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Abstract

Mediation analysis aims to uncover causal pathways along which

changes are transmitted from stimulus to response. Recent advances

in causal inference have given rise to a general and easy-to-use esti-

mator for assessing the extent to which the effect of one variable on

another is mediated by a third, thus setting a causally-sound standard

for mediation analysis of empirical data. This estimator, called Media-

tion Formula, is applicable to nonlinear models with both discrete and

continuous variables, and permits the evaluation of path-specific effects

with minimal assumptions regarding the data-generating process. We

demonstrate the use of the Mediation Formula in simple examples and

illustrate why parametric methods of analysis yield distorted results,

even when parameters are known precisely. We stress the importance

of distinguishing between the necessary and sufficient interpretations

of “mediated-effect” and show how to estimate the two components in

∗Portions of this paper are adapted from Pearl (2000, 2009a,b, 2010); I am indebted
to Elias Bareinboim, Adam Glynn, Donald Green, Booil Jo, Marshall Joffe, Helena Krae-
mer, David MacKinnon, Stephen Morgan, Patrick Shrout, Arvid Sjölander, Dustin Tingley,
Tyler VanderWeele, Scott Weaver, Christopher Winship, Teppei Yamamoto, and readers of
the UCLA Causality Blog (http://www.mii.ucla.edu/causality/) for discussions leading to
these explorations. Send comments to <judea@cs.ucla.edu>. This research was supported
in parts by NIH #1R01 LM009961-01, NSF #IIS-0914211 and #IIS-1018922, and ONR
#N000-14-09-1-0665 and #N00014-10-1-0933.
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systems with categorical variables, including logistic, probit, and non-

parametric regressions.

Keywords: Effect decomposition, indirect effects, structural equation mod-
els, graphical models, counterfactuals, causal effects, potential-outcome, struc-
tural causal models, surrogate endpoints.

1 Mediation: Direct and Indirect Effects

1.1 Direct versus Total Effects

The target of many empirical studies in the social, behavioral, and health
sciences is the causal effect, here denoted P (y|do(x)), which measures the
total effect of a manipulated variable (or a set of variables) X on a response
variable Y . In many cases, this quantity does not adequately represent the
target of investigation and attention is focused instead on the direct effect of
X on Y . The term “direct effect” is meant to quantify an effect that is not
mediated by other variables in the model or, more accurately, the sensitivity
of Y to changes in X while all other factors in the analysis are held fixed.
Naturally, holding those factors fixed would sever all causal paths from X to
Y with the exception of the direct link X → Y , which is not intercepted by
any intermediaries.

A classical example of the ubiquity of direct effects involves legal disputes
over race or sex discrimination in hiring. Here, neither the effect of sex or race
on applicants’ qualification nor the effect of qualification on hiring are targets
of litigation. Rather, defendants must prove that sex and race do not directly
influence hiring decisions, whatever indirect effects they might have on hiring
by way of applicant qualification.

From a policy making viewpoint, an investigator may be interested in de-
composing effects to quantify the extent to which weakening or strengthening
specific causal pathways would impact the overall effect of X on Y . For exam-
ple, the extent to which minimizing racial disparity in education would reduce
racial disparity in earning. Or, taking a health-related example, the extent to
which efforts to eliminate side-effect of a given treatment are likely to weaken
or enhance the efficacy of that treatment. More often, however, the decom-
position of effects into their direct and indirect components carries theoretical
scientific importance, for it tells us “how nature works” and, therefore, enables
us to predict behavior under a rich variety of conditions and interventions.

Structural equation models provide a natural language for analyzing path-
specific effects and, indeed, considerable literature on direct, indirect and total
effects has been authored by SEM researchers (Alwin and Hauser (1975), Graff
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and Schmidt (1982), Sobel (1987), Bollen (1989)), for both recursive and non-
recursive models. This analysis usually involves sums of powers of coefficient
matrices, where each matrix represents the path coefficients associated with
the structural equations.

Yet despite its ubiquity, the analysis of mediation has long been a thorny
issue in the empirical sciences (Judd and Kenny, 1981; Baron and Kenny,
1986; Muller et al., 2005; Shrout and Bolger, 2002; MacKinnon et al., 2007a)
primarily because structural equation modeling in those sciences were deeply
entrenched in linear analysis, where the distinction between causal parameters
and their regressional interpretations can easily be conflated (as in Holland,
1995; Sobel, 2008). The difficulties were further amplified in nonlinear mod-
els, where sums and products are no longer applicable. As demands grew to
tackle problems involving binary and categorical variables, researchers could
no longer define direct and indirect effects in terms of structural or regressional
coefficients, and all attempts to extend the linear paradigms of effect decom-
position to nonlinear systems produced distorted results (MacKinnon et al.,
2007b). These difficulties have accentuated the need to redefine and derive
causal effects from first principles, uncommitted to distributional assumptions
or a particular parametric form of the equations. The structural methodology
presented in this paper adheres to this philosophy and it has produced indeed
a principled solution to the mediation problem, based on the counterfactual
reading of structural equations (Balke and Pearl, 1994a,b; Pearl, 2009a, Chap-
ter 7). The following subsections summarize the method and its solution,
while Section 2 introduces the Mediation Formula, exemplifies its behavior,
and demonstrates its usage in simple examples, including linear, quasi-linear,
logistic, probit and nonparametric models. Finally, Section 4 compares the
Mediation Formula to other methods proposed for effect decomposition and
explains the difficulties that those methods have encountered in defining and
assessing mediated effects.

1.2 Controlled Direct Effects

A major impediment to progress in mediation analysis has been the lack of
notational facility for expressing the key notion of “holding the mediating
variables fixed” in the definition of direct effect. Clearly, this notion must be
interpreted as (hypothetically) setting the intermediate variables to constants
by physical intervention, not by analytical means such as selection, regression
conditioning, stratification matching or adjustment. For example, consider
the simple mediation models of Fig. 1(a), where the error terms (not shown
explicitly) are assumed to be mutually independent. To measure the direct
effect of X on Y it is sufficient to measure their association conditioned on the
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Figure 1: (a) A generic model depicting mediation through Z with no con-
founders, and (b) with two confounders, W1 and W2.

mediator Z. In Fig. 1(b), however, where the error terms are dependent, it
will not be sufficient to measure the association between X and Y for a given
level of Z because, by conditioning on the mediator Z, we create spurious
associations between X and Y through W2, even when there is no direct effect
of X on Y (Pearl, 1998; Cole and Hernán, 2002).

Using the do(x) notation, enables us to correctly express the notion of
“holding Z fixed” and obtain a simple definition of the controlled direct effect
of the transition from X = x to X = x′ (Pearl, 2009a, p. 128):

CDE
∆
= E(Y |do(x′), do(z)) − E(Y |do(x), do(z)) (1)

or, equivalently, using counterfactual notation:

CDE
∆
= E(Yx′z) − E(Yxz)

where Z is the set of all mediating variables.1 Readers can easily verify that,
in linear systems, the controlled direct effect reduces to the path coefficient
of the link X → Y regardless of whether confounders are present (as in Fig.
1(b)) and regardless of whether the error terms are correlated or not.

