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Cell migration plays an important role in a wide variety of biological processes

and can incorporate both individual cell motion and collective behaviour.

The emergent properties of collective migration are receiving increasing atten-

tion as collective motion’s role in diseases such as metastatic cancer becomes

clear. Yet, how individual cell behaviour influences large-scale, multi-cell col-

lective motion remains unclear. In this study, we provide insight into the

mechanisms behind collective migration by studying cell migration in a

spreading monolayer of epithelial MCF10A cells. We quantify migration

using particle image velocimetry and find that cell groups have features of

motion that span multiple length scales. Comparing our experimental results

to a model of collective cell migration, we find that cell migration within the

monolayer can be affected in qualitatively different ways by cell motion at

the boundary, yet it is not necessary to introduce leader cells at the boundary

or specify other large-scale features to recapitulate this large-scale phenotype

in simulations. Instead, in our model, collective motion can be enhanced by

increasing the overall activity of the cells or by giving the cells a stronger coup-

ling between their motion and polarity. This suggests that investigating the

activity and polarity persistence of individual cells will add insight into the

collective migration phenotypes observed during development and disease.
1. Introduction
Collective cell migration is an important biological phenotype used in many bio-

medical assays. For example, in a wound healing assay, the speed at which two

monolayers of cells migrate towards each other is often measured to determine

a cell migration response to drug treatments. The use of collective migration as

a biomedical phenotype stems from its important role in many biological pro-

cesses; collective migration is essential for development [1,2] and wound

healing [3,4], but its misregulation plays a role in diseases such as metastatic

cancer [5,6]. It is non-trivial, however, to infer single-cell migration behaviours

from metrics such as the monolayer boundary displacement. Despite many

studies on the behaviour of individual cells, which have looked at features of

migration such as the influence of the surrounding microenvironment [7–9]

or the flow of actin within a migrating cell [10,11], the connection between

individual cell properties and collective behaviour remains unclear.

To infer single-cell phenotypes from collective migration behaviour requires

additional information beyond that provided by metrics such as time to wound

closure. Particle image velocimetry (PIV) allows us to extract not only boundary

motion from time-lapse imaging data but also the entire flow field of cell motion,

which includes features at the scale of single cells or smaller. Since their introduc-

tion into cell migration research several years ago, PIV flow fields have rapidly

emerged as a powerful tool and have been used to analyse a wide variety of col-

lective cell behaviours including correlated motion [12,13], vortices [14], patterns

of stresses within the cell sheet [15] and changes to collective migration during

malignancy [16]. Notable prior work on large-scale flow fields generated by

coupled polar entities was carried out in the context of soft condensed matter,

starting with liquid crystals and most recently active matter [17,18]. Our focus
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is on the heterogeneity and time variability that is a hallmark of

living systems, including most notably sources of heterogen-

eity such as cellular activity and leader cells that are thought

to control collective behaviour in living systems.

Here, we link detailed metrics of collective behaviour

derived from PIV data with simulations of collective cell

motion that explicitly model the behaviour of individual cells.

By linking experiments and simulations, we can infer likely

single-cell behaviour from collective motion phenotypes.

Collective cell migration has been studied using a wide variety

of modelling techniques [13,19–25]. These modelling tech-

niques have been used to explore a variety of factors involved

in collective migration that are difficult to access experimen-

tally, including the effect of matrix geometry on migration

strategies [26] and the maturation of cell contacts within a

monolayer [27]. Several studies have noted the important link

between cell motility and polarity [27–29], a feature of

migration that we explore further.

Our work links previously published experimental obser-

vations on collective migration of MCF10A breast epithelial

cells [30] and a previously published model of collective

migration [20,31–33] to elucidate which properties of individ-

ual cells are most consistent with the observed multi-cell

collective migration behaviour. The experimental data show

changes in collective behaviour on large length scales that

span the cell monolayer. In the cases of collective behaviour,

cell motion contributes to the radial expansion of the mono-

layer across millimetre scales, while in other, less collective

cases, only those cells near the outer edge contribute to mono-

layer expansion. We show that these changes in large-scale

migration patterns can be recreated in our model without

requiring large-scale gradients or ‘leader cells’ (a subpopu-

lation of cells at the edge of the monolayer that has different

properties from cells within the bulk of the monolayer). Our

modelling results suggest that the experimentally observed

changes in collective behaviour are consistent with simply

decreasing the activity of individual cells as long as the cells

have a strong coupling between their velocity and preferred

motility direction.
2. Material and methods
2.1. MCF10A dataset
We analyse a previously published set of time-lapse images of

MCF10A (breast epithelial cells) migrating in collective sheets

[30,34]. These cells, which were plated in a circular monolayer,

migrate on a collagen IV coated glass surface and phase contrast

images were taken every 3 min for a total of 1000 min (16.6 h).

