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RESEARCH ARTICLE

Simulation enabled search for explanatory

mechanisms of the fracture healing process
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1 Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco,

California, United States of America, 2 Department of Orthopaedic Surgery, San Francisco General Hospital

Orthopaedic Trauma Institute, University of California, San Francisco, California, United States of America

* a.hunt@ucsf.edu

Abstract

A significant portion of bone fractures fail to heal properly, increasing healthcare costs.

Advances in fracture management have slowed because translation barriers have limited

generation of mechanism-based explanations for the healing process. When uncertainties

are numerous, analogical modeling can be an effective strategy for developing plausible

explanations of complex phenomena. We demonstrate the feasibility of engineering analogi-

cal models in software to facilitate discovery of biomimetic explanations for how fracture

healing may progress. Concrete analogical models—Callus Analogs—were created using

the MASON simulation toolkit. We designated a Target Region initial state within a charac-

teristic tissue section of mouse tibia fracture at day-7 and posited a corresponding day-10

Target Region final state. The goal was to discover a coarse-grain analog mechanism that

would enable the discretized initial state to transform itself into the corresponding Target

Region final state, thereby providing an alternative way to study the healing process. One of

nine quasi-autonomous Tissue Unit types is assigned to each grid space, which maps to an

80×80 μm region of the tissue section. All Tissue Units have an opportunity each time step

to act based on individualized logic, probabilities, and information about adjacent neighbors.

Action causes transition from one Tissue Unit type to another, and simulation through sev-

eral thousand time steps generates a coarse-grain analog—a theory—of the healing pro-

cess. We prespecified a minimum measure of success: simulated and actual Target Region

states achieve� 70% Similarity. We used an iterative refinement protocol to explore many

combinations of Tissue Unit logic and action constraints. Workflows progressed through

four stages of analog mechanisms. Similarities of 73–90% were achieved for Mechanisms

2–4. The range of Upper-Level similarities increased to 83–94% when we allowed for uncer-

tainty about two Tissue Unit designations. We have demonstrated how Callus Analog exper-

iments provide domain experts with a fresh medium and tools for thinking about and

understanding the fracture healing process.

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1005980 February 2, 2018 1 / 32

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPENACCESS

Citation: Kennedy RC, Marmor M, Marcucio R,

Hunt CA (2018) Simulation enabled search for

explanatory mechanisms of the fracture healing

process. PLoS Comput Biol 14(2): e1005980.

https://doi.org/10.1371/journal.pcbi.1005980

Editor: Gary An, University of Chicago, UNITED

STATES

Received: July 22, 2017

Accepted: January 11, 2018

Published: February 2, 2018

Copyright: © 2018 Kennedy et al. This is an open

access article distributed under the terms of the

Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: All data are provided

in Supporting Information S1 Dataset. All relevant

files, the code, and data are available at the “Callus

Analog Framework” project site: https://simtk.org/

projects/callusanalog.

Funding: This work was supported by National

Institutes of Health award R01AG046282 (RM) and

the UCSF BioSystems group (CAH). The funder

had no role in study design, data collection and

analysis, decision to publish, or preparation of the

manuscript.

https://doi.org/10.1371/journal.pcbi.1005980
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1005980&domain=pdf&date_stamp=2018-02-14
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1005980&domain=pdf&date_stamp=2018-02-14
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1005980&domain=pdf&date_stamp=2018-02-14
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1005980&domain=pdf&date_stamp=2018-02-14
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1005980&domain=pdf&date_stamp=2018-02-14
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1005980&domain=pdf&date_stamp=2018-02-14
https://doi.org/10.1371/journal.pcbi.1005980
http://creativecommons.org/licenses/by/4.0/
https://simtk.org/projects/callusanalog
https://simtk.org/projects/callusanalog


Author summary

Translation barriers have limited the generation of mechanism-based explanations of frac-

ture healing processes. Those barriers help explain why, to date, biological therapeutics

have had only a minor impact on fracture management. Alternative approaches are

needed, and we present one that is intended to help develop incrementally better mecha-

nism-based explanations of fracture healing phenomena. We created virtual Callus Ana-

logs to simulate how the histologic appearance of a mouse fracture callus may transition

from day-7 to day-10. Callus Analogs use software-based model mechanisms, and simula-

tion experiments enable challenging and improving those model mechanisms. During

execution, model mechanism operation provides a coarse-grain explanation (a theory) of

a four-day portion of the healing process. Simulated day-10 callus histologic images

achieved 73–94% Similarity to a corresponding day-10 fracture callus image, thus demon-

strating feasibility. Simulated healing provides an alternative perspective on the actual

healing process and an alternative way of thinking about plausible fracture healing mecha-

nisms. Our working hypothesis is that the approach can be extended to cover more of the

healing process while making features of simulated and actual fracture healing increas-

ingly analogous. The methods presented are intended to be extensible to other research

areas that use histologic analysis to investigate and explain tissue level phenomena.