This separates the task of definition from that of identification, and thus
circumvents many pitfalls in this area of research (Pearl, 2009b). The identifi-
cation of CDE would depend, of course, on whether confounders are present
and whether they can be neutralized by adjustment, but these do not al-
ter its definition. Nor should trepidation about infeasibility of the action

1Readers not familiarwith this notation can consult (Pearl, 2009a,b, 2010). Conceptually,
P (y|do(x)) stands for the probability of Y = y in a randomized experiment where treatment
level is set to X = x, while Yx(u) stands for the value that Y would attain in unit u, had
X been x. Formally, P (y|do(x)) and Yx(u) are defined, respectively, as the probability and
value of variable Y in a modified structural model, in which the equation for X is replaced
by a constant X = x).
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do(gender = male) enter the definitional phase of the study. Definitions apply
to symbolic models, not to human biology.2

Graphical identification conditions for expressions of the type E(Y |do(x),
do(z1), do(z2), . . . , do(zk)) in the presence of unmeasured confounders were de-
rived by Pearl and Robins (1995) and invoke sequential application of the
back-door condition (Pearl, 2009a, pp. 252–254), which is somewhat more
powerful than G-computation (Robins, 1986). Tian and Shpitser (2010) have
further derived a necessary and sufficient condition for this task, and thus
resolved the identification problem for controlled direct effects (Eq. 1).

1.3 Natural Direct Effects

In linear systems, the direct effect is fully specified by the path coefficient
attached to the link from X to Y ; therefore, the direct effect is independent
of the values at which we hold Z. In nonlinear systems, those values would,
in general, modify the effect of X on Y and thus should be chosen carefully to
represent the target policy under analysis. For example, it is not uncommon
to find employers who prefer males for the high-paying jobs (i.e., high z)
and females for low-paying jobs (low z). Focusing on one of these values of
Z, or averaging over all values would not capture the underlying pattern of
discrimination.

When the direct effect is sensitive to the levels at which we hold Z, it is
often more meaningful to define the direct effect relative to some “natural”
base-line level that may vary from individual to individual, and represents the
level of Z just before the change in X. Conceptually, we can define the natural
direct effect DEx,x′(Y ) as the expected change in Y induced by changing X
from x to x′ while keeping all mediating factors constant at whatever value
they would have obtained under do(x). This hypothetical change, which Robins
and Greenland (1992) conceived and called “pure” and Pearl (2001) formalized
and analyzed under the rubric “natural,” mirrors what lawmakers instruct us
to consider in race or sex discrimination cases: “The central question in any
employment-discrimination case is whether the employer would have taken
the same action had the employee been of a different race (age, sex, religion,
national origin etc.) and everything else had been the same.” (In Carson
versus Bethlehem Steel Corp., 70 FEP Cases 921, 7th Cir. (1996)).

Thus, whereas the controlled direct effect measures the effect of X on Y
while holding Z fixed, at a uniform level (z) for all units,3 the natural direct

2In reality, it is the employer’s perception of applicant’s gender and his/her assessment
of gender-job compatibility that render gender a “cause” of hiring – manipulation of gender
is not needed.

3In the hiring discrimination example, this would amount, for example, to testing gender
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effect allows z to vary from individual to individual and be fixed at the level
that each individual held naturally, just before the change in X.

Pearl (2001) gave the following definition for the “natural direct effect”:

DEx,x′(Y ) = E(Yx′,Zx
) − E(Yx). (2)

Here, Yx′,Zx
represents the value that Y would attain under the operation of

setting X to x′ and, simultaneously, setting Z to whatever value it would have
obtained under the setting X = x. For example, if one were to estimate that
the natural direct effect of gender on hiring equals 20% of the total effect,
one can infer that 20% of the current gender-related disparity in hiring can be
eliminated by making hiring decision gender-blind, while keeping applicants
qualifications at their current values (which may be gender dependent).

We see from (2) that DEx,x′(Y ), the natural direct effect of the transition
from x to x′, involves probabilities of nested counterfactuals and cannot be
written in terms of the do(x) operator. Therefore, the natural direct effect
cannot in general be identified or estimated, even with the help of ideal, con-
trolled experiments – a point emphasized in Robins and Greenland (1992).4

However, aided by the formal definition of Eq. (2) and the notational power of
nested counterfactuals, Pearl (2001) was nevertheless able to derive conditions
under which the natural direct effect can be expressed in terms of the do(x)
operator, implying identifiability from controlled experiments. For example,
if a set W exists that deconfounds Y and Z, the natural direct effect can be
reduced to5

DEx,x′(Y ) =
∑

z,w

[E(Y |do(x′, z), w) −E(Y |do(x, z), w)]P (z|do(x), w). (3)

The intuition is simple; the W -specific natural direct effect is the weighted
average of the controlled direct effect, using the causal effect P (z|do(x), w) as

bias while marking all application forms with the same level of schooling and other skill-
defining attributes.

4The reason being that we cannot rerun history and test individuals’ response both
before and after the intervention. Robins (2003) elaborates on the differences between
the assumptions made in (Pearl, 2001) and the weaker assumptions made in Robins and
Greenland (1992), which prevented the latters from identifying natural effects even in the
simple case of no-confounding. (Fig. 1(a)).

5The key condition for this reduction is the existence of a set W of covariates satisfying
YxzZx′⊥⊥W , which simply states that W blocks all back-door paths from Z to Y (see Pearl
(2009a, p. 101)). More refined counterfactual conditions for identification are derived in
Petersen et al. (2006), Imai et al. (2010c), and Robins and Richardson (2011). However, none
matches the clarity of the back-door condition above, and all are equivalent in the graphical
language of non-parametric structural equations (Shpitser and VanderWeele, 2011).
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a weighing function.6

In particular, it can be shown (Pearl, 2001) that the natural direct effect is
identifiable in Markovian models (i.e., recursive equations with no unobserved
confounders) where each do-expression can be reduced to a “do-free” expression
by covariate adjustments (Pearl, 2009a) and then estimated by regression. For
example, for the model in Fig. 1(b), DEx,x′(Y ) reduces to:

DEx,x′(Y ) =
∑

z

∑

w2

P (w2)[E(Y |x′, z, w2))−E(Y |x, z, w2))]
∑

w1

P (z|x, w1, w2)P (w1).

