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CHAPTER 1 

INTRODUCTION 

1 

The hydraulic behavior of fractured rock is of special interest to workers 

in such areas as oil recovery, geothermal energy, toxic and hazardous waste dispo­

sal, groundwater contamination and nuclear waste storage. The fractures within a 

rock may constitute a large amount of the rock's void space and in many situa­

tions will comprise the primary conduit for flow through the rock. 

The studies of flow through fractured rock are usually performed in field 

tests, laboratory experiments or numerical simulations. There are advantages and 

disadvantages to each of these methods. Field tests can be expensive, time con­

suming and in many instances impractical to carry out They have the advantage 

of producing results that are representive of the area. Laboratory experiments on 

rock samples produce data that is representative of the sample, but problems may 

occur in extrapolating the data to larger areas of interest. The sample size would 

be dictated by the equipment and space available. Numerical modeling can be 

done on a wide range of scales but there may be difficulty in relating the numeri­

cal data to the field. The emphasis of this work is the study of the hydraulic 

behavior of various rock geometries which lends itself best to numerical modeling. 

Different fracture geometries are best studied using numerical modeling, since the 

geometries can be created prior to the flow simulations. For both field and labora­

tory tests the geometry of the rock's fracture pattern is not usually known. 

Throughout this paper, the term "fracture" is used as an all encompass­

ing tenn for rock discontinuities, such as joints, fissures, faults and microfractures. 

Fractures over a range of length scales were used in the flow simulations in order 

to obtain realistic flow characteristics of fractured rock. The flow simulations 
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have been broken up into two studies. The first of these studies is presented in 

Chapter 4 and concerns the effects of fracture length and aperture on the per-

meabilities of rock systems. Simplifications to fracture geometries were made to 

examine the possiblilty of creating systems with equivalent flow characteristics. 

By simplifying the rock systems the amount of computer memory and usage could 

be decreased, which would result in faster and less expensive flow simulations of 

fractured rock. The rock systems used for this study are hierarchically fractured, 

that is the fractures are assigned to specific sets designated by their fracture length. 

The number of fracture sets used in each flow simulation is varied and the possi­

bility of replacing the smaller fractures with an equivalent porous media is studied. 

The second study is presented in Chapter 5 and investigates the use of 

fractal geometry to represent the geometry of fractures. Two different fractal 

geometries are used to study the dependence of the flowing fluid on the geometry 

of the fracture system. A non-Euclidean dimension, called the flow dimension, is 

presented to describe the flow through fractured rock systems during simulated .. 
well tests. The flow dimensions are compared to the fractal dimensions of the 

rock systems. It may be possible to calculate the flow dimension from field well 

tests which may lead to a way of describing the rock geometry surrounding the 

well (Barker 1988). 

The flow simulations conducted in these studies were accomplished by 

using a number of computer codes. The function of each of these codes will be 

described in Chapter 3. The background of modeling fractured rock will be 

presented in the following chapter. 

\. 
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CHAPTER 2 

BACKGROUND 

2.1. Introduction 

Fluid flow through fractured rocks, especially low penneability crystal­

line rocks, may be dominated by· the fractures due to their high conductivity to 

fluids. Between these fractures lies intact rock, referred to as the rock matrix. 

The geometries of the fractures and intact rock are generally unknown and very 

complex. Some of this complexity stems from the fact that fractures exist at all 

length scales. Fractures can range from kilometers in length down to the length of 

a rock grain. Since the entire spectrum of fracture lengths cannot be considered 

when solving fluid flow through fractured rock, some simplifications must be 

made. 

2.2. Fractured Rock Models 

One of the first simplifications made when modeling fractures is that a 

fracture can be represented by the space between two smooth parallel plates. The 

flowrate through the idealized fracture described above is given by: 

Q =~ [dh] w 
12J.L dx 

where: 

Q = Volumetric flowrate (m 3/s) 

b = Fracture aperture (m) 

p = Fluid density (kg 1m 3) 

g = Acceleration due to gravity (mls2) 

J.L = Fluid viscosity (kg Is -m) 

(2.1) 



h = Hydraulic head (m) 

x = Flow path length (m) 

w = Width of fracture (m) 

4 

This equation is commonly called the cubic law since the flowrate is a function of 

the aperture cubed. The fracture permeability, k" is defined to be b 2/12 and has 

the units of (m 2). The hydraulic conductivity of the fracture, K I' is defined to be 

k, pg 1).1 and has the units of (m Is). Throughout this paper the term "permeability" 

is used for both permeability and hydraulic conductivity, and a differentiation can 

be made by checking the units with which the values are expressed. The cubic 

law has been used by many to describe flow in smooth walled fractures. It has 

been extended to rough walled fractures by multiplying by a factor to describe the 

roughness of the fractures surface (Witherspoon et al. 1980). Much work has 

been done on the study of single fractures, but the emphasis of this paper is to 

model fractured rock using a great number of fractures. 

A method for modeling fractured rock was introduced by Snow (1965, 

1969). He considered the fractures to be infinite in extent and replaced them with 

a porous media that had a permeability tensor calculated from the individual frac­

ture permeabilities. The individual fracture permeabilites were calculated from the 

cubic law. He studied the effect on permeability of varying the fracture orienta­

tion and aperture. One of the limitations of his approach was the assumption that 

the fractures were considered to be infinite in extent which is not true in fractured 

rock. 

The double porosity model. introduced by Barenblatt, Zheltov, and 

Kochina (1960), and later extended by Warren and Root (1963), also makes the 

assumption that the fractures are infinite in extent. This mathematical model does, 

however, take the matrix rock into account. The matrix is assumed to have a high 

-. 



5 

storage capacity and low permeability with respect to the fractures. Given these 

conditions, the fractures and the matrix can each be represented by an equivalent 

porous media. The porosity of the porous media representing the fractures will be 

smaller than the porosity of the porous media representing the matrix. The 

matrix porous media only acts as a source of fluid for the fracture porous media 

and is not considered to contribute to the flow characteristics of the overall sys­

tem. In the original double porosity models the flux between the fractures and 

matrix was considered to be at a pseudo-steadystate, so the quantity of flux was 

proportional to the pressure difference at the fracture-matrix interface. The pres­

sure gradient within the matrix was considered to be linearly distributed. Later 

work by Kazemi (1969), de Swaan (1976), Streltsova (1983) and Lai (1985) 

assumed that the flux at the fracture-matrix interface was transient and the pres­

sure gradient within the matrix was not distributed linearly. This transient flow in 

the matrix changes the shape of the pressure response curve during the transient 

flow period. . 

The previous models all assume that the fractures are infinite in extent. 

A model was developed by Baecher et ale (1977) and Barton (1978) that allow for 

fractures of finite length. In three dimensions the fractures appear as elliptical 

disks and in two dimensions as lines. Any sized fracture length, aperture or orien­

tation can be chosen. The fracture length and spacing distributions have been stu­

died by Hudson and Priest (1979) and Baecher and Lanney (1978) and have been 

found to vary both log normally and exponentially. Using these distributions and 

the fracture model descibed above, Long et ale (1982) developed a computer code 

to construct two dimensional fractured rock systems which solved the permeabil­

ties of these systems. This code was used to study the effects of discontinuous 

fractures on the system's permeability as well as the possibility of replacing 

discontinuous fracture systems with an equivalent porous media. The effects of 
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fracture interconnection on permeabilty were also studied (Long and Witherspoon 

1985). The code was extended to three dimensional systems by Gilmour et ale 

(1986). Karasaki (1987) extended the modeling of two dimensional fracture sys­

tems by modeling the matrix rock in addition to the fractures. Explicit modeling 

of fractures and matrix dispenses with the assumptions made in the double poros­

ity model that the fractures behave as an equivalent continuum and that the 

through-flow in the matrix is negligible (Karasaki 1987). 

The work presented in Chapter 4 uses both the Long and the Karasaki 

models to study the effects of fracture length and orientation on the penneability 

of two dimensional rock systems. 

