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Urea, a true uremic toxin: the empire strikes back
Wei Ling Lau* and Nosratola D. Vaziri*

*Division of Nephrology and Hypertension, University of California Irvine, Orange, CA, U.S.A.

Abstract
Blood levels of urea rise with progressive decline in kidney function. Older studies examining acute urea infusion
suggested that urea was well-tolerated at levels 8–10× above normal values. More recent in vitro and in vivo work
argue the opposite and demonstrate both direct and indirect toxicities of urea, which probably promote the
premature aging phenotype that is pervasive in chronic kidney disease (CKD). Elevated urea at concentrations
typically encountered in uremic patients induces disintegration of the gut epithelial barrier, leading to translocation
of bacterial toxins into the bloodstream and systemic inflammation. Urea induces apoptosis of vascular smooth
muscle cells as well as endothelial dysfunction, thus directly promoting cardiovascular disease. Further, urea
stimulates oxidative stress and dysfunction in adipocytes, leading to insulin resistance. Finally, there are
widespread indirect effects of elevated urea as a result of the carbamylation reaction, where isocyanic acid (a
product of urea catabolism) alters the structure and function of proteins in the body. Carbamylation has been linked
with renal fibrosis, atherosclerosis and anaemia. In summary, urea is a re-emerging Dark Force in CKD
pathophysiology. Trials examining low protein diet to minimize accumulation of urea and other toxins suggest a
clinical benefit in terms of slowing progression of CKD.
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BACKGROUND: CONTROVERSY
SURROUNDING UREA TOXICITY

Chronic kidney disease (CKD) is characterized by the accumu-
lation of waste products that have the potential to dysregulate
normal cellular functions, the so-called uremic toxins. These can
be divided into small molecules (<500 Da) or middle molecules.
Of the water-soluble small molecules, urea has the highest
blood concentrations [1]. Uremic toxins contribute to accelerated
cardiovascular disease in CKD via propagating non-traditional
risk factors that include chronic inflammation, oxidative stress,
protein-energy wasting, disordered mineral metabolism and de-
ficiency of endogenous calcification inhibitors [2–4]. Urea is a
60 Da molecule that is the end-product of protein and nitrogen
metabolism. It is a well-established surrogate marker of kidney
function, protein intake and dialysis adequacy [5,6]; however,
there has been much controversy about whether urea is truly
pathogenic.

Early experiments examining urea infusions in animal models
were done by Vauquelin and Segalas (1822), followed by Gigot-
Suard (1870) and Treitz (1859) [7]. No toxicity was observed as
low doses were used in animals with intact kidney function. In
the late 1800s, detailed investigations by Herter showed that the

Abbreviations: 4D trial, die deutsche diabetes dialyse (German Diabetes and Dialysis Study); BCL2, B-cell lymphoma 2; CKD, chronic kidney disease; ESRD, end-stage renal disease;
FHN trial, frequent haemodialysis network; HEMO trial, haemodialysis study group; LDL, low-density lipoprotein; NFkB, nuclear factor kappa-light-chain-enhancer of activated B cells;
O-GlcNAc, O-linked beta-N-acetylglucosamine; ROS, reactive oxygen species.

Correspondence: Nosratola D. Vaziri (email ndvaziri@uci.edu).

mammalian kidney is able to excrete urea at a rate 12 times greater
than that of the frog’s Wolffian body (weight for weight), suggest-
ing an evolutionary importance for efficient urea elimination [7].
In rabbits, dogs and monkeys following nephrectomy or ureter
ligation, Herter noted that arrhythmias and muscle spasms would
occur at blood urea levels of 0.3% (8–10× above normal blood
content), with coma and subsequent cardiopulmonary arrest oc-
curring at levels of 0.4–0.5% [7]. Other uremic retention products
including middle molecules were unknown at the time, and were
not assessed. Urea ingestion as high as 4 g/kg for 5 days has been
reported to be harmless in piglets; however, dogs dosed orally
with 5–30 g/kg urea develop weakness, gastrointestinal symp-
toms and eventual coma [8]. In the 1970s, Johnson et al. [9] added
urea to the dialysate in three chronic haemodialysis patients and
concluded that blood concentrations below 140 mg/dl are non-
toxic. When serum urea was increased quickly above 170 mg/dl,
there were mild symptoms such as headache and lethargy; mod-
erate symptoms were observed at urea concentrations above
280 mg/dl [9] (consistent with the threshold of 10× above normal
blood levels that was noted by Herter in animal studies [7]).