(4)
while for the confounding-free model of Fig. 1(a) we have:

DEx,x′(Y ) =
∑

z

[E(Y |x′, z) − E(Y |x, z)]P (z|x). (5)

Both (4) and (5) can be estimated by a regression.
When Z consists of multiple interconnected mediators, affected by an in-

tricate network of observed and unobserved confounders, the adjustment il-
lustrated in Eq. (4) must be handled with some care. Theorems 1 and 2 of
Pearl (2001) can then be used to reduce DEx,x′(Y ) to a do-expression similar
to (3) (see footnote 5). Once reduced, the machinery of do-calculus (Pearl,
1995) can be invoked, and the methods of Pearl and Robins (1995), Tian and
Shpitser (2010), and Shpitser and VanderWeele (2011) can select the proper
set of covariates and reduce the natural direct effect (3) to an expression es-
timable by regression, whenever such reduction is feasible. For example, if
in Fig. 1(b) W1 is unobserved and another observed covariate, W3, mediates
the path X → Z, E(Y |do(x, z), w2) is then identifiable through the front-door
formula (Pearl, 1995, 2009a), thus rendering DEx,x′(Y ) estimable by regres-
sion. This demonstrates that neither “ignorability” (Rosenbaum and Rubin,
1983) nor “sequential ignorability” (Imai et al., 2010a) is necessary for securing
the identification of direct effects; transparent graph-based criteria are suffi-
cient for determining when and how confounding can be controlled. See (Pearl,
2009a, pp. 341–344) for graphical interpretation of “ignorability” assumptions.

1.4 Indirect effects

Remarkably, the definition of the natural direct effect (2) can be turned around
and provide an operational definition for the indirect effect – a concept shrouded
in mystery and controversy, because it is impossible, by controlling any of the

6Throughout this paper we will use summation signs with the understanding that inte-
grals should be used whenever the summed variables are continuous.
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variables in the model, to disable the direct link from X to Y so as to let X
influence Y solely via indirect paths.

The natural indirect effect, IE, of the transition from x to x′ is defined
as the expected change in Y affected by holding X constant, at X = x, and
changing Z to whatever value it would have attained had X been set to X = x′.
Formally, this reads (Pearl, 2001):

IEx,x′(Y )
∆
= E[(Yx,Zx′

) − E(Yx)], (6)

which is almost identical to the direct effect (Eq. (2)) save for exchanging x
and x′ in the first term.

Invoking the same conditions that led to the experimental identification of
the direct effect, Eq. (3), we obtain a parallel formula for the indirect effect:

IEx,x′(Y ) =
∑

z,w

E(Y |do(x, z), w)[P (z|do(x′), w) − P (z|do(x), w)]. (7)

The intuition here is somewhat different, and represents a nonlinear version
of the “product-of-coefficients” strategy in linear models (MacKinnon, 2008);
the E(Y |do(x, z), w) term encodes the effect of Z on Y for fixed X = x and
W = w, while the [P (z|do(x′), w) − P (z|do(x), w)] encodes the effect of X
on Z. We see that what was a simple product-of-coefficients in linear models
turns into a convolution type operation, involving all values of Z.

In non-experimental studies, the do-operator need be reduced to regression
type expression using covariate adjustment or instrumental variable methods.
For example, for the model in Fig. 1(b), Eq. (7) reads:

IEx,x′(Y ) =
∑

z

∑

w2

P (w2)[E(Y |x, z, w2))
∑

w1

[P (z|x′, w1, w2)−P (z|x, w1, w2)P (w1)].

(8)
while for the confounding-free model of Fig. 1(a) we have

IEx,x′(Y ) =
∑

z

E(Y |x, z)[P (z|x′) − P (z|x)] (9)

which, like Eq. (5) can be estimated by a two-step regression.

1.5 Effect decomposition

Not surprisingly, owed to the nonlinear nature of the model, the relationship
between the total, direct and indirect effects is non-additive. Indeed, it can
be shown that, in general, the total effect TE of a transition is equal to the
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difference between the direct effect of that transition and the indirect effect of
the reverse transition. Formally,

TEx,x′(Y )
∆
= E(Yx′ − Yx) = DEx,x′(Y ) − IEx′,x(Y ). (10)

In linear systems, where reversal of transitions amounts to negating the signs
of their effects, we have the standard additive formula

TEx,x′(Y ) = DEx,x′(Y ) + IEx,x′(Y ). (11)

Since each term above is based on an independent operational definition, this
equality constitutes a formal justification for the additive formula used rou-
tinely in linear systems.7

Note that, although it cannot in general be expressed in do-notation, the
indirect effect has clear policy-making implications. For example: in the hiring
discrimination context, a policy maker may be interested in predicting the
gender mix in the work force if gender bias is eliminated and all applicants
are treated equally—say, the same way that males are currently treated. This
quantity will be given by the indirect effect of gender on hiring, mediated by
factors such as education and aptitude, which may be gender-dependent.

More generally, a policy maker may be interested in the effect of issuing
a directive to a select set of subordinate employees, or in carefully selecting
the routing of messages in a network of interacting agents. Such applications
motivate the analysis of path-specific effects, that is, the effect of X on Y
through a selected set of paths (Avin et al., 2005). Avin et al. (2005), with all
other paths deactivated. The operation of disabling a path can be expressed
in nested counterfactual notation, as in Eqs. (2) and (6).

In all these cases, the policy intervention invokes the selection of signals
to be sensed, rather than variables to be fixed. Pearl (2001) has suggested
therefore that signal sensing is more fundamental to the notion of causation
than manipulation; the latter being but a crude way of stimulating the former
in experimental setup. The mantra “No causation without manipulation”
must be rejected. (See (Pearl, 2009a, Section 11.4.5).)

7Some authors (e.g., VanderWeele (2009); Vansteelandt (2011), (Chapter [VANSTEE-
LANDT]) take Eq. (11) as the definition of indirect effect (see footnote 8), which ensures
additivity by definition, but presents a problem of interpretation; the resulting indirect ef-
fect, aside from being redundant, does not represent the same transition, from x to x′, as
do the total and direct effects. This prevents us from comparing the effect attributable to
mediating paths with that attributable to unmediated paths, under the same conditions.
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2 The Mediation Formula: A Simple Solution

to a Thorny Problem

2.1 Mediation in non-parametric models

This subsection demonstrates how the solution provided in equations (5) and
(9) can be applied in assessing mediation effects in non-parametric, possibly
nonlinear models. We will use the simple mediation model of Fig. 1(a), where
all error terms (not shown explicitly) are assumed to be mutually independent,
with the understanding that adjustment for appropriate sets of covariates W
may be necessary to achieve this independence (as in (4) and (8)) and that
integrals should replace summations when dealing with continuous variables
(Imai et al., 2010c).

