prior work has indicated

that wear leveling approaches perform a memory segment swap every k write operations

(we provide some details of these approaches in the related work section.) Typically, the

value of k is in the order of 10s of writes [68]. Some memory controllers also adopt bit

flipping reduction technologies such as ones based on RBW [31, 42, 59]. We implement

our Hamming Tree solution in the software-level. Hamming Tree is a storage layer that

sits between software applications (such as data stores) and the hardware components.

Therefore, Hamming Tree can be thought of as a library that can be used by existing

data storage systems.

5.1.1 Software-Level Bit Flip Reduction

To see how bit flip reduction affects the system’s energy consumption and

performance, we have conducted a simple experiment on a real Optane memory device.

We used the Persistent Memory Development Kit (PMDK) 1, formerly known as NVML.
1Persistent Memory Development Kit https://pmem.io/pmdk/.

121

Figure 5.1: Total memory energy consumption on a real Intel Optane memory device for read

and write operations with different percentages of hamming distance.

In this test, first, we allocate a contiguous region of N Optane blocks of 256B. During

each “round” of the experiment, we first initialize all the blocks with random data,

and then update the blocks with new data with content that is x% different than the

data that is already in the block (hamming distance). We use PMDK’s transactions

to persist writes. We measure the energy consumption of the socket for each round.

Fig. 5.1 shows that overwriting similar content, which needs less bit flipping, consumes

less energy. This shows that reducing bit flips has the potential of better energy efficiency.

Furthermore, it shows that this can be achieved by solutions in the software-level, despite

the interference of the memory controller and other software/hardware components (we

discuss this further in the rest of the section.) Fig. 5.2 shows that write latency also

improves when bit flips are reduced. This can offset some of the overhead introduced

by software-level methods to pick memory segments that would reduce bit flips, such as

Hamming Tree.

One potential problem that might arise when using a software-level method to

122

Figure 5.2: The write latency in a real Intel Optane memory device for different percentages

of hamming distance.

control where a new write is applied in the NVM device is that the memory controller’s

wear leveling method might interfere with the process. Specifically, the wear leveling

algorithm might swap the destination memory segment before the write operation is

applied to it. However, swapping in wear leveling methods—as we describe in more

details later—is only applied once every ψ writes, where ψ is typically in the order of

tens of writes [68, 80]. Therefore, swapping only affects the memory location choice of

Hamming Tree once every ψ writes. We show in our evaluations that Hamming Tree

achieves significant improvement over other methods even with a small number ψ.

The potential of reducing bit flips using software-level solutions overcomes two

challenges that faced hardware-based solutions: The first is that to be deployed on

hardware, algorithms need to be small and simplistic—in terms of computation power

and memory—to fit in the memory controller. The second limit is that developing

hardware-based methods is not accessible to researchers and practitioners. This is

123

0

200

400

600

1 2 4 8 16 32 64 128Av
e.

 N
o.

 o
f b

itf
lip

s/
51

2

Swapping Period

TBWL Start-Gap FNW DCW Hamming-Tree

Figure 5.3: The average number of bit updates for different wear-leveling techniques when the

swapping period changes. (TBWL: Table-based Wear-Leveling [164], Start-Gap [124], FNW:

Flip-n-Write [31], DCW: Data Comparison Write [42])

evident by how most storage solutions for wear leveling and bit flip reduction are

proprietary and require manufacturing new hardware to implement a new solution.

Fig. 5.3 shows our results comparing software-level Hamming Tree with hardware-

level wear-leveling and bit flip reduction techniques (We list the names and references

of the compared functions in the figure’s caption and discuss some of them in more

detail in the related work section.). In this test, we used Amazon Access Samples Data

Set [47], which is described in the evaluation section. The figure shows the performance of

Hamming Tree while varying the frequency, ψ, of the underlying wear-leveling swapping

of memory segments (this experiment utilizes an emulation of the memory controller

as such parameters cannot be manipulated on real memory controllers.) When the

frequency ψ is 1, then the swap is performed for every write operation, which means

that Hamming Tree’s judicious memory segment choice is swapped. This leads to not

observing the benefits of the software-level approach. (A low ψ value is also not good

124

DRAM
NVM
…..

Indexing
data structure

Hamming-Tree

Figure 5.4: The storage and memory layout of Hamming Tree.

for hardware-based methods because it means that more bit flips are incurred due to

frequent swapping.) However, as we increase ψ to normal levels, Hamming Tree shows

that software-level approaches are capable of significant improvement beyond what is

achievable by hardware-level methods.

It is worth noting that although we provided our results on Optane, which is

one type of PCM, Hamming Tree is applicable to other phase change material-based

technologies, such as phase-change random access memory (PRAM) and Resistive RAM

(RRAM), which can benefit from bit flip reduction. Since Hamming Tree’s main focus is

to improve the energy consumption of the system, our proposed method can be especially

attractive to the applications that use low-power PCM devices due to relying on energy-

harvesting systems or batteries [21], such as the Internet of Things (IoT) and mobile

devices, in which conserving power is one of the main concerns [15,113].

125

5.2 Hamming Tree Design

In this section, we present the design of Hamming Tree. Our objective is to

select memory locations for the incoming writes that minimize the hamming distance,

and hence, the number of bit flips. Hamming Tree is a data structure that achieves this

objective through organizing free memory locations based on their hamming distance.

In a regular system, where updates are applied in place, there exists only one option to

write the data and hence the reduction of bit flips with techniques such as FNW [31] is

limited. Hamming Tree, on the other hand, determines the best existing free memory

location in terms of hamming distance to minimize the number of bit flips. Hamming

Tree can be built on any tree-based data structure, such as B-Tree or RB-Tree (in this

implementation, we use B-Tree). Then, Hamming Tree can be used as a storage layer

for data indexes in applications or data stores. The data indexing structure handles the

regular—application-level—indexing of keys and values, and Hamming Tree handles the

storage-level mapping of free memory locations for future writes and updates. There are

no restrictions on which indexing structures can be used as long as they support key-

value operations. Therefore, we can augment a wide-range of indexing structures such

as ones based on B-Trees, LSM, hash tables, and others with Hamming Tree. We show

how Hamming Tree can be augmented with various solutions throughout the design and

evaluation sections.

126

L = # of ‘1’s in data [l , ⌊(l + r) /2⌋]
R = # of ‘1’s in data [⌈(l + r) /2⌉, r]

Diff = R – L

data1 {d1,d2,…,dn} data2 {d’1,d’2,…,d’n}

data2 > data1 data1 > data2

+ -

r = ⌊(l + r) /2⌋ l = ⌈(l + r) /2⌉

0

Yes No

Diff_data1 Diff_data2

Diff_data2 < 0

Diff_data2 – Diff_data1

Figure 5.5: The comparison method in Hamming Tree.

5.2.1 Overview and System Model

Hamming Tree is a DRAM-NVM based data structure that can be added to

existing data indexing technologies—whether they are designed for NVM or not—to

improve their performance in terms of NVM write endurance and energy consumption.

For this work, we assume a hybrid memory architecture. In this architecture, both

DRAM and NVM are on the same main memory level, which means that managing

them can be done under a single physical address space [43]. Fig. 5.4 shows an example

of the storage and memory layout of Hamming Tree. The indexing data structure (here

shown as a tree data structure) is indexing memory locations that are used (the blue

memory locations contain the values of allocated data objects). Hamming Tree indexes

free memory locations according to their contents’ hamming distance (the green memory

locations are free to be used by future writes).

127

Hamming Tree Mapping Intuition. Whenever there is a need for updating

memory in-place, the number of bit flips depends on the hamming distance between

the old data—currently in the memory location— and the new data, which is going

to overwrite the memory location. Like the other memory-aware techniques, such as

PNW [81], Hamming Tree reduces bit flips by avoiding in-place updates and, instead,

finding a new memory location for each write that would minimize the hamming distance.

By placing the write operation in the right memory location that minimizes the hamming

distance between the old and the new data, the number of bit flips can be significantly

reduced. Hamming Tree uses an underlying indexing structure such as B-Tree or RB-

Tree, to map available (free) memory locations of NVM. The only difference between

Hamming Tree and other tree-based indexing data structures is the way it compares the

items and orders them; Hamming Tree orders free memory locations according to their

hamming distance. For example, in a regular B-Tree, number 1 is ordered before number

8 because 1 is less than 8. However, in Hamming Tree the two numbers are compared

and ordered based on the density of 0 and 1 (0/1) bits. Specifically, the intuition behind

Hamming Tree is to map memory locations that have the same density of 0/1 bits in

different segments together. For instance, the memory locations with a high density

of 1’s in the left-most segments are considered smaller than others; memory locations

with a high density of 1’s in the center-most segments are considered in the middle; and

memory locations with a high density of 1’s in the right-most segments are considered

larger than others. The spectrum between these extremes is mapped according to the

density of 0/1 bits in smaller segments of each memory location. With this mapping,

128

Hamming Tree enables a new write to find a memory location that matches its density

of 0/1 bits, which means that the selected memory location’s bit-wise content is similar

to the new write content. This leads to reducing bit flips as the new write is applied to

a memory location with similar content.

Hamming-Distance-Based Comparison Function. Fig. 5.5 shows the

flowchart of the Hamming Tree comparison method. The comparison of two items d1

and d2 starts by measuring the density of 1’s to 0’s between the left half and the right

half of the data items. A “Diff” function returns the difference of the number of 1 bits

in the right segment to the number of 1 bits in the left segment (a positive Diff value

represents that the number of 1’s in the right segment is higher than the left segment,

and vice versa). Diff is applied to both d1 and d2 and they are compared. As shown in

Fig. 5.5, the values of “l” and “r” are pointers to the beginning and the end of the higher

density part of the data items being compared, and they change as the “Diff” function

is called in the next steps. If the size of the memory segment is n bits, the initial values

of l and r would be 0 and n-1, respectively, and they change in the next calls depending

on the density of 1’s in the data item. If Diff(d1) is smaller than Diff(d2), then d2 is

considered greater than d1 (this reflects that a higher density of 1’s in the right segment

translates to being bigger). Similarly, if Diff(d1) is greater than Diff(d2), then d1 is

considered bigger than d2. If Diff(d1) and Diff(d2) are equivalent, then we recursively

measure the density difference in the half with more 1’s. This continues until we find a

segment of an item that has a higher density compared to the corresponding segment of

the other item, and then they are ordered accordingly.

129

0000 0000 0001 1000 0000 0001 0000

1000 0001

0000

1100 1000 0001

0000 0101

1100 1000 0001 01111001 1111

1 2 3

4

Figure 5.6: An example of how Hamming Tree is formed.

Hamming Tree Evolution. Fig. 5.6 illustrates an example of Hamming Tree

which is built on a B-Tree of order m=3. Initially, the tree has item ’0000b’ (represented

in bits). Then, ’0001b’ (with Diff = R-L = 1) is added to the right of ‘0000b’ with Diff

= 0. This is because Diff(0001b)=1 is larger than Diff(0000b)=0 (see the flowchart in

Fig. 5.5). Then. when the next item ‘1000b’ is added to Hamming Tree, it is placed on

the leftmost position because its Diff is -1, which is less than others (step 2). In this

step, all the three items are inserted at the root node because this is a B-Tree of order

m=3. Let us now insert item ’1100b’. Since root node is full, in step 3, it will first split

into a root and two child nodes, then item ’1100b’ will be inserted into the appropriate

child node. Based on the flowchart in Fig. 5.5, the reason that item ’1100b’ is directed

to the left child is that Diff(1100b)=-2 is less than Diff(0000b)=0. Likewise, in the left

child, because Diff(1100b)=-2 is less than Diff(1000b)=-1, it is inserted to the left of item

1000b. The rest of the items are added one by one in the same way (step 4).

Hamming Tree Density Comparison Arithmetic. In the following, we

first define various operations on density magnitude representations (i.e., <c, >c, =c,

130

≥c, ≤c)2, and then show that the density comparison in Hamming Tree, which is based

on the density magnitude representations, is totally ordered. We prove total order by

showing that the comparison function ensures reflexivity, antisymmetry, transitivity, and

trichotomy [38,131].