Clinical trials that address adequacy of dialysis in the end-
stage renal disease (ESRD) population may be interpreted as
providing indirect evidence for the absence of urea toxicity [10].
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The ADEMEX (ADEquacy of PD in MEXico) study, a prospect-
ive randomized study in 965 peritoneal dialysis patients, com-
pared a 2-year, higher intensity dialysis protocol with efficient re-
moval of small molecular weight molecules (as assessed by a Kt/V
of 2.0 and a creatinine clearance of 60 l/week) with a standard dia-
lysis protocol. Patient survival was not different, suggesting that
more intensive elimination of urea (and other water-soluble small
molecular weight substances) was not beneficial [11]. Similarly,
there was no mortality benefit in the HEMO study which focused
on 1846 chronic haemodialysis patients randomly assigned to
either high-intensity (Kt/V 1.45 and urea reduction ratio 75%) or
standard-intensity (Kt/V 1.05 or urea reduction ratio 65%) hae-
modialysis treatment [12]. In secondary analysis, greater dialysis
dose was found to have a mortality benefit in women which may
reflect gender discrepancies when normalizing to volume (V);
upon rescaling of dialysis dose to body surface area Daugirdas et
al. [13] showed that women in the HEMO trial received substan-
tially less dialysis due to having a lower anthropometric V per
unit of surface area than men. Finally, in the frequent haemodia-
lysis network (FHN) trial, haemodialysis intensity was increased
by raising the number of dialysis sessions to 6 times/week in one
group of 120 patients, as compared with standard 3 times/week
in another group of 125 patients [14]. Despite a significantly dif-
ferent Kt/V between the two groups (2.57 in conventional com-
pared with 3.6 in intensive group), there was no significant effect
on cognition, serum albumin or requirement for erythropoiesis-
stimulating agents. A significant benefit was found for the
primary composite end point of death or 12-month change in
left ventricular mass [14] and the survival benefit was sustained
up to a median of 3.6 years out [15]; however, lower ultrafiltration
requirements in the 6 days/week treatment group was a confound-
ing factor. Post hoc analysis from the HEMO trial noted increased
risk of all-cause and cardiovascular mortality at ultrafiltration
rates over 10 ml/h·kg [16]. Thus, the survival benefit in the FHN
trial could not be attributed to small molecule clearance alone.
We caution that these ‘negative’ studies may have been unable to
detect a clear benefit of urea reduction as end-organ damage may
be too far advanced in the ESRD population, with patients often
having been exposed to chronic urea elevation for several years.
Haemodialysis therapy can itself exert adverse effects including
activation of inflammatory pathways through blood exposure to
the extracorporeal circuit as well as indiscriminate removal of
useful small molecule nutrients. Finally, the ESRD milieu is ex-
tremely complex whereby variations in residual kidney function,
middle molecule clearance, non-urea solute fluctuations, min-
eral/bone abnormalities and whole-body fluid balance all impact
patient outcomes, leading some experts to denounce urea clear-
ance (Kt/V) as an over-simplified measure of dialysis adequacy
[17]. Indeed, efforts to investigate the potential benefits of urea-
lowering may be most productive if focused on the pre-dialysis
population, as with low protein diets discussed below.

Low protein diets in pre-dialysis CKD were first championed
by the Italian nephrologists Giovannetti and Maggiore over
50 years ago [18], based on the rationale that decreased amino
acid degradation and urea synthesis results in lowered urea
accumulation [19,20]. Early observational studies appeared
promising in slowing CKD progression, and were followed

