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Modeling the transmission of Ebola and GU Chlamydia in

Sub-Saharan African countries under both epidemic and endemic

settings.

S. Rae Wannier

Abstract

In this dissertation, I used various methods to model the transmission of two

infectious diseases, Ebola in an epidemic setting and GU Chlamydia in an

endemic setting within in Sub-Saharan Africa. Since 2015, there have been

five outbreaks of Ebola Virus Disease (EVD) in several di�erent countries in

Sub-Saharan Africa, one of which became the second largest EVD outbreak

in history in the setting of a longstanding conflict zone. It is suspected that

after violent events occur, EVD transmission will increase; however, empiri-

cal studies to understand the impact of violence on transmission are lacking.

In my first chapter, I used spatial and temporal trends of EVD case counts

to compare transmission rates between health zones that have versus have

not experienced recent violent events during the outbreak. In my second

chapter, I also sought to use modeling to make outbreak projections, looking

at the 2020 outbreak in The Democratic Republic of Congo. I made short

and long-term projections for the outbreak in an e�ort to assess the potential

to provide more accurate forecasting for an ongoing outbreak. I also eval-

uated how the outbreak’s timing and course a�ected the accuracy of such

vi



forecasts. Lastly in my third chapter, I focused on trachoma endemic areas

of Sub-Saharan Africa and modeling the impact of annual Trachoma Mass

Drug Administration (MDA) with azithromycin upon the prevalence of geni-

tourinary (GU) chlamydia using a compartmental model. Communities that

are especially hard hit with Trachoma are almost exclusively poor commu-

nities with poor access to sanitation, screening and antibiotics to treat the

infection; conditions that may allow for STDs to maintain a high chain of

transmission. The dosing of azithromycin for the Trachoma MDA is consis-

tent with dosing given clinically to treat GU chlamydial (GUC) disease, and

recent evidence has suggested it reduces the population prevalence.

In my first chapter investigating the potential impact of violent events

upon local instability and increased EVD transmission, I collected daily EVD

case counts from DRC Ministry of Health for the 2018 outbreak in the Demo-

cratic Republic of Congo (DRC). A time-varying indicator of recent violence

in each health zone was derived from events documented in the WHO situa-

tion reports. I used the Wallinga-Teunis technique to estimate the reproduc-

tion number R for each case by day per zone in the 2018–2019 outbreak. I

fit an exponentially decaying curve to estimates of R overall and by health

zone, for comparison to past outbreaks.

As of 16 April 2019, the mean overall R for the entire outbreak was 1.11.

I found evidence of an increase in the estimated transmission rates in health

zones with recently reported violent events versus those without (p = 0.008).

vii



The average R was estimated as between 0.61 and 0.86 in regions not a�ected

by recent violent events, and between 1.01 and 1.07 in zones a�ected by

violent events within the previous 21 days, leading to an increase in R between

0.17 and 0.53. Within zones with recent violent events, the mean estimated

quenching rate was lower than for all past outbreaks except the 2013–2016

West African outbreak. The di�erence in the estimated transmission rates

between zones a�ected by recent violent events suggests that violent events

contributed to increased transmission and the prolonged nature of the second

largest EVD outbreak in history.

In my second chapter performing EVD outbreak projections, several math-

ematical models were used to predict the final outbreak size and weekly inci-

dence for the 2020 DRC outbreak. Projections were commenced prospectively

mid-way through the outbreak, and retrospectively applied for the early out-

break. Short-term forecasts were made using two di�erent models: (i) a

particle-filter branching-process model and (ii) a naive auto-regression. Fi-

nal outbreak size predictions were made using four di�erent models: (i) the

particle-filter branching-process model, (ii) Theil-Sen regression, (iii) Gott’s

Law and (iv) a novel Bayesian branching process model parameterized us-

ing prior outbreak sizes and contingent on the current outbreak size. The

Bayesian model examined final size distributions across a range of current

outbreak sizes, allowing for an examination of parameter fits.

Overall, there were reasonable amounts of variability in the forecasts cre-
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ated by di�erent models. For short-term, auto-regression models showed

relatively stable steady-state growth in the outbreak, with somewhat larger

confidence intervals while the particle-filter branching model projected an

outbreak slowly ending in the same period. Final outbreak size predictions

increased overall as the outbreak continued. The median expectation among

models increased between 2.5–4.0 fold in September over initial expectations

from June as the outbreak grew from 34 to 128 cases. The branching-process

model was overall the most stable consistent performer, though the Bayesian

model was a close second. Including the West Africa outbreak, easily the

largest to date, increased the range of predicted outcomes for the DRC out-

break between 40–50%.

In predicting the 2020 Ebola outbreak, the most consistent performing

model was the branching process particle-filter model though the Bayesian

model did nearly as well, despite being agnostic to the trajectory of the

outbreak. Our short-term models consistently predicted the outbreak would

grow, though models disagreed over the slowing pace; it will be important to

evaluate the performance of these models in future outbreaks to understand

these uncertainties. The growth of the outbreak to well over a hundred

cases underscores the real risk EBOV poses to the region and the need for

improved understanding of outbreak trajectories even with the presence of

three approved vaccines.

In my third chapter, I analyzed the impact of Trachoma MDA upon GU

ix



Chlamydia prevalence using an extended compartmental SIS model, account-

ing for the natural history of GUC, risk structure, and gender. The model

includes slowly developing partial immunity. MDA was modelled as an im-

pulsively forced treatment with varying coverage and e�cacy.

My model showed that three years of MDA at current levels reduced the

prevalence of GUC in all populations by at least 15%. Between annual MDA,

the prevalence partially rebounded to pre-treatment levels. With Coverage

x E�cacy Ø 0.80, the time between MDA treatments was insu�cient to

sustain transmission, allowing for GUC burden to be suppressed below 1 in

10,000 after 5 rounds for starting prevalence less than 9.2%. When serial non-

compliance is increased from 20% to 80%, this target is achieved for starting

prevalences below 4.7%, down from 9.2%. Targeting azithromycin treatment

only to high-risk individuals reduces the starting prevalences for which target

is reached to 1.8%.

My model suggests that MDA could reduce the prevalence of GUC to

less than 1 in 10,000 within 5 years time. This reinforces the suggestions of

potential additional health benefits of trachoma MDA and points to potential

value of screening and disease treatment even in impoverished areas, and

suggests testable hypotheses regarding prevalence in endemic areas under

treatment.
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Chapter 1

Estimating the impact of violent

events on transmission in Ebola virus

disease outbreak, Democratic

Republic of the Congo, 2018–2019

1.1 Introduction

Since 1976, 10 of the over 34 reported Ebola virus disease (EVD) outbreaks have been in

the Democratic Republic of the Congo (DRC) [1, 2]. The current 2018–2019 EVD outbreak

in northeastern DRC is, as of April 2019, the second largest EVD outbreak in history and the

first to occur in a conflict setting [3]. Although its magnitude substantially trails the 2013–

2016 EVD outbreak in West Africa, the current outbreak has surpassed epidemic forecasts,

particularly mathematical modelling studies that used historical data from prior outbreaks

[4–8]. These studies had projected a final outbreak size of up to 1295 cases as of 25 February
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2019 while the current outbreak now has reported 1604 cases [4, 5].

Since the EVD outbreak began, there have been reports of violent events that have

ranged from destruction of Ebola care facilities and injured and murdered healthcare work-

ers to events unrelated to Ebola care, linked to elections and local unrest [3,9–14]. Following

many of these violent events, Ebola response activities have been disrupted. In some cases,

new EVD case counts have increased in the district a�ected following these events, despite

intensive public health interventions comprising the deployment of rapid diagnostic tests,

novel therapeutics, contact tracing, and ring vaccination using a vaccine approved for emer-

gency use with an estimated 97.5% e�cacy [3, 15, 16]. There has been a growing sentiment

that such events may be contributing to EVD transmission, but quantitative analysis is

lacking.

Here, we hypothesized that during the current outbreak to date, there had been higher

transmission rates in zones that had recently experienced violent events than in zones that

had not experienced such events. Furthermore, we also hypothesized that Shannon entropy

computed with respect to space, a measure of the spatial spread of cases and the uniformity

of their distribution across districts in this epidemic, has increased over time.

1.2 Methods

1.2.1 Data

A time series of case counts were collected from situation reports presented by the DRC

Ministry of Health and were confirmed using situation reports posted by the World Health

Organization (WHO) [3]. EVD cases were classified as suspected, probable, or confirmed.

Suspected cases underwent diagnostic testing and were subsequently classified either as con-
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firmed or not confirmed. Cases reported post-mortem were classified as probable based upon

their epidemiological history. The symptom onset date and the reporting date of probable,

confirmed, and suspected cases were collected from the beginning of the outbreak on 8 May

2018 through 15 April 2019. Beginning on 8 August 2018, data by health zone were also

collected for probable and confirmed cases. As the outbreak has continued, cases were reas-

signed by the DRC Ministry of Health from their initially reported health zone to the health

zone where epidemiological evidence pointed to EVD acquistion. Symptom onset data were

later made available going back to the beginning of the outbreak.

Given the dynamic nature of violence in the region and the relatively short generation

time of EVD, we undertook a time-varying, health zone-level analysis of the outbreak com-

paring transmission in zones that had experienced recent violence to those without recently

reported violence. We considered a violent event as one reported within the WHO situa-

tion reports until 15 April 2019 [3]. We assigned each health zone as having been exposed

to violent events or not. After a violent event, we considered the following three weeks as

the exposure period. We modeled the e�ect of violent events within the previous week, two

weeks, three weeks, four weeks, and five weeks to determine the sensitivity to the time period

chosen.

1.2.2 Statistical analysis

We used the Wallinga-Teunis technique to estimate the number of secondary cases R

for each case in the 2018–2019 outbreak [17]. We defined the serial interval as the interval

between disease onset in an index case and disease onset in a person infected by that index

case. We used both symptom onset and case report data in our analyses given the limitations

of each dataset. Historical outbreaks used case report data, though case report data in this
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dataset is subject to case reclassification between zones, reflecting epidemiologic knowledge

on the place of transmission rather than place of report, that can show up as transmission.

In the current outbreak, case report data were updated nearly daily from the o�cial daily

totals reported by the DRC Ministry of Health and revised as needed. Thus, while the

symptom onset data may be the fundamental definition of the serial interval, these data

were not always revised as more accurate information became available. We employed a

gamma distribution with a mean of 14.5 days and a standard deviation of 5 days for the

serial interval distribution. This models a serial interval of EVD cases approximately ranging

from 3 to 36 days, with mean 14 to 15 days [18–20]. Our application of the Wallinga-Teunis

method assumes there are no missing cases.

To compare transmission in the current outbreak to past outbreaks, we applied the

same estimation technique to reported cases by date from 18 prior outbreaks [?, 7,8,21–29].

We estimated the initial reproduction number Rinitial and exponential decay (or quenching)

rate · for each outbreak by fitting an exponentially decaying curve R(d) = Rinitiale≠·d to

the outbreak’s estimates of R by day d. This exponential decay "quenching" parameter

approximates the often observed reduction in R over the course of an outbreak that may

be due to phenomena such as formal control e�orts including case finding and quarantine

as well as less formal responses including individual behavioral changes or local depletion

of susceptibles. This equation approximates temporal change in transmission rate by a

smoothed quenching pattern in which R decreases exponentially over time at a rate defined

by the quenching parameter. The estimates Rinitial and · obtained by this fit are reported

for comparison to historic outbreaks and not used for further modeling.