The dataset includes cells migrating in normal cell culture media

(referred to as 1 : 1) and cells migrating in a dilution of this culture

media (referred to as 1 : 5). This change decreases the horse serum,

insulin, EGF, hydrocortisone and cholera toxin concentrations to

20% of their full media values (e.g. horse serum at a concentration

of 1% instead of 5%).

2.2. Migration analysis
Phase contrast images were analysed with PIV using the MatPIV

toolbox (J. Kristian Sveen, GNU general public licence) for

Matlab (MathWorks, Inc.). Multiple iterations of interrogation

window sizes were used: two iterations of 64 � 64 pixel windows

were followed by two iterations using 32 � 32 pixel windows.

A 50% overlap was used for each interrogation step. Several

steps were taken to increase the quality of our PIV flow fields.
The size of our interrogation windows was chosen to provide of

the order of 10 features per window, suggested as a good rule of

thumb for a clear PIV signal [35]. We also run a multi-pass algor-

ithm that first uses a larger window size to reduce noise. The

resulting flow field uses information about the relative height of

the chosen cross-correlation peak and all possible correlation

peaks as a signal-to-noise ratio to further filter the PIV flow field;

outliers were detected using a signal-to-noise threshold of 1.3.

Custom Matlab segmentation code was used to find the lead-

ing front of the cell monolayer. The phase contrast images were

Sobel filtered followed by median filtering and morphological

opening to clean the binary image before finding the perimeter

of the objects in the image. The edge coordinates were then

found using a Matlab implementation of Dijkstra’s algorithm

(‘dijsktra path finder’ by Sebastien PARIS, available on the

Matlab File Exchange at mathworks.com). In combination with

the microscope stage positions, this edge was used to fit the

cell monolayer to a circle (see electronic supplementary material,

figure S1). The effective radius of the monolayer and the centre

position were used to define regions of the cell monolayer for

later migration analysis. Speed and radial velocity values were

averaged over theta to create radial profiles of motion.

Velocity correlations were calculated as

CðDrÞ ¼
P

r,t ðvðrÞ � �vÞ � ðvðrþ DrÞ � �vÞ
s2

v
:

In this case, v(r) is the velocity at a location r within the cell sheet.

The correlation values are averaged over all r within the region

0.5 , r/R , 0.75 and over all times. In this equation and

throughout, r refers to the location within the cell monolayer

with respect to the monolayer centre and R refers to the size of

the monolayer. These correlation values were fitted to a double

exponential of the form

CðDrÞ ¼ Ae�r=Lc1 þ Be�r=Lc2 þ ð1� A� BÞ:
2.3. Simulations
Our model is based on earlier work [20,32] and includes cell

growth and division, motility forces, friction forces, and

volume exclusion and adhesion between neighbouring cells, as

shown in figure 2a. In the model, two point particles represent

a single cell with a size given by the inter-particle distance r.

The equation of motion for each particle is given by

dp

dt
¼ mþ Fexp þ Fint þ FB þ

X
r�RCC

ðFrep=ad þ FdfÞ:

Here, m is the motility force (discussed further below) and its

value, along with all other parameter values, is given in electronic

supplementary material, table S1. Cell growth is simulated

through a repulsion force Fexp ¼ �B=ðrþ 1Þ2r̂ , where B is an

expansion factor and r̂ is the unit vector parallel to the line con-

necting the two particles. Cell division is incorporated as

follows: after the cell size reaches a threshold Rdiv, it divides at a

constant rate kdiv, after which two new particles are placed a dis-

tance rdiv away from the particles constituting the old cell. Fint

represents the intracellular friction force between particles consti-

tuting the same cell and is determined by the coefficient jint.

