
UC Santa Barbara
UC Santa Barbara Electronic Theses and Dissertations

Title
Hardware Acceleration for Tensorized Neural Networks

Permalink
https://escholarship.org/uc/item/0hv2c3q4

Author
Gan, Yiming

Publication Date
2018

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/0hv2c3q4
https://escholarship.org
http://www.cdlib.org/

UNIVERSITY OF CALIFORNIA

Santa Barbara

Hardware Acceleration for Tensorized Neural Network

A Thesis submitted in partial satisfaction of the

requirements for the degree Master of Science in Electrical and Computer Engineering

by

Yiming Gan

Committee in charge:

Professor Yuan Xie, Chair

Professor Behrooz Parhami

Professor Li-C Wang

Professor Zheng Zhang

March 2018

http://engineering.ucsb.edu/people/behrooz-parhami

The thesis of John Yiming Gan is approved.

 __

 Behrooz Parhami

 __

 Li-C Wang

 __

 Zheng Zhang

 __

 Yuan Xie, Committee Chair

March 2018

iii

Hardware Acceleration for Tensorized Neural Network

Copyright © 2018

by

Yiming Gan

iv

ACKNOWLEDGEMENTS

I want to say thank you to my parents. Without their love and support, it would be

impossible for me to finish my master’s degree. I also want to express appreciate to all my

classmates and advisors in ECE department and Seal lab for their help. I’ve learned a lot in

this two year’s process and I’m willing to be better in the following chapter of my life.

v

ABSTRACT

Hardware Acceleration for Tensorized Neural Network

by

Yiming Gan

Machine learning has gained success in many application domains including medical data

analysis, finance, computer vision, and so forth. However, many popular machine learning

models (e.g., deep neural networks) are both data-intensive and computationally expensive:

they require high-volume data samples to train the network, millions to billions of

parameters to describe the model, and large-scale computations to complete the optimization

or inference. Therefore, deep learning can cause unaffordable energy and run-time cost on a

hardware platform. In this paper, we present a way of accelerating deep neural network as

well as compressing weights used by designing hardware acceleration for tensor train

decomposition layers in deep neural network. By utilizing hardware acceleration on

tensorized neural network, we achieved massive memory saving on two fully -connected

layers. Parameters shrink 4880644x and 3195660x separately. At the same time, we achieve

speed up at 2600x and 2900x compared to original matrix multiplication process.

vi

TABLE OF CONTENTS

I. Introduction and Related Work .. 1

A. Introduction ... 1

 1. Efforts in Hardware Optimization…………………………………1

 2. Efforts in Algorithm Innovation..………………………………….2

B. Related Work .. 3

II. Tensor Train Decomposition in Neural Network ... 4

A. Tensor Train Decomposition .. 4

B. Tensor Train Decomposition in Neural Network 8

 1. TT-layer……………………………………………………………5

 2. Compute Complexity …………..………………………………….6

III. Hardware Acceleration for Tensorized Neural Network 8

A. Motivation ... 8

B. FPGA Optimization on TT-layer .. 8

1. Separate Circuit Design…………………………………………..10

2. LUT Design for Matrix Reshaping…..…………………………...10

3. Parallel Matrix Multiplication……..……………………………..10

4. Pipeline Different Circuits.……..………………………………...10

C. Evaluation Results ... 11

IV. Discussion and Future Work ... 13

A. Back-propagation .. 13

B. 3D Process-in-memory ... 13

References .. 14

1

I. Introduction and Related Work

A. Introduction

Deep neural network 1 has gained great success at solving a wide range of practical tasks

including vision and speech 2, language modeling and translation 3 and autonomous driving

4 . These approaches usually use high-volume of variables to parametrize a neural network,

and require high-volume data sets to train the model. For instance, the VGG-19 network

needs 500M memory for image recognition 5. The RNN model in 6 even involves more than

10G parameters. As a result, high-performance computing platforms (e.g., GPU and cloud

computing) are usually required to handle the computation and memory expensive training

and inference (i.e., prediction) tasks. Training and running a complex deep neural network is

infeasible in many application scenarios, due to the limited data sets and computing

resources (e.g., power budget and bandwidth constraints on a hardware platform, no access

to GPUs or cloud computing) such as IoT (Internet of Things) devices, robotics and

embedded platforms. Therefore, developing compact neural network models and designing

high performance as well as energy efficient machine learning hardware have become a key

enabler for many AI and IoT applications.