2.3. Fractal Rock Geometries 

Another approach ·to modeling fractured rock is to use fractals to 

represent the fractures. A fractal is a shape, comprised of parts, that looks similar 

at all scales. A fractal structure seems to be random and complex, just as the 

geometry of fractures is random and complex. The fractal structure, however, can 

be described by a number called the fractal dimension. The fractal dimension has 

been defined by many (Mandelbrot 1982, Feder 1988 and Stauffer 1985). A 

definition of the fractal dimension is presented in Chapter 5. 

The use of fractal geometry to describe rock has been small and has 

been mostly limited to modeling porous media rather than fractured rock. Using a 

model of porous media that had a fractal structure, Alder (1985) found that the 

fractal porous media was a better model of real porous media than was a spacially 

periodic model. Hewett (1986) found that fractal distributions showed promise for 

assessing the flow characteristics of heterogeneous porous media. It was shown 

by Chen and Wilkinson (1985) and Maloy et ale (1986) that the flow paths of a 

highly viscous fluid in a saturated random porous media fonned fractal structures. 
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Oxaal et ale (1987) demonstrated that the flow within these viscous fluid flow 

paths was also fractal. The fractal dimension of the flowing fluid, however, was 

less than the fractal dimension of the original flow paths. This implies that the 

flowing fluid prefers some paths over others and that it only uses a fraction of the 

original flow paths. A "statistical factor" involving gas flow through percolating 

clusters of rock cracks was introduced by Englman (1983) to. account for the fact 

that the flow does not pass through every fracture. Although he postulated the 

existence of this factor, no further work was done to derive it. 

Fractal geometry was used by Nolte et ale (1987) to study the flow paths 

in natural fractures. They found that the flow path area of a natural fracture was 

fractal. The fractal dimension was dependent on the stress applied to the fracture. 

The fractal behavior of rock is not limited to single fractures but has been 

observed in naturally fractured rock. Barton (1987) found from his pavement stu­

dies that the fracture trace length distributions had fractal characteristics. Since 

natural fractures exhibit fractal properties, it seems reasonable to use fractal 

geometries to model rock fractures. Two different fractal geometries are used to 

model fractured rock and are presented in Chapter 5. Fluid flow through these 

fractal rock systems will be analyzed in order to understand the flow's dependence 

on the fracture geometry. 



3.1. Introduction 

CHAPTER 3 

CODE DESCRIPTION 

8 

The programs that are described in the following sections were used to 

model flow through fractured rock systems for the studies presented in this paper. 

The programs are executed in a certain order depending on which fracture system 

is being studied. For a system containing only fractures, having no porous matrix, 

the series of programs executed starts with FMG. RENUM is run next and is fol­

lowed by DIMES if a graphic representation of the system is desired. The next 

program to be executed is LINEL, if steady state flow conditions are desired, or 

TRINET, if transient flow col)ditions are desired. If steady state flow conditions 

are being studied then ELLFMG can be run following LINEL. ELLP can be exe­

cuted after ELLFMG to give a graphic representation of the permeability ellipse 

calculated in ELLFMG (see Section 3.5). 

To study rock systems containing both fractures and porous matrix the 

FMMG program should be executed between FMG and RENUM, and PT should 

be executed rather than LINEL or TRINET. 

3~. FMG 

The fracture mesh generator, FMG (Long et al 1982), creates a two 

dimentional numerical representation of fractured rock, called a fracture mesh. 

The fractures of the mesh are represented by line segments. Input to FMG con­

tains information about the size, the boundary conditions and the fracture charac­

teristics of the mesh, such as length, orientation, aperture and density. 

The dimensions of the mesh, given in the input deck. define the size of 
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the generation region. A subset of the generation region is the flow region. The 

flow region is smaller than or equal to the generation region and its dimensions 

are also given in the input deck. The flow region is the area of the mesh where 

flow is calculated. 

The boundary conditions of the ~ow region are input to FMG and are 

necessary for flow tests. The possible boundary conditions for this program are; 

constant flux, no flow, constant head, or constant linearly distributed head. 

The fracture characteristics given in the input deck include the fracture 

density, length, orientation and aperture. The fracture density can be given as a 

number of fractures per unit area of the generation region or as a total number of 

fractures within the generation region. The values for the fracture length, orienta­

tion and apertur~ can each be set at a constant value, they can be assigned specific 

values or they can be statistically generated. Some possible statistical distributions 

are normal, uniform, lognormal and negative exponential. A random seed genera­

tor is used when calculating values from these statistical distributions. 

Once the input deck is created, the FMG program can be executed. The 

output from the FMG program will be the necessary input for the remaining pro­

grams that are executed. 

3.3. RENUM 

The RENUM program (Billaux et aI. 1988) will use an output file from 

FMG for its input. The file contains the information about the structure of the 

mesh generated by FMG. The fractures in the mesh are described by nodes and 

elements. Nodes are located at the ends of fractures and at intersections of frac­

tures. Elements are line segments that connect two nodes. All of the nodes and 

elements are numbered and put into two separate lists. 

RENUM reads the input file which contains the list of node numbers, 
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their location designated by x and y coordinates~ The file also specifies on which 

boundary, if any, the nodes lie. Next in the file is the list of all the elements. 

Listed for each element are the element number, the two nodes the element con-

nects, the transmissivity of the element, and the length of the element. 

The purpose of RENUM is to optimize node numbering for flow calcu­

lations and to check the structure of the mesh and remove any potential problems. 

The RENUM program looks for nodes that are very close to one another and com­

bines them into one node as well as eleminating any zero length elements that 

may have been created. The program also follows the path of fractures connected 

to a boundary and. in the event that the path closes on the same boundary, the 

path is deleted. Once these corrections have been made then RENUM renumbers 

and corrects the listings of the nodes and elements so that the output can go to the 
/ 

next program. LINEL. 

3.4. LINEL 

The LINEL program (Wilson. 1970) uses the output from RENUM for 

its input. The LINEL program first sorts the list of elements. The node numbers 

of the two nodes an element connects are arranged in an increasing order. The list 

of elements is arranged so the node number of the first of the two nodes it con-

nects is in increasing order. For example. if element five connects nodes 6 and 5 

and element six connects nodes 7 and 4, then the revised element list would have 

element five connecting nodes 4 and 7 and element six connecting nodes 5 and 6. 

The revised list is then used to fill the matrix and vectors that make up the system 

of linear equations to be solved for each node. The equations are based on the 

cubic law (Equation 2.1) with the unknown being the head or the flux depending 

on the boundary conditions. A mass balance is assumed at each node. the flow 

into each node equals the flow out of each node. The head at each node is 

-.. 
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calculated and the flux through each element is found. The flux passing through a 

boundary is found by summing up the fluxes of the elements crossing the boun­

dary. The head at specified boundaries as well as the flux crossing the boundaries 

fonns the output from LINEL. The values of head and flux are solved at steady 

state flow conditions. The penneability is calculated four times, based on flow 

through the four sides of the flow region. The square flow region is rotated 

through a number of angles from 0 to 90 degrees and the penneability is measured 

at each fifteen degrees of rotation. In order for the flow region to be rotated and 

not extend beyond the generation region it must be smaller than the generation 

region by a factor of ...J2. These penneability measurements are used by the 

ELLFMG program. 

,/ 

3.5. ELLFMG 

The penneability calculations in LINEL are made using Darcy's law, 

which is shown in Equation 3.1. 

where: 

Q=K dh 
A dl 

Q = Volumetric flowrate (m 3/s) 

A = Area of flow (m 2) 

K = Hydraulic conductivity (m Is) 

h = Hydraulic head (m) 

I = Flow path length (m) 

For flow in the x direction Equation 3.1 can be written as 

QJ: _ K iJh K iJh 
A - xt iJx + YY iJy 

(3.1) 

(3.2) 
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where Qx is the flowrate in the x direction and Kr;c is the hydraulic conductivity 

in the x direction, which is also the hydraulic conductivity in the direction of the 

applied gradient, Kg. For the boundary conditions stated in Section 4.2.1. the 

tenn ~ is zero. This simplified form of Equation 3.2 is used by LINEL to solve 

for Kg through the four sides of the flow region at each rotation, from 0 to 90 

degrees. A plot of INK g versus the angle of rotation on polar coordinates will 

result in a permeability ellipse (Marcus and Evanson 1961, Marcus 1962, Bear 

1972). 