Cell–substrate friction is assumed to be proportional to the cell vel-

ocity, resulting in FB ¼ �jBv. The last two forces in the equation of

motion act only within a distance of r � RCC and represent volume

exclusion and adhesion of cells (Frep/ad) and friction forces that

oppose the relative motion of cells with a friction coefficient jdf

(Fdf). Details of the latter can be found in Basan et al. [32], while

the former has two terms: a short-range repulsive term, which

prevents cell–cell overlap and is parametrized by f0, and a long-

range adhesive force with a strength determined by f1. The
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equation for volume exclusion and adhesion is of the form

Frep=ad ¼ � f0
1

r� 1

� �
� f1

� �
r̂:

The orientation of the motility force m is such that it tends to

align with the cell’s velocity v. Specifically, this motility–velocity

alignment coupling is implemented by assuming two states of

the cell: a motile state and a non-motile state. Cells in the non-

motile state exert no motility force while cells in the motile

state generate a motility force with a fixed magnitude in a

random direction. The transition from the non-motile state to

the motile state is determined by a constant rate kwake by gener-

ating a motility force with a fixed magnitude in a random

direction. The transition rate from the motile state back to the

non-motile state depends on the motility–velocity alignment,

quantified by m . v. In Basan et al. [20], this transition rate

could take on only two values: low for aligned cells (m . v . 0)

or high for non-aligned cells (m . v , 0). This bias results in a

higher ratio of aligned cells versus non-aligned cells in the

motile state and provides an alignment mechanism. In this

study, we use a continuous form of the transition rate to the

non-motile state that depends on the degree of alignment

k0sleep ¼
ðk0 � k1Þð1þ tanhð�ðm � vÞ=kmvÞÞ

2
þ k1:

Thus, this rate ranges from k1 for aligned cells to k0 for non-

aligned cells while the transition between these two rates is

determined by kmv; when kmv � jmjjvj the transition rate

approaches the aligned and not-aligned binary case of Basan

et al. [20].

Our transition rate was further modified to account for

the effect of leader cells, i.e. cells near the edge of the colony

that preferentially move outward. To this end, we multiplied

the above transition rate with a spatially dependent prefactor

so that the final form for particle i is ksleep ¼ exp(kRmmi � Ri)

k0sleep. Here Ri is a spatial average of the particle’s neighbours:

Ri ¼
P

neighbors rij, where rij ¼ rj 2 ri is the relative position of

cells i and j. The parameter kRm determines the strength of the

leader cell effect. Neighbour cells are defined as cells within

the range of non-zero cell interactions, i.e. r � RCC. Cells far

from the edge are surrounded by other cells such that R � 0

and the prefactor is close to one. Cells near the edge, however,

have only neighbours inside the colony, resulting in a value of

R that points inward. Consequently, ksleep is smaller for cells

near the edge that have their motility vector pointing outwards,

leading to ‘leader’ cells that move outward. In the standard set of

parameters (see electronic supplementary material, table S1),

kRm ¼ 0 and there is no leader cell effect.

The simulation starts with 200 spheres (and thus 100 cells)

randomly located within a square box of 10 � 10, measured in

units of l0 (see electronic supplementary material, figure S2).

The initial velocity for all the spheres is taken to be zero. The

first 10 frames of the simulated data (100 t0) were discarded

before migration analysis to remove artefacts from low cell

number monolayers. Particle positions and velocities were

interpolated to a grid to compare with experimental PIV results.

The edge of the simulated monolayer was found based on the

particle positions and fitted to a circle. As with the experimental

results, this edge was used to define radial regions of the mono-

layer and to create profiles of speed and radial velocity.

Migration analysis was then carried out in the same manner as

previously described for the experimental data.

We should note that the length scale of the model, l0, can be

related to experimental values by comparing it to the experimental

division size. In our simulations, we choose the threshold distance

for cell division to be 0.4l0. This should be of the same order of

magnitude as the average cell size, which is approximately
40 mm, resulting in l0 � 100 mm. The simulation time can then be

determined by comparing the mean speed of cells in the simu-

lation (�0.025l0/t0 ¼ 2.5 mm/t0) to the mean speed in the

experiment (� 0.25 mm min21) which leads to t0 � 10 min. We

can then verify that the relative growth rate in the simulation is

consistent with the relative growth rate observed in the exper-

iments, as shown in electronic supplementary material, figure S4.