1. Efforts in Hardware Optimization.

In the communities of computer architecture and VLSI design, many approaches have

been reported to improve the performance of neural network hardware. On GPU and FPGA

platforms and in ASIC designs, various techniques have been investigated to reduce both the

amount and bit width of the data in weight matrices, neurons and gradients in order to save

memory and computation resources 7,8,9,10,11,12. Customized FPGA/ASIC neural network

2

accelerators have also been investigated by many groups. For instance, FPGA accelerators

have achieved several to dozens of times speedup and energy-efficiency improvement by

elaborately designing the parallel processing units, memory allocation and topology tiling.

With on-chip DRAM for near-data processing, ASIC accelerators have gained great success.

For instance, the DaDianNao13,14 has gained 450x speedup and 150x energy reduction

compared with GPUs by increasing the inner bandwidth of computing parallelism and by

reducing the external communications. The performance and energy efficiency of ASIC

accelerators have been further boosted by utilizing process-in-memory (PIM) and non-

volatile memory-crossbars15,16,17,18. For instance, with PIM design, the speed and energy

efficiency of the design PRIME19 are 2360x and 895x better, respectively, compared with

GPUs.

2. Efforts in Algorithm Innovation

Meanwhile, the computational math and machine learning communities have proposed

some numerical approaches to compress neural networks, but these approaches have been

rarely exploited in hardware design. It was first observed that the large weight matrices have

low-rank properties, therefore, they could be largely compressed by low-rank matrix

factorization20,21,22. In Sainish’s work, the number of parameters of the network was reduced

by 30-50% for a deep neural network for large vocabulary continuous speech recognition

tasks. Recently, tensor decompositions were applied to compress neural networks with much

higher compression ratios23,24,25,26. Tensors are high-dimensional generalization of matrices.

While matrix decomposition only compress data in 2 dimensions, tensor decomposition can

achieve much higher compression ratio by compressing data arrays in many dimensions. In

3

the work proposed by Novikov21 , they first used tensor train decomposition27 on fully

connected(FC) layers and shrink the models for 105 times.

B. Related Work

Plenty of works have focused on accelerating deep neural network from both algorithm

perspective and hardware perspective as shown in Fig. 1. In the first work bring tensor

train decomposition into deep neural network, they compressed two FC layers into tensor

train format. In the following work, they tried the same method on convolutional layers and

get further compression rate. Since fewer parameters are used in presenting layers, the

compute complexity is reduced also. The first work designing hardware accelerator for

tensor train based deep neural network is proposed by Huang27, in which they describe a

special 3D RRAM and CMOS combined architecture. 3 layers of circuits were used to form

the accelerator. The first layer is RRAM-crossbar implemented as a buffer to store weights.

Since each tensor core is a 3-D tensor consisted of several slices of matrix, all the matrices

are stored in the order of different tensor core. The second layer is another RRAM-crossbar

used for computing. It is designed for performing logic operations such as matrix vector

multiplication and vector addition. The second layer uses the values stored in the first layer

through through-silicon-via(TSV). Layer 3 is designed to perform overall synchronization of

the tensorized neural network.

4

II. Tensor Train Decomposition in Neural Network

A. Tensor Train Decomposition

Tensors are natural multidimensional generalizations of matrices and have attracted

tremendous interest in recent years. Working with d-dimensional problems with d being as

high as 10, 100 or even 1000 has always been nontrivial. Problems of such size cannot be

handled by standard numerical methods due to the curse of dimensionality since parameters

grows exponentially with d. An efficient representation of a tensor by a small of parameters

may give people an opportunity to work with high dimensional problems. There are several

widely used tensor decomposition method including canonical decomposition, Tucker

decomposition and tensor train decomposition. A d-dimensional 𝑛1 × 𝑛2 × … × 𝑛𝑑 tensor

A is said to be in the TT-format with cores 𝐺𝑘 of size 𝑟𝑘−1 × 𝑛𝑘 × 𝑟𝑘, 𝑘 = 1,2, … , 𝑑 and

𝑟0 = 𝑟1 = 1, if its elements are defined by formula(2.1).