by randomized trials that were summarized in two major
meta-analyses. In one meta-analysis, Fouque et al. compared
a low protein diet of 0.3–0.6 g/kg/day with a usual diet (eight
studies, n = 1524) over a follow-up period of 12–24 months in
non-diabetic CKD patients [21]. Robertson et al. [22] compared
diabetic CKD patients on 0.3–0.8 g/kg/day compared with
1–2 g/kg/day protein diet over a period of 4.5 months to 4 years
(nine studies, n = 585). These publications highlighted a trend
for slowing of CKD progression with dietary protein restriction,
however it is important to note that compliance with low
protein diet was poor across all studies. The largest randomized
controlled trial to date is the MDRD (modification of diet in renal
disease) study which measured GFR (glomerular filtration rate)
via 125I-iothalamate clearance, with subjects divided into Study
A and Study B [23]. Study A compared 0.58 versus 1.3 g/kg/day
protein diet in 585 subjects with GFR 25–55 ml/min/1.73 m2

and found no difference in terms of CKD progression. Study
B compared low protein diet 0.58 g/kg/day compared with very
low protein diet of 0.28 g/kg/day supplemented by ketoacids in
255 patients with more advanced CKD (GFR 13–24 ml/min/
1.73 m2); the supplemented very low protein diet was associated
with slower rate of GFR loss that almost reached statistical signi-
ficance (P = 0.07) [23]. Adherence to prescribed protein intake
was assessed via urinary urea excretion; blood urea levels were
not reported as blood urea can be variable and is affected by a vari-
ety of factors aside from GFR and dietary protein (catabolic state,
renal tubular handling, volume status, gastrointestinal bleeding
[24]). Since then, other smaller randomized trials of low or very
low protein diets supplemented with ketoacids or essential amino
acids have noted various benefits, including delaying the need to
initiate dialysis [25,26]. Protein restriction may have particular
utility in the elderly population where dialysis initiation does not
significantly prolong survival but instead is associated with sub-
optimal quality of life and a high rate of complications. To this
end, Brunori et al. randomized non-diabetic patients >70 years
of age with CKD stage 5 (56 patients per group) to dialysis
compared with a very low protein diet of 0.3 g/kg/day supple-
mented with keto-analogues, amino acids and vitamins. The
diet intervention delayed dialysis initiation by a median of 10.7
months and was associated with a lower hospitalization rate, and
similar survival [27]. The 2013 KDIGO (kidney disease improv-
ing global outcomes) guidelines suggest lowering protein intake
to 0.8 g/kg/day in adults with estimated glomerular filtration rate
(eGFR) <30 ml/min/1.73 m2 (grade 2B evidence for pre-dialysis
non-diabetic CKD patients, grade 2C evidence for diabetic CKD
patients) [28]. An extensive review summarizing decades of ex-
perience with low-protein diets was recently published by a group
of Italian nephrologists, where important variables including
patient compliance, avoidance of malnutrition, and counselling
on low phosphorus and low sodium intake are discussed [29].

THE RE-EMERGING DARK FORCE: CHRONIC
UREA ACCUMULATION

From the above-mentioned studies involving urea infusions and
haemodialysis survival, one could erroneously conclude that
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high blood urea levels commonly encountered in CKD are well-
tolerated and non-toxic. In this review, we discuss the emerging
data that argue the opposite, including studies that demonstrate
direct toxicity of urea on various tissues including the intestinal
epithelium, vascular wall and adipocytes. Urea effects at these
respective sites can promote systemic inflammation, vascular cal-
cification and insulin resistance (Figure 1) [30–32]. Further, urea
can exert indirect toxicity via carbamylation which alters the func-
tion of enzymes, hormones and other proteins (Figure 1) [33–35].
These collective downstream effects are a culmination of chronic
exposure and would be missed in acute infusion studies; con-
versely, when evaluated in ESRD the disease process may be too
far advanced for interventions to make a difference. Moreover,
via activation of inflammatory pathways and catabolism through
blood exposure to the extracorporeal system [36,37] as well as
indiscriminate removal of useful small molecule nutrients, use
of prolonged and/or frequent haemodialysis can cause adverse
consequences and mask the beneficial effects of heightened urea
removal. We need to discard the notion that urea is an innocuous
biomarker of kidney function; rather, it is a bona fide uremic
toxin with multiple pathophysiologic roles that promotes the ac-
celerated aging phenotype seen in CKD [38]. Indeed, the overall
encouraging data from low protein diet trials as described above
supports a clinical advantage of restricting urea accumulation to
limit end-organ effects. In the following sections, we review urea
effects at the organ and cellular level (cardiovascular, gut and
adipocyte) and discuss systemic implications. In the last section,
we will address indirect urea toxicity whereby protein carbamyl-
ation has been associated with atherosclerosis, renal fibrosis and
anaemia. It is important to note that although research over the
past decade has advanced the field, interpretation of the clinical
significance of urea toxicity has been and will remain a com-
plex issue due to concurrence of other uremic toxins and patient
comorbidities.