Combining (5), (9), and (10), the expressions for the direct (DE), indirect
(IE) and total (TE) effects, IE become:

DEx,x′(Y ) =
∑

z

[E(Y |x′, z) − E(Y |x, z)]P (z|x) (12)

IEx,x′(Y ) =
∑

z

E(Y |x, z)[P (z|x′) − P (z|x)] (13)

TEx,x′(Y ) = E(Y |x′) −E(Y |x) (14)

These three equations provide general formulas for mediation effects, appli-
cable to any nonlinear system, any distribution, and any type of variables.
Moreover, the formulas are readily estimable by regression. Owed to their
generality and ubiquity, I have referred to these expressions as the “Mediation
Formula” (Pearl, 2009b).

The Mediation Formula (13) represents the average increase in the outcome
Y that the transition from X = x to X = x′ is expected to produce absent
any direct effect of X on Y . Though based on solid causal principles, it
embodies no causal assumption other than the generic mediation structure of
Fig. 1(a). When the outcome Y is binary (e.g., recovery, or hiring) the ratio
(1 − IE/TE) represents the fraction of responding individuals who owe their
response to direct paths, while (1−DE/TE) represents the fraction who owe
their response to Z-mediated paths.8

The Mediation Formula tells us that IE depends only on the expectation of
the counterfactual Yxz, not on its functional form fY (x, z, uY ) or its distribution
P (Yxz = y). It calls therefore for a two-step regression which, in principle, can

8For simplicity and clarity, we remove the subscripts from TE, DE, and IE, whenever
no ubiquity arises. Robins (2003) and Hafeman and Schwartz (2009) refer to TE − IE and
TE − DE as “total direct” and “total indirect” effects, respectively.
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be performed non-parametrically. In the first step we regress Y on X and Z,
and obtain the estimate

g(x, z)
∆
= E(Y |x, z)

for every (x, z) cell. In the second step we fix x and estimate the conditional
expectation of g(x, z) with respect to z, conditional on X = x′ and X = x,
respectively, and take the difference:

IEx,x′(Y ) = EZ|x′[g(x, z)] − EZ|x[g(x, z)]

Non-parametric estimation is not always practical. When Z consists of
a vector of several mediators, the dimensionality of the problem might pro-
hibit the estimation of E(Y |x, z) for every (x, z) cell, and the need arises to
use parametric approximation. We can then choose any convenient paramet-
ric form for E(Y |x, z) (e.g., linear, quasi-linear logit, probit), estimate the
parameters separately (e.g., by regression or maximum likelihood methods),
insert the parametric approximation into (13) and estimate its two conditional
expectations (over z) to get the mediated effect.

The power of the Mediation Formula was recognized by Petersen et al.
(2006); Glynn (2009); Hafeman and Schwartz (2009); Mortensen et al. (2009);
VanderWeele (2009); Kaufman (2010); Imai et al. (2010c). Imai et al. (2010a)
have further shown that nonparametric identification of mediation effects un-
der the no-confounding assumption (Fig. 1a) allows for a flexible estimation
strategy and illustrate this with various nonlinear models, quantile regressions,
and generalized additive models. Imai et al. (2010b) describe an implemen-
tation of these extensions using a convenient R package. Sjölander (2009)
provides bound on DE in cases where the confounders between Z and Y can-
not be controlled.

In the next section this power will be demonstrated on linear and nonlinear
models, with the aim of explaining the distortions produced by conventional
methods of parametric mediation analysis, and how they are rectified through
the Mediation Formula.
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2.2 Mediation effects in linear, logistic, and probit mod-

els

The linear case: Difference versus product estimation

Let us examine what the Mediation Formula yields when applied to the linear
version of model 1(a), which reads:

x = uX

z = γxzx + uZ (15)

y = γxyx + γzyz + uY

Computing the conditional expectation in (13) gives

g(x, z) = E(Y |x, z) = E(γxyx + γzyz + uY ) = a0 + γxyx + γzyz

and yields

DEx,x′ =
∑

z

[(a0 + γxyx
′ + γzyz) − (a0 + γxyx + γzyz)]P (z|x)

= γxy(x
′ − x) (16)

IEx,x′(Y ) =
∑

z

(a0 + γxyx + γzyz)[P (z|x′) − P (z|x)].

= γzy [E(Z|x′) − E(Z|x)]

= (γzyγxz)(x
′ − x) (17)

= (βxy − γxy)(x
′ − x) (18)

where βxy is the regression coefficient βxy = ∂
∂x

E(Y |x) = γxy + γxzγzy

TEx,x′(Y ) = (E(Y |x′) −E(Y |x))

=
∑

z

E(Y |x′, z)P (z|x′) +
∑

z

E(Y |x, z)P (z|x)

=
∑

z

(a0 + γzyx
′ + γzyz)P (z|x′) −

∑

z

(a0 + γxyx + γzyz)P (z|x)

= γxy(x
′ − x) + γzyE(Z|x′) − γzyE(Z|x)

= (γxy + γzyγxz)(x
′ − x) (19)

We thus obtained the standard expressions for effects in linear systems.
In particular, we see that the indirect effect can be estimated either as a dif-
ference in two regression coefficients (Eq. 18) or a product of two regression
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coefficients (Eq. 17), with Y regressed on both X and Z.9 When generalized
to nonlinear systems, however, these two strategies yield conflicting results
(MacKinnon and Dwyer, 1993; MacKinnon et al., 2007b) and much contro-
versy has developed as to which strategy should be used in assessing the size
of mediation effects (MacKinnon and Dwyer, 1993; Freedman et al., 1992;
Molenberghs et al., 2002; MacKinnon et al., 2007b; Glynn, 2009; Green et al.,
2010).

We now show that neither of these strategies generalizes to nonlinear sys-
tems; direct application of (13) is necessary. Moreover, we will see that, though
yielding identical results in linear systems, the two strategies represent legit-
imate intuitions in pursuits of two distinct causal quantities. The difference-
in-coefficients method seeks to estimate TE − DE, while the product-of-
coefficients method seeks to estimate IE. The former represents the reduction
in TE if indirect paths were deactivated, while the latter represents the por-
tion of TE that would remain if the direct path were deactivated. The choice
between TE − DE and IE depends of course on the specific decision mak-
ing objectives that the study aims to inform. If the policy evaluated aims
to prevent the outcome Y by ways of manipulating the mediating pathways,
the target of analysis should be the difference TE −DE, which measures the
highest prevention effect of any such manipulation. If, on the other hand, the
policy aims to prevent the outcome by manipulating the direct pathway, the
target of analysis should shift IE, for TE−IE measures the highest preventive
impact of this type of manipulations.

In the hiring discrimination example, TE−DE gives the maximum reduc-
tion in racial earning disparity that can be expected from programs aiming to
achieve educational parity. TE − IE on the other hand measures the max-
imum reduction in earning disparity that can be expected from eliminating
hiring discrimination by employers. The difference-in-coefficients strategy is
motivated by the former types of problems while the product-of-coefficients by
the latter.

The next section illustrates how nonlinearities bring about the disparity
between IE and TE − DE.