(2.1) A(𝑖1, … 𝑖𝑑) = ∑ 𝐺1(𝛼0, 𝑖1, 𝛼1)𝐺2(𝛼1, 𝑖2, 𝛼2) … 𝐺1(𝛼𝑑−1, 𝑖𝑑, 𝛼𝑑)𝛼0,…,𝛼𝑑

 In which three-dimensional tensors 𝐺𝑘 are called cores of the TT-decomposition and

are all needed to be stored in memory. The ranks 𝑟𝑘 are called compression ranks or TT-

ranks. By decomposing tensors into tensor train format, basic tensor operations such as

addition and Hadamard product can be performed based on tensor cores shown in table 1.

Operation Formula Tensor Cores

Addition 𝐶𝑖1…𝑖𝑑
= 𝐴𝑖1…𝑖𝑑

+ 𝐵𝑖1…𝑖𝑑

𝐶𝑘 = (
𝐴𝑘

0

0

𝐵𝑘
)

Hadamard product 𝐶𝑖1…𝑖𝑑
= 𝐴𝑖1…𝑖𝑑

𝐵𝑖1…𝑖𝑑
 𝐶𝑘 = (𝐴𝑘 ⊗)𝐵𝑘

Table 1. Tensor operations in tensor train format

be plac

5

B. Tensor Train Decomposition in Neural Network

1. TT-layer

The direct application of the TT-decomposition to a matrix (2-dimensional tensor)

coincides with the low-rank matrix format. A matrix in the TT-format is called TT-matrix

and a TT-matrix is not restricted to be square. All operations available for TT-tensors are

Figure 1. Existing software and hardware solutions for deep neural networks

be plac

6

applicable to the TT-matrices as well. TT-matrices can perform matrix-by-vector(matrix-by-

matrix) easily which will be described later. If one of the operands is in TT-format, the

result would be a vector(matrix). If both operands are in the TT-format, the result would be

in TT-format with increasing ranks on TT-cores.

When bringing tensor train decomposition into neural networks, TT-layer is introduced.

In this work, fully-connected layers are used as an example to explain how tensor train

decomposition are used in neural network. As for other layers such as convolutional layers,

they can be transformed into the same compute format with FC layers. Fully connected

layers apply a linear transformation to an N-dimensional input x:

(2.2) y = Wx + b

in which the weight matrix W and the bias vector defines the transformation.

 A TT-layer is the fully-connected layer in which weight matrix W is stored in TT-

format allowing to store only tensor train cores instead of original weight matrix which save

the parameters in a low rank way. The actual parameters stored can be controlled by

changing tensor core size. The linear transformation shown in (2.2) can be expressed in the

tensor form:

(2.3) y(𝑖1, 𝑖2, … , 𝑖𝑑) = ∑ 𝐺1𝐺2𝐺3 … 𝐺𝑑 × x(𝑗1, 𝑗2, … , 𝑗𝑑) + b(𝑖1, 𝑖2, … , 𝑖𝑑)𝑗1,𝑗2,…𝑗𝑑

Since the process is transformed from matrix multiplication to matrix times tensor

cores, the dimensional matching becomes a problem. How data is represented and multiplied

will be shown in next part.

7

2. Compute Complexity

When the weight matrix is represented in TT-format, original matrix multiplication

become tensor matrix multiplication. The process is shown in figure 2 in which N =

𝑛1𝑛2𝑛3 … 𝑛𝑑 and M = 𝑚1𝑚2𝑚3 … 𝑚𝑑.

Figure 2. TT-layer multiplication process

8

The first tensor core will be unfolded to a matrix and reshaped to the matching size with

reshaped input matrix x. The first sub-process is a matrix multiplication with the complexity

of 𝐶 = 𝑚1𝑟1𝑛1𝑟0𝑛2 … 𝑛𝑑 = 𝑟2𝑚1𝑛1 … 𝑛𝑑 resulting an output matrix in size of

𝑛2𝑟1 × 𝑚1𝑛3 … 𝑛𝑑 . The following tensor core is then reshaped to the matching size with

previous output and performs the second matrix multiplication with the complexity of

𝐶 = 𝑚2𝑟2𝑛2𝑟1𝑛3 … 𝑛𝑑 = 𝑟2𝑚1𝑚2𝑛2 … 𝑛𝑑 . There will be d iterations in total and the

final compute complexity is O(𝑑𝑟2m max{M,N}). Compared to the previous fully-

connected layer, TT-layer doesn’t only save memory on storing parameters but also

reduce the compute complexity from O(MN) to O(𝑑𝑟2m max{M,N}).