BREAKDOWN OF THE INTESTINAL BARRIER
AND DISORDERED GUT MICROBIOME

The gastrointestinal tract has gained recognition as a major source
of chronic inflammation in CKD. Elevated urea affects gut per-
meability and inflammation via [1] breakdown of the tight junc-
tion barrier, and [2] modifying the microbial flora. The early
studies of urea infusion in the 1800s noted transudation of blood-
stream urea into the intestinal lumen as evidenced by congestion
of the gut mucus membrane [7]. Two inter-connected mechanisms
have been described by which elevated urea leads to degradation
of the intestinal epithelial barrier. Firstly, urea diffuses from the
blood into the gut lumen and is metabolized by gut bacterial
urease to ammonia [CO(NH2)2 + H2O → CO2 + 2NH3]; the
latter is hydrolysed into caustic ammonium hydroxide [NH3 +
H2O → NH4OH] which is capable of dissolving proteins [39,40].
Although breath ammonia is elevated in ESRD patients [41,42]
due to microbial conversion of urea in the gastrointestinal tract
and the oral cavity [43,44], abnormal systemic ammonia levels
have not been reported in CKD. In vitro, confluent cultured hu-

man colonocytes exposed to media containing urea at clinically
relevant concentrations 42 or 74 mg/dl show a concentration-
dependent fall in trans-epithelial electrical resistance and loss of
tight junction proteins [40]. When urease was added to the culture
media to simulate the presence of microbial flora, loss of tight
junction proteins was amplified and there was detachment of the
monolayer [40].

Once urea-induced breakdown of the enterocyte barrier is
initiated, this triggers a second mechanism whereby influx
of leucocytes and local inflammation [45,46] induces retrac-
tion and endocytosis of the transcellular tight junction pro-
teins (claudins and occludin) [47,48]. The net result is a ‘leaky
gut’ with paracellular movement of not only bacterial frag-
ments but also microbe-derived luminal toxins (discussed be-
low) into the bloodstream, thus promoting chronic systemic
inflammation.

Gut bacterial DNA fragments have been detected in the blood
of both pre-dialysis CKD and chronic haemodialysis patients
[30,49]. Work by de Almeida Duarte et al. [50] demonstrated
penetration of bacteria across the intestinal wall and their de-
tection in the mesenteric lymph nodes in uremic rats. Levels
of circulating endotoxin, which is derived from the cell wall of
Gram-negative bacteria, increase with severity of CKD stage and
are most elevated in chronic haemodialysis and peritoneal dialysis
patients [51,52]. Haemodialysis patients may be particularly sus-
ceptible to increased endotoxin translocation from the gut due to
systemic circulatory stress and intradialytic regional ischaemia,
and exogenous sources of endotoxin are a concern if water purity
is compromised. Of note, blood endotoxin levels were not signi-
ficantly different between haemodialysis and peritoneal dialysis
patients in the study by McIntyre and colleagues [52]. In a cohort
of 306 haemodialysis patients, blood endotoxin levels correlated
with severity of systemic inflammation in the absence of clinic-
ally detectable infection [31]. The systemic inflammation in CKD
has been linked with progression of renal failure, cardiovascular
morbidity and death [53].