Introduction

Annually, there are approximately 15 million fractures in the United States, and a significant

portion (10–15%) fail to heal properly [1]. Both numbers and costs are predicted to increase as

the population ages and as the number of osteoporosis-related fractures increases [2]. There-

fore, developing intervention strategies to stimulate fracture healing is expected to positively

impact health. Many of the advances made in fracture management in recent years were in

mechanical stabilization and biologic bone augmentation materials such as autogenous bone

graft, synthetic bone ceramics, or demineralized bone matrix [3]. The clinical impact of biolog-

ical therapeutic agents, such as bone morphogenetic proteins, has fallen short of expectations

for largely unknown reasons [4]. It is noteworthy that the gold standard, and most commonly

used strategy for fracture nonunion treatment, autogenous bone graft, has not changed in the

last 100 years [3, 5]. Introductions of new therapeutics have slowed despite expanded research

[6]. Such ineffectiveness reflects significant translation barriers. The problem is not unique to

fracture-healing research; it is encountered within many research domains [7, 8].

A translation barrier exists when mechanistic understanding of a particular medical pro-

cess, such as fracture healing, is insufficient to posit a reliable, efficacious intervention strategy.

A goal of the research described herein is to develop and demonstrate feasibility for a simula-

tion-based approach, facilitating incremental improvement to a plausible mechanism-based

understanding of fracture healing processes. We are not yet aspiring to utilize simulation

methods to discover new mechanistic insights; knowledge is currently too sparse to support

doing so. However, the approach that we employ does provide a novel means to explore and

think more deeply about plausible virtual (implemented in software) mechanism-based frac-

ture healing processes. Our approach is intended to be extensible to other processes that, like

fracture healing, benefit from histologic analyses. We aim for our model mechanisms to follow

a design such that it is straightforward to make them incrementally more biomimetic and fine-

grained as new wet-lab knowledge becomes available.

Toward explanatory mechanisms of the fracture healing process
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Before proceeding, we need a concise definition of a mechanism. In S1 Text, we provide

several definitions of a mechanism which are drawn from literature sources. In support of

achieving the above research goals, we are using the more detailed definition developed by

Darden [9]. Paraphrasing, a biological mechanism is concrete and can be defined as a real sys-

tem of entities and activities orchestrated so that it produces the phenomenon of interest,

which for this work can be a feature of the fracture healing process. Thus, a model mechanism

is a system of biomimetic software entities and activities organized such that, during execution,

the process produces a phenomenon that is analogous to one or more features of the fracture

healing process in particular ways. A model mechanism capability essential to achieving our

research goal is that it facilitates hypotheses about corresponding plausible underlying features

of the biological mechanism, which produces the fracture callus attribute being simulated.

Fracture healing is described as comprising two phases and three stages that overlap tempo-

rally over several weeks: anabolic and catabolic phases; and inflammatory, endochondral, and

coupled remodeling stages. The dominant cell types and subprocesses [10] change as healing

progresses. Recent analyses of transcriptomes present during fracture healing have shown that

most of the genes and signaling pathways that are involved in skeletal development in embryos

are also expressed in cells of the fracture callus [11]. Consequently, some pathway components

have become the focus of empirical research efforts to develop therapeutic interventions [10],

despite the fact that there is no model of explanation—even at a coarse-grain—for stages in the

fracture healing process.

Core phenomena of embryogenesis and some types of tissue regeneration include the

evolving small- and large-scale patterns that are readily apparent in recorded images. There

has been considerable progress in developing mechanism-oriented explanations for those phe-

nomena [12]. However, stained tissue sections of mouse tibia fractures obtained at intervals of

several days lack the hallmarks of orderly, organized evolving phenomena exhibited by

embryogenesis. The strikingly less organized callus tissue obscures the ongoing order of the

various subprocesses and their mechanisms. Part of the problem traces to limitations of experi-

mentation. Healing of mouse tibia fractures typically spans four-to-five weeks. A major com-

plication is that, within the same experiment, no two fractures are the same. Although the

healing phenomenon is the same, the unfolding healing subprocesses within each callus are

unique. Large observational gaps coupled with the necessary limitations of standard histologi-

cal techniques means that informative subprocesses or phenomena may be missed. It is also

plausible that informative phenomena—patterns and features—are being observed and

recorded, but are not yet recognized as such.