9Note that the equality βxy − γxy = γxzγzy established in (18) is a universal identity
among regressional coefficients of any three variables, and has nothing to do with causa-
tion or mediation. It will continue to hold therefore regardless of whether confounders are
present, whether the structural parameters are identifiable, whether the underlying model is
linear or nonlinear and regardless of whether the arrows in the model of Fig. 1(a) point in the
right direction. Moreover, the equality will hold among the OLS estimates of these param-
eters, regardless of sample size. Therefore, the failure of parameters in nonlinear regression
to obey similar equalities should not be construed as an indication of faulty standardization,
as suggested by (MacKinnon et al., 2007a,b).
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The logistic case

To see how the Mediation Formula facilitates nonlinear analysis, let us consider
the logistic and probit models treated in MacKinnon et al. (2007b).10 To this
end, let us retain the linear model of (15) with one modification: the outcome
of interest will be a threshold-based indicator of the linear outcome Y in (15).
In other words, we regard

Y ∗ = γxyx + γzyz + uY (20)

as a latent variable, and define the outcome Y as

Y =

{

1 if γ0 + γxyx + γzyz + uY > 0

0 otherwise
(21)

where γ0 is some unknown threshold level. We will assume that the error UY

is governed by the logistic distribution

P (UY < u) = L(u)
∆
=

1

1 + e−u
(22)

and, consequently, E(Y |x, z) attains the form:

E(Y |x, z) =
1

1 + e−(γ0+γxyx+γzyz)
(23)

= L(γ0 + γxyx + γzyz) (24)

We will further assume that UZ is normal with zero mean and infinitesimal
variance σ2

z << 1.
Given this logistic model and its parameter set (γ0, γxy, γzy , γxz, σ

2
z), we will

now compute the direct (DE), indirect (IE) and total (TE) effects associated
with the transition from X = 0 to X = 1. From the Mediation Formula

10Pearl (2010) analyzes Boolean models with Bernoulli noise.
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((12)–(14)), we obtain:

DE =

∫ ∞

z=−∞

[L(γ0 + γxy + γzy) − L(γ0 + γzyz)]fZ|X(z|X = 0)dz

= L(γ0 + γxy) − L(γ0) + 0(σ2
z) (25)

IE =

∫ ∞

z=−∞

[L(γ0 + γzyz)[fZ|X(z|X = 1) − fZ|X(z|X = 0)]dz

= L(γ0 + γzyγxz) − L(γ0) + 0(σ2
z) (26)

TE = E(Y |X = 1) − E(Y |X = 0) =

∫ ∞

z=∞

E(Y |X = 1, z)fZ|X(z|X = 1)dz

−

∫ ∞

z=∞

E(Y |X = 0, z)fZ|x(z|X = 0)dz

= L(γ0 + γxyx + γzyz) − L(γ0) + 0(σ2
z) (27)

where 0(σ2
z) → 0 as σz → 0.

It is clear that, due to the nonlinear nature of L(u), none of these effects
coincides with its corresponding effect in the linear model of Eq. (15). In other
words, it would be wrong to assert the equalities:

DE0,1 = γxy

IE0,1 = γzyγxz

TE0,1 = γxy + γzyγxz = βxy

as is normally assumed in the mediation literature (Prentice, 1989; Freedman
et al., 1992; MacKinnon and Dwyer, 1993; Fleming and DeMets, 1996; Molen-
berghs et al., 2002; MacKinnon et al., 2007b). In particular, the mediated
fractions 1−DE/TE, and IE/TE may differ substantially from the fractions
γxzγzy/(γxy + γxzγzy), 1 − γxy/βxy, or γxzγzy/βxy that have been proposed to
evaluate mediation effects by traditional methods. The latters are heuristic
ratios informed by the linear portion of the model, while the formers are de-
rived formally from the counterfactual specifications of the target quantities,
as in (2) and (6).

Figure 2 depicts DE, IE, and TE as a function of γ0, the threshold coef-
ficient that dichotomizes the outcome (as in Eq. (21)). These were obtained
analytically, from Eqs. (25)-(27), using the values γxz = γxy = γzy = 0.5 for
illustrative purposes. We see that all three measures vary with γ0 and deviate
substantially from the assumptions that equate DE with γxy = 0.50, IE with
γxzγzy = 0.25 and TE with γxy +γxzγzy = 0.75 (MacKinnon and Dwyer, 1993;
MacKinnon et al., 2007b).

The bias produced by such assumptions is further accentuated in Fig.
3, which compares several fractions (or proportions) proposed to measure
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Figure 2: Direct (DE), indirect (IE) and total (TE) effects for the logistic
model of Eq. (24) as a function of the threshold γ0 that dichotomizes the
outcome.

the relative contribution of mediation to the observed response. Recall that
1−DE/TE measures the extent to which mediation was necessary for the ob-
served response, while IE/TE the extent to which it was sufficient. Figure 3
shows that the necessary fraction (1−DE/TE) exceeds the sufficient fraction
(IE/TE) as γ0 becomes more negative. Indeed, in this region, both direct
and indirect paths need be activated for Y ∗ to exceed the threshold of Eq.
(22). Therefore, the fraction of responses for which mediation was necessary is
high and the fraction for which mediation was sufficient is low. The disparity
between the two will be revealed by varying the intercept γ0, a parameter that
is hardly paid noticed to in traditional analyses and which will be shown to
be important for understanding the interplay between DE and IE, and the
role they play in shaping mediated effects. The opposite occurs for positive
γ0 (negative threshold), where each path alone is sufficient for activating Y
and it is unlikely therefore that the mediator becomes a necessary enabler of
Y = 1.

None of this dynamics is represented in the fixed fraction γxzγzy/(γxy +
γxzγzy) = 0.25/0.75 = 1/3 which standard logistic regression would report
as the fraction of cases “explained by mediation.” Some of this dynamics is
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Figure 3: Necessary (1−DE/TE) and sufficient (IE/TE) mediation propor-
tions for the logistic model of Eq. (24)

reflected in the fraction γxzγzy/[E(Y |X = 1) − E(Y |X = 0)] = 0.25/TE (not
shown in Fig. 3) which some researchers have recommended as a measure of
mediation (MacKinnon and Dwyer, 1993; MacKinnon et al., 2007b). But this
measure is totally incompatible with the correct fractions shown in Fig. 3. The
differences are accentuated again for negative γ0 (positive threshold), where
both direct and indirect processes must be activated for Y ∗ to exceed the
threshold, and the fraction of responses for which mediation is necessary (1−
DE/TE) is high and the fraction for which mediation is sufficient (IE/TE)
is low.

The probit case

Figure 4 displays the behavior of a probit model. It was computed analyti-
cally by assuming a probit distribution in Eq. (22), which leads to the same
expressions in (21)–(24), with Φ replacing L. Noticeably, Figs. 4 and 5 reflect
more pronounced variations of all effects with γ0, as well as more pronounced
deviation of these curve from the constant γxzγzy/(γxy + γxzγzy) = 1/3 that
regression analysis defines as the “proportion mediated” measure (Sjölander,
2009). We speculate that the difference in behavior between the logistic and
probit models is due to the latter sharper approach toward the asymptotic
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Figure 4: Direct (DE), indirect (IE) and total (TE) effects for a probit model.

limits.