The ELLFMG program (Long et al. 1982) creates the best fit permeabil­

ity ellipse using directional penneability measurements of the flow region made in 

LINEL. The principal permeabilities, the maximum and minimum permeabilities, 

are calculated once all the permeability measurements have been made. The mag­

nitude and direction of all the permeability measurements are the output of the 

ELLFMG program. 

3.6. DIMES and ELLP 

The DIMES and ELLP programs (Billaux et al. 1988) generate a 

graphic representation of the fracture mesh and the permeability ellipse, respec­

tively. The input to DIMES is created by RENUM. The input to ELLP is created 

by ELLFMG. 

3.7. TRINET 

The TRINET program (Karasaki 1987) uses the finite element method 

(FEM) to solve transient flow calculations. The TRINET program was used to 

solve the head distribution as a function of time within the flow region. It is 

assumed that the flow through the fracture is laminar and that it follows the cubic 
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law. The permeability of the fracture system is assumed to be constant and not a 

function of pressure. This assumption would no longer be valid if the pressure 

within the fracture exceeded the overburden pressure. TRINET uses the Galerkin 

approach to solve the head at each node simultaneously. The output of TRINET 

is the head at each time step for any number of specified nodes. 

3.S. PT 

The Pf program (Bodvarsson 1982) uses the integrated finite difference 

method (IFDM) to simultaneously solve mass and heat flow equations. The 

governing equations are for single-phase flow in a fully saturated media. At each 

time step the nonlinear equations are solved using an iterative scheme and an 

efficient sparse solver (Bodvarsson and Tsang 1982). The Pf program was used 

to solve one dimensional transient mass flow in the meshes generated by the 

FMMG program. 

3.9. FMMG 

The fracture-matrix mesh generator, FMMG, (Karasaki 1987) is used to 

create a mesh that has a matrix, between fractures, permeable to flow and is used 

immediately following the execution of FMG. The FMMG program uses as its 

input the fracture geometry of the flow region calculated by FMG. 

The first task of FMMG is to divide the matrix region between the frac­

tures into convex polygons. To achieve this goal all the fracture dead ends are 

extended until they encounter a boundary or another fracture, either real or 

extended. These fracture extensions, can be considered imaginary fractures of 

zero aperture and they do not influence later flow calculations. The process of 

extending fractures is carried out until the flow region no longer has any fracture 

dead ends. The extension of a fracture will create a new element and probably a 
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new node. These are then added to the element and node lists. 

The next step is to find the elements and nodes that fonn each polygon. 

This is done by starting at an arbitrary node and following the elements in a 

clockwise direction until reaching the initial node. This procedure is carried out 

until each element has been traced at least once in each direction. Once a polygon 

has been traced, the-coordinates of the center of gravity and its area are calculated. 

The area distribution of the polygons are calculated once all the polygons have 

been traced and counted. 

The area of the polygon near the fractures will be subject to large gra­

dients. For this reason the polygons must be divided into smaller block elements. 

These block elements are made by drawing lines parallel to the elements that fonn 

the polygon. The spacing between these lines is an input parameter and it is sug­

gested that a logrithmic spacing be used since the gradient will decrease rapidly as 

the distance from the fracture is increased. The sides of the block elements are 

created by rays extending from the center of gravity to the nodal points of the 

polygon. An example fracture-matrix mesh is shown in Figure 3.1. 

The output from the FMMG program can be written for programs using 

the integrated finite difference method (lFDM) or the finite element method 

(FEM). The input for finite difference includes a listing of the nodal areas, block 

element connections, interface length and distance from the center of gravity to the 

block interface. The input for finite element includes a listing of the nodal coordi­

nates and the element catalogue. The FMMG program also includes a graphics 

display of the generated fracture-matrix mesh. 
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CHAPTER 4 

HIERARCHICALLY FRACTURED SYSTEMS 

4.1. Introduction 
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In nature, the sizes of fractures vary over orders of magnitude, from a 

small microfracture to a large fault. When trying to explicidy model flow through 

this rock numerically, it is impossible to model the whole range of fractures found 

in nature. It would therefore be beneficial to model only the range of fractures 

that most control flow. 

In order to study which fractures most control flow, the following study 

was conducted. The purpose of this study was to determine the effect of fracture 

length and aperture on the permeability of a two dimensional fractured rock mesh. 

The possibility of replacing the short fractures with an equivalent porous medium 

was studied for both steady-state and transient flow conditions. Before presenting 

the study, it must be shown that the fracture-matrix meshes, which are used when 

the short fractures are replaced by an equivalent porous media, will give valid 

results when used with the PI' program. 

4.2. FMMG Mesh Validation 

As explained previously, the PT program uses the integrated finite 

difference method (IFDM) to calculate the flow through a fracture-matrix mesh 

(Okusu et al. 1989). The meshes generated by FMMG do not meet the IFDM cri­

teria that the connection between the nodes be perpendicular to the area of contact 

between these nodes. The amount of error introduced by not meeting this require­

ment will be examined. The FMMG program also discretizes the matrix blocks 

within a mesh into smaller blocks. It is a concern that the discretization step may 



17 

be another source of error that should be evaluated. 

In order to estimate these two sources of error three different meshes 

were created. The aperture of the fractures within all of these meshes was con­

stant and given a value of 50 micrometers. Using the cubic law shown in Equa­

tion 2.1, the permeability of a fracture with this aperture can be calculated to be 

2.083E-1O m 2• The first mesh was created to act as a control mesh whose results 

would be compared with those achieved from the other two meshes. The control 

mesh was generated within the PT program and constisted of orthogonal fractures 

and square matrix blocks, resulting in a mesh consistent with the IFDM criteria. 

The control mesh is shown in Figure 4.1a. Both the fracture and matrix nodes 

were assigned a permeability of 2.083E-10 m2• 

The second mesh was created by the FMG and FMMG programs and is 

shown in Figure 4.1 b. The FMG program placed fractures at random using a uni­

form distribution of orientation and length. The matrix between the fractures was 

separated into nodes and assigned a permeability of 2.083E-10 m2 within the­

FMMG program. For this mesh the matrix was not discretized. 

The third mesh consisted of the same fracture geometry as the control 

mesh. However, the matrix for this mesh was discretized by the FMMG program. 

The permeability of the matrix was also assigned to be 2.083E-IO m 2• The third 

mesh is shown in Figure 4.1c. 

Although the fracture and matrix permeabilities of these three meshes 

are the same, the geometry of the fracture and matrix nodes is not. Each mesh 

was subjected to an identical flow test. A unit pressure gradient was imposed 

across the length of the meshes and the PT program evaluated the pressure 

increase at the downstream side of the mesh until the system reached steady state 

conditions. The pressure response curves for all three meshes are found in Figure 

4.2. The non-orthogonal fractures of the second mesh produced a more jagged 
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pressure response curve. The shape of this curve could be due to the more com­

plex geometry of this mesh which has nodes of various size and shape. The con­

trol mesh only has fracture nodes of one given length and matrix nodes of one 

given size. 

The pressure response curve for the discretized mesh was the same 

shape as the pressure response curve of the control mesh but was always at a 

slightly lower pressure than the control mesh for any given time. The difference 

was probably due to numerical diffusion caused by a fewer number of nodes in 

the control mesh. 

The deviations of the pressure response curves of the two test meshes 

from the control mesh curve were slight. It seems valid to use both non­

orthogonal and discretized ·meshes in the PT program since the errors associated 

with them are small. 

The PT program was used on meshes where the small fractures were 

replaced by an equivalent porous media. The first goal of the numerical study was 

to find the fracture length cutoff, below which the fractures could be replaced by 

an equivalent porous media and above which the fractures would have to be 

modeled explicitly. 