Elevated urea also negatively affects the intestinal flora, which
then promotes generation of gut-derived uremic toxins. The bac-
teria that make up the gut microbiome have an important symbi-
otic relationship with the host, providing energy-rich metabolites
and vitamins to enterocytes [54]. Plant-derived polysaccharides
or resistant starches transit intact to the colon where they are
degraded by Bacteroides and fermented to release hydrogen, car-
bon dioxide, alcohol and short-chain fatty acids (acetate, butyrate,
propionate and D-lactate) [54]. The energy-rich short-chain fatty
acids are a central nutrient source for enterocytes [54]. In the CKD
milieu, influx of urea and other toxins as well as pH alterations
due to local production of NH4OH exerts a selection pressure
in the gut lumen, resulting in the expansion of bacterial families
that express urease, uricase and indole and p-cresol-forming en-
zymes [55]. Conversely, there are decreased numbers of bacteria
that are able to produce the short-chain fatty acid butyrate [55]. In
phylogenic microarray analysis of microbial DNA isolated from
the stool samples of 24 ESRD patients compared with 12 healthy
controls, there were significant differences in the abundance of
over 200 bacterial operational taxonomic units belonging to 23
bacterial families [56].

C© 2016 The Author(s). Published by Portland Press Limited on behalf of the Biochemical Society. 5
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Figure 1 Direct (white boxes) and indirect (shaded boxes) effects of urea toxicity in various organ systems
Cardiovascular: Elevated urea induces vascular smooth muscle cell apoptosis which can promote vascular calcification.
Urea also induces ROS production by endothelial cells which leads to endothelial dysfunction. Carbamylation is the
modification of a protein’s function via reaction with isocyanic acid, a breakdown product of urea. Carbamylation of LDL
decreases its recognition by the LDL receptor but increases uptake by macrophage scavenger receptor class A, thus
driving atherosclerosis. Kidney: Carbamylated albumin has been shown to drive interstitial fibrosis. GI (gastrointestinal)
tract: Diffusion of urea into the gut lumen drives breakdown of epithelial tight junctions by production of caustic ammonium
hydroxide, and by inducing local inflammation. Urea and other metabolic toxins, as well as a low fibre diet in CKD, alters the
gut microbiome and favours expansion of bacterial families that produce uremic toxins such as indoxyl sulfate. Bacterial
fragments and uremic toxins translocate through the leaky gut wall into the bloodstream, driving systemic inflammation.
Hematologic: Carbamylation of erythropoietin decreases its ability to stimulate red blood cell production, contributing to
anaemia in CKD. Endocrine: Urea induces ROS production in adipocytes and leads to insulin resistance.

Further, CKD patients are often advised to adhere to diets that
are low in fermentable plant fibre (low potassium diet) and poor in
symbiont-rich cheese/yogurt (low phosphorus diet). This change
in food substrate also affects bacterial composition, jeopardizing
microbial nutrient production. Uremic toxins produced by the
altered microbiome include indoxyl sulfate and p-cresyl sulfate;
these diffuse into the bloodstream across the injured ‘leaky gut’
as described above and drive systemic inflammation and cardi-
ovascular morbidity [53,57,58].

Aronov et al. [59] confirmed the colonic origin of several
known uremic toxins (including p-cresyl sulfate and indoxyl
sulfate) and many as-yet unidentified products in the plasma of
patients with ESRD, by comparing data obtained from ESRD pa-
tients who had undergone colonic resection with data from ESRD
patients with intact colon and normal control individuals. More
than 30 mass spectroscopy-detected solutes were present in the
plasma from ESRD patients with colons but were either absent
or present in significantly lower concentration in those without
colons. Nearly all of these compounds were significantly lower

in control individuals, suggesting that they represented uremic
solutes.

As advances have been made in our understanding of the im-
portance of the gut microbiome in CKD, there has been growing
interest in the use of prebiotics (non-digestible food ingredients
that can stimulate growth and/or activity of beneficial gut bac-
teria) and probiotics (living organisms ingested via food or sup-
plements that can improve the health of the host). Our group re-
cently reported that the prebiotic amylose maize resistant starch,
which reaches the colon undigested and is metabolized by bac-
teria to short-chain fatty acids, improved creatinine clearance
and reduced kidney fibrosis in CKD rats [60]. A follow-up study
revealed marked improvements in serum, urine and cecal fluid
metabolomics in conjunction with decreased gut microbial dysbi-
osis [61]. A meta-analysis of controlled feeding trials found that
fibre supplementation significantly decreased serum urea levels
in a pooled cohort of 143 participants but there was signific-
ant interstudy heterogeneity and urea lowering was not a dose–
response effect [62]. All trials were of crossover design and most