This comparison suggests that the experiments and simulations

are on the same scale for growth, but note that we do not attempt

to fit the multiple model parameters to the data.
3. Results
To study large spatial scale migration patterns in epithelial

MCF10A cells, we analyse a previously published set of time-

lapse images of a circular cell monolayer [30]. The cells were

imaged near the edge (figure 1a and electronic supplementary

material, movie S1) and in the centre of the monolayer; a sche-

matic of the imaging fields of view is shown in figure 1b. The

multiple fields of view allow us to investigate migration behav-

iour as a function of location within the monolayer; figure 1c
shows an example kymograph of speed within a monolayer.

There are heterogeneities in speed over both the 16 h time

course and approximately 4 mm spatial scale of the cell

sheet, yet there is a trend towards higher speed at the edge of

the monolayer. This trend can be seen in the time-averaged

speed curves in figure 1d.

Although the cell speed increases near the edge in all exper-

iments, there are changes in the overall speed depending on the

media dilution (1 : 1 versus 1 : 5) and day-to-day variability

in the experiments (see electronic supplementary material,

figure S3, for a discussion of this variability). In addition to

measuring speed, which indicates how active the cells are, we

also determine the radial velocity as a measure of how well

the cells’ motion contributes to the overall expansion of the

cell sheet. As shown in figure 1e, when the overall motion is

slow, we see a decreased radial velocity, as would be expected.

In addition to this quantitative change, however, we also see

a qualitative change in which some experiments exhibit a con-

cave curve (black squares in figure 1e) while others—those

with lower cell speeds—show a convex curve (red circles in

figure 1e). Since radial velocity is the component of cell motion

that contributes to the collective expansion of the monolayer,

this suggests changes in the collective behaviour of the cell

sheet. In those cases with lower overall cell speed, the cells

near the centre of the monolayer move in all directions; since

radial velocity can be positive or negative, these values average

out to near zero in the centre region. In the cases with higher

overall speed, however, cells throughout large regions of the

cell monolayer contribute to the overall expansion. Thus, we

use the shape of the radial velocity curve as one indicator of

how cooperatively the cells move—when the curve is concave,

cooperative motion spreads through the cell monolayer, but

when the curve is convex the cells move less collectively.

To explore how individual cell properties affect the quali-

tative large-scale changes seen in this dataset, we compare

the experimental results to simulations using a previously pub-

lished model [20,31,32]. In this model, each cell is represented

by two particles that move according to the forces acting upon

them (shown schematically in figure 2a). These forces, further

detailed in the Material and methods section, include friction

forces, motility forces, cell–cell interaction forces and a force

representing cell growth. Cell division is initiated once the
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distance between the particles exceeds a threshold. Cells can be

either motile or non-motile, and the transition rate between

these two states is chosen such that motile cells tend to align

their motility force (the force that pushes a cell in a preferred

direction) with their velocity. Alignment between the cell’s

motility force and velocity has previously been shown to

lead to ‘go with the flow’ dynamics [20]; alignment between

velocity and a preferred direction is also a feature of active

matter models of cell migration [36].

Simulated monolayers in this model using the standard par-

ameters (see electronic supplementary material, table S1) and in

the absence of leader cells show a radial expansion similar to the

MCF10A experimental system, and have increased speed near

the edge of the monolayer (see figure 2b, black curve, and elec-

tronic supplementary material, movie S2). Simulations with the

standard parameter set also show an increased radial velocity

near the leading edge of the cell sheet and a concave radial vel-

ocity profile in the centre of the cell monolayer (figure 2c, black

curve), similar to the experimental results with faster cells

(figure 1c, black squares).

In a first computational test, we explore whether introdu-

cing an active subpopulation of cells near the edge, leader

cells, may be sufficient to cause the experimentally observed

change in velocity profile shown in figure 1. Leader cells near

the leading edge of migrating cell groups are seen in many col-

lective migration systems [37] and have often been observed at

the tip of finger-like protrusions of epithelial sheets [38,39].

Many studies have also found that multicellular rows of

leader cells can emerge in epithelial wound healing [37,40].

The exposure to extracellular matrix on one side of the cells

and cell–cell adhesion on the other, as found at the leading

edge of cell sheets, can cause cells to change their morphology

or upregulate distinct signalling pathways [37–40].