Analogous circumstances have existed in non-biological domains, and significant progress

has been achieved using computational and grid-based simulation methods to provide plausi-

ble model representations of the missing processes and phenomena. For example, looking for

improved insight into processes occurring at the interface of ecology and geomorphology,

Fonstad opined, “we have thousands of such images, but no theories in geomorphology nor

ecology can fully explain the patterns in any of them” [13].

The fact that callus mechanisms have been successfully healing bone fractures for more

than 150 million years [14] implies the existence of a well-orchestrated, robust process. Simi-

larities of callus and embryonic transcriptomes support that inference [2]. If we accept the

premise that fracture healing is a well-orchestrated, robust process, then we need to answer

this question: how can we begin developing a theory about the healing process—even if ini-

tially coarse and somewhat abstract—so that we can begin theorizing about its orchestration?

A clearly described phenomenon is a precondition for developing a theory intended to explain

that phenomenon (S1 Text). However, we do not yet have a clear temporal description of the

Toward explanatory mechanisms of the fracture healing process
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fracture healing process, or even for portions of the process. We do, however, have detailed

descriptions of features of the process at different stages.

With current technology, it is not feasible to measure a callus continuously. Likewise, it is

infeasible to track the changing variety of local structures and cell types. Must we plead for

more data, and then come back to the problem in another decade or two? Absent a plausible

explanation and theory to test, more data may not be the answer. In discussing comparable

issues at the ecology-geomorphology interface, Fonstad observed that, “both of these disci-

plines are data-rich . . . it is immediately apparent that both of these disciplines are far more

theory-poor” [13]. Fracture-healing research is handicapped because it is relatively data-poor

and theory-poor. So, although we can draw inspiration from the explanatory, pattern-oriented

simulation methods used by Fonstad and others, their models and those pattern-oriented tech-

niques are not yet applicable in advancing fracture-healing research.

Given the growing interest in increasing the clinical relevance of modeling and simulation

research, it is not surprising that the number of such reports in which authors utilize histology

images to support face validation and/or guide calibrations is also increasing. The following

are three recent examples. Marino et al. [15] utilized their model of lung granuloma formation

to compare in silico granulomas to those of the nonhuman primate Macaca fascicularis. Gardi-

ner et al. [16] utilized an agent-based particle system at various granularities to simulate

mechanical behaviors of cells and tissues. Simulations using selected parameterizations bore a

close resemblance to histological observations of an epithelial layer, cell clusters, and single

cells. Ziraldo et al. described an agent-based model of ischemia/reperfusion-induced inflam-

mation coupled with pressure ulcer formation and progression in humans with a spinal cord

injuries [17]. Serial photographic images spanning several clinical stages were used to calibrate

progression and healing of virtual pressure ulcers. Virtual pressure ulcers were interrogated to

explore how and when a irritation might resolve or become chronic.

The prospect of pulling together a start-to-finish tissue-level mechanism-oriented descrip-

tion of a fracture healing process, even one that is initially coarse-grain, seems distant. Why? It

is a consequence of four interrelated obstacles arising from fracture-healing research using

rodent models.

1. Missing system information looms largest. Knowledge about the healing process is still

sparse compared to that available in other areas of research, such as embryonic skeletal

development. Histological observations made during even the most thorough wet-lab

experiments cover only a small fraction of the temporal space of callus behaviors. Current

wet-lab methods provide snapshots, spaced days apart, of the dynamic, evolving, and multi-

faceted healing process.

2. Because each callus is unique, there is considerable inter-callus variability. Yet the healing

process is sufficiently robust so that callus variability is easily accommodated: absent dis-

ruption, bone restoration is always the end state. Quantitative models of sequential features

are needed to begin developing an overall explanatory theory. However, those features may

not be identified easily when a higher level process comprises many subprocesses.

3. Informative data that characterizes sequential feature changes are sparse at best. Most of the

available data are measurements made at cell and intracellular levels.

4. Pervasive uncertainties beyond callus variability obscure process order. Each mouse frac-

ture can be observed histologically only once. In addition, the pace of healing processes are

subject to several biological factors, such as age [18], along with a number of external factors

[10], notably diabetes [19], smoking [20], and vitamin D deficiency [21]. Controlling such

Toward explanatory mechanisms of the fracture healing process
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factors both within and between experiments can be challenging and expensive. Conse-

quently, distinguishing causes from effects can be problematic.

Given those obstacles, current knowledge and methods are insufficient to describe, much

less begin building a conventional molecular and cellular biology-based model of fracture heal-

ing. The most pressing current need is to develop strategies and methods to circumvent and

eventually overcome each of the above four obstacles. We conjectured that the software-based

model mechanism methods, which we have used successfully in other contexts (e.g., see [22–

27]), could provide the foundation for such strategies, even though, for those earlier applica-

tions, considerably more mechanism related fine-grain knowledge was available. Briefly stated,

the cited software-based model mechanism approach begins with a target phenomenon. We

build an extant (actually existing, observable), working mechanism in software that is parsimo-

nious and, based on similarity criteria, exhibits essentially the same phenomenon. Doing so

requires making no assumptions about the biology.