6 C© 2016 The Author(s). Published by Portland Press Limited on behalf of the Biochemical Society.
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were of short duration (median follow-up was 4.5 weeks), and
the majority of trials (86%) were of low study quality as assessed
by the Heyland Methodological Quality Score (<8). Probiotics
have also been tested with the goal to produce a less pathogenic
microflora so as to reduce production of uremic toxins. In two
1996 reports involving small cohorts of haemodialysis patients,
treatment with Lactobacillus preparations decreased blood levels
of uremic toxins [63,64] and improved nutritional status [63]. A
multi-national crossover trial in patients with CKD stage 3 and
4 noted significant decrease in blood urea levels and improved
quality of life scores after treatment with a proprietary formu-
lation of S. thermophilus, L. acidophilus and B. longum over
6 months [65]. A recent trial examined the combination of pro-
and pre-biotic therapy over 6 weeks in pre-dialysis CKD patients
(Synbiotics Easing Renal Failure by Improving Gut Microbio-
logy, SYNERGY) and noted decrease in serum p-cresyl sulfate
and microbiome alterations [66]. Studies of longer duration are
needed to assess hard clinical outcomes of pre- and pro-biotics
in the CKD population.

VASCULAR WALL TOXICITY

The traditional risk factors of diabetes mellitus, smoking,
dyslipidaemia and hypertension do not fully explain the
accelerated rate of cardiovascular disease in the CKD popula-
tion. Non-traditional uremic risk factors for vascular dysfunction
and calcification include chronic oxidative stress and inflamma-
tion, hyperphosphatemia, parathyroid hormone and vitamin D
imbalances, anaemia and deficiency of endogenous calcification
inhibitors [4,67–70]. Recent studies suggest direct urea toxicity
on vascular smooth muscle cells and endothelial cells. Exposure
of human aortic smooth muscle cells to 20 mM (56 mg/dl) urea
in culture medium induces expression of BAD [B-cell lymphoma
2 (BCL2)-associated death promoter], a pro-apoptotic member
of the BCL2 family [71]. Co-exposure of cells to urea and 7-
ketocholesterol, a cholesterol oxidation product known to have
potent pro-apoptotic activity, resulted in further increase in patho-
logic vacuolization and apoptosis [71]. Thus, urea-mediated sens-
itization of cells to the pro-apoptotic effect of oxidative stress,
exerted by oxidized cholesterol for instance, may contribute to
the increased apoptosis observed in the arterial wall of CKD pa-
tients [72]. Apoptosis in turn is mechanistically linked to vascular
medial calcification with its downstream consequences of arterial
stiffness, hypertension and heart failure [4].

Endothelial dysfunction is a strong predictor of subsequent
cardiovascular events [73], and presence of endothelial dysfunc-
tion is evident in early stages of CKD [74]. Patients with renal
insufficiency had impaired endothelium-dependent vasodilation,
higher levels of diene conjugates and lipid hydroperoxide, and
lower total antioxidative activity compared with healthy controls
[74]. High urea concentrations have been shown to be damaging
to the endothelial cells of the tunica intima. D’Apolito et al. [75]
reported that incubation of human aortic endothelial cells with
20 mM urea resulted in increased mitochondrial reactive oxygen
species (ROS) production and activation of pro-inflammatory

pathways through increased protein kinase C and hexosamine
activity, NFkB induction, and accumulation of intracellular ad-
vanced glycation end products. The vascular wall effects of urea
remain to be confirmed in human trials.

INSULIN RESISTANCE

Cultured 3T3-L1 adipocytes exposed to 20 mM urea for
48 h release ROS, resulting in O-GlcNAc (O-linked beta-N-
acetylglucosamine) modification of several downstream insulin
signalling effectors with decreased insulin-stimulated IRS-1 (in-
sulin receptor substrate-1), and a reduction in glucose transport
by 76.4% [32]. Mannitol was used as an osmotic control and
had no effect on insulin-stimulated glucose transport. A dose-
dependent relationship with impaired insulin signalling was ob-
served between urea concentrations of 10–40 mM [32]. Similarly,
CKD mice showed increased systemic ROS levels in tandem with
elevated insulin resistance-associated adipokines. The investigat-
ors went on to show that urea infusion in normal animals was able
to induce insulin resistance with >2.5-fold increase in plasma
levels of insulin resistance-associated adipokines, without side
effects of haemolysis or osmotic diuresis [32]. Insulin resistance
in both CKD and normal mice were prevented by antioxidant su-
peroxide dismutase (SOD)/catalase mimetic treatment; however
potential confounders such as urea-induced intestinal inflamma-
tion and hepatic recycling of the infused urea were not addressed.
Overall, these experiments suggest that urea-induced insulin res-
istance may contribute to the high rates of impaired glucose
homoeostasis observed in the CKD population [76,77] but the
clinical significance remains to be confirmed via human trials.