III. Hardware Acceleration for Tensorized Neural Network

A. Motivation

Although it has been proved that using tensor train decomposition on compressing deep

neural networks will not only achieve obviously compression rate, but also have better

compute complexity since weights represented in tensor core format are much smaller than

before. However, from the data of our profiling, the real performance of tensor based deep

neural network seems worse. As shown in Fig.3, we did profiling based on comparison of

the baseline which is VGG-16 and compressed networks, another comparison has been

made between two simple networks with one TT layer plus one FC layer and two FC layers.

The result showing in Table 2 and 3 prove that although theoretically compute complexity

9

will be reduced, tensorized neural networks don't show actual performance improvement.

The evaluation platform is Intel® Xeon® E5-2603 CPU with a Nvidia® Titan XP GPU.

The reasons for the profiling results are not hard to explain. In actual operations,

weights are stored in memory. Each time one matrix multiplication is processed, the

weights will be taken from memory and be put into GPU for computation. In tensor

train computation, each tensor core will be multiplied by a matrix. To complete this

multiplication, some reshape procedure will be required as mentioned in the previous

section. Although compute complexity is largely reduced, the time that reshape is

happening is not taken into consideration. That's the reason that tensorized neural

network will take longer time than it supposed to and why hardware acceleration is

needed for this kind of network.

B. FPGA Optimization for TT-layer

FPGA is a popular option of existing accelerators, and it is widely used in embedded

environments and in cloud servers. FPGA consists of hundreds of thousands of

programmable logic blocks and programmable interconnections, which can provide

reconfigurable functions; FPGA also consumes less power than GPU, therefore, it can be

utilized in embedded scenarios. Four methods have been used in this paper on FPGA

optimization for TT-layer.

Figure 3. Profiling on networks including TT-layer

10

Networks 2 FC layers 1 FC layer+1 TT-layer

Runtime(ms) 11 57

Networks VGG-16 Tensorized VGG-16

Runtime(ms) 132 127

1. Separate Circuit Design

As shown in the previous section, every iteration dealing with TT-layer consists of

several different matrix multiplication and reshaping. Since once circuits are designed and

build, the data set size it can deal with (i.e. matrix size) can not change, we design separate

Table 2. Profiling Results for TT-layer

be plac

Table 3. Profiling Results for Tensorized VGG-16

be plac

11

circuits for different parts in one iteration. Each circuit will be designed to handle one matrix

multiplication and its related reshape process.

2. LUT Design for Matrix Reshape

Look-up table method is used when performing matrix reshape. All the elements are

stored in a 1-d array and each element will have a corresponding index after reshaping under

the reshaping rules (i.e. 4 × 4 to 8 × 2). This is a perfect look-up table problem that can

easily be solved on FPGA. Corresponding calculation is the only time-consuming part that

can be done in parallel since each element’s position after reshaping is independent.

3. Parallel Matrix Multiplication

Matrix multiplication parallelization has been studied a lot on both FPGA and GPU. We

also included some basic parallel optimization on matrix multiplication. Assuming a matrix

multiplication happens between two matrices of size n × n, each resulting element requires

n times multiplication and addition which can be done in 2 clock cycles in the most extreme

parallelization case. As a result, it requires n multiplier and a n-input adder. We also

included block matrix multiplication in the process.

4. Pipeline Different Circuits.

This optimization is for multiple iterations. Since there will be no dependencies between

second iteration and first iteration, a pipeline design shown in Figure 4 can be achieved.

Figure 4. Pipeline for multiple iterations

12

C. Evaluation Results

We made the evaluation using High-Level-Synthesis(HSL) solution from Xilinx. We

implemented on Xilinx Vivado HLS software and our targeting platform is Zynq xc7z100

FPGA. We implemented two very large fully-connected layers in tensor train format, the

first weight matrix is in the size of 3072 × 262144 and the second one is 262144 ×

4096, the input vector size is 1 × 3072. Each matrix is represented by 6 tensor cores, thus

12 circuits are needed for these two TT-layers. As shown in Figure 5, orange bars represent

each circuit’s runtime performance before optimization, blue bars represent the result after

optimization. On average 24x speed up can be achieved due to our FPGA optimized

methods. Figure 6.a and Figure 6.b shows the overall comparison between optimized TT-

layer with original matrix multiplication in fully-connected layer. TT-layers have shown

148x and 128x speed up already, when fpga optimization was used, the overall speedup

have increased to 2643x and 2944x separately. The total resource used in 12 circuits are

shown in Table 4. The memory usage are reduced 4880644x and 3195660x separately.