However, even when the mechanism is kept coarse-grain, the space of possible software

mechanisms capable of generating essentially the same phenomenon can be huge. So, biologi-

cally inspired requirements and constraints along with mechanism granularity limits are

imposed incrementally to shrink and constrain possible model mechanism space. That process

shrinks a large set of possible coarse-grain mechanisms into a much smaller set of plausible,

incrementally more likely and increasingly biomimetic, model mechanisms.

For fracture healing, we envision simulations generating plausible scenarios for how discre-

tized features of a callus tissue section on one day might transform progressively into the tissue

section features—target features—observed several days later. Wet-lab experiments can target

differences in two model mechanisms, where the resulting new evidence is expected to support

one mechanism and falsify the other (as in [28]), further shrinking plausible mechanism space.

At that stage, the surviving software mechanism can stand as a coarse-grain theory for how a

portion of mouse tibia fracture healing occurs.

Eroding the four obstacles in meaningful ways requires coupling the preceding methods

with an important new capability: use of image interpolation strategies to build plausible

sequential image models of the same fracture at different stages of the healing process. A pre-

requisite for an interpolation strategy is having and aligning discretized coarse-grain models of

tissue section images of tibia fractures from different mice at different times.

We report results of a focused demonstration that meets the above requirements. We pres-

ent results of workflows that support the feasibility of the approach, while also bringing its

weaknesses into focus. For this demonstration, we limited attention to the critical interval

from day-7 to day-10 during healing of a mouse tibia fracture and focused on discretized mod-

els of specific tissue sections on both days. From the latter, we obtained the initial state and

final target state for our simulations. Biomimetic software mechanisms involving actions of

quasi-autonomous tissue units spanning, typically, 5,000–6,000 time steps are responsible for

simulated healing. Similarities (defined in Methods) between simulated and referent final

states ranged from > 73% to> 93%, depending on the nature and stringency of the Similarity

criterion. Despite the narrow focus, it is clear that a major benefit of the approach demon-

strates that simulation experiments can enable discovering, challenging, and improving theo-

ries of healing subprocesses.

Because our approach and methods are unconventional, somewhat new, and still evolving,

we present that information next under Methods to provide the context needed to present and

discuss results. There are weaknesses and limitations associated with every aspect of our

approach. Some are identified in Methods, and others are addressed under Discussion. We

undertook this demonstration with the expectation that the more successful methods could be

Toward explanatory mechanisms of the fracture healing process
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repurposed to begin lowering similar barriers faced within some domains of disease progres-

sion research.

Methods

Approach

We begin with a synopsis of our approach from a workflow perspective, as diagrammed in Fig

1. We then provide details on methods used during each of the six stages. In several places, we

also provide essential background information that influenced decisions for a particular stage.

Words, such as tissue, mechanism, healing, and process, are used in discussing actual mouse

tibia fracture healing and corresponding simulations. To reduce confusion, we capitalize those

words hereafter when discussing Callus Analogs.

We focus on the day-7 to day-10 interval of mouse tibia fracture healing because histomor-

phological evidence indicates that the relative contributions of chondrogenesis and osteogene-

sis may undergo important changes during that interval. The goal is to develop a concrete,

quantitative (and thus challengeable) but partially coarse-grain theory that may explain how

characteristic tissue level features on day-7 are being transformed into corresponding features

Fig 1. This workflow sketch identifies key features and stages of our approach. We have two concurrent long-term

goals. 1) Build the case for plausible similarities—analogies—between Callus Subregion Analog final states (green

boxes) and stained tissue sections in Fig 2 obtained from mouse 2 after 10 days of healing (shaded gray boxes). 2) Also

build the case that strong analogies can exist between Analog Mechanisms and Processes occurring during execution

and corresponding mouse callus healing mechanisms and processes at comparable granularities. An objective of this

work is stage 6: demonstrate quantitative similarities between simulated final states and the day-10i Target Region.

https://doi.org/10.1371/journal.pcbi.1005980.g001
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observed on day-10. The discovery effort would be greatly simplified if we could obtain collo-

cated day-7 and day-10 tissue sections from the same callus (mouse 1), but that is infeasible.

Instead, we used an evidence-based illustration (created by coauthor M.M.) of an envisioned tis-

sue section of the mouse 1 callus on day-10 at the same callus location as the day-7 tissue sec-

tion. Three domain experts (see Acknowledgments) judged it plausible and acceptable.