Assume two memory segments P1 and P2—b bits long. Our definitions below

are based on comparing the density difference (dd) of 1’s between the right and left halves

of the sub-segment q—b/2i bits long—of the memory segment P1 in the ith recursive

call, dd(P1, q, i), and the density difference of P2 in the ith recursive call, dd(P2, q, i),

as binary numbers. Notice that we keep calling dd recursively from i = 0 to i = log2(b)

until, in the i = kth call (0 ≤ k < log2(b)), dd(P1, q, k)! = dd(P2, q, k).

Definition 1: P1 ≥c P2 if and only if dd(P1, q, i) ≥ dd(P2, q, i) for the first

i where for all smaller i’s, they are equal. For example, consider that P1 = 0011 and

P2 = 1100 (b=4); here, since for k = 0, q = b/2i = 4/1 = 4, dd(P1, 4, 0) = 2 − 0 = 2,

and dd(P2, 4, 0) = 0− 2 = −2, P1 ≥c P2.

Definition 2: P1 =c P2 if and only if dd(P1, q, i) = dd(P2, q, i) for all i in

range [0, log2(b)). For instance, consider that P1=1011 and P2 = 0111; since for i = 0,

dd(P1, 4, 0) = 2−1 = 1 equals to dd(P2, 4, 0) = 2−1 = 1, we call the function for i = 1,

which yields in dd(P1, 2, 1) = 1− 1 = 0 and dd(P2, 4, 1) = 1− 1 = 0. Since, there does

not exist any i = k such that dd(P1, q, i)! = dd(P2, q, i), P1 =c P2.

Now Let P be a set of memory segments, and let ∼ be a comparison relation
2To avoid confusion, we use the subscript c with the operations (for example, ≥c) to denote

operations for comparison arithmetic to distinguish them from regular arithmetic.

131

≥c, ≤c, or =c on P.

Lemma 1: (Reflexivity) For all x ∈ P x∼x.

Proof: Calling dd(x, q, i) on both sides will result in dd(x, q, i) = dd(x, q, i) for

all i in range [0, log2(b)), which, based on Definition 2, means x =c x.

Lemma 2: (Antisymmetric) For all x, y ∈ P , if x ∼ y and y ∼ x, then x =c y.

Proof: First consider x ≤c y, then, based on Definition 1, for i = k1, dd(x, q, i) ≤

dd(y, q, i), which means that for all i in 0 ≤ i ≤ k1 < log2(b), dd(x, q, i) = dd(y, q, i).

Now consider y ≤c x. Then, there exist k2 such that dd(y, q, i) < dd(x, q, i), which

means that for all i in 0 ≤ i ≤ k2 < log2(b), dd(y, q, i) = dd(x, q, i). Therefore, there

does not exist any i = k such that dd(x, q, i)! = dd(y, q, i), which means x =c y.

Lemma 3: (transitivity) For all x, y, z ∈ P , if x ∼ y and y ∼ z, then x ∼ z.

Proof: Suppose that x ≤c y, then, based on Definition 1, for k1, dd(x, q, k1) <

dd(y, q, k1), which means that for all i in 0 ≤ i ≤ k1 < log2(b), dd(x, q, i) = dd(y, q, i).

Now suppose that y ≤c z. Then, there exists k2 such that dd(x, q, k2) ≤ dd(y, q, k2) <

dd(z, q, k2), which means that for all i in 0 ≤ i ≤ k2 < log2(b), dd(x, q, i) ≤ dd(y, q, i) =

dd(z, q, i). Therefore, there exists 0 ≤ k3 ≤ k2 such that dd(x, q, k3) < dd(z, q, k3),

which means x ≤c z(x ∼ z).

(trichotomy) For all a, b ∈ P , a <c b, a =c b, or a >c b.

Proof: Based on our assumption, for any arbitrary memory segment a ∈ P

with b bits long, calling density difference returns a number n ∈ Z, which shows its

1’s density difference across sub-segment q in the ith call. Comparing any two numbers

n1, n2 ∈ Z results in n1 < n2, n1 = n2, or n1 > n2, which, based on the definitions

132

Memtable

0000 (available)

0101 (available)

0001 (available)

1000 (available)

1001 (available)

0111 (unavailable)

1111 (unavailable)

1100 (available)

NVMDRAM

0xdd00 0xdd04

0xdd1c 0xdd0c 0xdd10 0xdd08

Hamming Tree

0xdd00

0xdd04

0xdd08
0xdd0c

0xdd10
0xdd14
0xdd18

0xdd1c

1
2

3

Delete

1
2

3

4

Put

4

Figure 5.7: An example of procedures which serve key-value PUT and DELETE operations

in Hamming Tree.

above, follows that a <c b, a =c b, or a >c b after a maximum log2(b) calls.

The first three lemmas prove that density comparison, which is based on

density magnitude representations, in a Hamming Tree is partially ordered on the

comparison relations, such as ≥c and ≤c, and addition of the trichotomy proves that

density comparison in a HammingTree is totally ordered [38,131].

Hamming Tree Mapping Structure. Fig. 5.7 provides an example of

Hamming Tree’s mapping structure where Hamming Tree is in DRAM and maps the

available (free) memory locations in the NVM data zone, in which the actual data or

K/V pairs are stored. Hamming Tree does not need to be persisted in NVM because it

can be reconstructed during recovery. When a DELETE, PUT, or UPDATE operation is

applied, Hamming Tree is traversed and updated accordingly to perform the operations

and find the best free memory location. (We show more details about how operations

are performed later in Section 5.2.2.)

133

Augmentation Benefits. One of the main advantages of Hamming Tree is

that it can be added as a storage layer to existing key-value store. This is important

because it reduces the barrier of adopting technologies that improve energy efficiency

and write endurance. This is not the case for many other technologies that are tied to a

specific indexing design or require special hardware. Additionally, it enables the use of

existing non-NVM data structures—that are optimized and have undergone extensive

study and research—to work on NVM without having to be redesigned to mitigate the

energy and write endurance challenges.

Diversity of available memory segments. In Hamming Tree, when a write

request comes to the system, it needs to return an available memory address with most

similar bit pattern to the incoming write even if Hamming Tree does not find an exact

or similar match to the incoming requests. So, in our method, when it reaches to a leaf

node and no match is found, one of the last visited memory locations in the search path

can be selected as the target. By going closer to the leaf nodes, the contents become

more similar to the new data. It is worth noting that when initializing Hamming Tree,

we do not write the area of NVM that Hamming Tree is going to cover. We use the

existing content to build the Hamming Tree to avoid performing extra writes/bit flips.

If the distribution of the writes does not change significantly, we expect to find more

similar bit densities as time progresses.

134

5.2.2 Hamming Tree Operations

We now show how DELETE, PUT, and UPDATE operations on the indexing

structure are handled by Hamming Tree.

DELETE Operation A DELETE operation on the indexing structure means

that a data object is removed from the data store. This leads to freeing the memory

location that was associated with that data object. The consequence of freeing a memory

location is that it needs to be added to Hamming Tree so that it is available to be used

for future data objects. Fig. 5.7 shows an example of how a DELETE request, which is

shown in red-colored steps, leads to adding a new entry in Hamming Tree. The first

step is to mark the memory address 0xdd0c as available. This step is important for

recovering Hamming Tree since it is maintained in DRAM. The second step is to issue

an insert request to Hamming Tree to add the address 0xdd0c. Finally, the third step

is to add the address to Hamming Tree. This step involves traversing Hamming Tree

and potentially changing its structure according to the degree and balance of the tree,

similar to what is presented in Fig. 5.6.

PUT Operation. A PUT operations on the indexing structure means that

a data object is added to the data store. This leads to allocating a free memory

location. This free memory location would be selected by traversing Hamming Tree.

After selecting the memory location for the new data object, Hamming Tree needs to

reflect this selection by removing the address from its structure. The green-colored steps

in Fig. 5.7 shows an example of how a PUT request leads to removing an entry from

135

Hamming Tree. The first step is that a PUT request is intercepted by Hamming Tree.

Then, Hamming Tree is traversed according to the content of the PUT operation to find

a free memory location with a similar content (in terms of hamming distance).

Assume that the PUT operation is attempting to write with content 1110b. The

traversal starts at the root of Hamming Tree, and 1110b is compared with the content

of nodes in the root (0000b from 0xdd00 and 0101b from 0xdd04). 1110b is smaller than

both (according to Hamming Tree compare function), so we traverse through the left-

most pointer. Since this is a leaf node, we find the entry that has the content that is

most similar to the content of the PUT operation (1110b) in terms of hamming distance.

There are two entries (0xdd1c with content 1100b and 0xdd0c with content 1000b). The

entry 0xdd1c which has content 1100b is closer—in terms of hamming distance—to 1110b.

This entry is picked and removed from Hamming Tree (step 3 in Fig. 5.7). Then, the

address is returned to the indexing structure so that the write can be applied to 0xdd1c

and the address is marked unavailable.

UPDATE Operation. An UPDATE operation is treated as a sequence of a

DELETE operation followed by a PUT operation. This would enable finding the best

location for the updated data item to minimize bit flips—instead of updating in-place

that would be faster but would potentially lead to more bit flips. The delete-insert

process can be done concurrently to reduce the latency overhead (i.e., the indexing

structure changes the data object pointer to the new memory location and write the

update to it immediately while Hamming Tree recycles the old memory location in the

background).

136

Figure 5.8: Hamming Tree’s compaction strategy with three calls (the highlighted areas

indicate the half with higher density of 1’s).

Input
Compaction Process Encoded

value1st call 2nd call 3rd call 4th call

[1,1,1,1,
1,0,1,0,
0,0,0,0,
1,0,0,0]

[1,1,1,1,1,0,1,0,
0,0,0,0,1,0,0,0] [1,1,1,1,1,0,1,0] [1,1,1,1] [1,1]

(-40) + (-8)
= -48NL NR W NL NR W NL NR W NL NR W

6 1 8*(-5)=-40 4 2 4*(-2)=-8 2 2 2*0=0 1 1 1*0=0

[1,1,1,1,
1,0,0,0,
0,0,1,0,
0,0,0,0]

[1,1,1,1,1,0,0,0,
0,0,1,0,0,0,0,0] [1,1,1,1,1,0,0,0] [1,1,1,1] [1,1]

(-32) + (-12)
= -44NL NR W NL NR W NL NR W NL NR W

5 1 8*(-4)=-32 4 1 4*(-3)=-12 2 2 2*0=0 1 1 1*0=0

[1,0,0,0,
1,0,0,0,
0,0,1,0,
1,0,1,1]

[1,0,0,0,1,0,0,0,
0,0,1,0,1,0,1,1] [0,0,1,0,1,0,1,1] [1,0,1,1] [1,1]

(16) + (8)
+(2) = 26NL NR W NL NR W NL NR W NL NR W

2 4 8*(2)=-16 1 3 4*(2)=-8 1 2 2*1=2 1 1 1*0=0

[1,0,0,0,
0,0,0,0,
1,1,1,1,
1,1,1,1]

[1,0,0,0,0,0,0,0,
1,1,1,1,1,1,1,1] [1,1,1,1,1,1,1,1] [1,1,1,1] [1,1]

(56) + (0)
+ (0) = 56NL NR W NL NR W NL NR W NL NR W

1 8 8*(7)=-56 4 4 4*(0)=0 2 2 2*0=0 1 1 1*0=0

Figure 5.9: examples of Hamming Tree’s compaction strategy.

137

Memory
content

Encoded
value

Memory
content

Encoded
value

Memory
content

Encoded
value

Memory
content

Encoded
value

[0,0,0,0] 0 [0,1,0,0] -1 [1,0,0,0] -3 [1,1,0,0] -4

[0,0,0,1] 3 [0,1,0,1] 1 [1,0,0,1] 1 [1,1,0,1] -2

[0,0,1,0] 1 [0,1,1,0] -1 [1,0,1,0] -1 [1,1,1,0] -2

[0,0,1,1] 4 [0,1,1,1] 2 [1,0,1,1] 2 [1,1,1,1] 0

Figure 5.10: The compacted values for all the 4-bit inputs.

5.2.3 Compact Content Representation

5.2.3.1 Overview and Motivation

In Hamming Tree, when write requests come to the system, we need to traverse

the Hamming Tree to find the target memory, so every step in traversing Hamming

Tree leads to reading from NVM. This can incur significant overhead when the size of

values is big, which is the case in multimedia applications that we are interested in. In

this section, we present an extension of Hamming Tree to overcome this I/O overhead.