13

III. Discussion and Future Work

A. Back-Propagation

Neural networks are usually trained with the stochastic gradient descent algorithm where

the gradient is computed using the back-propagation procedure. Back-propagation allows to

Figure 5. FPGA optimization results

Figure 6. Overall Optimization Results

 Figure 6.a Figure 6.b

14

compute the gradient of a loss-function L with respect to all the parameters of the network.

Our method optimized the performance of forward pass, but the backward pass compute

complexity is also improved because of TT-layer. Back-propagation requires different

operations which means different fpga optimization are needed to accelerate it. A complete

hardware accelerator needs to include both forward-propagation and back-propagation.

B. 3D Processing-in-memory

Processing-in-memory(PIM) was first proposed in 1990s to address the memory-wall

issue on von-Neumann architecture. Emerging technology of 3D die stacking has mitigated

the manufacturing issues of PIM to some extent. The vertical 3D die-stacking with TSVs

allows stacking multiple memory dies directly on top of the logic die to achieve high

memory bandwidth. Since tensor train decomposition represents data in 3-dimensional

tensor cores, it perfect matches the characteristic of 3D PIM which leaves room of

imagination that using 3D PIM can solve the redundant unfolding and reshaping in neural

network process.

Resource DSP48E Flip Flop LUT

Utilization 33 36625 88723

Table 4. FPGA Resource Utilization

15

 References

1. Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” Nature, vol. 521, no. 7553,

pp. 436-444, 2015.

2. L. Deng, G. Hinton, and B. Kingsbury, “New types of deep neural network learning

for speech recognition and related applications: An overview,” in Acoustics, Speech

and Signal Processing(ICASSP), 2013 IEEE International Conference on, pp. 8599-

8603, 2013.

3. R. Collobert and J. Weston, “A unified architecture for natural language processing:

Deep neural networks with multitask learning,” in Proceedings of 25th international

conference on Machine Learning, pp. 160-167, 2008.

4. C. Chen, A. Seff, A. Kornhauser, and J. Xiao, “Deepdriving: Learning affordance for

direct perception in autonomous driving,” in Proceedings of the IEEE International

Conference on Computer Vision, pp. 2722-2730, 2015.

5. K. Simonyan and A. Zisserman, “Very deep convolutionial networks for large-scale

image recognition,” arXiv preprint arXiv: 1409.1556, 2014.

6. A. Coates, B. Huval, T. Wang, D. Wu, B. Catanzaro, and N. Andrew, “Deep speech

2: End-to-end speech recognition in English and mandarin,” in International

Conference on Machine Learning, pp. 1337-1345, 2013.

7. S. Han, J. Pool, J. Tran and W. Dally, “Learning both weights and connections for

efficient neural network,” in Advances in Neural Information Processing Systems,

pp. 1135-1143, 2015.

8. S. Han, H. Mao and W.J. Dally, “Deep compression: Compressing deep neural

networks with pruning, trained quantization and Huffman coding,” arXiv preprint

arXiv: 1510.00149, 2015.

9. S. Han, J. Pool, S. Narang, H. Mao, E. Gong, S. Tang, E. Elsen, P. Vajda, M. Paluri,

J. Tran, et al., “Dsd: Dense-sparse-dense training for deep neural networks,” 2016.

10. S. Narang, G. Diamos, S. Sengupta, and E. Elsen, “Exploring sparsity in recurrent

neural networks,” arXiv preprint arXiv:1704.05119, 2017.

11. S. Han, J. Kang, H. Mao, Y. Hu, X. Li, Y. Li, D. Xie, H. Luo, S. Yao, Y. Wang, et

al. “Ese: Efficient speech recognition engine with sparse lstm on fpga.,” in FPGA,

pp. 75-84, 2017.

12. J. Ba and B. Frey, “Adaptive dropout for training deep neural networks,” in

Advances in Neural Information Processing Systems, pp. 3084-3092, 2013.

16

13. T. Chen, Z. Du, N. Sun, J. Wang, C. Wu, Y. Chen and O. Temam, “Diannao: A

small-footprint high-throughput accelerator for ubiquitous machine-learning,” in

ACM Sigplan Notices, vol. 49, pp. 269-284, ACM, 2014.