Hereafter, we refer to the illustration as the day-10i tissue section. A square grid was used to dis-

cretize the day-7 and day-10i images. The area of tissue at each grid location was labeled as one

of nine tissue types, based on staining and preponderance of cell types within that space. The

result (stage 2) was a discretized coarse-grain model of the day-7 and day-10i tissue sections.

Because we are at the beginning of this explanatory discovery process, we needed to select a

target region on which to focus (discussed further under Target Region). From a simulation

perspective, the target region has an initial state, which maps to the day-7 tissue section, and a

corresponding final state, which maps to day-10i tissue section. During stage 4 we used the

MASON simulation toolkit [29] to create a 2D 25×25 Target Region initial state, in which

objects representing tissue units are assigned to each grid space. We start with a 2D Target

Region to limit uncertainty in tissue type identification and to adhere to our parsimony

guideline.

Stage 5 efforts focused on answering the following question: how do we enable the Target

Region initial state to transform itself so that the arrangement of tissue types mimics the Target

Region final state? The steps followed to answer that question involved iterative refinements

(discussed below) and had two objectives. 1) Explore logic to be used by simulated tissue units

that enable them to successfully transition into biomimetic final states. 2) In doing so, keep the

logic simple and avoid process features that may appear non-biomimetic. Once we had evi-

dence that reasonably biomimetic final states were achievable, we shifted attention to

Fig 2. Shown are images of sagittal sections through mouse tibia calluses that were stained for tissue, bone, and

cartilage using Hall-Brunt Quadruple. (A) Mouse 1 on day-7; we decided to focus on the Target Region within

yellow-boxed area. (B) Mouse 2 on day-10.

https://doi.org/10.1371/journal.pcbi.1005980.g002
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improving the simulated healing process sufficiently to achieve the following quantitative tar-

get Similarity value (stage 6): compositional and organizational similarity between simulated

Target Region and day-10i final state is� 70%. So doing would support the feasibility of

achieving the long-term Fig 1 goals. A simulation that uses concrete objects (simulated tissue

units) to generate a process that is analogous to callus healing in several ways is a software ana-

log of the healing process. We call the parameterized software a Callus Subregion Analog.

Hereafter, for convenience, we refer to the software as Callus Analog and, in some places, sim-

ply Analog.

Tissue section images and their interpolation

Histologic slides of sagittal sections through mouse tibia calluses at various stages of healing

were available from a previous study. The sections were stained using Hall-Brunt Quadruple

to highlight tissue, bone, and cartilage. Shown in Fig 2 are the tissue sections from mouse 1 on

day-7 and from mouse 2 on day-10. Coauthor R.M. selected them because they have similar

fracture features and exhibit all characteristic callus features.

The following nine distinct microscopic tissue types are common to all normal mouse tibia

calluses, beginning before day-7 and extending beyond day-10. We assigned a different color

to each tissue type, which was used to colorize a discretized version of Fig 2A.

A microscopic area of callus containing about 20 or more cells can be distinguished as

being either new marrow (4), new bone (5), hypertrophic cartilage (6), mature cartilage (7), or

young cartilage (8) based on the characteristic heterogeneous mix of cell types, the dominant

cell type, and extracellular matrix. As healing progresses the mix of cell types within a micro-

scopic area changes. Some areas may undergo multiple tissue type transitions. A working

hypothesis is that each of the microscopic tissue types is engaged in somewhat different activi-

ties, which are integral to the overall healing process.

The first stage 2 task was to select a square grid mesh size and overlay it on Fig 2A. Choice

of mesh size was somewhat arbitrary. If it is too fine, there are fewer cells within the micro-

scopic area and so the uncertainty in specifying the dominant cell type increases. If too coarse,

the fraction of microscopic areas containing clearly distinguishable tissue types 4–8 decreases,

rendering a single tissue assignment inadequate (and actions of the analog counterpart would

likely require unique logic). A guideline for selecting grid size was that the cellular heterogene-

ity observed within the larger local callus area be reasonably preserved in the discretized

image. For example, for a macroscopic region characterized by a heterogeneous mix of pre-

dominately ~ 60% new marrow (gray) and ~ 40% osteoblasts (burgundy; new bone), the dis-

cretized image counterpart should be a mix of ~ 60% gray and ~ 40% burgundy tissue units.

