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ABSTRACT 

 

Hardware Acceleration for Tensorized Neural Network 

 

by 

 

Yiming Gan 

 

Machine learning has gained success in many application domains including medical data 

analysis, finance, computer vision, and so forth. However, many popular machine learning 

models (e.g., deep neural networks) are both data-intensive and computationally expensive: 

they require high-volume data samples to train the network, millions to billions of 

parameters to describe the model, and large-scale computations to complete the optimization 

or inference. Therefore, deep learning can cause unaffordable energy and run-time cost on a 

hardware platform. In this paper, we present a way of accelerating deep neural network as 

well as compressing weights used by designing hardware acceleration for tensor train 

decomposition layers in deep neural network. By utilizing hardware acceleration on 

tensorized neural network, we achieved massive memory saving on two fully -connected 

layers. Parameters shrink 4880644x and 3195660x separately. At the same time, we achieve 

speed up at 2600x and 2900x compared to original matrix multiplication process.   
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I. Introduction and Related Work 

A. Introduction 

Deep neural network 1 has gained great success at solving a wide range of practical tasks 

including vision and speech 2, language modeling and translation 3 and autonomous driving 

4 . These approaches usually use high-volume of variables to parametrize a neural network, 

and require high-volume data sets to train the model. For instance, the VGG-19 network 

needs 500M memory for image recognition 5. The RNN model in 6 even involves more than 

10G parameters. As a result, high-performance computing platforms (e.g., GPU and cloud 

computing) are usually required to handle the computation and memory expensive training 

and inference (i.e., prediction) tasks. Training and running a complex deep neural network is 

infeasible in many application scenarios, due to the limited data sets and computing 

resources (e.g., power budget and bandwidth constraints on a hardware platform, no access 

to GPUs or cloud computing) such as IoT (Internet of Things) devices, robotics and 

embedded platforms. Therefore, developing compact neural network models and designing 

high performance as well as energy efficient machine learning hardware have become a key 

enabler for many AI and IoT applications. 

1. Efforts in Hardware Optimization.  

In the communities of computer architecture and VLSI design, many approaches have 

been reported to improve the performance of neural network hardware. On GPU and FPGA 

platforms and in ASIC designs, various techniques have been investigated to reduce both the 

amount and bit width of the data in weight matrices, neurons and gradients in order to save 

memory and computation resources 7,8,9,10,11,12. Customized FPGA/ASIC neural network  
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accelerators have also been investigated by many groups. For instance, FPGA accelerators 

have achieved several to dozens of times speedup and energy-efficiency improvement by 

elaborately designing the parallel processing units, memory allocation and topology tiling. 

With on-chip DRAM for near-data processing, ASIC accelerators have gained great success. 

For instance, the DaDianNao13,14 has gained 450x speedup and 150x energy reduction 

compared with GPUs by increasing the inner bandwidth of computing parallelism and by 

reducing the external communications. The performance and energy efficiency of ASIC 

accelerators have been further boosted by utilizing process-in-memory (PIM) and non-

volatile memory-crossbars15,16,17,18. For instance, with PIM design, the speed and energy 

efficiency of the design PRIME19 are 2360x and 895x better, respectively, compared with 

GPUs.  

2. Efforts in Algorithm Innovation 

Meanwhile, the computational math and machine learning communities have proposed 

some numerical approaches to compress neural networks, but these approaches have been 

rarely exploited in hardware design. It was first observed that the large weight matrices have 

low-rank properties, therefore, they could be largely compressed by low-rank matrix 

factorization20,21,22. In Sainish’s work, the number of parameters of the network was reduced 

by 30-50% for a deep neural network for large vocabulary continuous speech recognition 

tasks. Recently, tensor decompositions were applied to compress neural networks with much 

higher compression ratios23,24,25,26. Tensors are high-dimensional generalization of matrices. 

While matrix decomposition only compress data in 2 dimensions, tensor decomposition can 

achieve much higher compression ratio by compressing data arrays in many dimensions. In  
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the work proposed by Novikov21 , they first used tensor train decomposition27 on fully 

connected(FC) layers and shrink the models for 105 times.  