We repeated the Wallinga-Teunis procedure to estimate the reproduction number R sep-

arately for each health zone, creating a time series of estimated reproduction numbers for

4



each zone. When estimating R for each zone, we considered the possibility of transmission

between regions. The probability of an inter-zone transmission relative to intra-zone trans-

mission is denoted Ê, representing the reduced probability of a case transmitting outside of

its health zone as compared to their probability of transmitting within their own health zone.

We compared estimates based on values of the inter-zone transmission-mixing parameter Ê

across its range from 0 (no transmission allowed between regions) to 1 (all cases in all regions

transmit equally to all other cases, regardless of region).

Confidence intervals for the Wallinga-Teunis estimated R by health zone were simulated

using the calculated probabilites for each case i transmitting to case j to probabilistically

assign a transmission link for every case, based on 5000 simulations [17]. Using the distri-

bution of R per day per zone, we then calculated the negative-binomial confidence interval

for each day per zone.

Statistical inference on the resulting estimates of R by day per zone was conducted by

regressing estimated R on the presence of a recently reported violent events [30,31]. To adjust

for autocorrelation, the standard errors of the estimates were estimated using a time-series

bootstrap with blocks of 7 days over 2048 replications.

The Shannon entropy of the cumulative number of cases was computed based on all health

zones and standard errors were computed from the proportion in each geographic region [32].

Time series bootstrap based on a fixed length of 7 was used to compute standard errors of

the time trend, based on ordinary least squares linear regression of entropy on days since

the first case.

We conducted all analyses in R (v. 3.5 for Macintosh, R Foundation for Statistical

Computing, Vienna, Austria).
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1.3 Results

As of 15 April 2019, a total of 1,273 EVD cases had been reported. The outbreak is

ongoing as of 11 May 2019. Thus far during the outbreak period, a total of 1,044 cases have

been reported in the seven health zones that have experienced violent events whereas 229

cases have been reported in zones without violent events. The outbreak has been centered

in health zones of Katwa (32%), Beni (20%), Mabalako (8%), Butembo (9%). Butembo and

Beni are the health zones with the most violent events (Figure 1.1).

Since the beginning of the outbreak in May 2018, the average reproduction number (mean

Restimate) was 1.11. Using reporting data, after August 8, 2018, the average reproduction

number was between 1.12 and 1.23 in the 21 days following a violent event in a district, and

between 0.81 and 1.08 in all other cases (Figure 1.3). The di�erence between reproduction

numbers following violent events and not was statistically significant and increased as the

mixing between zones was assumed increasingly limited (transmission mixing parameter Ê

decreased). Even at very high levels of inter-zone transmission mixing, corresponding to

relatively homogenous transmission within and across health zones, (Ê = 0.8, p=0.016), the

di�erence was still statistically significant (Figure 1.3).

We compared the initial estimated R and the quenching parameters of past outbreak to

the current outbreak and its respective health zones (Figure 1.2). The inter-zone transmission

mixing parameter Ê was varied over a range from 0 to 1 (Figure 1.2). The log of the

estimated quenching parameter was (≠6.32) for the current outbreak was closest, though

slightly higher, to that estimated for the 2013–2016 outbreak in West Africa (≠6.87). This

was paired with a slightly higher estimated Rinitial = 1.69 than for the West African outbreak

where Rinitial = 1.67. The (Rinitial) reported here for the West African outbreak is consistent
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with the previous literature [33, 34]. These numbers are consistent with the long trajectory

and continued transmission of the outbreak as a whole, although the trend of observed R

in the current outbreak is rather di�erent from the West African outbreak where the mean

overall R was only above 1.0 early in the outbreak before dropping below 1.0 as the outbreak

continued, where here it can be seen to fluctuate with three peaks above Restimate = 1.5 and

below Restimate = 0.5 (Figure 1.3) [34]. The estimated Rinitial and quenching parameters

clustered around the current outbreak estimates, some more extreme (lower quenching) and

other more like smaller outbreaks of the past. Each health zone was also estimated. While

the health zones at the center of the outbreak on average appeared to have lower quenching

with Mabalako, Butembo and Katwa often having weaker quenching than the West African

outbreak, however, this was not consistent because Beni consistently reported a higher level of

quenching from the estimates, indicating the complex geographic distribution of transmission

among health zones.

In evaluating a probable mixing parameter to use for evaluating the results from this

outbreak, we can look at the evidence from the time series of Restimate by health zone and

examine their behavior (Figure 1.3). Both extremes of no mixing (Ê = 0.0) or full mixing

(Ê = 1.0) are unrealistic and lead to inconsistent results. When no mixing is allowed (Ê =

0.0) this causes false spikes in Restimate in health zones with low levels of transmission following

an increase in transmission in a neighboring health zone as the neighboring cases are unable

to account for the spread of transmission to the low transmission zone, and this creates a false

apparent spike in their own health zone to compensate for a lack of inter-zone transmission.

Even low levels of mixing (Ê = 0.2) are enough to remove false spikes in Restimate that we

see when no mixing is allowed (Ê = 0.0). When full mixing is allowed (Ê = 1.0) this leads

to all health zones having identical Restimate at each time point. This herding behavior is
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Figure 1.1: Map of current Ebola outbreak and violent events. The 2018-2019 EVD
outbreak in northeastern DRC as of 15 April 2019 with confirmed and probable EVD cases
depicted by health zone by color. Violent events are represented as (i) an inner circle: direct
events where violence was directed at Ebola relief e�orts or (ii) an outer circle: all events
where violence either indirectly or directly impacted Ebola relief activities.
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(a) Ê = 0.0 (b) Ê = 0.2

(c) Ê = 0.5 (d) Ê = 0.8

(e) Ê = 1.0

Figure 1.2: Estimated initial reproduction number Rinitial and quenching rate ·
for current and past outbreaks. Rinitial and · were estimated for the current outbreak as
an overall summary measure, as well as independently in health zones with over a range of
inter-zone transmission mixing parameters Ê. a) No transmission between zones: Ê = 0.0. b)
Low transmission between zones: Ê = 0.2. c) Medium transmission between zones: Ê = 0.5.
d) High transmission between zones: Ê = 0.8. e) Full transmission between zones: Ê = 1.0.
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strongly seen still when (Ê = 0.8) at unrealistically high levels. Even at a middle level of

mixing (Ê = 0.5) it appears that health zones herd too strongly to the health zone driving

transmission, as spikes in transmission at days 200, 235 and 304 cause all health zones

reporting cases to spike as well, when it is most probable the increase in transmission is

being driven only by a few health zones and the others only responding to the initial change

in transmission. Though we do not make an e�ort to formally estimate a probable mixing

parameter, it would be reasonable to consider the estimates taken with Ê = 0.1 to Ê = 0.5

as these are the probable limits of the range for the mixing parameter in this outbreak.

Using reporting data, at Ê = 0.1 to Ê = 0.8 we see a di�erence in the Restimate by violent

events (Figure 1.4). Looking only at Ê between 0.1 and 0.5, we see an increase in Restimate

following violent events of 0.44 (95% CI: 0.28, 0.61, p <0.001) to 0.28 (95% CI: 0.16, 0.40,

p<0.001). However, when considering the symptom onset data the strength of the e�ect

of recently reported conflict was reduced, though still significant overall with violent events

leading to an increase in Restimate of 0.17 (95% CI: 0.02, 0.32, p = 0.026) to 0.20 (95% CI:

0.10, 0.30, p<0.001).

To assess the sensitivity of the lag time chosen after a violent event, we looked at the

e�ect of violent events reported in increments of increasing weeks. Looking at the case report

data with Ê = 0.3, the overall e�ect size is fairly constant whether we consider a period of

7 days or 35 days, with an increase in Restimate of 0.37 (95% CI: 0.17,0.57, p < 0.001) and

0.40 (95% CI: 0.28, 0.52, p < 0.001), respectively.

When looking at the onset data with Ê = 0.3, the strength of the e�ect of recent violent

events is strongest when it is evaluated over a full 21-28 days, as Restimate increases from 0.13

(95% CI: -0.05, 0.31, p= 0.074) to 0.21 (95% CI: 0.09, 0.33, p <0.001) as the lag increases 7

to 21 days and then becomes relatively stable.
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(a) Reporting, Ê = 0.2 (b) Onset, Ê = 0.2

(c) Reporting, Ê = 0.5 (d) Onset, Ê = 0.5

(e) Reporting, Ê = 0.8 (f) Onset, Ê = 0.8

Figure 1.3: Wallinga-Teunis estimated R per day and violent events by health zone
for symptom onset and reporting dates, allowing for mixing between regions. R was
estimated over a range of inter-zone transmission mixing parameters Ê. Violent events are
marked using triangles with colors matching the a�ected district(s). a,b) Low transmission
between zones: Ê = 0.2. c,d) Medium transmission between zones: Ê = 0.5. e,f) High
transmission between zones: Ê = 0.8.
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Figure 1.4: Regression estimates of the e�ect of violent events within the last 21
days on Rest using case reporting and symptom onset date data over a range of inter-zone
transmission mixing parameters Ê, where Ê = 0.0 no mixing between zones and Ê = 1.0 full
transmission between zones.

We did not consider event times longer than 35 days apart as many of the a�ected health

zones have events that occur less than one month apart, sometimes occuring as little as one

week apart. For these health zones, increasing duration beyond this point does not increase

the period of time considered as being impacted by violent events, and thus we lose much

of our ability to further distinguish between transmission in zones with recent violent events

and just comparing zones a�ected by violent events to those una�ected.

Figure 1.6 shows the estimated Shannon entropy over the course of the epidemic. The

estimated entropy was 0.99 ± 0.17 on 17 August 2018, rising to 1.88 ± 0.04 by 15 April

2019. We find evidence of an increasing trend (p < 0.01, time series bootstrap), showing less

concentration of cases over time. Some increase in entropy is expected early in an epidemic,

as cases begin to appear in new health zones. Later in an epidemic, a decrease in entropy

could occur if there were an increased concentration of cases in a few of the a�ected health
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(a) Ê = 0.2 (b) Ê = 0.5

(c) Ê = 0.8

Figure 1.5: Wallinga-Teunis estimated R per day by health zone for symptom
onset and reporting dates, Regression estimates of the e�ect of recent violent events
upon Rest using case reporting and symptom onset date data over a range of inter-zone
transmission mixing parameters Ê, where Ê = 0.0 no mixing between zones and Ê = 1.0 full
transmission between zones. a,b) Low transmission between zones: Ê = 0.2. c,d) Medium
transmission between zones: Ê = 0.5. e,f) High transmission between zones: Ê = 0.8.
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zones. It is possible that the continued spatial spread of the current outbreak, which is

second only to the West African outbreak, is contributing to the di�culty in controlling this

outbreak.