This method is a compact numerical representation of content that we can augment in

Hamming Tree to enable us to perform the traversal and comparison operations without

the need of the original content from NVM. However, this is challenging because the

compact representation must allow us to perform the compare operation which is based

on the density of 0/1 bits. Therefore, we cannot use regular compression techniques

as we cannot perform our special compare operation on the compressed content. (Note

that there exist compression techniques that allow arithmetic operations, however, they

cannot be used in our case because our compare function is based on the special property

of the density of 0/1 bits.) We overcome this challenge by designing a specialized

138

compaction strategy that would compact content and allow using the compare operation

that is based on 0/1 bit density on the compacted form. We present our proposal next.

5.2.3.2 Compaction Strategy

In this section, we introduce our compaction method that encodes the content

of available memory entries in a compact numerical representation, so they can be stored

with their corresponding addresses in Hamming Tree instead of the values themselves.

Fig. 5.8 illustrates our proposed compaction strategy. As shown in this figure, we build

on the methodology used in the comparison function of Hamming Tree to recursively

calculate a density magnitude for segments of a memory location. In every step, the

density of each half of the memory location content is compared, and the difference in

the density of 1’s is added to the numerical representation (therefore, a positive value

indicates more 1 bits in the right half, and vice versa). Then, this is repeated by calling

the compaction function but only with the half with the most 1’s (the highlighted parts

in Fig. 5.8). This continues until we reach a segment of size 1 bit. At each recursion, we

assign a lower weight to the added score, which enables the representation to put more

priority on the density difference in larger segments (L/2 in the first call, L/4 in the

second call and so on). Eventually, the sign and magnitude of the number represents,

roughly, the density distribution across segments of the memory location’s content. The

formal compaction formula is described by the following recursive function:

T (A,L,H, n) =W (A,L,H)× n
2 +


T(A, L, ⌊L+H

2 ⌋, n
2) if W<0

T(A, ⌈L+H
2 ⌉, H, n

2) if W≥0

(5.1)

139

Where A is the input in bits, n is the size of the input A, L is the start and

H is the end index positions, respectively. Also, the termination point for this recursive

equation is L≥H when T becomes 0. The value for W is calculated as follows:

W (A,L,H) =



NR if NR - NL > 0

−NL if NR - NL < 0

0 NR - NL = 0

(5.2)

where NL and NR are the number of 1’s in the left and right sides of A[L,H], respectively.

Fig. 5.9 shows some examples of how our proposed compaction strategy works.

As it is shown in this table, the input size is 16 bits, which means that we perform

log216=4 recursive calls. In each call, we calculate W based on the difference of the

number of 1’s in the right (NR) and in the left (NL) halves of the input. To make the

compaction strategy clearer, consider this example of calculating the numerical density

representation for A = ’1,1,1,1,1,0,1,0,0,0,0,0,1,0,0,0b’, which is the first example in

Fig. 5.9. Based on Equation. 5.2, W(A, 0, 16) = NR - NL = 1 - 6 = -5 < 0, so, in

the first call, Equation. 5.1 is calculated as follows: 1) T(A, 0, 15) = W(A, 0, 15) ×

(16/2) + T(A, 0, ⌊0+15
2 ⌋) = (-5)×8 + T(A, 0, 7). In the second call, W(A, 0, 7) = NR

- NL = 2 - 4 = -2 < 0, so based on the equation, T(A, 0, 7) = W(A, 0, 7) × (8/2)

+ T(A, 0, ⌊0+7
2 ⌋) = (-2)×4 + T(A, 0, 3). In the next call, T(A, 0, 3)= W(A, 0, 3)

× (4/2) + T(A, ⌈0+3
2 ⌉, 3) = 0 × 2 + T(A, 2, 3). And to get the final value, T(A, 2,

3) = W(A, 2, 3) × (2/2) + T(A, ⌈2+3
2 ⌉, 3) = 0 × 1 + 0 = 0. So, the final encoded

value for our input would be T(A, 0, 16) = (−40) + (−8) = −48. Fig. 5.10 shows

140

the encoded values for all the combinations of 4-bit inputs. It is worth noting that, in

the compaction strategy, having the same numbers for two different patterns, such as

[1,1,0,1] and [1,1,1,0]—which are both encoded to -2—does not lead to a problematic

situation since they will be treated as having the same key in the index which is handled

by indexing data structures. Also, in terms of finding similar memory segments, our

goal is to encode densities, and having the same number is an indication in typical cases

that the densities are similar. Therefore, picking either one when a request is received

with a similar density number is typically sufficient.

5.2.3.3 Space Complexity analysis of our proposed encoding scheme

In this section, we discuss the space complexity of content compaction in

Hamming Tree. Specifically, we now derive the size of the compacted numerical representation

given the size of the original content. Let’s suppose that we want to encode an item A

with the size of n bits. Based on Equation. 5.1, T is called on A recursively until the

final value is calculated. Here, for clarity of exposition, we include the size of the input

in the equations only, and not the start/end indexes and the item A itself. For example,

instead of T(A, L, H, n), we just use T(n). First, the encoding function is called for the

first time on the whole item (size n).

T (n) =W × n

2
+ T (

n

2
) (5.3)

Now, based on Equation. 5.2, because the maximum value of W for an item of

size n is n
2 , Equation. 5.3 can be re-written as follows:

141

T (n) ≤ n

2
× n

2
+ T (

n

2
) =

n2

4
+ T (

n

2
) (5.4)

Then, by recursively substituting the value of function T we get the expansion

and series:

T (n) ≤ n2

4
+
n2

16
+
n2

64
+ ...+ T (1) =

log2 n∑
i=1

n2

4i
(5.5)

We derive—via a well-known series formulation—the following:

T (n) ≤ n2 − 1

3
(5.6)

This means that compacting an original value with size n would result in a

compacted numerical value that is less than n2−1
3 , which is in the order of O(n2). Such

a value can be stored using only O(log n) bits. For example, for encoding values of sizes

1KB, 1MB, and 1GB, the size of their corresponding encoded values would be 13, 23,

and 33 bits, respectively. Therefore, we can eliminate the need to read from NVM while

traversing Hamming Tree by including compact representations of the contents of free

memory locations. This compact representation would only add negligible size relative

to the original size of the content.

5.2.3.4 Total order

In Section 5.2.1 (under “Hamming Tree Density Comparison Arithmetic”), we

showed that the original compare function is totally ordered. Here, we discuss the total

order guarantee of the compacted variant that we presented above. In the compacted

142

Figure 5.11: Hamming Tree’s memory consumption (line graph) and performance (bar graph)

for indexing different numbers of memory segments.

strategy, each memory segment is represented as a number that is calculated using

the function T presented in Equation 5.1. This means that a set of memory segments

is totally-ordered based on the number calculated by the function T of the memory

segments in the set.

5.2.4 Indexing granularity and Batching

Hamming Tree organizes the available memory addresses on NVM based on

their content. Hamming Tree can be built based on either the content of the keys,

values, or both depending on their size. For instance, when the size of the keys are

much smaller than the values, it is more reasonable to build the Hamming Tree based

on either values or both keys and values. The reason behind this is that when the size

of values are much bigger than the size of the keys, then the number of bit flips caused

by the values is going to dominate the total number of bit flips caused by writing the

143

key/value pairs. On the other hand, if the size of the keys is not negligible compared to

the size of the values, building the Hamming Tree is better with both keys and values.

As we discussed before, Hamming Tree is built on DRAM, and might need to

index a large portion of NVM, which usually comes at much bigger sizes than DRAM.

This means that if the memory segments that we use in the system are small (for example

1KB) and we want to index a NVM of size 1 TB, we will need to have Hamming Tree

index around 1 billion memory segments, which takes a lot of space in DRAM. To solve

this problem, Hamming Tree indexes just a portion of the whole available memory that

it needs to index and it brings more free memory locations as needed and add them to

its free memory locations.

Fig. 5.11 illustrates the amount of memory that Hamming Tree uses for indexing

different numbers of memory segments for PubMed data set [47]. The results show that

by indexing less number of memory segments, Hamming Tree will take less space in the

DRAM. However, it also means that we will have fewer choices to find the most similar

location for the incoming writes, which results in increasing the number of bit flips

(Fig. 5.11.) However, based on the results, by having 100K to 1M memory segments,

we can have the best of both worlds. While we do not see any tangible performance

degradation, indexing this number of memory segments will just take a couple of MBs

in the memory.

In addition to compact representation that we discussed earlier, to overcome

the overhead incurred due to small key-value pairs, batching can be applied so that

small writes are grouped together to form larger writes to memory segments. This way,

144

Hamming Tree needs to map the free memory locations based on the batch size rather

than the key-value pair size, which leads to reducing Hamming Tree footprint.

5.2.5 Case Study: Augmenting with LSM Tree

We present an example of a Log-Structured Merge (LSM)-Tree-based key-value

store that is inspired from LevelDB [53] augmented with Hamming Tree.

5.2.5.1 Background on LSM-Trees

A LSM-Tree consists of n levels, where typically the first level is in-memory

and the rest of the levels are in flash/disk. Each level has a threshold on the number of

pages that it can contain. Once the threshold is exceeded, some or all of the pages are

pushed and merged with the next level. An insert or update operation is buffered in an

in-memory data structure called a memtable in the first level of the LSM Tree. Once the

memtable is full, it becomes an (immutable) memtable. Eventually, when the number

of memtables exceeds the threshold of the first LSM level, these memtables are merged

with the pages in the next level (called SSTables). This continues for the following levels.

In addition to the LSM-Tree, the data store needs to log every insert or update

to a persistent recovery log before inserting them to the in-memory memtable to avoid

data loss in case of a power failure or system crash. However, this is not the case if NVM

is used to store memtables. In such a case, memtables are persistent and there is no

need for a persistent log (or other associated overheads such as checksum calculations).

This motivated many solutions to redesign LSM trees to utilize NVM [13,79,125].

145

5.2.5.2 Hamming Tree with LSM

The overall design starts from how LSM stores typically use NVM: memtables

are placed on NVM and SSTables are placed on disk/flash. This structure is augmented

with Hamming Tree by placing the mapping structure in DRAM. Hamming Tree is

initialized using the content of free memory locations in NVM that are in the pool to be

used for memtables. Then, every operation that is performed on memtables (since it is

the structure on NVM) is intercepted by Hamming Tree to manage memory allocation

and recycling. These are three main operations that can utilize Hamming Tree:

(1) when a data operation is appended to a (mutable) memtable: to insert

the data operation information, memory in NVM needs to be allocated. This can be

done through Hamming Tree to find a memory location that is similar to the data

object information to be written. Because the memory location can be anywhere in the

NVM memory space, there needs to be a level of indirection so that all the data objects

belonging to the same memtable can be found. This can be a list of pointers that point

to the data objects or can be a linked list of pointers, where each element contains the

information of a data object.

(2) when the memtable is full and is transformed to an (immutable) memtable:

Once a memtable is full, it is typical that the data objects in it are ordered and then

rewritten as an immutable memtable consisting of an ordered list of data objects. Once

such an immutable memtable is constructed in DRAM, Hamming Tree can be used to

find a memory segment in NVM for the memtable to be written to.

146

(3) when a memtable is deleted: A (mutable) memtable is deleted when the

(immutable) one is constructed and an (immutable) memtable is deleted when it’s data

objects are merged with SSTables in disk/flash. In both cases, the deleted memory

locations with data objects or memtable segments need to be recycled. This is managed

by Hamming Tree that re-inserts the memory locations into its mapping for future

memory allocation.

5.3 Experiments

5.3.1 Methodology

There are many types of phase change material-based technologies, such as

Intel® Optane™ Memory Series [71]. In this work, we used Intel® Optane™ Memory to

get the results. The experiments are executed on (1) an Intel Core i7 processor running

at 4.7 GHz with 4 cores, each of which has 1MB L2 Cache and 12MB L3 Cache using

32GB of Intel® Optane™ Memory Series 3D Xpoint™ and 16 GB of DRAM, and (2) an

Intel Xeon® @2.6GHz with 16 cores, an Nvidia Tesla K20m GPU with 5GB memory

using 32 GB DDR4 main memory and a 256 GB SSD hard drive. The machine has 32GB

DDR3 main memory, 128GB of Intel® Optane™ Persistent Memory 200 Series (PMEM

Module), and a 256 GB SSD hard drive. We use the latter machine to get the results

in Figures 3.7, 5.13, 5.15, 5.16, 5.18, 5.19, and 5.20, . Although the amount of energy

might be different for different setups, both machines showed similar behavior in terms

of the relationship between the number of flipped bits and energy consumption. Also,

147

we perform experiments with emulated Optane memory to measure bit flip reduction

(which cannot be measured using the real device.)