B. Related Work 

Plenty of works have focused on accelerating deep neural network from both algorithm 

perspective and hardware perspective as shown in Fig. 1.  In the first work bring tensor 

train decomposition into deep neural network, they compressed two FC layers into tensor 

train format. In the following work, they tried the same method on convolutional layers and 

get further compression rate. Since fewer parameters are used in presenting layers, the 

compute complexity is reduced also. The first work designing hardware accelerator for 

tensor train based deep neural network is proposed by Huang27, in which they describe a 

special 3D RRAM and CMOS combined architecture. 3 layers of circuits were used to form 

the accelerator. The first layer is RRAM-crossbar implemented as a buffer to store weights. 

Since each tensor core is a 3-D tensor consisted of several slices of matrix, all the matrices 

are stored in the order of different tensor core. The second layer is another RRAM-crossbar 

used for computing. It is designed for performing logic operations such as matrix vector 

multiplication and vector addition. The second layer uses the values stored in the first layer 

through through-silicon-via(TSV). Layer 3 is designed to perform overall synchronization of 

the tensorized neural network.  

 



 

 

4 

II. Tensor Train Decomposition in Neural Network 

A. Tensor Train Decomposition 

Tensors are natural multidimensional generalizations of matrices and have attracted 

tremendous interest in recent years. Working with d-dimensional problems with d being as 

high as 10, 100 or even 1000 has always been nontrivial. Problems of such size cannot be 

handled by standard numerical methods due to the curse of dimensionality since parameters 

grows exponentially with d. An efficient representation of a tensor by a small of parameters 

may give people an opportunity to work with high dimensional problems. There are several 

widely used tensor decomposition method including canonical decomposition, Tucker 

decomposition and tensor train decomposition. A d-dimensional 𝑛1 × 𝑛2 × … × 𝑛𝑑 tensor 

A is said to be in the TT-format with cores 𝐺𝑘 of size 𝑟𝑘−1 × 𝑛𝑘 × 𝑟𝑘, 𝑘 = 1,2, … , 𝑑 and 

𝑟0 = 𝑟1 = 1, if its elements are defined by formula(2.1). 

(2.1)         A(𝑖1, … 𝑖𝑑) = ∑ 𝐺1(𝛼0, 𝑖1, 𝛼1)𝐺2(𝛼1, 𝑖2, 𝛼2) … 𝐺1(𝛼𝑑−1, 𝑖𝑑, 𝛼𝑑)𝛼0,…,𝛼𝑑
  

   In which three-dimensional tensors 𝐺𝑘 are called cores of the TT-decomposition and 

are all needed to be stored in memory. The ranks 𝑟𝑘 are called compression ranks or TT-

ranks. By decomposing tensors into tensor train format, basic tensor operations such as 

addition and Hadamard product can be performed based on tensor cores shown in table 1. 

 

Operation Formula Tensor Cores 

Addition 𝐶𝑖1…𝑖𝑑
= 𝐴𝑖1…𝑖𝑑

+ 𝐵𝑖1…𝑖𝑑
 

𝐶𝑘 = (
𝐴𝑘

0

0

𝐵𝑘
) 

Hadamard product 𝐶𝑖1…𝑖𝑑
= 𝐴𝑖1…𝑖𝑑

𝐵𝑖1…𝑖𝑑
 𝐶𝑘 = (𝐴𝑘 ⊗)𝐵𝑘 

  

Table 1. Tensor operations in tensor train format 

 

be plac 
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B. Tensor Train Decomposition in Neural Network 

1. TT-layer 

The direct application of the TT-decomposition to a matrix (2-dimensional tensor) 

coincides with the low-rank matrix format. A matrix in the TT-format is called TT-matrix 

and a TT-matrix is not restricted to be square. All operations available for TT-tensors are 

Figure 1. Existing software and hardware solutions for deep neural networks 

 

be plac 
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applicable to the TT-matrices as well. TT-matrices can perform matrix-by-vector(matrix-by-

matrix) easily which will be described later. If one of the operands is in TT-format, the 

result would be a vector(matrix). If both operands are in the TT-format, the result would be 

in TT-format with increasing ranks on TT-cores.  

When bringing tensor train decomposition into neural networks, TT-layer is introduced. 

In this work, fully-connected layers are used as an example to explain how tensor train 

decomposition are used in neural network. As for other layers such as convolutional layers, 

they can be transformed into the same compute format with FC layers. Fully connected 

layers apply a linear transformation to an N-dimensional input x:  

(2.2)                     y = Wx + b 

in which the weight matrix W and the bias vector defines the transformation. 