4.3. Numerical Study 

4.3.1. Mesh Geometry 

The initial meshes used in the study were created by the FMG program 

using the following input parameters. 

For all the meshes the generation region was set to 150 meters by 150 

meters and the mesh region was defined to be 25 meters by 25 meters. The total 

number of fractures within the generation region was about 42,000 and resulted in 
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a well connected mesh. The mesh region contained over one thousand fractures. 

The boundary conditions for all the flow tests carried out on the meshes 

was the same. The left and right boundaries of the mesh region were assigned 

constant head values of one meter and zero meters of water, respectively. The 

upper and lower boundaries had a linearly distributed head from one meter to zero 

meters of water, going from left to right. 

The fracture orientation distribution for all the meshes was the same. 

The orientations of all fractures were uniformly distributed from zero to one hun­

dred eighty degrees. 

The same fracture length distribution was used in all of the meshes. 

The fracture length distribution, f ( I ), was chosen as follows. First a negative 

exponential distribution, f ( I ) = e-O.51, was chosen. This distribution' gives a 

large number of short fractures and a small number of long fractures. Then the 

fracture length distribution was divided into sets. The range of these sets and the 

fracture density for each set, calculated from the negative exponential distribution, 

are shown in Table 4.1. Within each set the fracture length is uniformly distri­

buted over the range of that set. As seen in Figure 4.3 the joining of these uni­

form distributions approximates a negative exponential distribution. 

The fracture al?~mure directly affects the overall permeability of a mesh, 

so three different methods were used to choose the fracture aperture. The first 

method assigned a constant aperture of 50 micrometers to all fractures. The 

second method used the same negative exponential distribution of aperture for 

each fracture length set: f (b ) = e-2E+04b. The third method used the same dis­

tribution as the second method but in this case the aperture was correlated to the 

fracture length, such that short fractures had small apertures and long fractures had 

large apertures. In all cases the mean of b 3 was held the same so the overall per­

meabilities were the same. These three aperture types will be referred to as 
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Table 4.1 Fracture length and density distribution 

Range of Fracture Length (m) Fracture Density 

b.o - 0.1 4.9% 

0.1 • 0.2 4.6% 

0.2· 0.4 8.6% 

0.4· 0.8 14.8% 

0.8 - 1.6 22.1% 

1.6 - 3.2 24.7% 

3.2 - 6.4 16.1% 

6.4 • 12.8 3.9% 
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Figure 4.3 Negative exponential distribution and the generated fracture sets. 
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constant aperture, distributed aperture and correlated aperture, respectively. For 

each aperture method at least three different meshes were generated. 

4.3.2. Procedure 

For each aperture distribution the following tests were carried out on at 

least three different meshes. First, a fracture mesh was genera~ed by the FMG 

program to create an initial mesh with all eight fracture length sets. Then the 

RENUM program was run to renumber the nodes and to remove any inherent 

problems within the flow region. A flow calculation was run on the flow region 

by the UNEL program, which solves for the steady state flow rate within the flow 

region. The ELLFMG program calculated the permeability of the mesh. The 

geometrical mean permeability, ie. the square root of the product of the principal 

permeabilities, was calculated and used to represent the overall permeability of the 

mesh. Both the DIMES and ELLP programs were executed to get graphical 

representations of the mesh and permeability ellipse, respectively. 

This series of programs were then executed again on the same mesh, ie. 

the same random seed, with the exception that the smallest fracture length set was 

removed. Next the smallest two sets were removed etc. The process of removing 

a fracture length set and recalculating the mesh permeability was con~nued until 

the mesh contained only one set of fractures, the longest fractures. This gives per­

meability as a function of It, the truncation length, where fractures shorter than It 

have been eliminated. An example of the eight meshes created by this procedure 

is pictured in Figure 4.4. 

4.3.3. Results 

Plots of the overall mesh permeability versus It were constructed. 

Three runs for each aperture distribution are shown in Figure 4.5. 
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Figure 4.4 Fracture meshes with decreasing number of sets from (a) to (h). 
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For constant aperture the permeability of each run was approximately 

the same regardless of the number of meshes generated. The permeabilities for 

the other two aperture distributions had a higher variance. The permeabilities of 

the correlated meshes tended to be about an order of magnitude greater than the 

permeabilities of the constant or distributed apertures. The increase in permeabil­

ity for the correlated aperture is due to the chance of large fractures having large 

apertures connecting to form paths of large permeability. 

The shape of all the fracture length versus permeability curves are simi­

lar, regardless of the aperture distribution used. The curves are flat with a sudden 

drop at larger fractures lengths, 3.2 meters to 12.8 meters. These drops in the per­

meability curves, once fractures beyond a certain cutoff length are removed, are 

observed by Hestir and Long (1990). The flatness of the curve up to 3.2 meters 

indicates that the permeability stays essentially constant while 80% of the fractures 

are removed. The drop in the curve is a measure of the degree to which the per­

meability is controlled by the largest fracture set. A small drop in permeability 

indicates a large dependence on the longer fractures. The correlated aperture dis­

tribution has the smallest drop in permeability which indicates that the largest 

fractures greatly affect the permeability of the meshes. This result is in agreement 

with the conclusion drawn from the observed higher permeabilities of the corre­

lated aperture meshes mentioned previously. 

4.4. Equivalent Porous Media 

The results indicated that at least 80% of the fractures had no effect on 

the overall permeability of the meshes. The feasibility of replacing the short frac­

tures by an equivalent porous media was studied for steady state and transient 

conditions. 
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4.4.1. Steady State Conditions 

One of the constant aperture meshes was selected to have all but the 

longest length fractures (6.4 m to 12.8 m) replaced by an equivalent porous media. 

This porous media substitution was for 96% of the original fractures. The result­

ing mesh had only long fractures and the matrix between the fractures represented 

the porous media. The substitution caused a significant decrease in the number of 

nodes within the mesh. The fracture-porous media mesh was constructed by the 

FMMG program. It was desired to try to create a fracture-porous media mesh 

with the same overall mesh permeability as the fracture only mesh at one dimen­

sional steady state flow conditions. To achieve this goal the porosity and permea­

bility of the porous media blocks needed to be found. The porous media blocks' 

porosity was calculated by dividing the volume of the deleted fractures by the 

volume of the matrix blocks. The result is a constant average porosity for all the 

porous media blocks which is used as input for the PT program. 

The permeabiltiy of the porous media blocks was found by a trial and 

error method. An arbitrary, constant value of permeability was chosen for the 

porous media blocks. A flow test was then run on the mesh, using the PT pro­

gram, until the system reached a steady state condition. The steady state flow rate 

was known so the overall permeability of the mesh could be solved using Darcy's 

law, see Equation 3.1. The overall permeability was compared to the overall per­

meability of the fracture only mesh containing all the fracture sets. If the per­

meabilties were not in close agreement then the porous media permeability was 

changed and the procedure was repeated to find a new overall permeability of the 

fracture-porous media mesh. This was continued until the overall permeabilites of 

the two meshes were approximately equal. The final fracture-porous media mesh 

created not only gave a value for the permeability of the porous media blocks, 

equal to 6.122E-15 m2, but also represents a mesh with the same apparent overall 
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hydraulic properties at steady state as the original fracture only mesh. 

4.4.2. Transient Conditions 

In order to study the mesh under one dimensional transient flow condi­

tions, the TRINET program was run using the fracture only mesh containing all 

the fracture sets and the PT program was run using the fracture-porous media 

mesh. The boundary conditions of both meshes were the same. A constant head 

of one meter of water was set on the left side and a constant head of zero meters 

of water was set on the right side. The upper and lower boundaries were made 

impervious to flow. The two meshes are pictured in Figure 4.6, which also shows 

two nodes within each mesh specifically labelled. The nodes marked A and A' 

are on the same central fracture in both meshes, so the pressure behavior at that 

fracture can be compared between the two meshs. The nodes marked B and B' 

are in the same relative location in each mesh. Node B is located on a small frac­

ture and node B' is on the porous media that replaced that and any neighboring 

small fractures. The pressure response curves at these nodes will be compared. 