14. Y. Chen, T. Luo, S. Liu, S. Zhang, L. He, J. Wang, L. Li, T. Chen, Z. Xu, N. Sun, et

al.,” Dadiannao: A machine-learning supercomputer,” in Proceedings of the 47th

Annual IEE/ACM International Symposium on Microarchitecture, pp. 609-622,

IEEE Computer Society, 2014.

15. S. Li, C. Xu, Q. Zou, J. Zhao, Y. Lu and Y. Xie, “Pinatubo: A processing-in-memory

architecture for bulk bitwise operations in emerging non-volatile memories,” in

Design Automation Conference(DAC), 2016 53rd ACM/EDAC/IEEE, pp. 1-6,

IEEE, 2016.

16. D. Kim, J. Kung, S. Chai, S. Yalamanchili, and S. Mukhopadhyay, “Neurocube: A

programmable digital neuromorphic architecture with high-density 3d memory, ” in

Computer Architecture(ISCA), 2016 ACM/IEEE 43rd Annual International

Symposium on, pp. 380-392, IEEE, 2016.

17. S. R. Agrawal, S. Idicula, A. Raghavan, E. Vlachos, V. Govingdaraju, V.

Varadarajan, C. Balkesen, G. Giannikis, C. Roth, N. Agarwal, et al., “A many-core

architecture for in-memory data processing, ” in Proceedings of the 50th Annual

IEEE/ACM International Symposium on Microarchitecture, pp. 245-258, ACM,

2017.

18. M. Gao, J. Pu, X. Yang, M. Horowitz, and C. Kozyrakis, “Tetris: Scalable and

efficient neural network acceleration with 3d memory,” in Proceedings of the

Twenty-Second International Conference on Architectural Support for Programming

Languages and Operating Systems, pp. 751-764, ACM, 2017.

19. P. Chi, S. Li, C. Xu, T. Zhang, J. Zhao, Y. Liu, Y. Wang and Y. Xie, “Prime: A

novel processing-in-memory architecture for neural network computation in reram-

based main memory,” in Proceedings of the 43rd International Symposium on

Computer Architecture, pp. 27-39, IEEE Press, 2016.

20. T. N. Sainath, B. Kingsbury, V. Sindhwani, E. Arisoy, and B. Ramabhadran, “Low-

rank matrix factorization for deep neural network training with high-dimensional

output targets, ” in Acoustics, Speech and Signal Processing(ICASSP), 2014 IEEE

International Comference on, pp. 6655-6659, 2013.

17

21. Y. Zhang, E. Chuangsuwanich, and J. Glass, “Extracting deep neural network

bottleneck features using low-rank matrix factorization,” in Acoustics, Speech and

Signal Processing(ICASSP), 2014 IEEE International Conference on, pp. 185-189,

2014.

22. J. Xue, J. Li, D. Yu, M. Seltzer, and Y. Gong, “Singular value decomposition based

low-footprint speaker adaptation and personalization for deep neural network,” in

Acoustics, Speech and Signal Processing(ICASSP), 2014 IEEE International

Conference on, pp. 6359-6363, 2014.

23. A. Novikov, D. Podoprikhin, A. Osokin, and D.P. Vector, “Tensorizing neural

networks,” in Advances in Neural Information Processing Systems 28, pp.442-450,

2015.

24. V. Lebedev, Y. Ganin, M. Rakhuba, I. Oseledets, and V. Lempitsky, “Speeding-up

convolutional neural networks using fine-tuned cp-decomposition,” arXiv preprint

arXiv: 1412.6533, 2014.

25. Y. Yang, D. Krompass, and V. Tresp, “Tensor-train recurrent neural networks for

video classification,” in Proceedings of the 34th International Conference on

Machine Learning, vol. 70 of Proceedings of Machine Learning Research, pp. 3891-

3900, PMLR, 06-11 Aug 2017.

26. A. Tjandra, S. Sakti, and S. Nakamura, “Compressing recurrent neural network with

tensor train,” CoRR, vol. abs/1705.08052, 2017.

27. H. Huang, L. Ni, K. Wang, Y. Wang and H. Yu, “A highly-parallel and energy

efficient 3d multi-layer cmos-rram accelerator for tensorized neural network,” IEEE

Transactions on Nanotechnology, vol. PP, no. 99, pp. 1-1, 2017.