There are two methods to measure energy consumption: (1) Power Monitors,

which use hardware tools to measure the actual power of the device. Despite being very

precise, they are extremely difficult to set up. (2) Energy Profilers, which are vastly

used by researchers, do not require any special hardware, or power sensors, and estimate

the power cost of different hardware using estimation models [35]. In this work, we use

an energy profiler named Perf, which is a performance analysis tool and a part of the

Intel’s RAPL interface [56, 87]. we measured the energy and power consumption of the

memory (both DRAM and PMEM), while running our tests using the perf [39] tool:

1 $ perf stat -a -r 5 -e power/energy -cores/, \

2 power/energy -ram/, power/energy -gpu/, \

3 power/energy -pkg/, power/energy -psys/ ./test

This tool provides the collection of energy measurements from various components

of a computer system such as: cores, Intel’s GPUs, package (all the core and un-core

components), DRAM, total power consumption of a node, and so on. It is worth

mentioning that, when we compare Hamming Tree with other software or hardware-

based methods in terms of energy consumption, we always include the total overhead

costs of Hamming Tree including the DRAM processing, cache line accesses, cores, and

so on. Also, the sampling rate in our tests is 1000 samples per second.

148

5.3.2 Overview and setup

We compare with two main groups of solutions: 1) persistent K/V stores

that use specialized data structures for NVM [79, 81, 106, 117, 166]. These methods

generally focus on reducing write amplification. 2) hardware-based bit flip optimization

methods that use the RBW technique [31, 73, 107, 154]. This group focuses directly on

decreasing the number of bit flips. We compare Hamming Tree with two main groups of

solutions: 1) persistent K/V stores that use specialized data structures to deal with the

limitations of NVMs [79, 81, 106, 117, 166]. These methods generally focus on reducing

write amplification. 2) hardware-based bit flip optimization methods that use the RBW

technique to alleviate the limitations of NVMs [31, 73, 107, 154]. Unlike the previous

category, this group focuses directly on decreasing the number of bit flips.

To compare Hamming Tree’s results with other methods, we tune their parameters

in a way so that they achieve their best performance. We allow MinShift to shift n

times, where n is the size of the item instead of the size of the word. This means that

it always results in its best performance in terms of the number of bit flips [107]. With

respect to Captopril, we also considered its best case, which happens when the blocks

are partitioned into n = 16 segments [73].

5.3.2.1 Workloads

We have used various types of real-world and synthetic workloads and data

sets in our evaluations. We are using the words workload and dataset interchangeably.

The workload (in terms of requests being made) is generated by drawing data from the

149

datasets to form write operations.

Synthetic workloads. For synthetic data sets, our sample K/V store system

has at least 10M buckets. When there are 10M buckets, for instance, we first warm-up

KV stores with 10M K/V. This means that we store some items as “old data” before

starting our tests. The data type and distribution of these items differ depending on

the test. “old data” is used to initialize Hamming Tree. Also, for most of the tests with

synthetic data, the size of the keys and values are 8 bytes each.

In the first synthetic workload, we run the widely-used YCSB benchmark [34],

which provides a framework and a standard set of six Core Workloads for understanding

the benefits and implications of cloud workloads, to evaluate Hamming Tree and compare

the results with other methods. The six workloads in YCSB have different ratios,

workload parameters and access patterns. Also, because in this section, we focus on

comparing the performance of different methods in terms of bit flips, we first need

to warm-up key-value stores with entries from the same data set before running the

benchmark. YCSB has a warm-up (write-only) and a “transactions phase”, and we show

the transactions phase results when using 4-client threads. In this work, first, we load

10-GB data set into the database as the “old data” in the load phase. Then, we run the

workloads one by one, and compare the results.

Real-world data sets. Amazon Access Samples [47] is the first data set that

we used here. It contains 30K log entries of access that is provisioned within the company.

The next real-world data set is a 3D Road Network Data Set [57,86], that contains 434874

entries of road networks information of North Jutland, Denmark. Finally, the last data

150

Figure 5.12: The energy consumption of persistent BTree before and after being augmented

by Hamming Tree.

set is one of the collections of the DocWord database named “PubMed”, which consists

of 730 million entries in the form of “bags-of-words”. This collection, which is called

PubMed abstracts [47], consists of 730 million words in total.

5.3.2.2 Persistent Key-Value stores

Persistent key-value stores use special data structures to utilize NVMs. We

implemented persistent stores which are designed for NVMs and analyzed them before

and after plugging Hamming Tree to them. The following are the persistent key-value

stores we compare with:

LSM-Trees (NoveLSM [79] and HiKV [152]). The first data structure is

based on LSM-Trees. Due to the popularity of LSM-trees among modern data stores, a

significant number of improvements have been proposed on LSM-trees [106]. The method

in [79], which is called NoveLSM, is a persistent LSM-based K/V storage systems which

151

Figure 5.13: The throughput of persistent BTree before and after being augmented by

Hamming Tree.

is designed to utilize NVM to provide low latency and high throughput. HiKV [152] is

another persistent key-value store with the central idea of constructing a hybrid index in

hybrid memory. We implemented both NoveLSM and HiKV and analyzed them in terms

of the number of bit flips, throughput, and latency before and after plugging Hamming

Tree.

B+-Trees (FP-Tree [117] and wBTree [29]). The second data structure

that is used widely in K/V data stores is B+-Trees [65]. FP-Tree [117] is one of the hybrid

SCM-DRAM persistent and concurrent B+-Tree, named Fingerprinting Persistent Tree

(FPTree) that is designed specifically for NVMs. Similarly, wBTree [29] is a specialized

NVM-friendly write atomic B+-Tree to utilize the non-volatility of NVMs. Due to

their high performance and low write amplification, we also implemented these methods

alongside a regular B+Tree and compared the number of bit flips they cause before and

after plugging Hamming Tree.

152

Hash indexing (Path Hashing [166]). Another type of data structures

that are vastly used in various applications are hash-based indexing structures. A lot of

effort has been made to improve hash-based indexing structures for NVMs, and almost

all of them focus on decreasing the write amplification to reach their aims. We have

also implemented one of the most recent hash-based indexing structures, named Path

hashing [166], which is designed specifically for NVMs.

5.3.2.3 Experiments setup.

In this work, we evaluated latency and energy consumption on a real Intel

Optane memory device. For this purpose, we used the Persistent Memory Development

Kit (PMDK) 3. For measuring bit flip reduction we emulated the NVM device and

memory controller. This is because measuring bit flips is not possible on the real device.

This is similar to previous work in this area [16, 81, 138, 139, 158]. Similar to these

works, we have adopted previously used methods to emulate NVM [116, 146, 152] and

we added an emulation of memory controller. The emulated memory controller utilizes

a wear-leveling algorithm that is inspired from prior literature on wear leveling [138].

Specifically, the wear leveling algorithm swaps two NVM memory segments every ψ

writes to the NVM device. This ψ value is called the swapping period. When a swap

is triggered, the destination memory segment is swapped with another random memory

segment. Like before, we set the value of ψ to 8 for all the emulation experiments.
3Persistent Memory Development Kit https://pmem.io/pmdk/.

153

0 20 40 60

After

Before

Total Package Energy (Joule)

NoveLSM
FP-Tree
Path hashing
B+Tree

(a)Amazon dataset

0 20 40

After

Before

Total Package Energy (Joule)

NoveLSM
FP-Tree
Path hashing
B+Tree

(b)3D Road Network

0 20 40

After

Before

Total Package Energy (Joule)

NoveLSM
FP-Tree
Path hashing
B+Tree

(c)PubMed

0 20 40 60 80

After

Before

Total Package Energy (Joule)

NoveLSM
FP-Tree
Path hashing
B+Tree

(d)normal dist

0 20 40 60 80

After

Before

Total Package Energy (Joule)

NoveLSM
FP-Tree
Path hashing
B+Tree

(e)uniform dist

0 20 40 60 80

After

Before

Total Package Energy (Joule)

NoveLSM
FP-Tree
Path hashing
B+Tree

(f)log-normal dist

0 10 20 30

After

Before

Total Package Energy (Joule)

NoveLSM
FP-Tree
Path hashing
B+Tree

(g)sequential

0 50 100

After

Before

Total Package Energy (Joule)

NoveLSM
FP-Tree
Path hashing
B+Tree

(h)Zipf

Figure 5.14: The average energy consumption for writing one memory segment, using various

data structures and data sets, both before and after augmentation by the Hamming Tree.

Figure 5.15: Write latency of different methods before and after being augmented by Hamming

Tree.

154

Figure 5.16: Throughput of different methods before and after being augmented by Hamming

Tree.

Figure 5.17: The normalized number of cache lines per request.

155

Figure 5.18: The average amount of energy consumed for various methods.

5.3.3 Results

In the first experiment, we tested a persistent B-Tree before and after augmenting

with Hamming Tree on a real Intel Optane memory device. The results in Fig. 5.12

shows that by plugging Hamming Tree, the system consumes up to 41% less energy. This

validates the objective of Hamming Tree and its potential to reduce energy consumption.

Fig. 5.13 shows the performance overhead of Hamming Tree in terms of throughput with

and without augmenting with Hamming Tree. The figure shows that the overhead is

no more than 21% and can be as low as 16.1%. This overhead is due to the Hamming

Tree operations and represents a trade-off between the benefits of bit flip reduction using

Hamming Tree (improved energy efficiency and write endurance) and performance.

In the next experiment, we tested the energy consumption of the implemented

methods in terms of the amount of energy they consume in two different ways: before

plugging with Hamming Tree, and after plugging with Hamming Tree. The results are

156

shown in Fig. 5.14. When not plugged to Hamming Tree, B+-Tree has the worst energy

consumption because, in a regular B+-Tree, the items in leaf nodes need to be sorted,

which increases the number of movements and bit flips. The improvement in energy

efficiency after plugging Hamming Tree is up to 67.8%.

To analyze the performance overhead of Hamming Tree, we conducted an

experiment and measured the throughput and latency of different methods before and

after being augmented with Hamming Tree. Fig. 5.15 and 5.16 shows that results. As

it is shown in the results, the performance overhead of Hamming Tree is up to 19.8%.

Another important observation that we can make from this test is that the performance

overhead of Hamming Tree depends on the ratio of the size of the memory segments

to the size of the memory pool, which affects performance of Hamming Tree’s search,

insertion and deletion operations.

In the next experiment, the average number of written cache lines per request is

normalized for different data sets, as shown in Fig. 5.17. Also, from the YCSB workloads,

we chose Workload-A, which is an update heavy workload. As it is clear, the number

of written cache lines per request in FPTree and NoveLSM is generally higher than

Path-Hashing because they modify more items to process a request. PNW always has

fewer written cache lines mostly because it chooses the memory location for writing the

items from those clusters that have similar patterns to the item. However, it lags behind

Hamming Tree due to the fact that the granularity of mapping memory location is the

cluster, which leads to potential inaccuracies and not finding the most similar memory

location of an incoming write. Fig. 5.18 shows the amount of energy that is consumed

157

Figure 5.19: The average updated bits ratio for different memory segment and memory pool

sizes in Hamming Tree.

in different hardware-based and software-based methods for writing the entire memory

pool. The reported energy also includes energy being used to manage Hamming Tree

in DRAM in addition to the energy consumed in PMEM. As it is shown in this figure,

Hamming Tree can reduce the amount of consumed energy up to 41% compared to the

other method due to its ability in finding the most similar memory contents.

Fig. 5.18 also has the results for the wear-leveling method, which distributes

the writes evenly across the memory blocks of NVM. Based on the results, the wear-

leveling method causes a similar number of bit flips as the other conventional methods

that are not “memory-aware.” The reason is that 1) in some data sets, the density of bits

158

Figure 5.20: Total memory energy consumption (joule) for different memory segment and

memory pool sizes in Hamming Tree.

in some regions—such as in the low-order bits—is more than the other parts and thus

the most bit flipping is happening in this part, and 2) when the number of bit flips is less

than half of the item size, most bit flipping optimized methods, such as FNW, behave

similarly, which means that wear-leveling cannot improve the performance of the system

in terms of the number of bit flips. This property of conventional methods also might

have some serious consequences such as causing some parts of the memory locations,

such as the lowest bits in this data set, to wear out faster than the middle and highest

bits. However, this is not the case for Hamming Tree and PNW.