 A TT-layer is the fully-connected layer in which weight matrix W is stored in TT-

format allowing to store only tensor train cores instead of original weight matrix which save 

the parameters in a low rank way. The actual parameters stored can be controlled by 

changing tensor core size. The linear transformation shown in (2.2) can be expressed in the 

tensor form: 

(2.3)     y(𝑖1, 𝑖2, … , 𝑖𝑑) = ∑ 𝐺1𝐺2𝐺3 … 𝐺𝑑 × x(𝑗1, 𝑗2, … , 𝑗𝑑) + b(𝑖1, 𝑖2, … , 𝑖𝑑)𝑗1,𝑗2,…𝑗𝑑
 

Since the process is transformed from matrix multiplication to matrix times tensor 

cores, the dimensional matching becomes a problem. How data is represented and multiplied 

will be shown in next part. 
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2. Compute Complexity 

When the weight matrix is represented in TT-format, original matrix multiplication 

become tensor matrix multiplication. The process is shown in figure 2 in which N =

𝑛1𝑛2𝑛3 … 𝑛𝑑 and M = 𝑚1𝑚2𝑚3 … 𝑚𝑑.

Figure 2. TT-layer multiplication process 
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The first tensor core will be unfolded to a matrix and reshaped to the matching size with 

reshaped input matrix x. The first sub-process is a matrix multiplication with the complexity 

of 𝐶 = 𝑚1𝑟1𝑛1𝑟0𝑛2 … 𝑛𝑑 = 𝑟2𝑚1𝑛1 … 𝑛𝑑  resulting an output matrix in size of 

𝑛2𝑟1 × 𝑚1𝑛3 … 𝑛𝑑 . The following tensor core is then reshaped to the matching size with 

previous output and performs the second matrix multiplication with the complexity of 

𝐶 = 𝑚2𝑟2𝑛2𝑟1𝑛3 … 𝑛𝑑 = 𝑟2𝑚1𝑚2𝑛2 … 𝑛𝑑 . There will be d iterations in total and the 

final compute complexity is O(𝑑𝑟2m max{M,N}). Compared to the previous fully-

connected layer, TT-layer doesn’t only save memory on storing parameters but also 

reduce the compute complexity from O(MN) to O(𝑑𝑟2m max{M,N}).  

 

III. Hardware Acceleration for Tensorized Neural Network 

A. Motivation 

Although it has been proved that using tensor train decomposition on compressing deep 

neural networks will not only achieve obviously compression rate, but also have better 

compute complexity since weights represented in tensor core format are much smaller than 

before. However, from the data of our profiling, the real performance of tensor based deep 

neural network seems worse. As shown in Fig.3, we did profiling based on comparison of 

the baseline which is VGG-16 and compressed networks, another comparison has been 

made between two simple networks with one TT layer plus one FC layer and two FC layers. 

The result showing in Table 2 and 3 prove that although theoretically compute complexity 
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will be reduced, tensorized neural networks don't show actual performance improvement. 

The evaluation platform is Intel® Xeon® E5-2603 CPU with a Nvidia® Titan XP GPU.  

The reasons for the profiling results are not hard to explain. In actual operations, 

weights are stored in memory. Each time one matrix multiplication is processed, the 

weights will be taken from memory and be put into GPU for computation. In tensor 

train computation, each tensor core will be multiplied by a matrix. To complete this 

multiplication, some reshape procedure will be required as mentioned in the previous 

section. Although compute complexity is largely reduced, the time that reshape is 

happening is not taken into consideration. That's the reason that tensorized neural 

network will take longer time than it supposed to and why hardware acceleration is 

needed for this kind of network. 

B. FPGA Optimization for TT-layer 

FPGA is a popular option of existing accelerators, and it is widely used in embedded 

environments and in cloud servers. FPGA consists of hundreds of thousands of 

programmable logic blocks and programmable interconnections, which can provide 

reconfigurable functions; FPGA also consumes less power than GPU, therefore, it can be 

utilized in embedded scenarios. Four methods have been used in this paper on FPGA 

optimization for TT-layer. 