INDIRECT TOXICITY: PROTEIN
CARBAMYLATION IN CKD

Carbamylation is a spontaneous post-translational protein modi-
fication that occurs through exposure to cyanate, which is the
deamination byproduct of urea. Carbamylation involves the irre-
versible modifications of primary amines and reversible modific-
ations of thiols, hydroxyls, phenols and imidazole groups [78,79]
via addition of a ‘carbamoyl’ moiety (2CONH2) to a functional
group [80]. Under physiologic conditions, urea slowly dissociates
into cyanate and its tautomer isocyanate. Cyanate is non-reactive
but is rapidly converted to isocyanic acid which is a reactive
electrophile with high affinity for nucleophilic groups such as
primary amines (Figure 2) [80]. Isocyanic acid has a physiologic
concentration approximately 45 nmol/l in humans that can reach
140 nmol/l in patients with advanced CKD [81]. The carbamyl-
ation of lysine by isocyanic acid generates a new residue called
homocitrulline which can be used as a marker of carbamylation
[82].

Carbamylation of proteins modifies their charge thus affecting
their structure and function. It is a part of normal protein mo-
lecular aging in mammals, and has been associated with form-
ation of cataracts [83] and decreased activity of the hormones

C© 2016 The Author(s). Published by Portland Press Limited on behalf of the Biochemical Society. 7
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Figure 2 Chemical pathways of carbamylation in uraemia that
lead to irreversible modifications of amino acids, and protein
lysyl and cysteinyl side chains. Under physiologic conditions,
urea slowly dissociates into cyanate which is rapidly converted
to isocyanic acid, a reactive electrophile with high affinity for
nucleophilic groups.

erythropoietin [84] and insulin [85]. Gorisse et al. [86] compared
accumulation of carbamylated collagen and elastin in the skin
during the life span of 3 mammalian species. Interestingly, when
compared with non-CKD humans and bovines, mice were noted
to have the highest rate of accumulation of carbamylated proteins
in the skin; mice had the physiologically highest serum urea con-
centration (8–11 mmol/l compared with 2–7 mmol/l in humans)
and the shortest life span among the three species studied [86].

In studies involving 1000 non-CKD individuals from Gene-
bank, a clinical repository of subjects undergoing left heart
catheterization, plasma levels of protein-bound homocitrulline
(reflecting total plasma protein carbamylation) independently
predicted increased risk of coronary artery disease, future
myocardial infarction, stroke and death [33]. Carbamylation of
plasma proteins has also been linked with increased mortality in
the ESRD population. Among a cohort of 347 ESRD patients,
plasma protein-bound homocitrulline levels was linked with in-
creased death risk [34]. Similarly, plasma carbamylated albumin
was associated with increased mortality risk in 187 patients from
the ArMORR (accelerated mortality on renal replacement) study
and in 1161 diabetic ESRD patients from the 4D cohort [87,88].
Levels of carbamylated proteins reflect average urea level over
an extended period, and thus may be a better indicator of dialysis
adequacy than prevailing measurements [80]. Indeed, Berg et al.
[87] showed that carbamylated serum albumin (carbamylated on
Lys-549) correlated with time-averaged blood urea concentra-
tions and was a stronger predictor of 1-year mortality in incident
haemodialysis patients than Kt/V or urea reduction ratio.