2.3 Special cases of mediation models

In this section we will discuss three special cases of mediation processes that
lend themselves to simplified analysis,

Incremental causal effects

Consider again the logistic threshold model of Eq. (21), and assume we are
interested in assessing the response Y to an incremental change in the treat-
ment variable X, say from X = x to X = x + δ. In other words, our target
quantities are the limits as δ → 0 of

DEinc(x) =
1

δ
DEx,x+δ

IEinc(x) =
1

δ
DEx,x+δ

TEinc(x) =
1

δ
DEx,x+δ
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Figure 5: Necessary (1−DE/TE) and sufficient (IE/TE) mediation propor-
tions for a probit model.

If we maintain the infinitesimal variance assumption σ2
z << 1, we obtain:

DEinc(x) = limδ→0
1

δ
DEx,x+δ

= limδ→0
1

δ

∫

[E(Y |x + δ, z)− E(Y |x, z)]fZ|X(z|x)dz

=
∂

∂x
E(Y |x, z)|z=h(x) + 0(σ2

z)

where h(x) = E(Z|x).
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Similarly, we have

IEinc(x) = lim
δ→0

1

δ
IEx,x+δ

= lim
δ→0

1

δ

∫

z

E(Y |x, z)[f(z|x + δ) − f(z|x)]dz

= lim
δ→0

1

δ
E(Y |x, z)|z=h(x+δ) − E(Y |x, z)|z=h(x)

= lim
δ→0

1

δ
[E(Y |x, h(x + δ)) −E(Y |x, h(x))] + 0(σ2

z)

=
∂

∂z
E(Y |x, z)

d

dx
h(x)|z=h(x)

and

TEinc(x) = lim
δ→0

1

δ
[E(Y |x + δ) − E(Y |x)] =

d

dx
E(Y |x)

Using the rule of partial differentiation, we have TEinc = DEinc + IEinc a
result obtained in (Winship and Mare, 1983), though starting from a different
perspective.

Linear outcome with binary mediator

It is interesting to inquire how effects are decomposed when we retain the
linear form of the outcome process, but let the intermediate variable Z be a
binary variable that is related to X through an arbitrary nonlinear process
P (Z = 1|x).

Considering a transition from X = x0 to X = x1 and writing

E(Y |x, z) = αx + βz + γ,

we readily obtain:

DE =
∑

z

[(αx1 + βz + γ)] − [(αx0 + βz + γ)]P (z|x0)

= α(x1 − x0) (28)

IE =
∑

z

(αx1 + βz + γ) − [P (z|x1) − P (z|x0)]

= β[E(Z0|x1) − E(Z|x0)] (29)

TE =
∑

z

E(Y |x1, z)P (z|x1) − E(Y |x0, z)P (z|x0)

=
∑

z

(αx1 + βz + γ)P (z|x1) −
∑

z

(αx0 + βz + γ)P (z|x0)

= α(x1 − x0) + β[E(Z|x1) − E(Z|x0)] (30)
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Again, we have TE = DE + IE.
We see that as long as the outcome processes is linear, non linearities in the

mediation process do not introduce any surprises; effects are decomposed into
their direct and indirect components in a textbook-like fashion. Moreover, the
distribution P (Z|x) plays no role in the analysis; it is only the expectation
E(Z|x) that need be estimated.

This result was obtained by Li et al. (2007) who estimated IE using a
difference-in-coefficients strategy. It follows, in fact, from a more general prop-
erty of the Mediation Formula (13), first noted by VanderWeele (2009), which
will be discussed next.

Semi-linear outcome process

Suppose E(Y |x, z) is linear in Z, but not necessarily in X. We can then write

E(Y |x, z)
∆
= g(x, z) = f(x) + t(x)z

E(Z|x)
∆
= h(x)

and the Mediation Formulas give (for the transition from X = x0 to X = x1):

DE =
∑

z

{(f(x1) + t(x1)z)− (f(x0) − t(x0)z)}P (z|x0)

= f(x1) − f(x0) + (t(x1) − t(x0))E(Z|x0)

= g(x1, h(x0)) − g(x0, h(x0)) (31)

IE =
∑

z

(f(x0) + t(x0)z)(P (z|x1) − P (z|x0))

= t(x0)(E(Z|x1) − E(Z|x0))

= t(x0)[h(x1) − h(x0)] (32)

TE =
∑

z

(f(x1) + t(x1)z)P (z|x1) −
∑

z

(f(x0) + t(x0)z)P (z|x0)

= f(x1) − f(x0) + t(x1)E(Z|x1) − t(x0)E(Z|x0)

= g(x1, h(x1)) − g(x0, h(x0)) (33)

We see again that only the conditional mean E(Z|x) need enter the es-
timation of causal effects in this model, not the entire distribution P (z|x).
However, the equality TE = DE + IE no longer holds in this case; the non-
linearities embedded in the interaction term t(x)z may render Z an enabler or
inhibitor of the direct path, thus violating the additive relationship between
the three effect measures.

21



This becomes more transparent when we examine the standard linear
model to which a multiplicative term xz is added, as is done, for example,
in the analyses of Kraemer et al. (2008), Jo (2008), and Preacher et al. (2007).
In this model we have

E(Y |x, z)
∆
= g(x, z)) = β0 + β1x + β2z + β3xz

E(Z|x)
∆
= h(x) = γ0 + γ1x

Substituting

f(x) = β0 + β1x

t(x) = β2 + β3x

h(x) = γ0 + γ1x

in (31)–(33) and letting x1 − x0 = 1, gives

DE = β1 + β3(γ0 + γ1x0) (34)

IE = γ1(β2 + β3x0) (35)

TE = β1 + β3γ0 + β2γ1 + β3γ1(x0 + x1) (36)

In particular the relationships between DE, IE, and TE becomes

TE = DE + IE + γ1β3

which clearly identifies the product γ1β3 as the culprit for the non-additivity
TE 6= TE + IE. Indeed, when γ1β3 6= 0, Z acts both as a moderator and a
mediator, and both DE and IE are affected by the interaction term β3xz. Note
further that the direct and indirect effects can both be zero and the total effect
non-zero; a familiar nonlinear phenomenon that occurs when Z is a necessary
enabler for the effect of X on Y . This dynamics has escaped standard analyses
of mediation which focused exclusively on estimating? structural parameters,
rather than effect measures, as in (34)–(36).