1. Pink Cortical bone

2. White Marrow cavity

3. Green Unidentified material

4. Gray New marrow

5. Burgundy New bone (primarily osteoblasts)

6. Teal Hypertrophic cartilage (primarily hypertrophic chondrocytes)

7. Blue Mature cartilage (primarily chondrocytes)

8. Light Blue Young cartilage (primarily immature chrondroblasts)

9. Gold Vessel cavity

https://doi.org/10.1371/journal.pcbi.1005980.t001
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We selected a mesh size that corresponds to an 80×80 μm area in Fig 2A, which typically con-

tained roughly 40 cells, and overlaid that grid on the day-7 and day-10i tissue sections. We

then designated each microscopic area as being one of nine concrete, quasi-autonomous, Tis-

sue Unit types, where the behavior of each Tissue Unit type was controlled by a software agent.

Fig 3 contains the resulting discretized, colorized images.

Although physically correct image interpolation (e.g., between day-7 and day-10i) is infeasi-

ble, sophisticated image interpolation methods, as demonstrated by Stich et al. [30], are avail-

able to create high-quality, convincing model images that represent unobserved transitions

between recorded images of the same object. The criterion for an acceptable interpolation

used by Stich et al., is qualitative: the interpolated images are perceived as visually correct by

human observers. During stage 1, we faced the more daunting problem identified in Fig 4: we

needed an image that plausibly anticipates the appearance of the mouse 1 fracture if it had

been sectioned on day-10 rather than day-7. Starting with the features evident in Fig 2A, and

drawing on the tissue features in Fig 2B, coauthor M.M. created an illustration of the envi-

sioned mouse 1, day-10i section. It was judged plausible and acceptable by coauthor R.M. and,

separately, by three independent domain experts (see Acknowledgments), thus concluding

stage 1. Clearly, a different medical illustrator, one knowledgeable about callus progression,

would create a somewhat different illustration. However, we suggest that variability introduced

by such illustrations will not add measurably to the considerable variability and uncertainties

already present, as illustrated by Fig 4.

Target region

To demonstrate feasibility, we needed to designate a Target Region, but first, we needed to

select a portion of Fig 2A in which to locate the Target Region. For the latter, we selected the

yellow-boxed area in Fig 2A. It is bordered on one side by bone and marrow cavity, which

means that transitions in that area will be focused rightward, rather than occurring in two or

Fig 3. Discretized, images that map to sagittal sections through mouse tibia calluses. (A) Discretized, colorized counterpart to day-7 tissue section in Fig 2A. The

yellow-box area corresponds to the one in Fig 2A. The white box is the Target Region initial state. (B) Discretized, colorized counterpart of the day-10i tissue section.

The white box is the Target Region final state. (C & D) Focus is drawn to the right sides. Arrows indicate directions of apparent local tissue changes. Some of that

directional change that was ongoing in day-7 (C) continued into day-10 (D). Change in the other areas, particularly around the top edge of the Target Region, would

have started after day-7. These apparent directional changes were taken into consideration for Mechanisms 2–4.

https://doi.org/10.1371/journal.pcbi.1005980.g003
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more directions. Because that area, and the corresponding region in Fig 2B, exhibit similarities,

we conjectured that the variety of feature changes occurring during transition from day-7 to

day-10i might be representative of key healing features occurring elsewhere in the callus dur-

ing that 4-day interval. There is no indication that unique healing features may be occurring

within this area but not elsewhere during that 4-day interval.

Specifying the size of the target region is subject to opposing constraints. If the region is

too large, with a large variety of tissue transition types, we run the risk that the process of

discovering plausible and parsimonious logic to direct transitions will become unwieldy,

possibly even problematic. If the region is too small, the variety of transition types may be

too few to enable adequately simulating Target Region final state. We selected the 25×25

grid region designated by the white box in Fig 3A. Fig 3B shows the corresponding Target

Region final state.

Limiting attention to just one target region can be viewed as a weakness. On the contrary, it

is an essential part of a recognized, long-term mechanism-discovery strategy that can build on

methodological lessons learned while using the Iterative Refinement Protocol in other contexts

[23, 25, 27, 28, 31]. That strategy employes variations of the forward/backward chaining

(described in S1 Text) and requires selecting a Target Region (stage 3, Fig 1).

Fig 4. This is an idealized representation of key features of the space of tibia fracture healing in matched mice that

are part of the same experiment. The height of the sketch represents the large interindividual variability, which is a

product of each fracture being unique. Consequently, each healing process path is necessarily partially customized.