0.
0

0.
5

1.
0

1.
5

2.
0

Time

Es
tim

at
ed

 S
ha

nn
on

 e
nt

ro
py

 (b
its

)

08/18 09/18 10/18 11/18 12/18 01/19 02/19 03/19 04/19

Figure 1.6: Estimated Shannon entropy of 2018–2019 DRC outbreak.

1.4 Discussion

Among health zones situated within the EVD outbreak in DRC, we found that the

EVD transmission rate (reproduction number R) was higher following violent events. The

outbreak was subcritical (R < 1.0, non-sustaining transmission) in zones without violent

events reported by WHO [3], while it was supercritical (with estimated R > 1.0, continued

transmission) in zones with reported violent events, suggesting that ongoing violence is likely

perpetuating an otherwise declining outbreak.

Our findings suggest that violent events increased transmission in the weeks following

a violent event, and that this e�ect may be sustained for many more weeks. After the

14



destruction of the Ebola care facility in Katwa, for example, over one month was needed

before Ebola virus disease relief e�orts were fully resumed. Our time series regression found

an e�ect of violent events on estimated R across both symptom onset data and case report

data, across all plausible levels of inter-region transmission (Figure 1.3), and lagged follow-

up periods of 14 or more days. The consistency of the e�ect of recent violent events across

data sets strongly supports the idea that violence is indeed contributing to the increased

transmission and ongoing nature of this outbreak [35–39]. More research is needed to confirm

and further understand how the frequency and intensity of events may a�ect the contributions

of violence to EVD transmission.

There are several limitations in our analysis. Cases may have escaped detection and

reporting [40,41]. If cases are missing in a biased way that systematically unreports cases in

certain areas or at certain times it could lead to a biased estimate of the e�ect, though the

direction of the bias is unclear. Additionally, if there is heterogeneity in the reporting delays,

this could bias the e�ect estimates made using the case report data, though this objection

would not apply to the symptom onset data. The nature and causes of violent events can

be quite di�erent. Moreover, such events can a�ect di�erent numbers of people, can vary

in geographic scope as well as the duration of their impact. Other non-violent events not

considered in this analysis, such as strikes, may also be contributing to ongoing transmission.

Unmeasured causes or determinants of violence in the region may also drive variation in

transmission or reporting in an unmeasured way. The epidemic curve in each health zone

describes relatively few cases, making interpretations of specific features of their epidemic

curves unwise. Our analysis relied on WHO reporting of violent events, and more accurate

quantification of these events may be possible. Note that the assumption of exponential

decay (quenching) of Rinitial may not accurately characterize this epidemic; however, this
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was only used for comparisons to past outbreaks, and the estimates of the e�ect of violent

events are not a�ected by this. While we have shown that the ongoing violence has likely

hampered control and contributed to this becoming the second largest epidemic, our e�orts

to quantify the role of violence should be interpreted with caution. These considerations also

suggest that meaningful interventions must consider the social and political determinants of

armed conflict in the DRC, including the legacies of colonialism, and other forms of historical

and ongoing violence [35–39,42–44].

On 16 April 2019, the Democratic Republic of the Congo’s Minister of Health addressed

the worsening outbreak and indicated that with “the di�cult security situation, this epi-

demic had gone beyond public health.” [45] While this may have been the first time an EVD

outbreak occurred in an active conflict zone, it is unlikely to be the last time that violent

conflict contributes to the prevention of epidemic decline. As EVD surges in DRC, a polio

outbreak surges in a conflict area of Nigeria. Ebola virus and other infectious disease out-

breaks have the potential to become neglected crises in conflict settings if left unchecked.

Despite immense security challenges, Ebola responders and people of the a�ected area work

tirelessly under dangerous conditions and deserve great respect, gratitude, and protection

for their ongoing work to contain this public health disaster.
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1.5 Supplementary Materials

Table 1.1: Violent Events Reported in WHO Situation Reports and included in our
analysis.

Date Setting Health
Zones

Description

24 Aug. 2018 Community Mabalako
Oicha
Beni

Community resistance

22 Sep. 2018 Community Mabalako
Butembo
Beni

Armed conflict unrelated to EVD response
‘ville morte’

2 Oct. 2018 Community Butembo Attack on health care workers

16 Nov. 2018 Community Beni
Butembo

Militia attacks, vaccination activities paused
after security incidents

22 Nov. 2018 Community Butembo Two huts burned due to Ebola suspect

3 Dec. 2018 Community Komanda Aggression to SDB teams with 3 of 4 burials
missed due to community resistance

24 Dec. 2018 Community
Facility

Beni
Butembo

Security issues, points of entry burned, SBDs
delayed activities

1 Jan. 2019 Community Beni Community resistance and ‘ville morte’ in
Beni around SBDs

21 Jan. 2019 Community Katwa
Mandima

Political violence unrelated to the EVD
response

24 Jan. 2019 Community Komanda Community resistance

12 Feb. 2019 Community Beni Surveillance activities disrupted to security
incidence

24 Feb. 2019 Community
Facility

Katwa MSF ETC is burned, lab and field activities
disrupted

27 Feb. 2019 Facility Butembo MSF ETC attacked

9 Mar. 2019 Facility Butembo Shooting at ETC after re-opening
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Chapter 2

Real-time projections of the epidemic

curve of the 2020 Mbandaka Ebola

outbreak

2.1 Introduction

A recent outbreak of Ebola virus disease was reported by the WHO on 1 June 2020,

in the Democratic Republic of the Congo in the Équateur region [46], which has caused

130 cases and 55 deaths across 15 health zones by the time it was declared o�cially over

on November 18, 2020 [47]. This outbreak was subject to a series of exacerbating and

mitigating factors making it hard to predict, and was impeded by competing priorities and

insu�cient resources. Coming at the same time as the global COVID-19 pandemic, which

had caused at least 11,000 confirmed cases in the DRC before the start of the outbreak [48],

as well as a large measles outbreak [49]; the outbreak response su�ered some from a strain in

attention and resources from the central public health department. The outbreak response
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also faced challenges of community acceptance of public health interventions, including the

ring vaccination program and refusal of care [50]. A greater challenge was simply logistical,

with this outbreak covering a broad, largely rural, geographic area, often without good

transportation and access for medical and health workers [46]. All of these exacerbating

and extenuating circumstances are challenging to model, making it di�cult to predict an

outbreak’s size and response; and yet doing so can help inform the deployment of resources

towards control early on. Though most historic outbreaks have been small or mid-size (fewer

than a thousand cases), two outbreaks in particular have grown to be extremely large, the

recent 2018 outbreak in the DRC and the 2014–16 West African outbreak [7,8,21–29,51–53].

The dynamics controlling final outbreak sizes are poorly understood, and may not be limited

exclusively to the regional instability and inexperience with Ebola which are belived to have

allowed these outbreaks to flourish [54]. Other factors, such as population density, funerary

customs, transport patterns and medical access and trust have all been identified as playing

historical roles in Ebola transmission. Predictions of final outbreak sizes can help public

health response teams evaluate readiness in the event that an outbreak becomes uncontrolled

and prolonged and take early steps to improve their capacity to respond, while also using

short-term forecasts to evaluate the scope of operation for immediate responses, including

hospital readiness and capacity.

Past outbreaks may provide insight into expected outbreak sizes, despite the changing

context of Ebola viral disease (EVD) outbreaks over time, as knowledge of the disease and

tools to fight EVD outbreaks have progressed; most particularly the emergence of highly ef-

fective vaccines [55]. Each outbreak in the past decade has taken place in a di�erent setting–

notably control in the recent 2018–20 outbreak in the DRC was hampered by widespread

conflict in the outbreak zone [54], while vaccination e�orts in this current outbreak were
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hampered both by the remote location and far flung nature of the outbreak. Despite im-

provements in treatments and vaccination, the four most recent outbreaks have included the

two largest outbreaks to date, and underscore the need to consider the ongoing threat that

Ebola poses, and the need for updated models that consider these larger outbreaks in making

projections for newly emerging outbreaks. Underestimating outbreak trajectories is likely

to prove more harmful than overestimations, potentially leaving a local public health team

underprepared and under-resourced to adequately respond to a growing outbreak, though

overly pessimistic projections are not desirable, as they may unnecessarily divert resources.

Highly accurate forecasts of small, noisy outbreaks may prove elusive [56, 57], and su�-

cient data are not available to assess how novel events (such as the COVID-19 pandemic) may

a�ect ongoing control and transmission. However, projections derived from past outbreaks

may prove a helpful benchmark. In particular, short-term forecasting may prove especially

valuable in providing additional feedback to a local disease response in the e�ectiveness of

their responses while avoiding overconfidence in apparent successes. In this paper, we extend

our prior work to provide projections [58] for this recent outbreak, seeking to assess the po-

tential to provide more accurate long-term and short-term forecasting for ongoing outbreaks.

We also develop a novel Bayesian branching process model using past outbreak trajectories

to project new ebola outbreaks. Previous studies have indicated that short-term outbreak

predictions are often more accurate and reliable, particularly in low information settings,

than final or long-term projections but that, especially medium and long-term model projec-

tions, improved with increased data availability and model complexity [59]. Here we evaluate

the performance of outbreak forecasts based on past outbreak data, to understand how tim-

ing and the outbreak course a�ect the accuracy of such forecasts and assess whether certain

models may perform better under di�erent conditions.
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2.2 Methods

2.2.1 Data

Data for the recently ended pandemic were collected from the Ministry of Health of the

Democratic Republic of the Congo. Time series for past outbreaks were used, as previously

compiled [58] and their inclusion in the prediction models is summarized in the supplemen-

tary materials (Table 2.3). A total of twenty historical outbreaks were compiled with time

series information for inclusion into the prediction modeling. Forecasts were made prospec-

tively at the end of each month starting in August while the outbreak was ongoing and were

retrospectively performed for the months of June and July. In an e�ort to limit subconcious

bias, model development was mostly performed using only the initial severly truncated time

series of cases from the first few weeks during development in June and July, and was fully

updated in August as we started making prospective predictions.

2.2.2 Analysis

For the short-term forecasts, forecasts looking forward up to two months, we used two

models: (1) a branching process model we used for previous Ebola virus disease outbreaks

[58,60] and (2) an autoregression.

We use four methods to estimate the final outbreak size: (1) a branching process model

(same as above), (2) Thiel-Sen Regression [58], (3) Gott’s law [61], and (4) a paramet-

ric Bayesian method projecting the final size conditional on the current outbreak size and

parameterized using prior outbreak sizes.

For all simulation models, outbreaks were terminated once they hit a ceiling of 40,000

cases to improve computational e�ciency, and in order to facilitate inter-model comparisons,
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the distributions for the regression models were truncated at 40,000 with all remaining tail

probability given to an outbreak of precisely 40,000 cases.

Particle-Filter Branching Process Model (PF-BP)

In brief, using a stochastic branching process model previously written [60], we modeled

the transmission of Ebola virus (EBOV) using estimated transmission parameters fit to

historical EVD outbreak and a particle filtration step for agreement with the current case-

count trajectory [58,60].

To begin, the distribution for the reproduction number and the outbreak trajectory was

estimated from fitting an observed relationship to historical outbreaks of size 10 or greater

[7,8,21–29,51–53]. The first historical outbreak in each country that met our inclusion criteria

(i.e. the first outbreak that was at least ten cases) was excluded from the distribution, to

acknowledge the impact that public health experience and community sensitization play in

a�ecting an outbreaks trajectory, as the DRC is now in its eleventh outbreak.