The pressure heads at these four nodes are plotted as a function of time 

and are shown in Figure 4.7. The head at node A' does not asymptote to the 

same steady state value as that of node A. The difference in these steady state 

values was due to the averaging of the permeability of all the small fractures into 

a porous media permeability for the fracture-porous media mesh. For the fracture 

only mesh the permeability is not as uniformly distributed, due to the presence of 

the small fractures, as it is for the fracture-porous media mesh. If the same flow " 

test was executed on a non-fractured porous media mesh, which would have a 

constant uniform overall permeability, the pressure head would decrease linearly 

from one to zero for an incompressible fluid, going from left to right. Once frac-

tures are introduced, the permeability fails to be constant throughout the mesh and 
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Figure 4.6 (a) Mesh with all the fractures. (b) Mesh with small fractures replaced by 
blocks of porous media. 
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Figure 4.7 Transient pressure response curves at Node A and B in the fracture only 
mesh and Node A' and B' in the fracture porous media mesh. 
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the pressure head between the boundaries will no longer decrease linearly. The 

fracture-porous media mesh behaves more like a continuous porous media than the 

fracture only mesh, so its central node A' asymptotes to a value of 0.5 meters of 

water. The fracture only mesh asymptotes to a larger value of about 0.6 meters of 

water. The higher pressure head at node A was due to the left half of the fracture 

only mesh being more permeable than the right half. 

The head at node B' of the fracture-porous media mesh built up slower 

and asymptotes to a lower value than node A' because node B' was hydraulically 

downstream with respect to node A'. The head at node B of the fracture only 

mesh follows the same behavior as node A. Although node B is geometrically 

downstream of node A, it is not hydraulically downstream due to the small frac­

tures causing local discontinuities and preferred flow paths. 

4.5. Conclusions 

In this study it was found that short fractures may be relatively unim­

portant for steady state flow calculations. By replacing these short fractures by an 

equivalent porous media the number of nodes within the mesh was significantly 

reduced, which decreased the time and memory storage needed to numerically 

model the systems. For the twenty-five meter square mesh region modeled in this 

study it was found that fractures on the order of one fourth of the mesh length or 

longer were the only fractures that needed to be explicitly modeled. The remain­

ing fractures could be modeled by equivalent porous media. If this conclusion 

holds some generality, it would be useful for field geologists mapping fractured 

outcrops for later computer simulation. The geologist would only have to map 

fractures whose lengths were about one fourth of the mapping regions length or 

longer. This could decrease the time spent mapping each region as well as the 

time spent later modeling these regions. 
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The replacement of small fractures by equivalent porous media blocks 

may not be valid for transient flow conditions. It was found that the local hetero­

geneities of a fracture only mesh were not reproduced in the fracture-porous media 

mesh. The averaging of the small fractures into porous media blocks resulted in 

nonequivalent meshes when individual nodes were studied. The meshes may be 

less equivalent for mass transport problems. For mass transport problems the 

paths available for transport will dictate the results. In a fracture-porous media 

mesh the paths available for flow are fewer and less complicated than a fracture 

only mesh. The variations in results of mass transport tests on these meshes could 

be quite high. 

The validity of using porous media blocks in place of short fractures 

seems to be scale dependent. If the overall mesh properties are the only concern 

then the substitution seems valid. If details within the mesh are to be studied then 

the substitution may not be valid. 

These conclusions are only pertinent for this study and cannot be gen­

eralized until more work has been done to make a quantitative assessment. Future 

studies should include some work with mass and heat transfer processes. 
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Fluid flow through rock systems has, traditionally, been modeled in sys­

tems with a Euclidean dimension. That is, one with an integral dimension of 

either one, two or three. In the previous chapter's study the fracture length distri­

bution was selected to give fracture meshes that were well connected, resulting in 

fracture meshes with an Euclidean dimension of two. The emphasis in this study 

will be the flow characteristics of rock systems with fractures that are not well 

connected. These can be considered as non-Euclidean, or fractal systems. Two 

types of rock systems, both having fractal properties, will be used in this study. 

The purpose of the study was to calculate flow dimensions for computer 

generated fractal rock systems, having known fractal dimensions, and then com­

pare these flow and fractal dimensions. The flow dimension will be defined later 

and described in greater detail. The study will be presented as described below, 

starting with a brief introduction to, and the motivation behind, the work that was 

done in this study, followed by a description of the well tests that were modeled 

on rock systems having fractal structures. The theories behind the two types of 

fractal rock systems will be explained before describing the actual rock systems 

and the methods of generating these systems. The method used to calculate the 

fractal dimensions of these systems. will then be explained. The background and 

method of calculating the flow dimension will then be presented. A generalized 

solution of flow during a well test is used to find the flow dimension. This solu­

tion will be shown and the flow dimension will be defined. The results of the 

study will be presented as a comparison between the fractal dimensions and the 
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flow dimension of various rock systems. 

S.2. Background 

Before discussing the details of the study, it is important to stress that 

numerical analysis of fluid flow in fractured rock presents difficulties which stem 

from the fact that the geometry of fractured rock is generally unknown and com­

plex. Some of the complexity of fracture geometry is due to the fact that fractures 

exist at all scales. There are faults on the order of hundreds of kilometers in 

length on one end of the spectrum, and there are small microfractures at the rock 

grain on the other end. Since the fracture geometry is complex and fractures are 

at all scales, one promising approach is to treat fracture systems as fractals. It has 

been observed in natural rock that the trace length distributions do, in fact, exhibit 

fractal characteristics (Barton 1987). Therefore, it seems reasonable to use fractal 

rock systems to model natural rock. These fractal rock systems were created by a 

computer and used to model well tests numerically. 

The purpose of the well test is to gain an understanding of flow 

behavior through the rock. A constant flow rate injection well test was modelled 

in this study. This type of well test consisted of injecting fluid into the system by 

pumping fluid into the well at a constant flow rate. Information about the overall 

flow properties of the rock surrounding the well can then be gained by monitoring 

the resulting change in pressure. 

Once the initial rock systems were created they were given as input to 

the RENUM program, which eliminated dead-end fractures and efficiently renum­

bered the nodes and elements. The TRINET program was then used to numeri­

cally model the well test. The input flowrate at the well was 5.0£ -05m 3/s. The 

pressure head as a function of time was calculated at every node. The pressure 

response at the well was plotted on log-log paper as a function of time. 
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S.2.1. Percolation Theory 

Imagine a grid of squares drawn on a piece of paper (Figure 5.1a). If 

some of the sides of the squares within the lattice were erased at random, then 

something resembling Figure 5.1 b would result. The remaining sides of the 

squares form what are known as clusters. A cluster can range in size from an iso­

lated side of a square to an infinite number of square sides connected to each 

other. Percolation theory deals with describing the number and behavior of these. 

clusters. 

The lattice described is an example of bond percolation, which was the 

type used in this study. There are some differences between bond percolation and 

its counterpart, site percolation, but only bond percolation will be discussed from 

now on. The sides of the squares in the lattice are called" bonds. The bonds that 

remained are open bonds and the ones erased are closed bonds. Each bond has a 

probability, p, of being an open bond and a probability, 1 - p, of being a closed 

. bond. Given an infinite lattice there is a unique probability at which an infinite 

cluster will appear. An infinite cluster is a cluster that spans an infinite lattice. 

The probability at which this will occur is called the critical probability and is 

denoted Pc. For an infinite lattice, if the probability is above the critical probabil­

ity, P > Pc' an infinite cluster will appear with probability one. If the probability 

is below the critical probability, P < Pc' then an infinite cluster will appear with 

probability less than one. When numerically modeling, however, one works with 

finite lattices. A finite lattice can be thought of as a window looking upon part of 

the infinite lattice. If the window falls on the infinite cluster then a cluster will 

appear that spans the finite lattice. It is also possible for the window to fallon a 

finite cluster that may not be big enough to span the finite lattice. In other words, 

when working with finite lattices the critical probability will not result in a distinct 

cutoff between percolating and nonpercolating networks. 
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(a) 

DI 

(b) 

Figure 5.1 (a) Square lattice. (b) Percolation clusters. 