 
Figure 3. Profiling on networks including TT-layer 
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Networks 2 FC layers 1 FC layer+1 TT-layer 

Runtime(ms) 11 57 

 

 

 

 

Networks VGG-16 Tensorized VGG-16 

Runtime(ms) 132 127 

1. Separate Circuit Design 

As shown in the previous section, every iteration dealing with TT-layer consists of 

several different matrix multiplication and reshaping. Since once circuits are designed and 

build, the data set size it can deal with (i.e. matrix size) can not change, we design separate 

Table 2. Profiling Results for TT-layer 

 

be plac 

Table 3. Profiling Results for Tensorized VGG-16 

 

be plac 
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circuits for different parts in one iteration. Each circuit will be designed to handle one matrix 

multiplication and its related reshape process.  

2. LUT Design for Matrix Reshape 

Look-up table method is used when performing matrix reshape. All the elements are 

stored in a 1-d array and each element will have a corresponding index after reshaping under 

the reshaping rules (i.e. 4 × 4 to 8 × 2). This is a perfect look-up table problem that can 

easily be solved on FPGA. Corresponding calculation is the only time-consuming part that 

can be done in parallel since each element’s position after reshaping is independent. 

3. Parallel Matrix Multiplication 

Matrix multiplication parallelization has been studied a lot on both FPGA and GPU. We 

also included some basic parallel optimization on matrix multiplication. Assuming a matrix 

multiplication happens between two matrices of size n × n, each resulting element requires 

n times multiplication and addition which can be done in 2 clock cycles in the most extreme 

parallelization case. As a result, it requires n multiplier and a n-input adder. We also 

included block matrix multiplication in the process. 

4. Pipeline Different Circuits. 

This optimization is for multiple iterations. Since there will be no dependencies between 

second iteration and first iteration, a pipeline design shown in Figure 4 can be achieved.  

 
Figure 4. Pipeline for multiple iterations 
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C.  Evaluation Results 

We made the evaluation using High-Level-Synthesis(HSL) solution from Xilinx. We 

implemented on Xilinx Vivado HLS software and our targeting platform is Zynq xc7z100 

FPGA. We implemented two very large fully-connected layers in tensor train format, the 

first weight matrix is in the size of 3072 × 262144 and the second one is 262144 ×

4096, the input vector size is 1 × 3072. Each matrix is represented by 6 tensor cores, thus 

12 circuits are needed for these two TT-layers. As shown in Figure 5, orange bars represent 

each circuit’s runtime performance before optimization, blue bars represent the result after 

optimization. On average 24x speed up can be achieved due to our FPGA optimized 

methods. Figure 6.a and Figure 6.b shows the overall comparison between optimized TT-

layer with original matrix multiplication in fully-connected layer. TT-layers have shown 

148x and 128x speed up already, when fpga optimization was used, the overall speedup 

have increased to 2643x and 2944x separately. The total resource used in 12 circuits are 

shown in Table 4. The memory usage are reduced 4880644x and 3195660x separately.  
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III. Discussion and Future Work 

A. Back-Propagation 

Neural networks are usually trained with the stochastic gradient descent algorithm where 

the gradient is computed using the back-propagation procedure. Back-propagation allows to 

Figure 5. FPGA optimization results 

Figure 6. Overall Optimization Results 

      Figure 6.a                                       Figure 6.b 
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compute the gradient of a loss-function L with respect to all the parameters of the network. 

Our method optimized the performance of forward pass, but the backward pass compute 

complexity is also improved because of TT-layer. Back-propagation requires different 

operations which means different fpga optimization are needed to accelerate it. A complete 

hardware accelerator needs to include both forward-propagation and back-propagation. 

B. 3D Processing-in-memory 

Processing-in-memory(PIM) was first proposed in 1990s to address the memory-wall 

issue on von-Neumann architecture. Emerging technology of 3D die stacking has mitigated 

the manufacturing issues of PIM to some extent. The vertical 3D die-stacking with TSVs 

allows stacking multiple memory dies directly on top of the logic die to achieve high 

memory bandwidth. Since tensor train decomposition represents data in 3-dimensional 

tensor cores, it perfect matches the characteristic of 3D PIM which leaves room of 

imagination that using 3D PIM can solve the redundant unfolding and reshaping in neural 

network process. 

 

Resource DSP48E Flip Flop LUT 

Utilization 33 36625 88723 

 

Table 4. FPGA Resource Utilization 
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