To estimate the reproduction number for the past and current outbreaks we used the

Wallinga-Teunis technique to estimate R for each case [17], using a gamma serial interval

distribution with a mean of 14.5 days and a standard deviation of 5 days consistent with a

serial interval that ranges from 3 to 28 with a mean between 14 to 15 days [18–20]. The Rinitial

and the quenching rate · were estimated using an exponentially quenched curve given by Rt

= (Rinitial)e-t*· fit to each historic outbreak’s time series of R. This models the assumption

that transmission rates gradually decline over the course of an outbreak due to a wide range

of e�ects including public health response measures, changes in behavior and potential local

depletion of susceptibles.

To project cases in the current outbreak, the stochastic branching process used a nega-
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tive binomial secondary case distribution with a mean equal to the simulated reproduction

number R as a function of day of the outbreak, and its variance controlled by a dispersion

parameter k [62,63]. We sampled across dispersion parameter k = 0.3, 0.5, and 0.7, to reflect

the heterogeneity of transmission observed in past EBOV outbreaks [64–66]. The (Rinitial, ·)

pairs sampled uniformly from across the fitted distribution shown in Figure 2.1 informed by

the past outbreaks.

Each simulation was initiated with a single case. The simulation was run multiple times

with each instance producing a unique epidemic trajectory, generated by the above branching

process with the given parameters Rinitial, · , and k. These instances were then filtered for

trajectories with outcomes matching the cumulative case counts for the current 2020 outbreak

trajectory, i.e. simulated trajectories were filtered at two timepoints (i) two weeks before the

current date of projection and (ii) at the current date of projection for case counts matching,

or within 5 cases of matching, the outbreak size at the respective time points. The purpose

of this matching is to select for simulated outbreaks that are both the same size as the

current outbreak being predicted, and also one that has recently been growing at a similar

pace, while not overly restricting the trajectory fit so that it is computationally practicable.

All instances were terminated after 40,000 cases, avoiding run-away epidemics and allowing

for e�cient computation. As the beginning date of the outbreak is unknown, the first value

was allowed to match on any day, reflecting the uncertainty in the precise date the outbreak

began.

2.2.3 Auto-Regression model (AR)

An auto-regression model was also fit to the Ebola outbreak time series. A negative

binomial autoregressive model was chosen through a validation process (described below)
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to forecast additional new case counts at time points one week, two weeks, one month, and

two months from the date of forecast. To adjust for disparities in the frequency of case

reporting in historic outbreaks (some outbreaks have daily, weekly or monthly data), the

data were weighted by the inverse square root of the number of observations contributing to

the model. Only historical outbreaks greater than size 10 were considered. Models consid-

ered included a two and four-week autoregressive model, as well as parameters considering

the historic cumulative case counts (probable and confirmed) at di�erent time points, and

logs of historic case counts. When historic case counts for specific dates were missing, each

missing case count was interpolated from the two nearest case counts using Stineman’s inter-

polation function [67], which preserves monotonically increasing case counts while allowing

for geometric changes in growth when the rate of reported new cases between subsequent

points appears to increase or decrease. All models were fit and the final model was chosen to

be the one with the smallest mean-squared error after ensuring residual independence from

the predicted case counts. After model fitting and validation, the final model chosen was

a negative binomial auto-regression with two- and four-week auto-regressive processes, with

a trend adjustment for the ratio of cases from the previous two weeks to four weeks which

helps project a downward or upward trend in cases.

Theil-Sen Regression (TS)

We conducted a simple regression forecast based solely on outbreaks of size 10 or greater,

based on the time series of prior outbreaks [7, 8, 21–29, 51–53]. Due to the fact that the

beginning of the time series were often poorly characterized, all time series were aligned

on the day they reached 10 cases, designated as day 0 for the purposes of this regression.

Nonparametric Theil-Sen regression (R package mblm) was used to project the final outbreak
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size based on values of the outbreak size at an earlier time point of choice and the elapsed

time from that point to the day the outbreak first reported 10 cases. Stineman’s interpolation

was again used between reporting dates to obtain the number of cases reported on the day of

forecast, and we reported the median and 95% central coverage intervals for the prediction

distribution conditional on the value being no smaller than the observed value on the day

of forecast. Finally, we reported the median and 95% central coverage intervals for the

prediction distribution. More details can be found elsewhere [58].

2.2.4 Gott’s law model (GL)

Gott’s law approaches prediction with the assumption that, all things being equal, we

observe an epidemic at a random point during the epidemic. Thus a specific observation

is equally likely to represent 10%, 50% or any other percent of the total cases and final

outbreak size. This model serves as a reasonable neutral benchmark for projections, as

Ebola outbreaks are often first identified with only a small number of cases, most with fewer

than ten cases, and none with more than thirty at first report [7,8,21–29,51–53]. With Gott’s

Law, we assume we have no special knowledge of our position on the epidemic curve [61]. If

we assume a non-informative uniform prior for the fraction – (0 < – Æ 1) of the epidemic

included in the last available report with current case count Y0, the corresponding probability

density function for the final size Y = Y0/– is P(Y = y) = Y0/y2, Y0 Æ y. We constructed a

probability mass function by integrating the probability density for each individual day.

2.2.5 Bayesian model (BM)

We developed a novel Bayesian forecast of the final size using the same branching process

transmission model above. We calculate the conditional distribution of the final size given the
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current size as follows. We draw values of R, · , and k from a prior distribution. Specifically,

we chose R from a uniform distribution on the range 0.75 to 3, and we chose log(·) from a

uniform distribution on the range log(0.01 days≠1) to 0 days≠1. Finally, we chose k uniformly

from the range 0.1 to 1, reflecting substantial over-dispersion as seen in previous studies

[64–66,68]. A total of 50,000 di�erent parameter sets were drawn from this prior. Given each

parameter set, 8,192 simulations were conducted in an adaptive manner running an initial

set of 32 simulations for each parameter set, and running the additional simulations if the

initial runs yielded at least one outbreak that was larger than two cases or less than an initial

ceiling of 10,000. A secondary adaptive phase was performed for each parameter set running

256 simulations and continuing to the last full phase if there was at least one simulation

greater than twenty cases (lower than any of the prediction forecast points) or at least 5%

of simulations yielded an outbreak lower than the ceiling of 40,000. The final simulation

brought each parameter set to 8,192 with a case ceiling of 40,000, yielding a collection of

simulated final sizes. This adaptive simulation was done to improve computational e�ciency

by tossing parameter sets early on where outbreaks reliably either failed to materialize or

nearly always escaped which were fairly certain not to prove a high likelihood simulation.

The branching process terminated after 40,000 cases to cover historic outbreaks and improve

computational e�ciency by preventing runaway epidemics. We then fit the simulated outputs

to a Gaussian distribution, and used this to estimate the log-likelihood of the observed

outbreaks with a penalty for simulated outbreaks escaping beyond our stoppage criterion.

The West Africa outbreak of 2014–16 was omitted from the principal predictions due to

di�culties finding and fitting triples for the over-dispersed distribution but included it as a

sensitivity analysis (Table 2.5). For consistency we also eliminated the West Africa outbreak

from the other predictions models informed using past outbreak distributions. Finally, we
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used the sampling/importance resampling algorithm to create a sample from the posterior

distribution of outbreak sizes [69]. To establish stability in our prediction of final outbreak

sizes, we performed the above simulation four times over (Supplemental Materials)

2.2.6 Scoring

In order to compare model performance, projections were scored using the natural log-

arithm of the probability assigned to the the subsequently reported case counts for the

short-term projections or the final outbreak size for the final size projections. Short-term

projections were scored and compared at multiple timepoints: one-week, two-weeks, one-

month and two-months forward.

2.3 Results

The particle-filter branching process (PF-BP) model and the auto-regression (AR) models

were used to perform short-term forecasts for the current outbreak (Figure 2.2, Table 2.1).

Both of these models drew Rinitial and · pairs informed from the fit of pairs from all historic

outbreaks (Figure 2.1). Nearly all of the historical outbreaks have Rinitial estimated between

0.5-8, with a few outliers between 15-20. These estimates likely reflect a selection only for

outbreaks with more than at least ten cases in a disease with high heterogeneity [64–66],

while the outlying estimates describe outbreaks that were characterized by extremely steep

increase in cases at the onset due to a superspreading event, such as a large funeral for

the index case or the repeated sharing of contaminated needles in a hospital following the

index case seeking care, with slower transmission following afterwards [8, 62, 70]. The AR

model shows a relatively stable steady state growth in the outbreak, projecting on June 30:
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Figure 2.1: Fitted reproduction rate Rinitial and quenching rate · pairs from
historic outbreaks with the fitted probability cloud. Rinitial and · pairs were sampled
evenly from across the probability distribution to feed the particle-filter branching process
(PF-BP) model.
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Figure 2.2: Short-term forecasts for new cases in the recent outbreak for one
week to two months out from the last day of each month of the outbreak. Results
are shown for the particle-filter branching process (PF-BP) and the auto-regression (AR)
models. A red dot indicates the actual observed number of new cases from the outbreak.
Forecasts are shown for a) one week, b) two weeks, c) one month and d) two months out.
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5 new cases (95% CI: 0–44), 11 new cases (95% CI: 0–87), 24 new cases (95% CI: 0–186)

and 51 new cases (95% CI: 0–429) at one week, two weeks, one month and two months out

respectively. Additional detail on short-term predictions can be found in the supplement

(Table 2.6, Figures 2.4, 2.5, 2.6, 2.7)). The PF-BP model generally projected an outbreak

slowly coming to an end and a smaller spread in probable outcomes than the regression

except for the beginning of the outbreak when its projections were far less certain. Early

in the outbreak the PF-BP projections were rather broad, projecting 5 new cases (95% CI:

0–23), 10 new cases (95% CI: 0–54), 15 new cases (95% CI: 0–202) and 17 new cases (95% CI:

0–1,427) at one week, two weeks, one month and two months out respectively. However in

late in the outbreak on September 30 the projections covered an incredibly narrow interval,

while the median expectation of new cases was lower than earlier in the outbreak projecting

an outbreak swiftly coming to a close with 1 new cases (95% CI: 0–7), 2 new cases (95% CI:

0–13), 3 new cases (95% CI: 0–26) and 3 new cases (95% CI: 0–46) at one week, two weeks,

one month and two months out respectively.

Four prediction models were also used to estimate final outbreak size, including our novel

Bayesian model. Overall, final size prediction models showed a larger final outbreak size as

the outbreak continued, increasing from a median final size estimate of 45–108 on June 30th

with 34 reported cases to a median final outbreak size between 133–417 cases on September

30th with 128 reported cases. The branching process model (PF-BP) was overall the most

stable consistent performer (Table 2.2), though the Bayesian model (BM) did nearly as well

across the whole outbreak. The Theil-Sen Regression (TS) and the Gott’s Law (GL) both

performed quite well at the end of the outbreak, but performed rather poorly at the onset.