,. 

37 

The importance of percolating networks is that they have a "self-similar" 

geometry within a range of lengths, I. A self-similar geometry means that the 

structure's geometry appears the same at any length scale, within the specified 

range, and exhibits fractal characteristics. The lower limit of the self-similar range 

is the bond length, denoted as a. The upper length limit is called the percolation 

correlation length, ~P' and is found from Equation 5.1. 

~p-alp-pcl-V" (5.1) 

The value of v p is believed to be exact and equal to ~. For the square lattice 

described earlier the critical probability equals 0.5 and the bond length can be 

taken to be unity. If a percolating network were constructed with p = 0.65 then, 

from Equation 5.1, the network would be fractal within the range 1 :S 1 :S 12.55. 

The length 1 can be thought of as the length of a side of a percolating network. 

The portion of the network within the range a SIS ~p will be fractal and the 

portion of the network within the range 1 ~ ~p will be homogeneous. 

5.2.2. Sierpinski Carpet 

The second rock system was generated by modifying the well known 

Sierpinski carpet. The theory and construction of a Sierpinski carpet has been 

described by many, Mandelbrot (1982) and Feder (1988). An outline of the 

theory used to construct a Sierpinski carpet and an example of such a carpet are 

given below. 

Consider a finite piece of a line. The points defining the line piece are 

contained in a set S. Now if the line piece were scaled down by a factor, r, 

which is less than one, then the points contained by this new line segment make 

up the set S' = rS. The set S' will always be a subset of S and the line segment 
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described by S' will only cover part of the original line piece. Now if r was clev­

erly chosen then the original line piece could be covered once by a series of nono­

verlapping line segments. The number of line segments needed to cover the line 

piece will be deno~d by N. If a line piece of unit length is considered then ~ is 

one appropriate expression for the scaling ratio, r. For a unit rectangular piece of 

- [ 1 ] ~ a plane to be covered by scaled down rectangles an r(N) = N is an appropri-

ate scaling ratio. Similarly, a unit rectangular parallelpiped can be covered if 

1 

r (JII) = [!] 3" is chosen. These three scaling ratios can be described by 

1 

r(N) = [!]d (5.2) 

where d is equal to the Euclidean dimension of one, two or three for lines, planes 

and cubes, respectively. This relation can be generalized to 

(5.3) 

where D is a positive real number. If D is equal to an integer then D will equal 

the Euclidean dimension. If D is nonintegral then it is known as the fractal 

dimension. 

To generate systems that have a fractal dimension first solve for D . 

ln[ !] In(-N) 
D = = -~--=--

In (r(N» In (r (N» 
(5.4) 

Now choose an r (N) and N so that the ratio of their natural logs is not equal to 

an integer. To illustrate this point let us look at the construction of a Sierpinski 
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carpet. 

The unit rectangular piece of a plane used to generate the carpet is 

called an initiator. The initiator in this case is a filled square and is pictured in 

Figure 5.2a. The set of nonoverlapping scaled down squares is known as the gen­

erator and is pictured to the right of the initiator in Figure 5.2b. The generator is 

made up of nine scaled down squares with the central square removed. The scal-

1 

ing ratio is r = [!] 1: = !. The value of N is nine, if all the squares are filled, 

but the central square is not filled so N = 8. Figure 5.2 shows the carpet up to 

the fourth construction stage. The fractal dimension of a carpet at an infinite 

number of construction stages can be calculated from Equation 5.4. 

D =:mln (-8) = .!!!!. - 1.89 
1 In3 

In-.. 3 

The details of the Sierpinski carpet used in this study will be explained in a later 

section. 

5.3. Percolating Network 

The well tests were performed on two different types of fractal rock sys­

tems based on the two theories of fractal structure just presented. The first of 

these fractal rock systems was based on percolation theory. The lattice used con­

sisted of equilateral triangles. The sides of the triangles were considered to be 

bonds that had a probability p of being open bonds and a probability 1 - P of 

being closed bonds. The open bonds were considered to be unit length fractures. 

The rock system was created by keeping these open bonds. The rock system was 

then further refined by keeping only the fractures on the backbone cluster. The 

backbone cluster consisted of all flow paths connecting the centrally located well 



40 

1JJ:l Q In 

C ~ IQ ~ 

C C ~ ~ 

tLJ:I Q g 

(8) (b) (c) (d) (e) 

Figure S.2 Sierpinski carpet for N = 8 (a) carpet initiator, (b) carpet generator, and 
(c)-(e) carpet construction stages. 

Figure S.3 Backbone cluster of percolating network. 
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to a boundary. Figure 5.3 shows an example network, which consists of just the 

backbone cluster. The network shown is 243 unit length fractures across. 

The critical probability for an equilateral triangular lattice, using bond 

percolation, is 34.73%. The percolating networks were created with p close to the 

critical probability so the networks would have self similar geometry and would 

exhibit fractal properties. 

There were two different sized percolating networks used for this study. 

The networks shown in Figure 5.4 are 64 unit length fractures across and the ones 

shown in Figure 5.5 are 243 unit length fractures across. 

5.4. Modified Sierpinski Carpet 

The second fractal system was constructed by modifying a Sierpinski 

carpet. The carpet was modified by substituting lines, which represent fractures, 

for the filled in square regions. Each line is a set of fractures placed end to end 

without overlapping. There are four of these fracture sets placed in a square. 

They are evenly spaced with two sets horizontal and two sets vertical and resem­

ble the set up of a tick-tack-toe game. The initiator of a modified Sierpinski car­

pet is shown in Figure 5.6a. The generator, for N = 5, is pictured in Figure 5.6b 

and is followed by meshes up to the fourth construction stage (Figures 5.4c -

1 

S.4e). The scaling ratio for the mesh shown is r = [!)"2 = ~. The value of N 

varies depending on how many squares are chosen to be fractured. 

The modified Sierpinski carpet mesh pictured in Figure 5.6 is generated 

by always picking the same five locations to place fractures. It is not necessary to 

always pick the same locations as long as the number of squares to be fractured, 

N, stays the same for each construction stage. The modified Sierpinski carpet 

meshes used in this study were created by randomly picking N locations at each 
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(a) (b) 

(e) (d) 

Figure 5.4 Percolating networks that are· 64 unit length fractures across (a) 

p = 0.3473. (b) p = 0.3450, (c) p = 0.3500, and (d) p = 0.4000. 

.. 
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(a) (b) 

(c) (d) 

Figure S.S Percolating networks that are 243 unit length fractures across (a) 
p = 0.3473, (b) p = 0.3450, (c) p = 0.3500, and (d) p = 0.3800. 
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(a) (b) 

(e) (d) 

(e) 

Figure 5.6 Modified Sierpinski carpets for N = 5 (a) carpet initiator, (b) carpet genera­
tor, and (c)-(e) carpet construction stages. 
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construction stage. An example of these randomly fractured meshes is shown in 

Figure 5.7. The carpet has six of its squares fractured (N = 6) at each construc­

tion stage and is shown here at the fourth construction stage, which is the limit of 

the computer memory. At this stage the smallest fracture is designated to be one 

unit in length and the sides of the carpet consist of 243 unit length fractures. A 

central fracture was needed for the point of injection during a well test. To create 

a mesh having a central fracture, a number of meshes were created until a mesh 

was found with a fractured central square at each of the four construction stages. 

The search was continued until seven meshes with central fractures were found for 

each value of N. One of these seven meshes, at each value of N, is presented in 

Figure 5.8. 

If the fracture mesh pictured in Figure 5.7 consisted of an infinite 

number of constuction stages then, according to Equation 5.4, it would have a 

fractal dimension of D = !:~ -1.631. However, all the meshes created were 

finite in extent so it is not valid to use Equation 5.4 to calculate the fractal dimen­

sion. The method used to calculte the fractal dim.ensions of the modified Sierpin­

ski carpets and the percolating networks is explained in the following section. 