Changing colors represent evolving subprocesses; the colors are not related to those used to represent the nine tissue

types. The five short white bars on days 7 and 10 represent different tissue sections taken at comparable locations

within different tibia fractures. The dotted path illustrates a trace of the healing process path for one of the five day-7

tibia fractures. Moving from day-7 to day-10 along the dotted path, the unshaded bar on day-10 indicates the

illustration that we created, the day-10i tissue section. The two additional unshaded bars labeled a and b illustrate

future extensions of the simulated Healing Process forward to day-14 and backward to day 4 along the same healing
path. Two dashed gray lines illustrate that in humans fracture nonunion can occur. Absent interventions, nonunions

in mice do not occur. The circumstances leading to nonunions in humans are unknown. The transition from one color

to another occurs later toward the bottom, which illustrates that the pace of healing can be different from one fracture

to another.

https://doi.org/10.1371/journal.pcbi.1005980.g004
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After we achieve stage 6 for the day-10i Target Region (described below), we envision

expanding the temporal reach of Callus Analog Mechanisms along the dotted line illustrated

in Fig 4 to include an earlier stage within that same Target Region, such as day-4i, and a later

stage, such as day-14i, and doing so all while continuing to simulate the original day-10i Target

Region. Those objectives are illustrated by two unshaded bars labeled a and b in Fig 4. Further,

the histological evidence suggests that, on the same day, different subregions within a callus

can be at somewhat different stages of repair and may progress at different rates. Given that, a

parsimonious strategy is to select separated target regions within the same callus and develop

simulations for each in sequence. They could be treated as independent modules. Future work

based on simulations of independent target regions will help bring regional issues into focus

prior to engineering their merger. The process of merging initially independent modules into

a unified model of a tissue healing process would occur further downstream. Given that this

work strives to establish the feasibility of the Fig 1 approach, it is efficient to focus first on one

Target Region.

Callus analog requirements

Simulation requirements—and thus software requirements—flow directly from desired use

cases [32]. In the Introduction, we stated that a primary use case is exploratory simulations

capable of the following: aiding image interpolation and providing plausible explanations for

how callus features are progressively transformed, all while shrinking the space of possible

explanatory transformation scenarios. The last two requirements involve generation of plausi-

ble mechanism-oriented explanations, illustrated in Fig 1.

To realize use cases, we employ the virtual experiment approach described by Kirschner

et al. [33], along with enhancements drawn from Smith et al. [28] and Petersen et al. [31]. In

doing so, the methods employed must meet the following three requirements, which are based

on broader sets of requirements discussed by Hunt et al. [32].

1. Achieve the two Fig 1 goals. To do so, requires that software mechanisms responsible for

the transition of Target Region from initial to final state be plausibly biomimetic. We do

that by employing the same type of software mechanism used successfully in other contexts

[23, 26, 27, 28, 31] while adhering to the rigorous definition of mechanism stated above and

elaborated in S1 Text.

2. Ensure components, entities, and spaces (Fig 2) are concrete, acceptably biomimetic, and

sufficiently modular during execution to facilitate analogical reasoning [34, 35].

3. Recognize that simulated healing arises mostly from quasi-autonomous component inter-

actions at the lower level of Tissue organization.

To achieve requirement 2, Callus Analogs are written in Java, utilizing the MASON multi-

agent simulation toolkit [29]. The data presented herein along with Callus Analog code are

available [36].

Iterative refinement protocol

We customized the established Iterative Refinement (IR) Protocol [22, 27, 28, 31, 32] to meet

the challenges evident in Fig 4. Given a software Mechanism that may explain a specified attri-

bute and a virtual experiment design, the goal of an IR Protocol cycle is to test this hypothesis:

upon execution, simulation features will mimic the target attribute within a prespecified toler-

ance. A concrete software mechanism can be falsified—shown to be inadequate—when, dur-

ing the course of many Monte Carlo trials, it too often fails quantitatively to achieve its
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objective and/or exhibits non-biomimetic features. It is from encountering and overcoming

such failures that explanatory insight improves. Each falsification improves credibility incre-

mentally and shrinks plausible Mechanism space. Our customized IR Protocol follows:

1. State the objective for this IR Protocol cycle along with the target phenomenon to be

explained. For this work, the latter is the day-10i Target Region.

2. Specify granularity of entities, activities, and spaces. Adhere to a strong parsimony guide-

line. Making the updated Mechanism too fine-grain can expand the space of plausible con-

figurations beyond one’s ability to manage efficiently.

3. Specify a Similarity criterion. When first applying a quantitative Similarity criterion, make

it weak initially, e.g., at least 40%, and increase it incrementally during subsequent IR Proto-

col cycles. Take small steps that often fail. For this work the final goal for simulated Target

Region final state was that all simulated features be biomimetic (there are no non-biomi-

metic features) and exhibit� 70% target Similarity. That value is sufficiently stringent,

given the uncertainties illustrated in Fig 4. To illustrate, a slight change of grid placement

can result in a 5–10% change in assignment of Tissue-unit (TU hereafter) types to grid

spaces. By doubling that range, we account for other sources of variability. With that in

mind, a simulated final state that exhibits� 70% Similarity to the day-10i Target Region

supports the feasibility that the actual healing processes in that region and Analog processes

are somewhat analogous at the current level of granularity.