The newly developed Bayesian model (BM) was run over 400,000,000 simulations across

50,000 parameter sets. The parameter sets contributing most to the final outbreak size
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Table 2.1: Average scores for the short-term predictions for the branching process
(PF-BP) model and the auto-regression (AR) model.

Averages are calculated both by the length of the projection at one week, two weeks, one
month and two months as well as by date of forecast across all projections. Scores are
calculated by taking the natural logarithm of the predicted probability of the observed case
count for each projection at each month. Smaller negative scores indicate a better performing
model.

Projection Type Auto-Regression (AR) Branching Process (PF-BP)
Forecast Date June -4.61 -4.57

July -4.29 -4.37
August -3.79 -3.31
September -1.98 -2.33

Projection one week -2.62 -2.35
two weeks -3.46 -3.23
one month -4.06 -4.25
two months -4.53 -4.75

distribution generally featured high heterogeneity in secondary case distribution (k= 0.3)

and an R0 between 1.05–3.40 with a wide-range of decay rates in transmission (Figure 2.1).

Supplementary Table 2.4 shows the predicted conditional distribution for final outbreak size

across a range of current outbreak sizes, when the unprecedentedly large West Africa out-

break is excluded. This distribution is conditional only on the currently observed case count,

and generally had a median predicted final outbreak size between 3–3.5 fold greater than the

currently observed case count, IQR (1.7–1.8 to 8–9 times greater than the currently observed

case count). Including the West Africa outbreak, by far the largest to date, increased the

range of predicted outcomes between 40–50% (Table 2.5).

The prediction of final outbreak size from the BM model increased from 71 cases (95%

CI 35 – 1892 cases) on June 30, to 417 cases (95% CI 134 – >40,000 cases) on September

30th, at the tail end of the outbreak (Table 2.2, Figure 2.3). It performed consistently across

the duration of this outbreak, but did best at the beginning, but had final scores from -5.32
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– -5.81.

The PF-BP predicted increasing final outbreak sizes over the course of the outbreak,

increasing from 51 cases (95% CI 34–>40,000 cases) on June 30, to 131 cases (95% CI

128–183 cases) on September 30th. The initial prediction when the outbreak was growing

quickly and was early on had the greatest uncertainty in the continued rate of growth of the

outbreak and considered a broad range of possible trajectories. As the outbreak stabilized,

the anticipated growth and trajectory stabilized the predictions to a narrower range. Overall,

the branching process model performed better by score for the shortest term forecasts of

one to two weeks while the auto-regression performed slightly better for longer timepoints.

The PF-BP otherwise performed relatively similarly to the AR model accross the outbreak,

though they both performed best at the end when the trajectory was more stable (Table 2.2).

From the TS model, the final outbreak size increased from 45 cases (95% CI 34–80 cases)

on June 30, to 137 cases (95% CI 128–163 cases) on September 30th, just as the outbreak

was ending. It performed well at the end of the outbreak, with the smallest negative overall

score from any model at any point, but did quite poorly at the beginning, due largely to

a narrow prediction with a short tail. The GL model performed similarly, with the best

predictions at the end of the outbreak. The predictions for GL increased from 67 cases (95%

CI 34–1359 cases) on June 30, to 255 cases (95% CI 130–5119 cases) on September 30th.

Interestingly, though in the past GL has served as a relatively pessimistic agnostic model

with a long-tail distribution [60], the inclusion of the recent 2018–20 DRC outbreak (final

size >500 cases), has brought our other models’ predictions in closer agreement with the GL

model. The BM had the heaviest and longest tails.
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(a) 6/30/20 (b) 7/31/20 (c) 8/31/20 (d) 9/30/20

Figure 2.3: Final outbreak size probability density distributions for all four models
at each forecast date i) Bayesian approach, ii) branching process with particle filtering, iii)
Gott’s Law, and iv) regression model. Projections are made based on observed case counts
of 34 cases on June 30th, 72 cases on July 31st, 109 cases on August 31st and 128 cases on
September 30th. Red bar indicates the current case count, and the gold bar indicates the
final case count for the outbreak. The top panels are zoomed in figures on case counts below
150, and the lower panels are zoomed out to show the tails of the distributions.
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Table 2.2: Predicted final outbreak size distributions across all four models

at the end of each month during the outbreak, including the Bayesian branching process
model (PF-BP), the particle filtration branching process model (PF-BP), Theil-Sen Regres-
sion model (TS) and Gott’s Law (GL). Performance scores for predicting the final outbreak
size of 128 cases from the end of month case counts are included. Scores are calculated by
taking the natural logarithm of the predicted probability of the final observed outbreak size
for each model at each month. Smaller negative scores indicate a better performing model.

Forecast Date model Mean 2.5% 25% 50% 75% 97.5% score
6/30/20 Bayesian 305 35 55 108 296 1848 -6.2
7/31/20 Bayesian 481 75 122 238 550 2352 -5.81
8/31/20 Bayesian 616 114 184 343 721 2740 -5.67
9/30/20 Bayesian 2596 134 223 417 907 40000* -5.71

6/30/20 Branching Process 2345 34 39 51 117 40000* -6.79
7/31/20 Branching Process 356 72 76 82 98 527 -6.4
8/31/20 Branching Process 552 110 118 129 160 812 -4.19
9/30/20 Branching Process 142 128 129 131 136 183 -1.93

6/30/20 Theil-Sen Regression 34 39 45 53 80 -9.97
7/31/20 Theil-Sen Regression 73 80 88 101 138 -5.99
8/31/20 Theil-Sen Regression 110 115 122 132 162 -3.88
9/30/20 Theil-Sen Regression 128 132 137 144 163 -2.93

6/30/20 Gott’s Law 339 34 44 67 135 1359 -6.22
7/31/20 Gott’s Law 665 73 95 143 287 2879 -5.47
8/31/20 Gott’s Law 961 111 144 217 435 4359 -5.05
9/30/20 Gott’s Law 1108 130 170 255 511 5119 -4.89

2.4 Discussion

The recently ended outbreak in the DRC had a final outbreak size of 130 cases, which

was always included in the 95% confidence interval for the PF-BP, BM and GL models.

The predictions generally increased as the outbreak continued to grow, with both the TS

and the PF-BP models showing a narrowing of their predictions as the outbreak continued.

The (PF-BP) was overall the most stable consistent performer for final outbreak size during

this 2020 outbreak, becoming increasingly confident of outbreak trajectory as time went on.

The TS, BM and GL all appeared to be sensitive to the position of the outbreak for their
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performance with the BM performing best early in the outbreak, but doing very poorly by

the end as it was agnostic to the slowing trajectory of the outbreak. This lack of response to

the trajectory may make it less useful to immediate outbreak response but can be important

to assess overall readiness of the public health agency early on in the outbreak.

Throughout the outbreak, final outbreak size projections showed fairly high levels of

uncertainty, save for the regression, with a sharp disparity between the median and the mode

for the outbreak distributions. This uncertainty may simply be a realistic and necessary

feature of attempting to predict Ebola outbreaks. The breadth in these predictions can

be attributed to two things: i) the over-dispersion in secondary case distribution leading to

over-dispersion in historical outbreak sizes which informs the branching process and Bayesian

models in particular, a feature of Ebola transmission that is well documented [62–66], and

(ii) the inclusion of 2018 DRC outbreak which has a�ected model fits more generally. These

uncertainties are vitally important to highlight as they provide a guidance through the

median of the most likely outbreak course. These uncertainties also also highlight the need

to consider public health readiness in the event that the outbreak should continue on a

trajectory more similar to the recent 2018 DRC and West Africa outbreaks.

However, the short-term outbreak predictions continue to be the most immediately appli-

cable for immediate public health responses and are generally considered to be more reliable.

Our short-term prediction models consistently predicted that the outbreak would continue

to grow, though the models disagreed over whether the course of the outbreak was likely

to continue as it had been or slowly come to an end. Dynamic short-term forecasts can

provide an important additonal feedback tool to local outbreak response teams gaining per-

spective on changes and successes in outbreak control while also avoiding overconfidence in

the ultimate trajectory of the outbreak.
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The predictions at all time points for all models were generally larger than previous

models and previous outbreaks [58, 60]. The most recent, and second largest outbreak in

the DRC from 2018–20 with over 3,000 cases, is only the second outbreak to exceed 500

cases. Previously the West Africa outbreak, the largest to date with nearly 30,000 cases, was

often treated as an outlier in previous studies and models, whose inclusion would often more

than double the predicted outbreak growth [58,60]. This more recent outbreak has updated

our understanding of the potential for EBOV to lead to large and relatively uncontrolled

outbreaks, though the additional inclusion of the West Africa outbreak still pulls the distri-

bution towards larger outbreak sizes. As a consequence, our predictions for the final size of

the current outbreak are now heavier tailed and have a higher median. It will be necessary

to further evaluate the models’ performances during outbreaks with di�ering trajectories to

assess their responsiveness to changes in growth and trajectory.

Our mathematical models do not consider the unique circumstances that may have likely

contributed to the two historically large outbreaks with the recently ended outbreak in the

eastern DRC, and previously in the 2014–2016 West Africa outbreak, including war, unrest,

and lack of experience with Ebola; circumstances which were not replicated in the recent

outbreak and may have a heavy influence upon any predictions presented in this paper.

Initial outlooks for the outbreak were optimistic, but subsequent spread to remote regions of

the country tempered expectations for the early and swift control of the outbreak by timely

treatment, contact tracing and vaccination [71]. Despite ring vaccination having been in

use since the end of the West Africa basis, intially as compassionate use, recent outbreaks

have continued to be larger than earlier historical outbreaks due to a variety of ongoing

challenges. It is likely that the value of prior outbreaks in making predictions becomes less

valuable as more knowledge and understanding of the current outbreak becomes apparent,
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and the ability of the branching process to respond to the current outbreak’s trajectory likely

aided its strong performance later in the outbreak.

Conversely, as we observe Ebola outbreaks trending towards larger final outbreak sizes,

we may be facing a reality that earlier outbreaks which reflect living conditions from nearly

half a century earlier may not be as relevant to predicting outbreak trajectories of today.

There have been substantial changes in interconnectedness, faster transport, and larger social

networks that make it more likely for outbreaks to escape their local region and make the

jump into larger populations which make the outbreaks more di�cult to control.

Our models have several limitations. Vaccination is not explicitly included in models,

and the recent outbreak was only the third EBOV outbreak to use ring vaccination [50]. Vac-

cination rollout was slower than anticipated in this outbreak, and the continued reporting of

deaths within the community setting, indicated that there were containment failures despite

the ring vaccination strategy [50]. Additionally, the limited sample size of past outbreaks

greater in size than ten cases, does statistically limit the precision of these analyses, though

this also reinforces the necessity of studies such as this one hoping to better understand

accurately model the transmission dynamics.

The particle-filter branching process model and the Theil-Sen regression models are miss-

ing two historical outbreaks greater than ten cases in size due to data availability and lack of

access to their epidemic curves. Since the simple regression projections and Bayesian predic-

tions are based entirely on past outbreaks of Ebola virus disease (measured and reported in

di�erent ways), they cannot account for improvements in control measures and vaccination,

nor demographic or geographic di�erences in the way that a mechanistic model does. The

particle-filter branching process model does partly adjust for these changes by including a

trajectory in the model of the outbreak across two timepoints. Our models also assume
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that the size of prior outbreaks can be modeled by a single distribution. This assumption

could be problematic if some of these underlying di�erences in the outbreak circumstances

have an outsized influence upon the trajectory of an outbreak, or if the trend towards larger

outbreaks in recent years reflects an intrinsic change in the patterns of EBOV transmission

that are not yet fully understood.