It is interesting to note that, due to interaction, a direct effect can exist even
when β1 vanishes, though β1 is the path coefficient associated with the direct
link X → Y . This illustrates that estimating parameters in isolation tells us
little about the problem until we understand the way they combine to form
effect measures. More generally, mediation and moderation are inextricably
intertwined and cannot be assessed separately, a position affirmed by Kraemer
et al. (2008) and Preacher et al. (2007).
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The binary case

To complete our discussion of models in which the mediation problem lends
itself to a simple solution, we now address the case where all variables are
binary, still allowing though for arbitrary interactions and arbitrary distribu-
tions of all processes. The low dimensionality of the binary case permits both
a nonparametric solution and an explicit demonstration of how mediation can
be estimated directly from the data. Generalizations to multi-valued outcomes
are straightforward.

Assume that the model of Fig. 1(a) is valid and that the observed data
is given by Table 1. The factors E(Y |x, z) and P (Z|x) in Eqs. (12)–(14) can

X Z Y E(Y |x, z) = gxz E(Z|x) = hx

n1 0 0 0 n2

n1+n2

= g00
n3+n4

n1+n2+n3+n4

= h0
n2 0 0 1
n3 0 1 0 n4

n3+n4

= g01n4 0 1 1

n5 1 0 0 n6

n5+n6

= g10
n7+n8

n5+n6+n7+n8

= h1
n6 1 0 1
n7 1 1 0 n8

n7+n8

= g11n8 1 1 1

Table 1: Computing the Mediation Formula.

be readily estimated as shown in the two right-most columns of Table 1 and,
when substituted in (12)–(14), yield:

DE = (g10 − g00)(1 − h0) + (g11 − g01)h0 (37)

IE = (h1 − h0)(g01 − g00) (38)

TE = g11h1 + g10(1 − h1) − [g01h0 + g00(1 − h0)] (39)

We see that logistic or probit regression is not necessary, simple arithmetic
operations suffice to provide a general solution for any conceivable dataset.

Numerical example

To anchor these formulas in a concrete example, let us assume that X = 1
stands for a drug treatment, Y = 1 for recovery, and Z = 1 for the presence
of a certain enzyme in a patient’s blood which appears to be stimulated by
the treatment. Assume further that the data described in Tables 2 and 3
was obtained in a randomized clinical trial and that our research question
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is whether Z mediates the action of X on Y , or is merely a catalyst that
accelerates the action of X on Y .

Treatment Enzyme present Percentage cured
X Z gxz = E(Y |x, z)

YES YES g11 = 80%
YES NO g10 = 40%
NO YES g01 = 30%
NO NO g00 = 20%

Table 2:

Treatment Percentage with
X Z present
NO h0 = 40%
YES h1 = 75%

Table 3:

Substituting this data into Eqs. (37)–(39) yields:

DE = (0.40 − 0.20)(1 − 0.40) + (0.80 − 0.30)0.40 = 0.32

IE = (0.75 − 0.40)(0.30 − 0.20) = 0.035

TE = 0.80 × 0.75 + 0.40 × 0.25 − (0.30 × 0.40 + 0.20 × 0.10) = 0.46

IE/TE = 0.07 DE/TE = 0.696 1 − DE/TE = 0.304

We conclude that 30.4% of those recovered owe their recovery to the capacity
of the treatment to stimulate the secretion of the enzyme, while only 7% of
recoveries would be sustained by enzyme stimulation alone. The enzyme seems
to act more as a catalyst for the healing process of X than having a healing
action of its own. The policy implication of such a study would be that efforts
to substitute the drug with an alternative stimulant of the enzyme are not
likely to be effective; the drug evidently has a beneficial effect on recovery
that is independent of, though enhanced by enzyme stimulation.

For completeness, we note that the controlled direct effects are (using (1)):

CDEz=0 = g10 − g00 = 0.40 − 0.20 = 0.20

and
CDEz=1 = g11 − g01 = 0.80 − 0.30 = 0.50
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which are quite far apart. Their weighted average, governed by P (Z = 1|X =
0) = h0 = 0.40, gives us DE = 0.32. These do not enter, however, into
the calculation of IE, since the indirect effect cannot be based on controlling
variables; it requires instead a path-deactivating operator, as mirrored in the
definition of Eq. (6).

3 Relation to Other Methods

3.1 Methods based on differences and products

Attempts to compare these results to those produced by conventional medi-
ation analyses encounter two obstacles. First, conventional methods do not
define direct and indirect effects in a nonparametric setting, without commit-
ting to specific functional or distributional forms. MacKinnon (2008, Ch. 11),
for example, analyzes categorical data using logistic and probit regressions and
constructs effect measures using products and differences of the parameters in
those regressional forms. Section 2 demonstrates that this strategy is not
compatible with the causal interpretation of effect measures, even when the
parameters are known precisely; IE and DE may be extremely complicated
functions of those regression coefficients (see Eqs. (25–26)). Fortunately, those
coefficients need not be estimated at all; effect measures can be estimated di-
rectly from the data, circumventing the parametric representation altogether.

Second, attempts to extend the difference and product heuristics to non-
parametric analysis have encountered ambiguities that conventional analysis
fails to resolve. The product-of-coefficients heuristic advises us to multiply the
slope of Z on X

Cβ = E(Z|X = 1) −E(Z|X = 0) = h1 − h0

by the slope of Y on Z fixing X,

Cγ = E(Y |X = x, Z = 1) − E(Y |X = x, Z = 0) = gx1 − gx0

but does not specify at what value we should fix X. Equation (38) resolves
this ambiguity by determining that X should be fixed to X = 0; only then
would the product CβCγ yield the correct mediation measure, IE.

The difference-in-coefficients heuristics instructs us to estimate the direct
effect coefficient

Cα = E(Y |X = 1, Z = z) − E(Y |X = 0, Z = z) = g1z − g0z
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and subtract it from the total effect, but does not specify on what value we
should condition Z. Equation (37) determines that the correct way of esti-
mating Cα would be to condition on both Z = 0 and Z = 1 and take their
weighted average, with h0 = P (Z = 1|X = 0) as the weighting function.

To summarize, in calculating IE, we should condition on both Z = 1 and
Z = 0 and average while, in calculating DE, we should condition on only one
value, X = 0, and no average need be taken.

Reiterating the discussion of Section 2, the difference and product heuris-
tics are both legitimate, with each seeking a different effect measure. The
difference-in-coefficients heuristics, leading to TE − DE, seeks to measure
the percentage of units for which mediation was necessary. The product-of-
coefficients heuristics on the other hand, leading to IE, seeks to estimate the
percentage of units for which mediation was sufficient. The former informs
policies aiming to modify the direct pathway while the latter informs those
aiming to modify mediating pathways.