S.5. Fractal Dimension 

The fractal dimensions of the two rock systems just described can be 

found by calculating the fracture density as a function of distance from an 

assigned origin. The density of a fractal network will decrease as the length scale 

increases, unlike an Euclidean network which has a constant density with increas­

ing length scale. The mass, M, of a fractal structure contained within a sphere of 

radius r is 

M(r) = LrD (5.5) 
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Figure 5.7 Modified Sierpinski carpet for N = 6 and with the fractures placed at ran­
dom. 
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where D is the fractal dimension and L is a constant which depends on the 

lacunarity of the fractal structure. Lacunarity is described in Mandelbrot (1983) 

and has to do with the "texture" of a fractal structure. The volume of a sphere is 

given by 

4 
VCr) = -xr3 = Crd 

3 
(5.6) 

where C is a geometric constant and d is the Euclidean dimension. The fractal 

density, in three dimensions, is the ratio of the fractal mass within a sphere to the 

volume of that sphere. The fractals created for this study represented fractures, so 

the fractal density in this case is also the fracture density. The fracture density for 

a two dimensional rock system is shown in Equation 5.7 to be the ratio of the 

number of fractures within a circle, to the area of that circle. 

. N() LrD p(r) = __ r_ = __ oc rD-d 

where 

p(r) = fracture density 

A (r) = area of a circle 

A (r) Cr d 

N (r) = number of fractures 

r = radius 

(5.7) 

For the area of a circle the Euclidean dimension equals two and Equation 5.7 can 

be written as: 

p(r) oc rD - 2 (5.8) 

The method used to calculate the fractal dimension was described by Orbach 

(1982) and is explained below. First. an origin is chosen within the rock system, 

from which the fracture density calculations will be made. Next, concentric cir­

cles are drawn around the origin. The number of fractures contained within each 

circle is counted and the fracture density for that radius is calculated. The density 

as a function of radius is plotted on log::log paper. The slope of this line will be 
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D - 2, as seen from Equation 5.8, which leads to a direct measure of the fractal 

dimension. As mentioned by Orbach (1982), and observed during this study, there 

were large fluctuations in the slope of the fracture density lines. The fluctuation in 

density is a measure of the lacunarity of the fractal. A number of fracture density 

calculations, from different origins, were made in order to find an average fractal 

dimension for the network. 

The fracture density plots of the eight percolating lattice networks used 

in this study are shown in Figures 5.9 and 5.10. The thin lines represent the frac­

ture densities calculated from different origins within the network. The number of 

origins chosen varied from four to seven. The average slope of the straight line 

portion of these thin lines is represented by the thick line. Less weight is given to 

the fracture density values at larger radii in case they were affected by the boun­

daries of the system. Only the radii within the range a :s; r :S;;p were used for 

calculating the fracture density. The slope of the thick lines gives an average 

backbone fractal dimension for each of the percolating rock systems. 

For the modified carpet meshes the fracture density calculations were 

only done from the centrally located origin. An average backbone fractal dimen­

sion was found for each value of N from the seven meshes generated at that N. 

The fracture density plots at the four values of N used in this study are pictured in 

Figure 5.11. The thin lines are the fracture densities of the seven different meshes 

at each N. The slope of the thick lines gives an average backbone fractal dimen­

sion for a modified carpet at that value of N. 

5.6. Radial Fractal Dimension 

U sing the fracture density method, another fractal dimension was calcu­

lated for both types of rock systems. This fractal dimension is called the radial 

fractal dimension. It was calculated by counting only the radial components of the 
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fracture rather than the whole fracture. The radial component is the portion of the 

fracture that can be projected onto any ray emanating from the chosen orgin. It 

was expected that this dimension, rather than the backbone fractal dimension, 

would better describe the physical processes occuring during a well test. During 

the well test the pressure changes caused by the flowing fluid are monitored. The 

pressure front is not affected by the tortuous flow paths inherent in the fractured 

rock system. At a given time step, the pressure within a fracture will be equal at 

a given straight line distance from the well. This is true throughout the mesh, 

since the dead end fractures have been removed. When calculating the radial frac­

tal dimension some of the fracture's tortuosity is simplified in the attempt to find a 

geometric factor that describes this pressure behavior. Figures 5.12, 5.13 and 5.14 

show the radial fracture density plots for the small and large percolating networks 

and the modified carpet meshes, respectively. 

5.7. Flow Equation Solution 

The backbone and radial fractal dimensions take into account all frac­

tures appearing in the rock system and were calculated in order to compare them 

with the dimension of the actual fracture flow system. A fracture flow system is 

defined to be a system that consists of only the fractures that contribute to flow. 

The dimension that describes such a system will be called the flow dimension, n. 

This flow dimension is a non-Euclidean dimension, meaning that its values are not 

constrained to being integers. This means that the flow dimension can be found 

for a rock system of any configuration. 

John Barker (Barker 1988) solved the flow behavior of fluid during a 

well test analytically, and his generalized solution· can be used to calculate the 

flow dimension for any rock system. This generalized solution for a constant flow 

rate well test with an infinitesimal source and infinite flow region is: 
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(v < 1) 

The definition of the variables is as follows: 

h = head 

r = radial distance from the source when measured along the flow path 

t = time 

Q 0 = constant volumetric flowrate 

n v = 1--
2 

n = flow dimension (dimension of the fracture flow system) 

K f = hydraulic conductivity of the fractured rock system 

b = extent of flow region 

r(1-v) :::; (complementary) incomplete gamma function 

SSfr2 
u 4Kf t 

SSf = specific storage of the fractured rock system 

57 

(5.9) 

The log-log plot of the incomplete gamma function, r( - v , u), as a function of 

u is shown in Figure 5.15. The curves tend to straight lines as u decreases, 

which relate to an increasing time. To study this behavior let us look at the 

asymptotic form of the head expression. 

Qo [[4K t]V ] h(r ,t) = I-v 3-n -S f - r(1-v)r 2v 

41t Kfb v sf 
. (v ~ 0) (5.10) 

[
4K t]V 

It is pointed out by Barker that the time dependent term, Ss; , dominates for 

large times when n is less than two. Not only does this explain the linear portion 

of the lines in Figure 5.15, but also shows that the straight portion will have a 

slope equal to v. This is an important relationship that results in a direct measure 
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Figure 5.15 Incomplete gamma function (Barker 1988). 
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of the flow dimension, n. When the flow dimension of a system has a value less 

than two, the pressure response curve will asymptote to a straight line of slope 

equal to 1 - ~. Therefore, by using the data from well tests on any rock system 

to obtain a pressure response curve, the flow dimension can be found for that rock 

system. 

For the constant flow rate well tests modeled in this study the head 

values at various times were recorded and plotted on a log-log plot. The pressure 

response curves had a straight line portion whose slope was equal to v. Figures 

5.16, 5.17 and 5.18 show the pressure response curves for the small and large per­

colating networks and the modified carpet meshes, respectively. The flow dimen­

sion was solved for, n = 2 - 2v. The flow dimension of each mesh was com­

pared with the two fractal dimensions of that mesh. 

S.Se Results 

The values of both the backbone and radial fractal dimensions and the 

flow dimensions of the eight percolating fracture networks are shown in Tables 5.1 

and 5.2. The probabilities range from 34.5% to 40% and result in fractal dimen­

sions between one and two. The probability p and the two fractal dimenstions are 

not uniquely related, which is expected since the networks were created from finite 

lattices. The relationship between the three different dimensions, rather than the 

numbers themselves, is important here. The flow dimension always has the lowest 

value. Of the backbone and radial fractal dimensions, the radial fractal dimension 

is always closer to the flow dimension. The radial fractal dimension is a better 

approximation because its calculation is less affected by the tortuous flow paths 

of the rock system than is the backbone fractal dimension. 