The greatest strength in our approach is the use of multiple methods to estimate the

outbreak size. A range of di�erent statistical and methodological approaches is likely to

yield a greater understanding of the role of stochasticity plays in determining the final

outbreak size as well as providing more robust assessment of an ongoing outbreak’s short-

term trajectory. This was the first outbreak to occur following the second outbreak to exceed

500 cases, which greatly shifted the modeled case distributions as the West Africa outbreak is

no longer a clear outlier. This makes this 2020 outbreak an important first test case of these

updated model parameterizations, and underscores the need to continue to evaluate model

performance in future outbreaks with diverse trajectories. EBOV remains a serious outbreak

disease, despite recent development of several vaccines, implementation of ring vaccination

in outbreak response and improvement in treatment options, with the identification of two

top performing treatments coming from a clinical trial undertaken during the 2018–20 Beni

outbreak [50]. Thus, prediction of the final outbreak size remains an important element of

the public health response.
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2.5 Supplementary Materials

Table 2.3: Summary of all reported historical Ebola outbreaks

of greater than ten cases in size, their cases counts, and their inclusion in the various pre-
diction models. TS = Theil-Sen Regression, AR = Auto-regression, BM = Bayesian Model,
PF-BP = Particle-Filter Branching Process Model and GL = Gott’s Law.

Time
Period Country Reported

Cases

Time
Series
Cases

TS AR BM PF-BP GL

1976 DRC* 318 262 Yes Yes Yes No No
1976 Sudan 284 284 Yes Yes Yes No No
1979 Sudan 34 34 Yes Yes Yes Yes No
1994–95 Gabon 52 49 Yes Yes Yes No No
1995 DRC 315 317 Yes Yes Yes Yes No
1996 Gabon 37 29 Yes Yes Yes Yes No
1996–97 Gabon 60 – No No No No No
2000–01 Uganda 425 436 Yes Yes Yes No No

2001–02 Gabon, Rep.
of the Congo 124 124 Yes Yes Yes Yes No

2002–03 Rep. of the Congo 143 – No No No No No
2003 Rep. of the Congo 35 35 Yes Yes Yes Yes No
2004 Sudan 17 17 Yes Yes Yes Yes No
2005 DRC 12 12 Yes Yes Yes Yes No
2007 DRC 264 264 Yes Yes Yes Yes No
2007–08 Uganda 131 127 Yes Yes Yes Yes No
2008–09 DRC 32 32 Yes Yes Yes Yes No
2012 Uganda 24 24 Yes Yes Yes Yes No
2012 DRC 52 52 Yes Yes Yes Yes No
2014 DRC 66 62 Yes Yes Yes Yes No

2014 Nigeria-o�shoot
of West Afr. outbreak 20 – No No No No No

2014–016
Guinea,
Liberia,
Sierra Leone

28,616 21,422 No* No* No* No No

2018 DRC 54 54 Yes Yes Yes Yes No
2018–20 DRC 3463 3463 Yes Yes Yes Yes No
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(a) 6/30/20 (b) 7/31/20

(c) 8/31/20 (d) 9/30/20

Figure 2.4: One week projections of outbreak size probability density distributions
for the BP-PF and AR models at each forecast date i) branching process particle-
filter (BP-PF) and ii) auto-regression (AR). Projections are made based on observed case
counts of 34 cases on June 30th, 72 cases on July 31st, 109 cases on August 31st and 128
cases on September 30th.
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(a) 6/30/20 (b) 7/31/20

(c) 8/31/20 (d) 9/30/20

Figure 2.5: Two week projections of outbreak size probability density distributions
for the BP-PF and AR models at each forecast date i) branching process particle-
filter (BP-PF) and ii) auto-regression (AR). Projections are made based on observed case
counts of 34 cases on June 30th, 72 cases on July 31st, 109 cases on August 31st and 128
cases on September 30th.
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(a) 6/30/20 (b) 7/31/20

(c) 8/31/20 (d) 9/30/20

Figure 2.6: One month projections of outbreak size probability density distri-
butions for the BP-PF and AR models at each forecast date i) branching process
particle-filter (BP-PF) and ii) auto-regression (AR). Projections are made based on observed
case counts of 34 cases on June 30th, 72 cases on July 31st, 109 cases on August 31st and 128
cases on September 30th.

42



(a) 6/30/20 (b) 7/31/20

(c) 8/31/20 (d) 9/30/20

Figure 2.7: Two month projections of new case probaility density distributions for
the BP-PF and AR models at each forecast date i) branching process particle-filter
(BP-PF) and ii) auto-regression (AR). Projections are made based on observed case counts
of 34 cases on June 30th, 72 cases on July 31st, 109 cases on August 31st and 128 cases on
September 30th.
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Table 2.4: Bayesian predictions of final outbreaks sizes

Bayesian model (BM) predictions of final outbreaks sizes conditional on currently observed
cumulative case counts excluding the historical West Africa outbreak. The final size distri-
bution of R, · , and k triples were fit using the Gaussian kernel density estimator which was
used to estimate the log-likelihood of the previously observed outbreaks’ final sizes to create
a conditional ensemble distribution for the final size of the current outbreak

Current Case Count Mean 2.5% 25% 50% 75% 97.5%
20 277.0 20 33 66 197 1554
30 303.0 31 50 104 297 1779
40 321.0 41 65 120 314 1897
50 370.0 51 82 158 396 2013
60 438.0 62 101 200 487 2249
70 494.0 73 123 246 571 2385
80 491.0 84 136 258 572 2278
90 490.0 94 148 273 578 2172
100 498.0 104 162 290 590 2133
110 560.0 115 182 328 668 2381
120 565.0 125 196 343 678 2313
140 659.0 147 236 414 800 2622
160 725.0 168 270 469 884 2804
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Table 2.5: Sensitivity analysis for Bayesian predictions of final outbreaks sizes
including the 2014-15 West Africa outbreak

Sensitivity analysis for Bayesian model (BM) predictions of final outbreaks sizes including the
2014-15 West Africa outbreak. Final size predictions are conditional on currently observed
cumulative case counts. The final size distribution of R, au, and k triples were fit using
the Gaussian kernel density estimator which was used to estimate the log-likelihood of the
previously observed outbreaks’ final sizes to create a conditional final size distribution.

Current Case Count West Africa Mean 2.5% 25% 50% 75% 97.5%
20 no 277 20 33 66 197 1554
30 no 303 31 50 104 297 1779
40 no 321 41 65 120 314 1897
50 no 370 51 82 158 396 2013
60 no 438 62 101 200 487 2249
70 no 494 73 123 246 571 2385
80 no 491 84 136 258 572 2278
90 no 490 94 148 273 578 2172
100 no 498 104 162 290 590 2133
110 no 560 115 182 328 668 2381
120 no 565 125 196 343 678 2313
140 no 659 147 236 414 800 2622
160 no 725 168 270 469 884 2804

20 yes 2006 20 36 98 657 18842
30 yes 1548 31 60 173 1215 12061
40 yes 1791 41 82 244 1596 12240
50 yes 1736 52 98 288 1549 12631
60 yes 1890 63 123 364 1889 12787
70 yes 1992 75 144 449 2087 13014
80 yes 2058 85 172 526 2218 13040
90 yes 2130 95 200 596 2335 13120
100 yes 2168 106 229 663 2456 12898
110 yes 2250 119 287 836 2649 12431
120 yes 2247 130 297 831 2674 12688
140 yes 2596 154 401 1142 3224 13578
160 yes 3072 182 540 1532 3855 15080
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Table 2.6: Predicted short-term new case distributions

at one week, two weeks, one month and two months out for both the branching process
(PF-BP) model and the auto-regression (AR) model.

Model Forecast Date Forecast Mean 2.5% 25% 50% 75% 97.5%
Auto-Regression 6/30/20 1 week 9 0 1 4 12 42
Auto-Regression 6/30/20 2 week 19 0 2 9 25 85
Auto-Regression 6/30/20 1 month 37 0 4 18 49 177
Auto-Regression 6/30/20 2 month 75 0 6 32 97 391
Auto-Regression 7/31/20 1 week 9 1 2 5 11 38
Auto-Regression 7/31/20 2 week 16 1 3 8 21 70
Auto-Regression 7/31/20 1 month 29 1 4 15 38 135
Auto-Regression 7/31/20 2 month 64 1 6 27 82 332
Auto-Regression 8/31/20 1 week 9 1 2 5 12 40
Auto-Regression 8/31/20 2 week 17 1 3 9 22 75
Auto-Regression 8/31/20 1 month 31 1 4 16 41 146
Auto-Regression 8/31/20 2 month 68 1 6 29 87 351
Auto-Regression 9/30/20 1 week 7 0 0 3 9 33
Auto-Regression 9/30/20 2 week 13 0 1 6 17 60
Auto-Regression 9/30/20 1 month 23 0 2 11 30 112
Auto-Regression 9/30/20 2 month 55 0 4 22 70 291

Branching Process 6/30/20 1 week 7 0 2 5 10 23
Branching Process 6/30/20 2 week 15 0 4 10 20 54
Branching Process 6/30/20 1 month 39 0 5 16 43 203
Branching Process 6/30/20 2 month 202 0 5 17 71 1437
Branching Process 7/31/20 1 week 6 0 2 4 7 17
Branching Process 7/31/20 2 week 10 0 3 7 13 33
Branching Process 7/31/20 1 month 18 0 4 10 21 79
Branching Process 7/31/20 2 month 29 0 4 10 26 184
Branching Process 8/31/20 1 week 6 0 3 5 8 17
Branching Process 8/31/20 2 week 12 0 5 9 16 34
Branching Process 8/31/20 1 month 22 1 8 15 29 81
Branching Process 8/31/20 2 month 38 1 9 19 43 180
Branching Process 9/30/20 1 week 2 0 0 1 3 8
Branching Process 9/30/20 2 week 4 0 1 2 5 14
Branching Process 9/30/20 1 month 6 0 1 3 7 26
Branching Process 9/30/20 2 month 9 0 1 3 8 47
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Chapter 3

Modeling the Impact of Trachoma

MDA on GU Chlamydia

3.1 Introduction

Despite trachoma being targeted for global elimination through the use of annual and

semi-annual Mass Drug Administration (MDA) of azithromycin, the impacts that these inter-

ventions will have upon the burden of its sister disease Chlamydia are very poorly understood

and documented. Communities that are especially hard hit by trachoma are almost exclu-

sively poor communities with poor access to sanitation, screening and antibiotics to treat

the infection [72]. These are the same conditions that allow STDs, such as Chlamydia, to

maintain a high, unbroken chain of transmission [73–75].