Fig. 5.19 and 5.20 illustrates the overall performance of Hamming Tree in terms

159

Figure 5.21: The impact of Hamming Tree on key performance metrics of the system when

the memory pool size changes.

160

of energy efficiency and updated bits for different memory segment and pool size choices

for the mixure of all the real-world data sets in this work. For the overall energy efficiency

shown in Fig. 5.20, we observe that the Hamming Tree’s power consumption increases

as the ratio of the memory segment size to the memory pool size increases, which also

aligns with results of the average bitflips ratio shown in Fig. 5.19. From this observation,

we conclude that smaller memory segment sizes, compared to data zone (pool size),

result in more available tree nodes for Hamming Tree, leading to fewer bit flips and

lower energy consumption. However, as the ratio increases, Hamming Tree requires

more DRAM memory to index all available memory segments, which hinders system

performance. Therefore, there is a trade-off in choosing the optimal ratio, depending

on the application’s priorities—whether energy consumption or memory usage is more

critical. Generally, a ratio of memory pool size to memory segment size between 1M

to 16M yields better efficiency, though this may vary based on use cases and system

resources.

In the next experiment, we conducted comprehensive tests to analyze the

impact of Hamming Tree on key performance metrics of the system. To this aim, first,

we set a fixed size memory segment size of 4KB, and then build Hamming Tree on

different memory pool size. As it is shown in Fig. 5.21, given a fixed memory segment

size, by increasing the size of memory pool, system’s throughput decreases. That is

the result of increasing the size of Hamming Tree, which not only increases the cost of

search operations, but also makes the split or merge operations more expensive for the

write/delete operations. For energy-consumption and latency, our experiments show a

161

Figure 5.22: The maximum update addresses and wear-leveling as CDFs by applying Hamming

Tree.

“valley” trend: the energy-consumption and latency is relatively high at both the biggest

and smallest trees, and is relatively low at intermediate tree size. This is because, in small

memory pools, the number of available addresses is too small and the contents in each

part of the tree are not very similar to each other, which leads to high energy consumption

in NVM. Conversely, increasing the ratio of pool size to the memory segment size beyond

a certain level increases the total energy consumption while providing only a limited

return on bit flip reduction, also leading to energy inefficiency in DRAM and CPU.

This“energy-valley” trend indicates that choosing the best ratio of memory segments

to the memory pool in an energy-aware fashion requires a good trade-off between the

amount of energy that the system requires for writing on NVM and the energy that

Hamming Tree needs to run Hamming Tree.

As stated earlier, many memory controllers are optimized to only flip bits when

the value being written to a cell differs from the old value [16]. So, successful NVM-

162

optimized systems will need to target not only wear-leveling but also bit flip reduction

in a write operation. This not only can save a significant amount of energy but also

delay wearing out of the device [16, 80, 81]. Therefore, to observe the performance of

Hamming Tree in terms of the distribution of the maximum number of bit flips and the

wear-leveling of PCM, we conduct two more tests. In these tests, we run Hamming Tree

on the mixture of MNIST and Fashion-MNIST data sets. For this test, we first warm up

the data zone with 28K items from the combination of both data sets. Then, we stream

112K writes from the same data sets to the system. During the test, we also perform

delete actions to make space for incoming writes. In other words, each word in the data

zone is updated 4 times on average.

Fig. 5.22 shows: (1) the estimation of the likelihood to observe an address in

the data zone of PCM that is written less than or equal to a specific number of times,

and (2) the estimation of the likelihood to observe a memory bit in the data zone of

PCM that is written less than or equal to a specific number of times. For example, as

we can see in Fig. 5.22, the estimated likelihood to observe an address in the PCM data

zone to be written less than or equal to 8 (P (X ≤ 8)) is 80% (red color). Similarly, we

observe that while the estimated likelihood of a memory bit being written less than or

equal to 6 times is almost 100% (blue color). This important observation shows that (1)

Hamming Tree distributes write activities across the whole NVM chip uniformly, and

(2) Hamming Tree distributes bit flips evenly across the whole data zone of the PCM

chip.

Finally, Fig. 5.23 shows the impact of employing Hamming Tree on PCM

163

Figure 5.23: PCM lifetime improvement before and after utilizing Hamming Tree for different

data zone sizes.

lifetime for the same mix workload that we used for the previous test. Based on this

figure, first, we observe that the smaller the size of the data zone is for a specific

application, the more a single PCM block is overwritten, and the shorter the PCM

lifetime is. For instance, for a data zone of 256 MB, a single PCM block is overwritten

as many as 4 times while executing 1 billion instructions. So, when assuming the system

operation frequency of 2.6 GHz, PCM write endurance of 108, and 0.5 IPC, the lifetime

of the PCM cell can be calculated as 227 days (=108/4 ×109 instructions × 1/2IPC

× 1/2.6GHz × 1/(24hours × 60minutes)) [135]. Furthermore, Fig. 5.23 shows that

Hamming Tree can also have a positive effect on the lifetime of the PCM, especially in

the systems that a smaller memory is available or a portion of the memory is excessively

used by a write-intensive application.

164

5.4 Conclusion

Since non-volatile memory technologies are widely adopted into data storage

solutions and battery powered mobile and IoT devices, wear-out and energy consumption

have become two vital optimizations for these technologies. In this section, we presented

the case for memory-awareness and showed that by judiciously selecting memory locations

for new writes and updates we can reduce bit flipping and consequently improve the

energy efficiency and write endurance of NVM devices. We take this concept and

build Hamming Tree, with which existing data stores can be augmented, to make them

memory-aware. Hamming Tree tackles the challenges associated with mapping free

memory locations based on the hamming distance of their content. In our evaluation

section, we augment various data stores with Hamming Tree and we performed experiments

on a real Intel Optane memory device that show that Hamming Tree can achieve up to

67.8% improvement in energy efficiency.

165

Chapter 6

Conclusion and future directions

This thesis contributes to integrating NVM technologies into the memory hierarchy,

addressing associated challenges through software-level solutions that facilitate the deployment

of NVMs in database and storage systems. Through proposing software-level solutions,

including advanced learning techniques and data structure-based methods, we achieve

substantial improvements in energy efficiency and write endurance, thereby enhancing

the practicality and longevity of NVM devices. The four main parts in this thesis are:

Part One: System study We conduct a thorough evaluation of real-world

NVM devices, such as Intel Optane memory, to investigate the impact of memory

awareness on performance, energy consumption, and lifespan. Our findings reveal that

memory-aware strategies significantly extend device lifetime, reduce power consumption,

and improve system latency. This section underscores the necessity of incorporating

recent advancements from the NVM storage community into existing and future data

management systems.

166

Part Two: Predict and Write (PNW) We introduce Predict and Write

(PNW), a key-value store that employs a clustering-based machine learning approach to

extend the lifetime of NVMs. PNW minimizes the number of bit flips during PUT/UPDATE

operations by selecting optimal memory locations for updated values. By utilizing the

indirection level of key-value stores, PNW dynamically organizes NVM addresses into

clusters based on data value similarity. Our results show that PNW can reduce total bit

flips by up to 85% and cache lines by 56% compared to current methods.

Part Three: E2-NVM We present E2-NVM, a software-level memory-aware

storage layer designed to enhance the energy efficiency and write endurance (E2) of

NVMs. E2-NVM uses a Variational Autoencoder (VAE) based design to intelligently

direct write operations to memory segments that minimize bit flips. This innovative

solution, which can be integrated with existing indexing and hardware-based methods,

not only solves the existing problems in the previous methods but also demonstrates a

reduction in energy consumption by up to 56% in real-world evaluations on an Optane

memory device.

Part Four: Hamming Tree We introduce a software-level data storage layer

solution employing an indexing data structure to improve the energy consumption and

write endurance of NVMs. Hamming Tree, an indexing structure, enhances existing data

stores to become memory-aware. Hamming Tree addresses the challenges of mapping

free memory locations based on the hamming distance of their content. Our evaluations

on an Intel Optane memory device show that Hamming Tree can achieve up to a 67.8%

improvement in energy efficiency.

167

This thesis presents a comprehensive framework for enhancing the efficiency

and longevity of NVM devices. By integrating advanced software solutions and innovative

data structures, it addresses critical challenges related to energy consumption and write

endurance, facilitating the broader adoption of NVM technologies in future data management

systems.

Among the proposed methods, PNW is the simplest, suitable for systems with

fixed memory segment sizes and basic hardware resources. It performs adequately

even without advanced components like GPUs or large DRAM, though such resources

can enhance its performance. E2-NVM, an advanced version of PNW, handles large,

variable-sized memory segments and offers high flexibility but requires more than basic

system resources, such as GPUs, to maximize the efficiency of its VAE and LSTM core

models. Finally, the Hamming Tree, implemented on an indexing data structure, requires

basic system resources without special capabilities. It is fast but sensitive to the number

of indexed items, as this affects tree size, throughput, and latency.

It’s important to note that while some NVM technologies, like Intel’s Optane,

have ceased development, existing NVM technologies such as PRAMs and SSDs still

face challenges with energy consumption and longevity. The solutions introduced in this

thesis, though tested on specific types like Optane and PCMs, are adaptable to other

technologies. For instance, the concepts behind PNW and E2-NVM can be applied

to other NVMs to extend their lifespan and reduce energy consumption by clustering

similar writes and minimizing write amplification.

Future research could explore the applicability of our proposed methods in

168

different applications used in IoT and mobile devices, where energy efficiency is crucial.

Additionally, using NVMs in combination with other technologies, such as SSDs, is

a prevalent use case where our methods could be beneficial. We are also beginning to

explore reinforcement learning to enhance the efficiency and dynamism of our approaches,

presenting further opportunities for researchers.

In conclusion, the proposed methods and future directions offer valuable opportunities

for researchers in data management systems to develop solutions that overcome NVM

limitations, which are essential for their adoption and success. This thesis presents

practical approaches for augmenting existing techniques from the NVM storage community

to be adopted in data management systems and outlines future opportunities in memory-

awareness to improve the lifespan and energy efficiency of PCM devices.

169

Bibliography

[1] Sukarn Agarwal and Hemangee K Kapoor. Targeting inter set write variation to

improve the lifetime of non-volatile cache using fellow sets. In 2017 IFIP/IEEE

International Conference on Very Large Scale Integration (VLSI-SoC), pages 1–6.

IEEE, 2017.

[2] Sukarn Agarwal and Hemangee K Kapoor. Improving the lifetime of non-volatile

cache by write restriction. IEEE Transactions on Computers, 68(9):1297–1312,

2019.

[3] Sukarn Agarwal and Hemangee K Kapoor. Improving the performance of

hybrid caches using partitioned victim caching. ACM Transactions on Embedded

Computing Systems (TECS), 20(1):1–27, 2020.

[4] Shoaib Akram. Performance evaluation of intel optane memory for managed

workloads. ACM Transactions on Architecture and Code Optimization (TACO),

18(3):1–26, 2021.

[5] Shoaib Akram, Jennifer B Sartor, Kathryn S McKinley, and Lieven Eeckhout.

170

Write-rationing garbage collection for hybrid memories. ACM SIGPLAN Notices,

53(4):62–77, 2018.

[6] Alaa Alameldeen and David Wood. Frequent pattern compression: A significance-

based compression scheme for l2 caches. Technical report, University of Wisconsin-

Madison Department of Computer Sciences, 2004.

[7] Ahmed Izzat Alsalibi, Mohd Khaled Yousef Shambour, Muhannad A Abu-Hashem,

Mohammad Shehab, Qusai Shambour, and Riham Muqat. Nonvolatile memory-

based internet of things: A survey. In Artificial Intelligence-based Internet of

Things Systems, pages 285–304. Springer, 2022.

[8] Jaan Altosaar. Tutorial - What is a Variational Autoencoder?, August 2016.

[9] Milad Andalibi, Mojtaba Hajihosseini, Sam Teymoori, Maryam Kargar, and

Meysam Gheisarnejad. A time-varying deep reinforcement model predictive control

for dc power converter systems. In 2021 IEEE 12th International Symposium on

Power Electronics for Distributed Generation Systems (PEDG), pages 1–6. IEEE,

2021.