3.2 Relation to Principal-Strata Direct Effect

The derivation of the Mediation Formula (Pearl, 2001) was made possible
by the counterfactual interpretation of structural equations (see footnote 1)
and the symbiosis between graphical and counterfactual analysis that this in-
terpretation engenders.11 In contrast, the structure-less approach of Rubin
(1974) has spawned other definitions of direct effects, normally referred to as
“principal-strata direct effect (PSDE)” (Frangakis and Rubin, 2002; Mealli
and Rubin, 2003; Rubin, 2004, 2005; Egleston et al., 2010). Whereas the nat-
ural direct effect measures the average effect that would be transmitted in the
population with all mediating paths (hypothetically) deactivated, the PSDE is
defined as the effect transmitted in those units only for whom mediating paths
happened to be deactivated in the study. This definition leads to unintended
results that stand contrary to common usage of direct effects (Robins et al.,
2007, 2009; VanderWeele, 2008), excluding from the analysis all individuals
who are both directly and indirectly affected by the causal variable X (Pearl,
2009b). In linear models, as a striking example, a direct effect will be flatly
undefined, unless β, the X → Z coefficient is zero. In some other cases, the
direct effect of the treatment will be deemed to be nil, if a small subpopulation

11Such symbiosis is now standard in epidemiology research (Robins, 2001; Petersen et al.,
2006; VanderWeele and Robins, 2007; Hafeman and Schwartz, 2009; VanderWeele, 2009;
Albert and Nelson, 2011) and is making its way slowly toward the social and behavioral
sciences, (e.g., Morgan and Winship (2007); Imai et al. (2010a); Elwert and Winship (2010);
Chalak and White (2011)), despite islands of resistance (Wilkinson et al., 1999, p. 600;
Sobel, 2008; Rubin, 2010; Imbens, 2010).
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exists for which treatment has no effect on both Y and Z. In view of these
definitional inadequacies we do not include “principal-strata direct effect” in
our discussion of mediation, though they may well be suited for other appli-
cations12, for example, when a stratum-specific property is genuinely at the
focus of one’s research.

Indeed, taking a “principal strata” perscpective, Rubin found the concept
of mediation “ill-defined.” In his words: “The general theme here is that
the concepts of direct and indirect causal effects are generally ill-defined and
often more deceptive than helpful to clear statistical thinking in real, as op-
posed to artificial problems” (Rubin, 2004). Conversely, attempts to define
and understand mediation using the notion of “principal-strata direct effect”
have encountered basic conceptual difficulties (Lauritzen, 2004; Robins et al.,
2007, 2009; Pearl, 2009b), concluding that “it is not always clear that knowing
about the presence of principal stratification effects will be of particular use”
(VanderWeele, 2008). As a result, it is becoming widely recognized that the
controlled, natural and indirect effects discussed in this paper are of greater
interest, both for the purposes of making treatment decisions and for the pur-
poses of explanation and identifying causal mechanisms (Joffe et al., 2007;
Albert and Nelson, 2011; Mortensen et al., 2009; Imai et al., 2010a; Geneletti,
2007; Robins et al., 2007, 2009; Petersen et al., 2006; Hafeman and Schwartz,
2009; Kaufman, 2010; Cai et al., 2008).

The limitation of PSDE stems not from the notion of “principal-strata” per
se, which is merely a classification of units into homogeneously reacting classes,
and has been used advantageously by many researchers (Balke and Pearl,
1994a,b; Pearl, 1993; Balke and Pearl, 1997; Heckerman and Shachter, 1995;
Pearl, 2000, p. 264; Lauritzen, 2004; Sjölander, 2009). Rather, the limitation
results from strict adherence to an orthodox philosophy which prohibits one
from regarding a mediator as a cause unless it is manipulable. This prohibition
prevents one from defining the direct effect as it is commonly used in decision
making and scientific discourse – an effect transmitted once all mediating paths
are “deactivated” (Pearl, 2001; Avin et al., 2005; Albert and Nelson, 2011),
and forces one to use statistical conditionalization instead. Path deactivation
requires counterfactual constructs in which the mediator acts as an antecedent,
as in Eqs. (1), (2) and (6), regardless of whether it is physically manipulable.
After all, if our aim is to uncover causal mechanisms, it is hard to accept the
PSDE restriction that nature’s pathways should depend on whether we have

12Joffe and Green (2009) and Pearl and Bareinboim (2011) examine the adequacy of the
“principal-strata” definition of surrogate outcomes; a notion related, though not identical
to mediation. There, too, the restrictions imposed by the “principal-strata” framework lead
to surrogacy criteria that are incompatible with the practical aims of surrogacy (see Pearl
(2011)).

27



the technology to manipulate one variable or another. (See (Pearl, 2011) for
in depth discussion of these issues.)

4 Conclusions

Traditional methods of mediation analysis produce distorted estimates of “me-
diation effects” when applied to nonlinear models or models with categorical
variables. By focusing on parameters of logistic and probit estimators, instead
of the target effect measures themselves, traditional methods produce consis-
tent estimates of the former and biased estimates of the latter. This paper
demonstrates that the bias can be substantial even in simple systems with all
processes correctly parameterized, and only the outcome dichotomized. The
paper offers a causally sound alternative that ensures bias-free estimates while
making no assumption on the distributional form of the underlying process.

We distinguished between proportion of response cases for which media-
tion was necessary and those for which mediation would have been sufficient.
Both measures play a role in mediation analysis, and are given here a for-
mal representation and effective estimation methods through the Mediation
Formula.

In addition to providing causally-sound estimates for mediation effects, the
Mediation Formula also enables researchers to evaluate analytically the effec-
tiveness of various parametric specifications relative to any assumed model.
For example, it would be straightforward to investigate the distortion created
by assuming logistic model (as in (23)) when data is generated in fact by a
probit distribution, or vice versa. This exercise would amount to finding the
maximum-likelihood (ML) estimates of γ0, γxy, and γzy in (24) for data gen-
erated by a probit distribution and compare the estimated effect measures
computed through (25)–(27) with the true values of those measures, as dic-
tated by the probit model.13 This type of analytical “sensitivity analysis”
has been used extensively in statistics for parameter estimation, but could
not be adequately applied to mediation analysis, owed to the absence of an
objective target quantity that captures the notion of indirect effect in non-
linear systems. MacKinnon et al. (2007b) for example evaluated sensitivity
to misspecifications by comparing the estimated parameters against their true
values, though disparities in parameters may not represent disparity in effect
measures (i.e., ED or IE). By providing such objective measures of effects, the
Mediation Formula of Eq. (13) enables us to measure directly the disparities

13An alternative would be to find the ML estimates of DE, IE, and TE directly, through
(25), (26) and (27), rather than going through (23) (van der Laan and Rubin, 2006).
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in the target quantities.14

While the validity of the Mediation Formulas rests on the same assump-
tions (i.e., no unmeasured confounders) that are standard requirement in linear
mediation analysis, their appeal to general nonlinear systems, continuous and
categorical variables, and arbitrary complex interactions render them a power-
ful tool for the assessment of causal pathways in many of the social, behavioral
and health-related sciences.
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