In our simulation, leader cells are included by making the

transition rate between the motile and non-motile state of

motion dependent on the spatial location of the cell (see Material

and methods). As seen in figure 2c, increasing the strength of this

leader cell effect can lead to increased speeds near the monolayer

edge. However, this increase is not accompanied by a qualita-

tive change from concave to convex radial velocity profiles

(figure 2d), suggesting that another mechanism is responsible

for the experimentally observed change in the radial velocity pro-

files. At high leader cell strengths, the profile does qualitatively

change in that it shows a flat profile, in part, of the sheet, but
this is due to an instability of the boundary shape. This instability

results in the formation of fingering structures at the leading edge

(see electronic supplementary material, movie S3), similar to the

behaviour seen in a previous study which found leading tip cells

in finger-like protrusions of epithelial sheets [39].

We next hypothesized that the proliferation rate may affect

the phenotype. Changing proliferation rates in our simula-

tions, however, does not change the simulated speed profile

(electronic supplementary material, figure S3a) or the radial

velocity profile (figure 3a). We should note that for low prolifer-

ation rates (less than 10% of the standard parameter value for

division), the monolayer begins to break apart (see electronic

supplementary material, figure S7). In this case, the cell sheet

can no longer be fitted to a circle for radial analysis. The disas-

sociation of the monolayer at low proliferation rates agrees

with a hypothesis that cell proliferation is used to fill in the

gaps left by a migrating monolayer rather than as a mechanism

for pushing migration forward [39,41].

In a third set of computational trials, we determined how

changes in the ‘wake rate’ parameter affect velocity profiles.

The wake rate parameter controls how often cells switch

from a state without a preferred direction of motion to a

‘motile’ state in which the cells experience an additional

force that indicates a preferred direction of motion and thus

controls how ‘active’ the cells are within the monolayer.

The motility force plays the role of a biomechanical polarity

within the cell, but does not distinguish which of the many

mechanical and chemical stimuli that lead to polarity changes

[42] are experienced by the cell. It may be expected that the

cases of reduced speed in the experimental data correspond

to decreased activity in the cells.

Our simulations reveal that decreasing the wake rate leads

to an overall lower speed (electronic supplementary material,

figure S3b and movie S4) and, as shown in figure 3b, a qualitat-

ively different radial velocity profile. Specifically, decreasing

the wake rate leads to a transition from behaviour where cells

across the radius of the monolayer move outward, showing

radially expanding motion, to a state where only those cells

near the edge move cooperatively outward. As a result,

the radial velocity profile changes from a concave one to a

convex one consistent with the experimentally observed

changes in radial velocity and collective behaviour.

We next determined how the coupling between the cell’s

velocity and motility force, parametrized by kmv, affects the
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0.01, 0.005, 0.001 and 0.0001. The standard kmv value of 0.00001 is shown in black. Smaller values of kmv indicate a stronger coupling strength. Speed profiles for
these simulations are shown in electronic supplementary material, figure S8.
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velocity profiles. This alignment coupling leads to higher sleep

rates for those cells that have velocity and motility forces

pointing in opposing directions. Interestingly, if the coupling

between the motility force and velocity is removed, the

simulations always show convex radial velocity profiles

(i.e. decreased collective migration), even for large values of

the wake rate (figure 4a and electronic supplementary material,

movie S5). This suggests the strength of this coupling may also

play a role in migration. Indeed, using otherwise standard par-

ameters but decreasing the strength of the coupling between

velocity and motility can cause a transition from a concave to

a convex radial velocity curve (figure 4b; electronic supple-

mentary material, movie S6). Thus, causing each cell to have

strong alignment between its motility direction and its

current velocity leads to more active behaviour (concave vel-

ocity profiles), while motility that is not strongly coupled

leads to convex velocity profiles similar to those seen in the

less active experiments.

To probe further the changes in collective behaviour that

may accompany the observed changes in radial velocity, we

calculate velocity correlations in the region between the

centre and the edge of the monolayer (0.5 , r/R , 0.75). This

range was chosen to correspond to the region where we see

experimental changes in the radial velocity profile. The spatial

autocorrelation of velocity does not distinguish between types

of behaviour such as divergence or rotation, but rather pro-

vides a metric for similarity of motion across the cell sheet;

this similarity would be expected when cells migrate coopera-

tively. As shown in figure 5a, experimental conditions with

decreased speed and convex radial velocity correspond to the

cases of less correlated motion within the cell sheet. To deter-

mine whether this result is consistent with our computational

model we compute the spatial correlation in our simulated

trials. We focus on the perturbations—reducing the wake rate

and decreasing the motility–velocity coupling—that are able

to reproduce the qualitative change in radial velocity profiles.

We find that both decreasing the wake rate (figure 5b) and

decreasing the coupling (figure 5c) result in a reduction of

the spatial correlation consistent with the experimental results.