[10] Joy Arulraj et al. Let’s talk about storage & recovery methods for non-

volatile memory database systems. In Proceedings of the 2015 ACM SIGMOD

International Conference on Management of Data, pages 707–722, 2015.

[11] Chris H. Bahnsen and Thomas B. Moeslund. Rain removal in traffic surveillance:

171

Does it matter? IEEE Transactions on Intelligent Transportation Systems, pages

1–18, 2018.

[12] Oana Balmau, Diego Didona, Rachid Guerraoui, Willy Zwaenepoel, Huapeng

Yuan, Aashray Arora, Karan Gupta, and Pavan Konka. {TRIAD}: Creating

synergies between memory, disk and log in log structured {Key-Value} stores. In

2017 USENIX Annual Technical Conference (USENIX ATC 17), pages 363–375,

2017.

[13] Oana Balmau, Rachid Guerraoui, Vasileios Trigonakis, and Igor Zablotchi. Flodb:

Unlocking memory in persistent key-value stores. In Proceedings of the Twelfth

European Conference on Computer Systems, pages 80–94, 2017.

[14] Amir Ban. Wear leveling of static areas in flash memory, May 4 2004. US Patent

6,732,221.

[15] Sana Benhamaid, Abdelmadjid Bouabdallah, and Hicham Lakhlef. Recent

advances in energy management for green-iot: An up-to-date and comprehensive

survey. Journal of Network and Computer Applications, 198:103257, 2022.

[16] Daniel Bittman et al. Optimizing systems for byte-addressable {NVM} by reducing

bit flipping. In 17th {USENIX} Conference on File and Storage Technologies

({FAST} 19), pages 17–30, 2019.

[17] Jalil Boukhobza, Stéphane Rubini, Renhai Chen, and Zili Shao. Emerging nvm:

172

A survey on architectural integration and research challenges. ACM Transactions

on Design Automation of Electronic Systems (TODAES), 23(2):1–32, 2017.

[18] Hao Cai, You Wang, Lirida Alves de Barros Naviner, Jun Yang, and Weisheng

Zhao. Exploring hybrid stt-mtj/cmos energy solution in near-/sub-threshold

regime for iot applications. IEEE Transactions on magnetics, 54(2):1–9, 2017.

[19] Yi Cai, Yujun Lin, Lixue Xia, Xiaoming Chen, Song Han, Yu Wang, and Huazhong

Yang. Long live time: Improving lifetime and security for nvm-based training-in-

memory systems. IEEE Transactions on Computer-Aided Design of Integrated

Circuits and Systems, 39(12):4707–4720, 2020.

[20] Richard Cangelosi and Alain Goriely. Component retention in principal component

analysis with application to cdna microarray data. Biology direct, 2(1):2, 2007.

[21] Maurizio Capra, Riccardo Peloso, Guido Masera, Massimo Ruo Roch, and

Maurizio Martina. Edge computing: A survey on the hardware requirements in

the internet of things world. Future Internet, 11(4):100, 2019.

[22] Escuin Carlos, Ibañez Pablo, Monreal Teresa, Jose M Llaberia, and Victor Viñals.

L2c2: Last-level compressed-cache nvm and a procedure to forecast performance

and lifetime. arXiv preprint arXiv:2204.09504, 2022.

[23] Adrian M Caulfield, Arup De, Joel Coburn, Todor I Mollow, Rajesh K Gupta, and

Steven Swanson. Moneta: A high-performance storage array architecture for next-

173

generation, non-volatile memories. In 2010 43rd Annual IEEE/ACM International

Symposium on Microarchitecture, pages 385–395. IEEE, 2010.

[24] M Emre Celebi et al. A comparative study of efficient initialization methods for

the k-means clustering algorithm. Expert systems with applications, 40(1):200–210,

2013.

[25] Chandranil Chakraborttii and Heiner Litz. Reducing write amplification in flash

by death-time prediction of logical block addresses. In Proceedings of the 14th

ACM International Conference on Systems and Storage, pages 1–12, 2021.

[26] Yuezhi Che, Yuanzhou Yang, Amro Awad, and Rujia Wang. A lightweight memory

access pattern obfuscation framework for nvm. IEEE Computer Architecture

Letters, 19(2):163–166, 2020.

[27] Hao Chen, Chaoyi Ruan, Cheng Li, Xiaosong Ma, and Yinlong Xu. {SpanDB}:

A fast,{Cost-Effective}{LSM-tree} based {KV} store on hybrid storage. In 19th

USENIX Conference on File and Storage Technologies (FAST 21), pages 17–32,

2021.

[28] Lei Chen, Jiacheng Zhao, Chenxi Wang, Ting Cao, John Zigman, Haris Volos,

Onur Mutlu, Fang Lv, Xiaobing Feng, Guoqing Harry Xu, et al. Unified holistic

memory management supporting multiple big data processing frameworks over

hybrid memories. ACM Transactions on Computer Systems (TOCS), 2022.

174

[29] Shimin Chen and Qin Jin. Persistent b+-trees in non-volatile main memory.

Proceedings of the VLDB Endowment, 8(7):786–797, 2015.

[30] Youmin Chen, Youyou Lu, Kedong Fang, Qing Wang, and Jiwu Shu. utree: a

persistent b+-tree with low tail latency. Proceedings of the VLDB Endowment,

13(12):2634–2648, 2020.

[31] Sangyeun Cho and Hyunjin Lee. Flip-n-write: A simple deterministic technique to

improve pram write performance, energy and endurance. In MICRO 2009, pages

347–357, 2009.

[32] Zhaole Chu, Yongping Luo, and Peiquan Jin. An efficient sorting algorithm for non-

volatile memory. International Journal of Software Engineering and Knowledge

Engineering, 31(11n12):1603–1621, 2021.

[33] Alexander Conway, Abhishek Gupta, Vijay Chidambaram, Martin Farach-Colton,

Richard Spillane, Amy Tai, and Rob Johnson. {SplinterDB}: Closing the

bandwidth gap for {NVMe}{Key-Value} stores. In 2020 USENIX Annual

Technical Conference (USENIX ATC 20), pages 49–63, 2020.

[34] Brian F Cooper, Adam Silberstein, Erwin Tam, Raghu Ramakrishnan, and Russell

Sears. Benchmarking cloud serving systems with ycsb. In Proceedings of the 1st

ACM symposium on Cloud computing, pages 143–154, 2010.

[35] Luís Cruz. Tools to measure software energy consumption from your computer.

175

http://luiscruz.github.io/2021/07/20/measuring-energy.html, 2021. Blog

post.

[36] Lixiao Cui, Kewen He, Yusen Li, Peng Li, Jiachen Zhang, Gang Wang, and Xiao-

Guang Liu. Swapkv: A hotness aware in-memory key-value store for hybrid

memory systems. IEEE Transactions on Knowledge and Data Engineering, 2021.

[37] Yifan Dai, Yien Xu, Aishwarya Ganesan, Ramnatthan Alagappan, Brian Kroth,

Andrea Arpaci-Dusseau, and Remzi Arpaci-Dusseau. From wisckey to bourbon:

A learned index for log-structured merge trees. In 14th {USENIX} Symposium

on Operating Systems Design and Implementation ({OSDI} 20), pages 155–171,

2020.

[38] Brian A Davey and Hilary A Priestley. Introduction to lattices and order.

Cambridge university press, Cambridge, United Kingdom, 2002.

[39] Arnaldo Carvalho De Melo. The new linux’perf’tools. In Slides from Linux

Kongress, volume 18, pages 1–42, 2010.

[40] Yoshiaki Deguchi and Ken Takeuchi. 3d-nand flash solid-state drive (ssd) for deep

neural network weight storage of iot edge devices with 700x data-retention lifetime

extention. In 2018 IEEE international memory workshop (IMW), pages 1–4. IEEE,

2018.

[41] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet:

176

A large-scale hierarchical image database. In 2009 IEEE conference on computer

vision and pattern recognition, pages 248–255. Ieee, 2009.

[42] David B Dgien et al. Compression architecture for bit-write reduction in non-

volatile memory technologies. In NANOARCH 2014, pages 51–56. IEEE, 2014.

[43] Gaurav Dhiman, Raid Ayoub, and Tajana Rosing. Pdram: A hybrid pram

and dram main memory system. In 2009 46th ACM/IEEE Design Automation

Conference, pages 664–669. IEEE, 2009.

[44] Chris Ding and Xiaofeng He. K-means clustering via principal component analysis.

In ICML’04, page 29, 2004.

[45] Krijn Doekemeijer and Animesh Trivedi. Key-value stores on flash storage devices:

A survey. arXiv preprint arXiv:2205.07975, 2022.

[46] Wei Dong et al. Minimizing update bits of nvm-based main memory using bit

flipping and cyclic shifting. In HPCC 2015, CSS 2015, and ESS 2015, pages

290–295. IEEE, 2015.

[47] Dheeru Dua and Casey Graff. UCI machine learning repository, 2017.

[48] Subramanya R Dulloor, Sanjay Kumar, Anil Keshavamurthy, Philip Lantz,

Dheeraj Reddy, Rajesh Sankaran, and Jeff Jackson. System software for persistent

memory. In Proceedings of the Ninth European Conference on Computer Systems,

pages 1–15, 2014.

177

[49] Assaf Eisenman, Asaf Cidon, Evgenya Pergament, Or Haimovich, Ryan Stutsman,

Mohammad Alizadeh, and Sachin Katti. Flashield: a hybrid key-value cache that

controls flash write amplification. In 16th USENIX Symposium on Networked

Systems Design and Implementation (NSDI 19), pages 65–78, 2019.

[50] Michal Friedman, Erez Petrank, and Pedro Ramalhete. Mirror: making lock-

free data structures persistent. In Proceedings of the 42nd ACM SIGPLAN

International Conference on Programming Language Design and Implementation,

pages 1218–1232, 2021.

[51] Amin Ashraf Gandomi, Maryam Kargar, Saeed Kargar, Leila Parsa, and Keith

Corzine. Deep-learning-based fault detection and location method applied on

isolated dc-dc converter. In 2023 IEEE Applied Power Electronics Conference

and Exposition (APEC), pages 2245–2252. IEEE, 2023.

[52] Andrés Amaya García, René de Jong, William Wang, and Stephan Diestelhorst.

Composing lifetime enhancing techniques for non-volatile main memories. In

Proceedings of the International Symposium on Memory Systems, pages 363–373,

2017.

[53] Sanjay Ghemawat and Jeff Dean. Google leveldb, January 2022.

[54] Bob Gleixner, Fabio Pellizzer, and Roberto Bez. Reliability characterization of

phase change memory. In 2009 10th Annual Non-Volatile Memory Technology

Symposium (NVMTS), pages 7–11. IEEE, 2009.

178

[55] Binbin Gu, Saeed Kargar, and Faisal Nawab. Efficient dynamic clustering:

Capturing patterns fromhistorical cluster evolution. arXiv preprint

arXiv:2203.00812, 2022.

[56] Part Guide. Intel® 64 and ia-32 architectures software developer’s manual.

Volume 3B: System programming Guide, Part, 2(11), 2011.

[57] Chenjuan Guo et al. Ecomark: evaluating models of vehicular environmental

impact. In SIGSPATIAL ’12, pages 269–278, 2012.

[58] Xifeng Guo, Long Gao, Xinwang Liu, and Jianping Yin. Improved deep embedded

clustering with local structure preservation. In IJCAI, pages 1753–1759, 2017.

[59] Yuncheng Guo, Yu Hua, and Pengfei Zuo. Dfpc: A dynamic frequent pattern

compression scheme in nvm-based main memory. In 2018 Design, Automation &

Test in Europe Conference & Exhibition (DATE), pages 1622–1627. IEEE, 2018.

[60] Yuncheng Guo, Yu Hua, and Pengfei Zuo. A latency-optimized and energy-efficient

write scheme in nvm-based main memory. IEEE Transactions on Computer-Aided

Design of Integrated Circuits and Systems, 39(1):62–74, 2018.

[61] Christian Hakert, Roland Kühn, Kuan-Hsun Chen, Jian-Jia Chen, and Jens

Teubner. Octo+: Optimized checkpointing of b+ trees for non-volatile main

memory wear-leveling. In 2021 IEEE 10th Non-Volatile Memory Systems and

Applications Symposium (NVMSA), pages 1–6. IEEE, 2021.