Genitourinary (GU) Chlamydia is the most common bacterial sexually transmitted infec-

tion world-wide [76,77]. The global prevalence of GU infection by Chlamydia trachomatis, or

Chlamydia, in 2012 was 4.2% (95% CI: 3.7-4.7%) among women ages 15-49 years and 2.7%

(95% CI: 2.0-3.6%) among men ages 15-49. However, the burden of Chlamydia is especially
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high in resource-limited settings where the overall prevalence has been reported to be as high

as 29% (CI: 7-31%) [75, 77–80]. GU Chlamydia can lead to infertility, adverse pregnancy

outcomes for both the mother and the neonate, and an increased risk of HIV transmis-

sion [76, 77, 81]. However, infections with C. trachomatis can often be asymptomatic, and

some high-income countries perform routine screening of high-risk groups to detect and treat

C. trachomatis infection. However, in low-resource settings, such programs are not possible

due to the expense and infrastructure necessary. [74]

In response to the continued challenges represented by STD’s such as Chlamydia, and

findings that the benefits of screening programs were overestimated [82], some have called for

the use of MDA or targeted administration of treatment with azithromycin in extremely high

prevalence areas, and several studies have used Periodic Presumptive Treatment (PPT) of

sex-workers with azithromycin in similar settings [83–88]. Though there is evidence that the

near-simultaneous treatment from MDA greatly reduces the probability of re-infection from

partners [89] there is very little evidence to help understand what such an approach would

mean for the long-term sustainability of decreased prevalence, as well as concerns as to the

long-term viability of treatment e�cacy, and concerns of developing anti-biotic resistance.

Though both diseases are caused by the same pathogen, only trachoma is currently targeted

for eradication through MDA and other initiatives. At the same time, recent evidence

suggests that trachoma MDA with the antibiotic azithromycin reduces the prevalence of

genital Chlamydia. [74] Currently, there are very few studies that have looked at the impact

of trachoma MDA upon the burden of genital Chlamydia, and no e�orts have been made

to model or predict the reduction in genital Chlamydia burden in these populations. The

trachoma MDA dosing with 20 mg/kg of azithromycin [90] is clinically consistent with dosing

regularly used in the treatment of GU Chlamydia [76], and thus it is highly likely that

48



trachoma MDA is treating undiagnosed or unrecognized community GU Chlamydia. This

may also mitigate concerns regarding the rise of resistant strains that might arise from

partial or insu�cient dosing. Here we propose a mathematical disease transmission model

to investigate the impact of trachoma MDA upon chlamydia prevalence in these settings.

3.2 Methods

3.2.1 Mathematical Model

We modeled Chlamydia transmission using a standard SIS hidden markov compartmental

model adapted for the natural history of a Chlamydia infection [91]. We generated an

extended compartmental SIS model (Figure 3.1), using a generalized Cartesian product

operation [92] to combine the features of the model including: the natural history of GU

Chlamydia, risk structure, gender, MDA exposure and population maturation and aging.

We modelled the duration of illness under the assumption of a constant risk of recovery

using a standard negative binomial distribution.

We have included in this model four susceptible (S1, S2, S3, S4) and three infectious

classes (I1, I2, I3) (Figure 3.1) to allow for the natural cycle of recovery and re-infection

over the course of an individual’s sexually active life, and the process of slowly developing

immunity after each subsequent infection [93]. During the course of natural infection, as

individuals develop immunity, individuals move from I1 to I2 to I3, which each have distinct

infection responses and dynamics. Due to the short time scale of the exposed, but non-

infectious, class relative to the disease course, we did not explicitly model this transition

state [93]. In the presence of MDA, an individual may either be allowed to move from

the infectious class (Ii) to the next susceptible class (Si+1) or back down to the previous
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Figure 3.1: Levels of the Compartmental Model and the Full Extended Compart-
mental Model
a. Natural history of Chlamydia, with slowly developing immunity. “ = mean duration
of infection, S = Susceptible, I = Infected, ⁄ = force of infection = —*I/N = Transmission
Probability Per Contact X Infected / Total Population. b. Exposure to the MDA treatment.
c. Gender. d. Risk structure for behavior. e. Full extended Cartesian model. (Tables 3.1
and 3.2)

susceptible class (Si) if the treatment has been given prior to individual mounting an e�ective

immune response to develop partial immunity which takes many months to occur [91]. MDA

was modelled as an annual impulsively forced treatment with varying coverage and e�cacy.

We added gender and risk groups, to address the sexual nature of Chlamydia transmission
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and also allowed for di�erential susceptibility and transmissibility to GU Chlamydia by

gender. For risk structure, we included high risk core groups who had relatively high levels of

sexual activity, and low-risk groups with lower rates of sexual contacts made per year [91,93].

Given the nature of the countries and areas targeted by trachoma elimination, these high

risk groups were modelled as female sex workers (FSWs) from the regions and those who

have contact with these FSW’s [94–97].

3.2.2 Sensitivity Analysis

A sensitivity analyses was conducted to determine the sensitivity of the primary outcome

(relative reduction in prevalence) model parameter selections to investigate the robustness

of model findings. All parameters were sampled across their respective distributions (Ta-

ble 3.1, Table 3.2) using Latin Hypercube (LH) sampling [98]. Due to the possible range

for parameters and the independent nature of their sampling, the resulting simulations were

screened to ensure that high risk groups had contact rates at least twice that of the low risk

groups. The remaining simulations were then run for 5 years of MDA and the sensitvity of

the % reduction in prevalence from baseline after 3 years and 5 years of MDA were assessed

using a Partial Rank Correlation Coe�cient (PRCC) [98].

3.2.3 Running the Model

We tested the e�cacy of trachoma MDA treatment on reducing GU Chlamydia, varying

coverage levels and population baseline prevalence using the base parameters shown in Ta-

bles 3.1 and 3.2. Our primary outcome of interest was the reduction in prevalence relative

to baseline one year after MDA treatment (immediately prior to subsequent MDA treat-

ment), allowing for the expected bounce back in population prevalence in the time following
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Table 3.1: Table of Model Parameters and Ranges For Population Dynamics and
Sexual Behavior With Sourced References

Model parameters for population dynamics and sexual behavior by compartments are shown
along with the literature references. The values used for primary model calculations are
shown, as well as the ranges used for the sensitivity analysis and prediction uncertainty.

Parameter (units) Group Symbol Value Range

Population Dynamics

Sexual maturation rate
(model entry)

female ”F 100 ppl./year
male ”M 100 ppl./year

Rate of annual aging out
of model

female µF 0.05 0.036 - 0.067

Male µM 0.05 0.036 - 0.067

Sexual Behavior

Proportion of
"maturations"
recruited to high
risk group

exposed female bEF 0.05 0.01 - 0.1
[72, 99]

exposed male bEM 0.1 0.01 - 0.3

unexposed female bUF 0.09 0.01 - 0.5
[72, 99]

unexposed male bUM 0.18 0.01 - 0.5

Proportion high-risk
contacts

high risk female aHH 0.66 0.41 - 0.95
[99, 100]

low risk female aLH 0.15 0 - 0.41
[101–103]

Average # new parter-
ships per year

high risk female cF H 144 12 - 420
[99, 100,104]

low risk female cF L 0.24 0.1 - 2.4
[101–103]

Rate of movement low
to high risk per year

female flF 0.012 0.001 - 0.18
[99]

male flM 0.012 0.001 - 0.18
[101–103]

Rate of movement high
to low risk per year

female ‡F 0.24 0.1 - 0.5
[99]

males ‡M 0.12 0.06 - 0.6
[101–103]
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Table 3.2: Table of Model Parameters and Ranges for MDA Treatment and
Chlamydia Natural History With Sourced References

Model parameters for MDA treatment and the natural history of chlamydia by compart-
ments are shown along with the literature references. The values used for primary model
calculations are shown, as well as the ranges used for the sensitivity analysis and prediction
uncertainty.

Parameter (units) Group Symbol Value Range

MDA treatment

E�cacy - · 0.98 0.9 - 1
[76]

Serial non-compliance high risk female ŸF H 0.5 0 - 1
low risk female ŸF L 0.5 0 - 1
high risk male ŸMH 0.5 0 - 1
low risk male ŸML 0.5 0 - 1

Proportion of
maturations
exposed to MDA

female ”Õ
EF

0.9 0.5 - 1
[105]

male ”Õ
EM

0.9 0.5 - 1

Chlamydia Natural
History

Transmission
probability per
contact during first
infection

female to male —F M 0.17 0.04 - 0.7
[91, 101–103]

male to female —MF 0.2 0.04 - 0.7

Reduction in
transmission prob.
in subsequent
infections

female to male —Õ
F M

0.1 0 - 0.5
[91]

male to female —Õ
MF

0.1 0 - 0.5

Mean duration of infec-
tion (months)

female “F 10 2 - 50
[91, 101,103,106,107]

male “M 5 2 - 50

Reduction in disease du-
ration in subsequent in-
fections

female “Õ
F

0.1 0 - 0.2
[91]

male “Õ
M

0.1 0 - 0.2

Susceptibility female ’F 0.9 0.5 - 0.999
[91]

males ’M 0.9 0.5 - 0.999
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treatment. Under this assumption, with enough MDA administrations within the popula-

tion, the burden of GU Chlamydia would be steadily reduced and eventually drop below the

level of sustained transmission within the population. Due to previous studies indicating

the e�ciency of targeting and treating high-risk individuals [108, 109], we investigated the

impact of targeting the azithromycin treatment only to the high risk groups under the same

conditions.

One often raised concern with MDA strategies is serial non-compliance with annual treat-

ment [110], that the same individuals are non-compliant year after year, creating a resevoir

of disease for continued transmission. To investigate the impact of serial non-compliance

with MDA treatment, we varied the rate of annual movement from the exposed to the non-

exposed classes from 0 to 1 across a range of population baseline prevalences (the base model

is run at Ÿ=0.5).

Lastly, in order to investigate the potential uncertainty in our predictions, we ran the

model 10,000 times across a range of parameter sets (Tables 3.1 and 3.2) randomly sampled

from a distribution reflecting our uncertainty in each parameter at each of four levels of

MDA coverage at 60%, 70%, 80% and 90%.
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Table 3.3: Sensitivity Analysis

The Partial Ranked Correlation Coe�cients (PRCC) were calculated for all parameters with
the percent reduction in prevalence relative to baseline and reported when PRCC Ø |0.10|
after 3 years and 5 years . Parameters were varied across the ranges reported in Tables 3.1
and 3.2, and sampled across the range using Latin Hypercube sampling. The model was then
run across all parameter sets, and the sensitivity analysis was performed on the resulting
output.