We compare the observed changes in radial velocity and

correlated motion within the cell sheet by calculating character-

istic length scales from the velocity autocorrelation. Both the

experimental PIV flow fields and the simulated cell motion
naturally include two length scales: the experimental data

include both subcellular and multicellular flows and the simu-

lated data include the motion of both particles that make up a

cell. To address this, we fit the correlation curves to a double

exponential and indeed find that the smaller of the two exper-

imental length scales (approx. 15 mm) is of the order of the cell

size (figure 5d ). We also find that the larger length scale, which

indicates multicellular cooperation, shows an increasing trend

with increasing radial velocity for both the experimental data

and model results (figure 5d–f ), further suggesting that the

observed change in radial velocity corresponds to a change in

multicellular cooperation.
4. Discussion
Here we provide insight into the single-cell behaviour under-

lying collective migration by comparing experimental data

to a model of collective migration. The emergent behaviour

of collective cell sheets that results from changing the proper-

ties of individual cells is difficult to predict and to probe

experimentally. To investigate the connection between individ-

ual and collective behaviour, we use PIV-based migration data

to measure motion that spans a wide variety of scales; the

length scales studied vary from that of a single cell to a mono-

layer composed of thousands of cells. By comparing simulation

and experiment across these scales, we provide insight into col-

lective behaviour changes observed in epithelial MCF10A cells.

Cells moving at higher speeds show a larger region of radial

expansive motion than slowly moving cells (figure 1),

suggesting changes in their collective behaviour.

Leader cells have been found in a variety of experimental

systems and in previous studies have been found to recruit

following cells to move directionally outward through a

Viscek-like coupling [43]. We show here that they are not

necessary, however, to recapture large-scale changes in collec-

tive migration in our model of epithelial sheet migration

(figure 2). We also show that changes in proliferation are unli-

kely to be the cause of the observed large-scale changes

(figure 3a). Experimental changes in activity can be compared

with the wake rate in the simulations; this parameter is related

to the simulated cells’ ability to switch between a non-motile

and motile state. Here we find that changes in the wake rate
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can lead to the experimentally observed changes in collective

behaviour (figure 3b).

Interestingly, changing the wake rate has no effect without

implementing alignment coupling between the cells’ motility

and velocity (figure 4a). Previous work on this collective

migration model has shown that this coupling leads to a ‘go

with the flow’ dynamic [20]; the coupling is implemented

such that cells with misaligned motility and velocity vectors

are more likely to transition to a non-motile state. The motility

force gives the cells a preferred direction of motion, and in that

sense, it can be viewed as a biomechanical cell polarity. The

ability to align this biomechanical polarity with the direction

of motion of a cell indicates that a cell is able to sense resistance

to motion and adapt its biomechanical machinery to push in a

direction in which the cell is actually able to move. Thus, the

strength of this coupling indicates how sensitive a cell is to its

mechanical environment, and it is not surprising that changing

this motility to velocity coupling changes the collective behav-

iour of the cells (figure 4b). This result agrees with previous

work which suggests that propagating waves of cell stretching,

which leave cells with more elongated and polarized shapes,

are followed by waves of increased directionality in sheets of

epithelial cells [44].

Ultimately, the motility coupling strength provides a

simple sensor of the surrounding tissue and leads to cells

that are best able to follow a path of least resistance, since

increased motion along the path of least resistance will lead

to feedback with alignment of the motility force. Changing

this coupling strength can cause large-scale changes in cell

migration without explicitly changing the interactions

between neighbouring cells or invoking leader cells. Increas-

ing activity within the cell sheet has a similar effect as it gives

the cells more opportunities to be motile at the same time and
thus follow other cells on paths of least resistance. When com-

bined with a strong sense of polarity, this activity can then

lead to increasing cooperativity over time as the cells have

more opportunities to align their motion.

We thus find in our simulations that the emergent behav-

iour of a simple model system can explain large-scale changes

in collective behaviour without the need to specify large-scale

features explicitly. We identify cell activity and the coupling

between biomechanical polarity and motion as two interest-

ing features of individual cell behaviour that can lead to

large-scale collective behaviours. Our study demonstrated

that PIV measurements may be used in conjunction with

simulations to infer detailed biomechanical single-cell pheno-

types from the types of collective migration assays that are

commonly used in drug discovery and cancer research.
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