179

[62] Fazal Hameed et al. Efficient stt-ram last-level-cache architecture to replace dram

cache. In MEMSYS 2017, pages 141–151, 2017.

[63] Chien-Chung Ho, Wei-Chen Wang, Te-Hao Hsu, Zhi-Duan Jiang, and Yung-

Chun Li. Approximate programming design for enhancing energy, endurance and

performance of neural network training on nvm-based systems. In 2021 IEEE 10th

Non-Volatile Memory Systems and Applications Symposium (NVMSA), pages 1–6.

IEEE, 2021.

[64] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural

computation, 9(8):1735–1780, 1997.

[65] Jiangkun Hu et al. Understanding and analysis of b+ trees on nvm towards

consistency and efficiency. CCF Transactions on High Performance Computing,

pages 1–14, 2020.

[66] Fangting Huang, Dan Feng, Wen Xia, Wen Zhou, Yucheng Zhang, Min Fu,

Chuntao Jiang, and Yukun Zhou. Security rbsg: Protecting phase change memory

with security-level adjustable dynamic mapping. In 2016 IEEE International

Parallel and Distributed Processing Symposium (IPDPS), pages 1081–1090. IEEE,

2016.

[67] Jian Huang et al. Nvram-aware logging in transaction systems. Proceedings of the

VLDB Endowment, 8(4):389–400, 2014.

[68] Jianming Huang, Yu Hua, Pengfei Zuo, Wen Zhou, and Fangting Huang.

180

An efficient wear-level architecture using self-adaptive wear leveling. In 49th

International Conference on Parallel Processing-ICPP, pages 1–11, 2020.

[69] Kaixin Huang, Yan Yan, and Linpeng Huang. Revisiting persistent hash table

design for commercial non-volatile memory. In 2020 Design, Automation & Test

in Europe Conference & Exhibition (DATE), pages 708–713. IEEE, 2020.

[70] Tianhao Huang, Guohao Dai, Yu Wang, and Huazhong Yang. Hyve: Hybrid

vertex-edge memory hierarchy for energy-efficient graph processing. In 2018

Design, Automation & Test in Europe Conference & Exhibition (DATE), pages

973–978. IEEE, 2018.

[71] Intel. Types of intel optane memory, January 2022.

[72] Joseph Izraelevitz, Jian Yang, Lu Zhang, Juno Kim, Xiao Liu, Amirsaman

Memaripour, Yun Joon Soh, Zixuan Wang, Yi Xu, Subramanya R Dulloor, et al.

Basic performance measurements of the intel optane dc persistent memory module.

arXiv preprint arXiv:1903.05714, 2019.

[73] Majid Jalili and Hamid Sarbazi-Azad. Captopril: Reducing the pressure of bit flips

on hot locations in non-volatile main memories. In DATE 2016, pages 1116–1119.

IEEE, 2016.

[74] Jean-Philippe Jodoin et al. Urban tracker: Multiple object tracking in urban

mixed traffic. In WACV 2014, pages 885–892. IEEE, 2014.

[75] Ian T Jolliffe and Jorge Cadima. Principal component analysis: a review and

181

recent developments. Philos. Trans. Royal Soc. A: Mathematical, Physical and

Engineering Sciences, 374(2065):20150202, 2016.

[76] Kalpana D Joshi and PS Nalwade. Modified k-means for better initial cluster

centres. IJCSMC 2013, 2(7):219–223, 2013.

[77] Aditya K Kamath et al. Storage class memory: Principles, problems, and

possibilities. arXiv preprint arXiv:1909.12221, 2019.

[78] Wang Kang, Liuyang Zhang, Weisheng Zhao, Jacques-Olivier Klein, Youguang

Zhang, Dafiné Ravelosona, and Claude Chappert. Yield and reliability

improvement techniques for emerging nonvolatile stt-mram. IEEE Journal on

Emerging and Selected Topics in Circuits and Systems, 5(1):28–39, 2014.

[79] Sudarsun Kannan et al. Redesigning lsms for nonvolatile memory with novelsm.

In 2018 {USENIX} Annual Technical Conference ({USENIX}{ATC} 18), pages

993–1005, 2018.

[80] Saeed Kargar, Binbin Gu, Sangeetha Abdu Jyothi, and Faisal Nawab. E2-nvm: A

memory-aware write scheme to improve energy efficiency and write endurance of

nvms using variational autoencoders. 2023.

[81] Saeed Kargar, Heiner Litz, and Faisal Nawab. Predict and write: Using k-means

clustering to extend the lifetime of nvm storage. In 2021 IEEE 37th International

Conference on Data Engineering (ICDE), pages 768–779. IEEE, 2021.

182

[82] Saeed Kargar and Faisal Nawab. Extending the lifetime of nvm: challenges and

opportunities. Proceedings of the VLDB Endowment, 14(12):3194–3197, 2021.

[83] Saeed Kargar and Faisal Nawab. Hamming tree: The case for memory-aware bit

flipping reduction for nvm indexing. In CIDR, 2021.

[84] Saeed Kargar and Faisal Nawab. Challenges and future directions for energy,

latency, and lifetime improvements in nvms. Distributed and Parallel Databases,

pages 1–27, 2022.

[85] Saeed Kargar and Faisal Nawab. Hamming tree: The case for energy-aware

indexing for nvms. Proceedings of the ACM on Management of Data, 1(2):1–27,

2023.

[86] Manohar Kaul et al. Building accurate 3d spatial networks to enable next

generation intelligent transportation systems. In MDM 2013, volume 1, pages

137–146. IEEE, 2013.

[87] Kashif Nizam Khan, Mikael Hirki, Tapio Niemi, Jukka K Nurminen, and

Zhonghong Ou. Rapl in action: Experiences in using rapl for power measurements.

ACM Transactions on Modeling and Performance Evaluation of Computing

Systems (TOMPECS), 3(2):1–26, 2018.

[88] Sunggon Kim and Yongseok Son. Optimizing key-value stores for flash-based ssds

via key reshaping. IEEE Access, 9:115135–115144, 2021.

[89] Apostolos Kokolis, Dimitrios Skarlatos, and Josep Torrellas. Pageseer: Using page

183

walks to trigger page swaps in hybrid memory systems. In 2019 IEEE International

Symposium on High Performance Computer Architecture (HPCA), pages 596–608.

IEEE, 2019.

[90] Adarsh Kosta, Efstathia Soufleri, Indranil Chakraborty, Amogh Agrawal, Aayush

Ankit, and Kaushik Roy. Hyperx: A hybrid rram-sram partitioned system for

error recovery in memristive xbars. In 2022 Design, Automation & Test in Europe

Conference & Exhibition (DATE), pages 88–91. IEEE, 2022.

[91] Tim Kraska et al. The case for learned index structures. In SIGMOD 2018, pages

489–504, 2018.

[92] R Madhava Krishnan, Wook-Hee Kim, Xinwei Fu, Sumit Kumar Monga, Hee Won

Lee, Minsung Jang, Ajit Mathew, and Changwoo Min. {TIPS}: Making volatile

index structures persistent with {DRAM-NVMM} tiering. In 2021 USENIX

Annual Technical Conference (USENIX ATC 21), pages 773–787, 2021.

[93] Alex Krizhevsky et al. Learning multiple layers of features from tiny images. 2009.

[94] Emre Kültürsay, Mahmut Kandemir, Anand Sivasubramaniam, and Onur Mutlu.

Evaluating stt-ram as an energy-efficient main memory alternative. In 2013

IEEE International Symposium on Performance Analysis of Systems and Software

(ISPASS), pages 256–267. IEEE, 2013.

[95] Jinzhi Lai, Jueping Cai, and Jie Chu. A congestion-aware hybrid sram and stt-

184

ram buffer design for network-on-chip router. IEICE Electronics Express, pages

19–20220078, 2022.

[96] Hoyoung Lee, Minho Lee, and Young Ik Eom. Partial tiering: A hybrid merge

policy for log structured key-value stores. In 2021 IEEE International Conference

on Big Data and Smart Computing (BigComp), pages 20–23. IEEE, 2021.

[97] Cheng Li, Hao Chen, Chaoyi Ruan, Xiaosong Ma, and Yinlong Xu. Leveraging

nvme ssds for building a fast, cost-effective, lsm-tree-based kv store. ACM

Transactions on Storage (TOS), 17(4):1–29, 2021.

[98] Jianhong Li, Andrew Pavlo, and Siying Dong. Nvmrocks: Rocksdb on non-volatile

memory systems, 2017.

[99] Wenjie Li et al. Hilsm: an lsm-based key-value store for hybrid nvm-ssd storage

systems. In Proceedings of the 17th ACM International Conference on Computing

Frontiers, pages 208–216, 2020.

[100] Chun-Yi Liu, Yunju Lee, Myoungsoo Jung, Mahmut Taylan Kandemir, and Wonil

Choi. Prolonging 3d nand ssd lifetime via read latency relaxation. In Proceedings of

the 26th ACM International Conference on Architectural Support for Programming

Languages and Operating Systems, pages 730–742, 2021.

[101] Jihang Liu et al. Lb+ trees: optimizing persistent index performance on 3dxpoint

memory. Proceedings of the VLDB Endowment, 13(7):1078–1090, 2020.

[102] Lei Liu, Shengjie Yang, Lu Peng, and Xinyu Li. Hierarchical hybrid memory

185

management in os for tiered memory systems. IEEE Transactions on Parallel and

Distributed Systems, 30(10):2223–2236, 2019.

[103] Zihao Liu, Tao Liu, Jie Guo, Nansong Wu, and Wujie Wen. An ecc-free mlc stt-

ram based approximate memory design for multimedia applications. In 2018 IEEE

Computer Society Annual Symposium on VLSI (ISVLSI), pages 142–147. IEEE,

2018.

[104] Baotong Lu, Xiangpeng Hao, Tianzheng Wang, and Eric Lo. Dash: Scalable

hashing on persistent memory. arXiv preprint arXiv:2003.07302, 2020.

[105] Lanyue Lu, Thanumalayan Sankaranarayana Pillai, Hariharan Gopalakrishnan,

Andrea C Arpaci-Dusseau, and Remzi H Arpaci-Dusseau. Wisckey: Separating

keys from values in ssd-conscious storage. ACM Transactions on Storage (TOS),

13(1):1–28, 2017.

[106] Chen Luo and Michael J Carey. Lsm-based storage techniques: a survey. The

VLDB Journal, 29(1):393–418, 2020.

[107] Xianlu Luo et al. Enhancing lifetime of nvm-based main memory with bit shifting

and flipping. In RTCSA 2014, pages 1–7. IEEE, 2014.

[108] Zhulin Ma, Edwin H-M Sha, Qingfeng Zhuge, Weiwen Jiang, Runyu Zhang, and

Shouzhen Gu. Towards the design of efficient hash-based indexing scheme for

growing databases on non-volatile memory. Future Generation Computer Systems,

105:1–12, 2020.

186

[109] T Soni Madhulatha. An overview on clustering methods. arXiv preprint

arXiv:1205.1117, 2012.

[110] Haiyu Mao, Xian Zhang, Guangyu Sun, and Jiwu Shu. Protect non-volatile

memory from wear-out attack based on timing difference of row buffer hit/miss.

In Design, Automation & Test in Europe Conference & Exhibition (DATE), 2017,

pages 1623–1626. IEEE, 2017.

[111] Erxue Min, Xifeng Guo, Qiang Liu, Gen Zhang, Jianjing Cui, and Jun Long.

A survey of clustering with deep learning: From the perspective of network

architecture. IEEE Access, 6:39501–39514, 2018.

[112] Sparsh Mittal and Jeffrey S Vetter. A survey of software techniques for using non-

volatile memories for storage and main memory systems. TPDS 2015, 27(5):1537–

1550, 2015.

[113] Fargol Nematkhah, Farrokh Aminifar, Mohammad Shahidehpour, and Sasan

Mokhtari. Evolution in computing paradigms for internet of things-enabled smart

grid applications: Their contributions to power systems. IEEE Systems, Man, and

Cybernetics Magazine, 8(3):8–20, 2022.

[114] Andrew Y Ng et al. On spectral clustering: Analysis and an algorithm. In NIPS

2002, pages 849–856, 2002.

[115] Yuanjiang Ni, Shuo Chen, Qingda Lu, Heiner Litz, Zhu Pang, Ethan L Miller, and

187

Jiesheng Wu. Closing the performance gap between dram and pm for in-memory

index structures. (UCSC-SSRC-20-01), May 2020.