Parameter 3 Years 5 Years

PRCC std.
error PRCC std.

error
Recruitment to high-risk group for MDA exposed F (”Õ

EF
) 0.10 0.03 0.09 0.03

Proportion high-risk contacts among high-risk F (aHH) 0.10 0.03 0.10 0.03
Transmission per contact M to F (—MF ) -0.30 0.02 -0.30 0.02
Reduced trans. prob. in subsequent infect. M to F (—Õ

MF
) -0.13 0.04 -0.13 0.03

Contact rate high-risk females (cF H) -0.52 0.02 -0.52 0.02
Mean duration of infection - F (“F ) -0.65 0.03 -0.64 0.01
Mean duration of infection - M (“M) -0.18 0.03 -0.18 0.01
Mean disease duration in subsequent infections - F (“Õ

F
) -0.36 0.02 -0.35 0.02

Movement low to high risk group - F (flF ) -0.25 0.02 -0.26 0.03
Movement high to low risk group - F (‡F ) 0.32 0.02 0.32 0.03
E�cacy (·) 0.09 0.03 0.09 0.03

3.3 Results

Overall, we found that the MDA treatment was e�ective at reducing prevalence levels

relative to baseline in the overall population. Our model showed that three years of MDA at

current levels reduced the prevalence of GU Chlamydia in all populations by at least 10.5%

relative to baseline (Figure 3.2). Though the prevalence of GU Chlamydia partially bounced

back to pre-treatment levels between annual administrations as untreated or ine�ectively

treated individuals continued transmitting GU Chlamydia to newly susceptible or naive

hosts, the time between MDA was not enough to allow transmission to revert to pre-MDA

levels.

Looking at percent (%) reduction in prevalence relative to baseline one year after MDA
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Figure 3.2: Percent reduction in prevalence after 1, 3 and 5 years of azithromycin
MDA.
The percent (%) reduction in prevalence relative to baseline was calculated as the reduction
in prevalence one year after the last annual MDA treatment compared to the baseline equi-
librium for each simulation. Results are reported for the same initial conditions following 1,
3 and 5 years of annual azithromycin treatment.

treatment (immediately prior to subsequent MDA treatment) relative to the baseline equi-

librium prevalence, it appeared that the burden of GU Chlamydia would be steadily reduced

and eventually drop below the level of sustained transmission under all model parameteri-

zations. However, even at a 90% coverage X e�cacy (CE) and a baseline prevalence above

15% prevalence, this target would take more than 10 years of MDA administration to achieve

(Figure 3.2). With CE Ø 0.80, the time between MDA treatments was insu�cient to sustain

transmission, allowing for GU Chlamydia burden to be suppressed below 1 in 10,000 after

5 rounds of MDA for baseline prevalences less than 2.9%, and with CE Ø 90%, prevalence

was reduced below 1 in 10,000 after 5 rounds for baseline prevalences less than 6.5%. Three

rounds of MDA at 90% CE was su�cient to reduce prevalence below 1 in 10,000 only for

baseline prevalences below 2.9%.
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Figure 3.3: Percent reduction in prevalence after 1, 3 and 5 annual rounds of
azithromycin targeting only the high-risk group.
The percent (%) reduction in prevalence was calculated as the reduction in total population
prevalence one year after the last annual MDA treatment compared to the baseline equilib-
rium for each simulation. Results are reported for the same initial conditions following 1, 3
and 5 years of annual azithromycin treatment targeting only the high-risk groups.

We also looked at prevalence reductions of 50% and 90% as outcomes relevant to public

health interests. At 80% CE, a 50% reduction in prevalence relative to baseline was achieved

for starting prevalences of up to 13.7% after 3 rounds of MDA, and starting prevalences up

to 14.3% after 5 rounds of MDA. Likewise at 80% CE, a 90% reduction in prevalence relative

to baseline was achieved for starting prevalences of up to 7.7% after 3 rounds of MDA, and

baseline prevalences up to 9.5%.

Again considering percent reduction in prevalence relative to baseline, we looked at the

sensitivity of the model to various model parameters (Table 3.3). Overall, the model ap-

peared more sensitive to changes in female defined parameters than the males. This is likely

because the female high-risk group, modelled as they were after female sex workers, was

assumed to have higher contact rates than their male high-risk counterparts, and in this
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model represent the core risk group facilitating transmission within the population. The

model is quite sensitive to changes in group-specific risk structure and duration of infection.

Decreasing the duration of infection, lowering the contact rate, increasing the movement

from high to low risk groups and decreasing the movement from low to high risk groups

(e�ectively reducing the high-risk population size), and decreasing transmission probability

from males to females were all strongly associated with increasing the reduction in prevalence

relative to baseline following MDA transmission. E�cacy was relatively weakly correlated

with the e�cacy of MDA administration (PRCC = 0.09). Though somewhat surprising, this

demonstrates that population dynamics are critical in a�ecting the e�cacy of the MDA in-

tervention. More would need to be known about the population being targeted to determine

if they are a good candidate for such a program.

Given a reticence to implementation of a population-level intervention and previous stud-

ies on targeting treatments for GU Chlamydia [108,109], we looked at the impact of targeting

the intervention only to high-risk individuals (Figure 3.3). When targeting only high-risk

individuals, absolute prevalence was reduced below 1 in 10,000 when CE Ø 0.8 for baseline

prevalences below 0.73% after 5 rounds of MDA, down from achieving the same target from

a baseline prevalence of 2.9% using population-wide MDA. This target was not achieved

in any simulation after only three rounds. Other targets were similarly a�ected as at 80%

CE, a 50% reduction in prevalence relative to baseline was achieved for starting prevalences

up to 9.4% after 3 rounds of MDA, and baseline prevalences up to 10.3% after 5 rounds

of MDA, down from achieving these targets at up to 13.7% and 14.3% baseline prevalences

respectively using population-wide MDA. A 90% reduction in baseline prevalence at 80%

CI was achieved for baseline prevalences up to 0.79% after 3 rounds of MDA, and baseline

prevalences up to 4.7% after 5 rounds of MDA, down from 7.7% and 9.5% respectively.
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Figure 3.4: E�ect of Serial Non-Compliance with the MDA upon the reduction in
prevalence after 1, 3 and 5 years of azithromycin MDA.
Serial non-compliance is varied from 0 (exposure to MDA is completely random year-over-
year) to 1 (perfect non-compliance where those who are unexposed to MDA stay unexposed)
when compliance is set at 90% The % reduction in prevalence was calculated as the reduction
in total population prevalence one year after the last annual MDA treatment compared to
the baseline equilibrium for each simulation.

Serial non-compliance with MDA has often been seen to limit the e�cacy of such in-

terentions, as a consistent subset of the population is failing to receive MDA treatment

and is acting as a vehicle for continued transmission. When serial non-compliance with

the azithromycin MDA is increased from 20% to 80%, the baseline prevalence for which

population-wide prevalence dropped below 1 in 10,000 was reduced from 5.9% to 2.8% af-

ter 5 rounds of MDA (Figure 3.4). Similar results were seen for targets of 50% and 90%

reduction in population prevalence relative to baseline where, after 5 rounds of MDA, when

serial non-compliance is increased from 20% to 80%, the baseline prevalence for which a 50%

reduction is achieved drops from 16.5% to 15.9% with higher serial non-compliance, and

starting prevalences achieving a 90% target reduction dropped from 12.5% to 11.0% with
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higher serial non-compliance.

From an uncertainty analysis allowing model parameters to be randomly selected from

their distribution (Tables 3.1 and 3.2), there appeared to be a reasonable amount of uncer-

tainty in the model predictions. At 80% CE, a 50% reduction is predicted to occur between

6.8% and 20.2% after 3 rounds of MDA, and between 7.2% and 20.3% after 5 rounds of

MDA. Similarly a 90% reduction is predicted to occur between 0% and 8.3% after 3 rounds

of MDA, and between 0% and 10.5% after 5 rounds of MDA.

Figure 3.5: Uncertainty Analysis for Predicting Reduction in Population Preva-
lence
Reduction in % population prevalence relative to baseline across a range of starting preva-
lences at 60%, 70%, 80% and 90% population coverage, reported after 1, 3, and 5 rounds
of MDA. Shown with 90% cofidence intervals from 10,000 simulations randomly sampled
parameter distributions in Tables 3.1 and 3.2.
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3.4 Discussion

One principal advantage the trachoma MDA program enjoys in fighting Chlamydia is a

near-simultaneous treatment of all individuals. Reducing the delay between the treatment

of an index case and an infected partner has been shown to greatly reduce the probability

of reinfection from nearly 20% down to 2.5%. [89]

Our model suggests that MDA could reduce the prevalence of GUC to less than 1 in 10,000

within 5 years time for populations with baseline prevalences up to 6.5%. This reinforces

the suggestions of potential additional health benefits of trachoma MDA and may also invite

potential exploration of targeting high burden populations in impoverished areas. E�orts

that would potentially target only high-risk persons could still have a meaningful impact

on public health, halving baseline prevalences of up to 10.3% after 3 rounds of MDA and

halving baseline prevalences of up to 13.7% after a full 5 rounds of MDA.

However, if the reduction target is set too low, there is likely be an observed resurgence

in prevalence following termination of a program, and costs and benefits should be weighed

accordingly. Populations being targeted for trachoma elimination tend to be poor, and

with a very low population exposure to antibiotics [72]. Such a program is likely to have a

widespread beneficial impact [111]. However, modeling is often prone to overestimate the

impact of such interventions.

There are several limitations in our analysis. First, our study does not distinguish between

natural recovery from a Chlamydial infection and those seeking treatment with antibiotics

outside of MDA, though the manner of recovery is known to have some impact on the level

of acquired immunity following infection [91]. Second, though the populations targeted by

trachoma have very low reported antibiotic exposure, there is a non-zero, low-level rate
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of treatment outside of the MDA, and thus we may have overstated the impact of the

trachoma MDA program upon reducing Chlamydia prevalence. Similarly, we have made

a closed system that doesn’t allow for re-introduction from outside the target population.

Real world inter-mixing and migration is likley to have an impact on any predicted program

benefits. We also did not model fast versus slow clearing infections which have been shown

to act as a natural reservoir for chlamydia to persist in an untreated population, though it

is likely this would lead to an underrepresentation of the model impacts as the MDA would

treat the slow clearing infections [107].

Similarly, we did not explicitly model sexual behaviors a�ecting risk, such as condom use,

however we did adjust the probability of transmission per partnership to reflect the reported

rates of sexually protective behaviors, however the reported rate of protective behaviors,

such as condom use was anywhere from 50-80% [99, 104]. Our model was fairly simple, and

there are more sophisticated models available, such as an agent-based approach which might

do better. It would be insightful to compare the results of micro-agent based simulations

to this approach. Lastly, our model depends on observed data only through parameters

based upon prior publications. We were not aiming to target to a specific country, but

rather a general region a�ected by trachoma, namely sub-saharan Africa, that shows a large

level of heterogeneity, our parameters are only able to roughly target precise sub-regional

values and di�erences. Seemingly small changes in transmission, sexual behaviors of high

and low risk groups and especially the behaviors of the FSW may have a large impact on

the transportability of results. It would be appropriate to fit this model to a particular

country or region’s demographics to better understand the impact of trachoma MDA upon

local GU Chlamydia burden. However, our model does suggest testable hypotheses regarding

prevalence in endemic areas under treatment.
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Overall, we find that trachoma MDA e�orts are almost certainly having an impact upon

Chlamydia prevalence in the targeted population, as the one year lag between treatments

was not enough to support prevalence returning to the original levels. With the continued

challenges presented by GU Chlamydia in low-resource settings, and findings that the benefits

of screening programs were overestimated [82], the use of MDA or targeted administration of

treatment with azithromycin (using PPT of sex-workers) in extremely high prevalence areas

may be the way forward to addressing the the continued burden of GU Chlamydia [83–88].
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