Urea diffuses easily due to its small molecular size and is
distributed in total body water. Given its ubiquity in all tissue

compartments, the potential resulting effects of urea exposure are
far-reaching. The prevalence of protein carbamylation through-
out a variety of organ systems was recently demonstrated in
mice with and without CKD [89]. The investigators used liquid
chromatography–tandem mass spectrometry to measure homo-
citrulline in a variety of tissues including the aorta, kidney, bone,
skin, liver and heart. Low-turnover extracellular matrix proteins
such as collagen demonstrated highest carbamylation content.
Compared with non-CKD control mice, there was a 2-fold in-
crease in carbamylation burden in 75% nephrectomized mice at
20 weeks in all the aforementioned tissues [89].

Carbamylation has been implicated in several facets of CKD
pathophysiology.

• Renal fibrosis can be partly driven by carbamylation: kidney
mesangial cells cultured with carbamylated fetal bovine serum
proteins develop a pro-fibrosis phenotype with increased syn-
thesis of collagen I and IV [90]. In an amphibian model
(axolotl or Mexican salamander), intraperitoneal injection of
carbamylated albumin induces renal peritubular fibrosis via in-
duction of NFkB, transforming growth factor-beta (TGF-β),
epidermal growth factor (EGF) and endothelin-1 by tubular
cells [91].

• Atherosclerosis is increased in the presence of carbamyl-
ated low-density lipoprotein (LDL) which induces vascular
endothelial cell apoptosis; carbamylation of LDL also de-
creases its recognition by the LDL receptor but increases up-
take by macrophage scavenger receptor class A [33,92,93].
Carbamylated LDL also increases the adhesion of mono-
cytes to endothelial cells through enhanced vascular cell adhe-
sion protein-1, CD106 (VCAM-1) and intercellular adhesion
molecule-1, CD54 (ICAM-1) expression [94], and induces
proliferation of vascular smooth muscle cells [93]. Aposto-
lov and colleagues found that serum carbamylated LDL from
ESRD patients was elevated more than 3-fold compared with
healthy controls [95], and later showed that oral urea admin-
istration in ApoE-deficient CKD mice increased plasma car-
bamylated LDL by 8-fold and accelerated atherosclerosis [35].

• In terms of anaemia of CKD, as mentioned above carbamyla-
tion has been linked with altered erythropoietin function [84];
a prospective cohort study of 158 haemodialysis patients found
that levels of carbamylated serum albumin predicted resistance
to erythropoiesis-stimulating agents and higher mortality risk
[96].

Finally, recent observational studies have noted that increased
protein carbamylation in ESRD patients is associated with amino
acid deficiencies [87]. ESRD patients are at risk for depletion of
amino acids due to protein-energy wasting and increased cata-
bolic state on haemodialysis [37,97]. It has been proposed that
since cyanate has a greater affinity for α-amino groups on free
amino acids than for lysine side chains on proteins, free amino
acids compete for cyanate binding and thus are protective by
acting as natural scavengers for carbamylation [80]. A clinical
trial is ongoing to investigate amino acid therapy for reduction
in carbamylation in haemodialysis patients, as a first step toward

8 C© 2016 The Author(s). Published by Portland Press Limited on behalf of the Biochemical Society.
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exploring the use of this therapy to reduce uremic complications
(ClinicalTrials.gov identifier NCT01612429).

CONCLUSIONS

Research over the past decade has significantly advanced our un-
derstanding of urea toxicity at the cellular and systemic levels,
as urea concentration increases with CKD progression. Taken
together, the accumulating evidence suggests a negative impact
of elevated urea on patient outcomes. Consequently, urea per se
probably participates in the pathogenesis of cardiovascular dis-
ease, CKD progression, insulin resistance, intestinal disease and
anaemia, and contributes to an overall accelerated aging phen-
otype. However, direct proof of the impact of elevated urea is
currently lacking and will be difficult to ascertain, given its ob-
ligatory co-existence with inflammation and retention of other
uremic toxins. Urea concentrations start to rise in early stages of
CKD, and urea-induced damage is far advanced by the time pa-
tients reach ESRD and dialysis initiation, potentially limiting the
benefits of urea-lowering interventions in the ESRD population.
Clinical trials using low protein diets in pre-dialysis CKD to curb
accumulation of urea and other toxic by-products of protein cata-
bolism suggest benefits in terms of slowing progression of kidney
failure, if patient compliance and avoidance of malnutrition are
adequately addressed.
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