[116] Jiaxin Ou et al. A high performance file system for non-volatile main memory. In

EuroSys ’16, pages 1–16, 2016.

[117] Ismail Oukid et al. Fptree: A hybrid scm-dram persistent and concurrent b-tree

for storage class memory. In Proceedings of the 2016 International Conference on

Management of Data, pages 371–386, 2016.

[118] Poovaiah M Palangappa and Kartik Mohanram. Flip-mirror-rotate: An

architecture for bit-write reduction and wear leveling in non-volatile memories.

In GLSVLSI 2015, pages 221–224, 2015.

[119] Poovaiah M Palangappa and Kartik Mohanram. Compex++ compression-

expansion coding for energy, latency, and lifetime improvements in mlc/tlc nvms.

ACM Transactions on Architecture and Code Optimization (TACO), 14(1):1–30,

2017.

[120] Bahareh Pourshirazi, Majed Valad Beigi, Zhichun Zhu, and Gokhan Memik.

Writeback-aware llc management for pcm-based main memory systems. ACM

Transactions on Design Automation of Electronic Systems (TODAES), 24(2):1–

19, 2019.

[121] R Sankara Prasad, Nitin Chaturvedi, S Gurunarayanan, et al. A low power high

188

speed mtj based non-volatile sram cell for energy harvesting based iot applications.

Integration, 65:43–50, 2019.

[122] Gianlucca O Puglia et al. Non-volatile memory file systems: A survey. IEEE

Access, 7:25836–25871, 2019.

[123] Moinuddin K Qureshi et al. Scalable high performance main memory system using

phase-change memory technology. In ISCA ’09, pages 24–33, 2009.

[124] Moinuddin K Qureshi, John Karidis, Michele Franceschini, Vijayalakshmi

Srinivasan, Luis Lastras, and Bulent Abali. Enhancing lifetime and security of

pcm-based main memory with start-gap wear leveling. In 2009 42nd Annual

IEEE/ACM international symposium on microarchitecture (MICRO), pages 14–

23. IEEE, 2009.

[125] Pandian Raju, Rohan Kadekodi, Vijay Chidambaram, and Ittai Abraham.

Pebblesdb: Building key-value stores using fragmented log-structured merge trees.

In Proceedings of the 26th Symposium on Operating Systems Principles, pages

497–514, 2017.

[126] Khushboo Rani and Hemangee K Kapoor. Write variation aware buffer assignment

for improved lifetime of non-volatile buffers in on-chip interconnects. IEEE

Transactions on Very Large Scale Integration (VLSI) Systems, 27(9):2191–2204,

2019.

[127] Elizabeth Reed, Alaa R Alameldeen, Helia Naeimi, and Patrick Stolt. Probabilistic

189

replacement strategies for improving the lifetimes of nvm-based caches. In

Proceedings of the International Symposium on Memory Systems, pages 166–176,

2017.

[128] Pooneh Safayenikoo, Arghavan Asad, Mahmood Fathy, and Farah Mohammadi.

An energy efficient non-uniform last level cache architecture in 3d chip-

multiprocessors. In 2017 18th International Symposium on Quality Electronic

Design (ISQED), pages 373–378. IEEE, 2017.

[129] Pooneh Safayenikoo, Arghavan Asad, Mahmood Fathy, and Farah Mohammadi.

Exploiting non-uniformity of write accesses for designing a high-endurance hybrid

last level cache in 3d cmps. In 2017 IEEE 30th Canadian Conference on Electrical

and Computer Engineering (CCECE), pages 1–5. IEEE, 2017.

[130] Pooneh Safayenikoo, Arghavan Asad, Mahmood Fathy, and Farah Mohammadi.

A new traffic compression method for end-to-end memory accesses in 3d chip-

multiprocessors. In 2017 IEEE 30th Canadian Conference on Electrical and

Computer Engineering (CCECE), pages 1–4. IEEE, 2017.

[131] Gunther Schmidt and Thomas Ströhlein. Relations and graphs: discrete

mathematics for computer scientists. Springer Science & Business Media, Berlin,

2012.

[132] Nak Hee Seong, Dong Hyuk Woo, and Hsien-Hsin S Lee. Security refresh:

Prevent malicious wear-out and increase durability for phase-change memory with

190

dynamically randomized address mapping. ACM SIGARCH computer architecture

news, 38(3):383–394, 2010.

[133] Jie Shi, Hualu Zhang, Yang Bai, Guangjie Han, and Gangyong Jia. A novel data

aggregation preprocessing algorithm in flash memory for iot based power grid

storage system. IEEE Access, 6:57279–57290, 2018.

[134] Yuhan Shi, Sangheon Oh, Zhisheng Huang, Xiao Lu, Seung H Kang, and Duygu

Kuzum. Performance prospects of deeply scaled spin-transfer torque magnetic

random-access memory for in-memory computing. IEEE Electron Device Letters,

41(7):1126–1129, 2020.

[135] Dongsuk Shin, Hakbeom Jang, Kiseok Oh, and Jae W Lee. An energy-efficient

dram cache architecture for mobile platforms with pcm-based main memory. ACM

Transactions on Embedded Computing Systems (TECS), 21(1):1–22, 2022.

[136] Shihao Song, Adarsha Balaji, Anup Das, and Nagarajan Kandasamy. Design-

technology co-optimization for nvm-based neuromorphic processing elements.

ACM Transactions on Embedded Computing Systems (TECS), 2022.

[137] Shihao Song, Anup Das, and Nagarajan Kandasamy. Exploiting inter-and intra-

memory asymmetries for data mapping in hybrid tiered-memories. In Proceedings

of the 2020 ACM SIGPLAN International Symposium on Memory Management,

pages 100–114, 2020.

[138] Shihao Song, Anup Das, Onur Mutlu, and Nagarajan Kandasamy. Improving

191

phase change memory performance with data content aware access. In Proceedings

of the 2020 ACM SIGPLAN International Symposium on Memory Management,

pages 30–47, 2020.

[139] Shihao Song, Anup Das, Onur Mutlu, and Nagarajan Kandasamy. Aging-aware

request scheduling for non-volatile main memory. In Proceedings of the 26th Asia

and South Pacific Design Automation Conference, pages 657–664, 2021.

[140] Baohua Sun, Daniel Liu, Leo Yu, Jay Li, Helen Liu, Wenhan Zhang, and Terry

Torng. Mram co-designed processing-in-memory cnn accelerator for mobile and

iot applications. arXiv preprint arXiv:1811.12179, 2018.

[141] Penghao Sun, Dongliang Xue, Litong You, Yan Yan, and Linpeng Huang. Hyperkv:

A high performance concurrent key-value store for persistent memory. In 2021

IEEE Intl Conf on Parallel & Distributed Processing with Applications, Big Data &

Cloud Computing, Sustainable Computing & Communications, Social Computing

& Networking (ISPA/BDCloud/SocialCom/SustainCom), pages 125–134. IEEE,

2021.

[142] MA Syakur et al. Integration k-means clustering method and elbow method for

identification of the best customer profile cluster. In IOP Conference Series:

Materials Science and Engineering, volume 336, page 012017. IOP Publishing,

2018.

[143] Shyamkumar Thoziyoor, Jung Ho Ahn, Matteo Monchiero, Jay B Brockman, and

192

Norman P Jouppi. A comprehensive memory modeling tool and its application to

the design and analysis of future memory hierarchies. ACM SIGARCH Computer

Architecture News, 36(3):51–62, 2008.

[144] Alexander van Renen et al. Persistent memory i/o primitives. In DaMoN’19, pages

1–7, 2019.

[145] Lucas Vendramin et al. Relative clustering validity criteria: A comparative

overview. Statistical analysis and data mining: the ASA data science journal,

3(4):209–235, 2010.

[146] Haris Volos et al. Mnemosyne: Lightweight persistent memory. ACM SIGARCH

Computer Architecture News, 39(1):91–104, 2011.

[147] Qiuping Wang, Jinhong Li, Patrick PC Lee, Tao Ouyang, Chao Shi, and

Lilong Huang. Separating data via block invalidation time inference for write

amplification reduction in logstructured storage. In Proc. of USENIX FAST, 2022.

[148] Yasi Wang, Hongxun Yao, and Sicheng Zhao. Auto-encoder based dimensionality

reduction. Neurocomputing, 184:232–242, 2016.

[149] Jin Wu, Jian Dong, Ruili Fang, Wen Zhang, Wenwen Wang, and Decheng Zuo.

Wdbt: Non-volatile memory wear characterization and mitigation for dbt systems.

Journal of Systems and Software, 187:111247, 2022.

[150] Giorgos Xanthakis, Giorgos Saloustros, Nikos Batsaras, Anastasios Papagiannis,

and Angelos Bilas. Parallax: Hybrid key-value placement in lsm-based key-value

193

stores. In Proceedings of the ACM Symposium on Cloud Computing, pages 305–

318, 2021.

[151] Fei Xia et al. A survey of phase change memory systems. Journal of Computer

Science and Technology, 30(1):121–144, 2015.

[152] Fei Xia et al. Hikv: A hybrid index key-value store for dram-nvm memory systems.

In USENIX ATC 17, pages 349–362, 2017.

[153] Jian Xu and Steven Swanson. {NOVA}: A log-structured file system for hybrid

{Volatile/Non-volatile} main memories. In 14th USENIX Conference on File and

Storage Technologies (FAST 16), pages 323–338, 2016.

[154] Byung-Do Yang et al. A low power phase-change random access memory using a

data-comparison write scheme. In ISCAS 2007, pages 3014–3017. IEEE, 2007.

[155] Jianguo Yang, Yinyin Lin, Yarong Fu, Xiaoyong Xue, and BA Chen. A small

area and low power true random number generator using write speed variation

of oxidebased rram for iot security application. In 2017 IEEE international

symposium on circuits and systems (ISCAS), pages 1–4. IEEE, 2017.

[156] Vinson Young, Prashant J Nair, and Moinuddin K Qureshi. Deuce: Write-efficient

encryption for non-volatile memories. ACM SIGARCH Computer Architecture

News, 43(1):33–44, 2015.

[157] Furqan Zahoor, Tun Zainal Azni Zulkifli, and Farooq Ahmad Khanday. Resistive

random access memory (rram): an overview of materials, switching mechanism,

194

performance, multilevel cell (mlc) storage, modeling, and applications. Nanoscale

research letters, 15(1):1–26, 2020.

[158] Qi Zeng and Jih-Kwon Peir. Content-aware non-volatile cache replacement. In

2017 IEEE International Parallel and Distributed Processing Symposium (IPDPS),

pages 92–101. IEEE, 2017.

[159] Hongyuan Zha et al. Spectral relaxation for k-means clustering. In NIPS 2002,

pages 1057–1064, 2002.

[160] Baoquan Zhang and David HC Du. Nvlsm: A persistent memory key-value store

using log-structured merge tree with accumulative compaction. ACM Transactions

on Storage (TOS), 17(3):1–26, 2021.

[161] Wenhui Zhang, Xingsheng Zhao, Song Jiang, and Hong Jiang. Chameleondb:

a key-value store for optane persistent memory. In Proceedings of the Sixteenth

European Conference on Computer Systems, pages 194–209, 2021.

[162] Hengyu Zhao and Jishen Zhao. Leveraging mlc stt-ram for energy-efficient cnn

training. In Proceedings of the International Symposium on Memory Systems,

pages 279–290, 2018.

[163] Fang Zhou, Song Wu, Youchuang Jia, Xiang Gao, Hai Jin, Xiaofei Liao, and

Pingpeng Yuan. Vail: A victim-aware cache policy to improve nvm lifetime for

hybrid memory system. Parallel Computing, 87:70–76, 2019.

[164] Ping Zhou, Bo Zhao, Jun Yang, and Youtao Zhang. A durable and energy efficient

195

main memory using phase change memory technology. ACM SIGARCH computer

architecture news, 37(3):14–23, 2009.

[165] Xinjing Zhou, Lidan Shou, Ke Chen, Wei Hu, and Gang Chen. Dptree: differential

indexing for persistent memory. Proceedings of the VLDB Endowment, 13(4):421–

434, 2019.

[166] Pengfei Zuo and Yu Hua. A write-friendly hashing scheme for non-volatile memory

systems. In Proc. MSST, 2017.

196