Table 5.3 shows the results from the four modified Sierpinski carpet 
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Figure 5.16 Pressure response curves of the size 64 percolating networks (a) 
p = 0.3473, (b) p = 0.3450. (c) p = 0.3500, and (d) p = 0.4000. 
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Figure 5.17 Pressure response curves of the size 243 percolating networks (a) 
p = 0.3473. (b) p = 0.3450. (c) p = 0.3500. and (d) p = 0.3800. 
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Table 5.1 
Geometric and flow dimensions of the size 64 percolating networks. 

P D DR n 

Fraction Filled Backbone Radial Fractal Flow Dimen-
t. - Fractal Dimen- Dimension sion 

sion 

0.3450 1.3 1.3 1.2 

0.3473 1.2 1.1 1.1 

0.3500 1.4 1.3 1.3 

0.4000 1.8 1.6 1.6 

Table 5.2 
Geometric and flow dimensions of the size 243 percolating networks. 

P D DR n 

Fraction Filled Backbone Radial Fractal Flow Dimen-
Fractal Dimen- Dimension sion 
sion 

0.3450 1.5 1.4 1.3 

0.3473 1.3 1.3 1.1 

0.3500 1.7 1.7 1.6 

0.3800 1.7 1.7 1.7 

Table 5.3 
Geometric and flow dimensions of the modified SierPinski carpets. 

N D DR n 

Number Of Backbone Radial Fractal Flow Dimen-
Fractured Fractal Dimen- Dimension sion 
Squares sion 

3 1.2 1.2 1.2 

4 1.4 1.4 1.3 

5 1.5 1.5 1.4 

6 1.6 1.6 1.5 
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rock systems. The number of squares fractured within a carpet varied from three 

to six and resulted in fractal dimensions between one and two. It may be 

observed that the trend of the dimensions is the same for the modified Sierpinski 

carpets as it was for the percolating networks. That is, the two geometrically cal­

culted fractal dimensions are always larger than the flow dimension. However, 

there is not a great difference between the radial fractal dimension and the back­

bone fractal dimension clue to the systematic structure of the carpet. 

5.9. Conclusions 

There have been three major points learned from this study. The first 

point deals with the difference between the geometrical fractal dimensions and the 

flow dimensions. The geometrical fractal dimensions, namely the backbone fractal 

dimension and the radial fractal dimension, describe the structure of the rock sys­

tem as a whole. Every fracture within the system is taken into account when cal­

culating these dimensions. The flow dimension, however, describes only the part 

of system that is seen by the flowing fluid. The flowing fluid does not necessarily 

flow through every fracture in the system. Due to the selective behavior of the 

flowing fluid, the flow dimension, n, is always less than or equal to the geometri­

cal fractal dimensions. The second point concerns the calculation of the flow 

dimension. The flow dimension is found from the pressure response curve of the 

fluid during a well test. The shape of the pressure response curve is dictated by 

the hydraulic behavior of the rock. Therefore the flow dimension, n, reflects the 

hydraulic behavior of the rock. Lastly, and most importantly, the practical 

significance of the flow dimension, n, must be emphasized. In this study it was 

shown that the geometric dimension of a fracture system does not necessarily 

reflect the flow dimension of the fracture system. Therefore, when analyzing flow 

through any fracture system the flow dimension, n, should be used to characterize 

.'" 
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the flow behavior of that fractured rock system. 



CHAPTER 6 

CONCLUSIONS AND FUTURE STUDIES 

66 

The main purpose of this paper was to study the hydraulic behavior of 

various hierarchical rock geometries. The dependence of the flow on the rock 

geometry was shown in two distinctly different studies. The first of these studies 

was presented in Chapter 4 and concerned the dependence of permeability on the 

fracture length and aperture. The permeabilities of the systems were found to 

depend on the fracture lengths. The degree of this dependence was shown to be a 

function of the aperture distribution. For every aperture distribution, however, the 

pattern of the permeability versus fracture length curves was similar. The curves 

were initially flat, indicating a constant permeability, while the first six or seven 

fracture length sets were removed. The curves then had sudden drops in permea­

bility when the systems contained only the longer fractures, which constitute 20% 

or less of the original number of fractures. This result indicates a cutoff length 

when the fractures need to be explicitly modeled. For this study the cutoff length 

was about 1/4 of the length of the flow region being modeled. Modeling just the 

fractures at or above the cutoff length was sufficient to achieve a representation of 

the overall flow properties of the system. 

The three different aperture distributions used had varying affects on the 

permeability. The constant aperture distribution caused the perm~ability to be less 

affected by the fracture geometry since all the fractures had an equal aperture. 

The permeability was essentially the same for three different fracture arrange­

ments. For the constant aperture distribution the permeability is mostly dependent 

on the last two fracture length sets (3.2 m to 6.4 m and 6.4 m to 12.8 m). The 

correlated aperture distribution resulted in rock systems with the highest permea-

.. 
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bility of all the systems studied The permeabilties of the systems with correlated 

distributions were affected by the fracture geometry. These effects are seen by a 

range in permeabilities for the three realizations presented. The permeability of 

these systems depended mostly on the longest fracture set (6.4 m to 12.8 m). The 

distributed aperture distribution resulted in permeability effects that were a mixture 

of the results from the other two distributions. The systems with distributed aper­

tures had ranges in permeabilities as did the correlated aperture systems. How­

ever, for the distributed systems, the permeability's dependence on the fracture 

length was similar to that observed for the constant aperture systems. 

Explicitly modeling only the larger fractures (6.4 m to 12.8 m) and 

replacing the smaller fractures with an equivalent porous media resulted in a 

fracture-matrix system with the same overall hydraulic properties at steady-state 

conditions as the fracture only system. For the transient time period the fracture­

matrix system was not found to be equivalent to the fracture only system. The 

porous media cannot replicate local heterogeneities caused by the small fractures. 

The validity of using porous media in place of small fractures is scale 

dependent. If the area of interest is within the system, substitution of the small 

fractures by porous media may not be valid. If the concern of the study is on a 

scale the size of the system then the substitution seems valid. These conclusions 

are made from the results of this study and more work needs to be done to sub­

stantiate them. 

This study was only a starting point to the understanding of the depen­

dence of permeability on the fracture length and aperture. Future studies could be 

done with different values of fracture density. The role of the larger fractures may 

change with an increase or decrease in the fracture density. A method of calculat­

ing this cutoff length is presented in Hestir and Long (1990). The substitution of 

small fractures by porous media could be done with the distributed and correlated 
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aperture distributions. Mass transport should be modeled on the fracture only 

meshes and the fracture-matrix meshes that are both constructed with various aper­

ture distributions. Mass transport is dictated by flow paths available for flow. 

The substitution of porous media for small fractures may alter those flow paths 

and give different results than the fracture only' mesh. The dependence of the 

aperture distribution on the flow paths used could also be studied from this model­

ing. 

The flowing fluids choice of paths was indirectly examined in the 

second study. presented in Chapter 5. This examination was done by calculating 

the dimension of the flow system from a pressure response curve. The resulting 

flow dimensions were observed to be always less than or equal to any geometri­

cally calcualted dimensions of the fracture systems. The flow dimension was 

shown to reflect the hydraulic behavior of the rock system. Most importantly. it 

was found that the flow dimension could be used to characterize the flow behavior 

of a fracture rock system. 

Finding an exact relationship between the flow dimension and the 

geometric dimensions would be useful in future work on modeling fractured rock. 

The radial fractal dimension was a first attempt at calculating the flow dimension 

from the geometry of the fracture system. The method for calculating the radial 

fractal dimension could be refined in future studies. The effects of the fracture 

tortuosity on the calculation of the radial fractal dimension should be minimized. 

Another approach for finding a connection is to give more weight to fractures con­

stituting the direct flow paths than the fractures on circuitous flow paths. 

In addition to finding a connection between the flow dimension and 

geometric dimension work should also be done with field well test data. Flow 

dimensions calculated from field pressure response curves could be matched with 

flow dimensions from fracture systems. The geometry of the matched fracture 
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system would be a first approximation of the field flow geometry. Comparisons 

with field data may necessitate modeling in three dimensions. 
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