4. When needed, revise Mechanism entities and activities. Record reasons for revisions. Revise

in small steps. Frame the revision plan for this IR Protocol cycle as a hypothesis. An exam-

ple: by making changes to logic used by two TUs, we eliminate a non-biomimetic feature.

Executing the revised Mechanism is thus a test of that hypothesis.

5. Conduct and evaluate many simulations—virtual experiments. Record and measure Target

Region features each time step, noting when maximum Similarity is achieved. Each execu-

tion is a Monte Carlo trial of simulated healing. For this work, we studied multiple sets of

25 Monte Carlo trials.

6. Failure: one or more simulated healing features within the Target Region are non-biomi-

metic and/or mean maximum Similarity < prespecified target Similarity. In this work,

overcoming failure often required returning to step 4 and revising the Mechanism in some

way. Failure provides new knowledge about model mechanism behaviors. Overcoming fail-

ure shrinks plausible Mechanism space. Success: proceed to step 7. With more mature

model mechanisms, when appropriate, this would be the step at which knowledge of analog

system behaviors would be expanded through similarity analyses and uncertainty

quantification.

7. Choose one of these options. 1) Return to step 3 and increase Similarity stringency. 2)

Return to step 2 and add a new Similarity criterion. Add a new constraint, such as changing

the logic used by a TU type when particular neighborhood feature is achieved and then

return to step 4. 3) Or, add a new phenomenon, such as this: gray and burgundy TUs form

small clusters; and return to step 1.

Callus analog mechanisms

Well-organized processes are responsible for the callus remodeling that occurs between day-7

and day-10. Our operating hypothesis is that information available in day-7 and day-10 tissue

section images can be used to draw simplified inferences about unobserved transitions that

Toward explanatory mechanisms of the fracture healing process

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1005980 February 2, 2018 12 / 32

https://doi.org/10.1371/journal.pcbi.1005980


occur during intervening days, analogous to the approach used by Stich et al. in simulating

unobserved transitions between recorded images of the same object [30].

A Callus Analog Mechanism is a system of biomimetic software entities and activities orga-

nized such that, during execution, it produces a representation that is measurably similar to

the day-10i Target Region. Feature changes within the Target Region explain how the Phe-

nomenon is generated. Stained tissue sections provide snapshots of the healing process. To be

explanatory, a biological mechanism will exhibit the fourteen features identified in S1 Text.

Because Callus Analog Mechanisms exhibit those same features (also identified in S1 Text),

the two processes may be analogous.

Simulations are discrete time; time advances in steps. Fig 5 shows the Target Region initial

and final state. The Process responsible for transitioning from initial to final state is the top-

level Mechanism. Changes within local subregions from one time step to the next are lower

level Phenomena. The lower level Mechanisms responsible for those changes are characterized

by individual TU changes, which are controlled by the logic that governs TU agent actions

during each time step, discussed below. During each time step, each TU agent, selected ran-

domly, has one opportunity to update and act, based on changes that have occurred within its

Fig 5. MASON displays of Target Region along with three influence grids. (A) Target Region initial state. (B) Target

Region final state. The partially obscured TUs in the outermost columns and rows have an incomplete Moore

neighborhood. They remained inactive for the duration of all simulations, but they do provide type information for

their interior neighbors. All other TUs have 8 Moore neighbors and are active. For Mechanisms 2–4, behaviors of TUs

within the two green-bordered regions require logic that is different from that used elsewhere. (C-E) The logic

followed by each Mechanism 2 TU used probability values from one of these three grids. Darkest blue represents the

largest value. White cells have a probability of zero or are unused. (C) Probability values used by TUs within the

rectangular region. (D) Probability values hued by TUs within the triangular region. (E) Probability values used by

TUs elsewhere.

https://doi.org/10.1371/journal.pcbi.1005980.g005
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Moore neighborhood since it last updated. An action may change a TU type or one of its

Moore neighbors. Coauthor R.M. identified the following as allowed but not required biomi-

metic transitions.

• A marrow cavity (white) tissue unit may transition into a new marrow (gray) or new bone

(burgundy). New bone and new marrow form in parallel during callus maturation in a pro-

cess that is indistinguishable. The formation of new bone and marrow occurs both outside

and inside of the marrow cavity [10].

• The marrow cavity often contains unidentified material in the earlier stages of healing. This

material is replaced with new bone/marrow at later stages of the healing process. Thus,

unidentifiable material (green) may transition into a mature cartilage (blue), hypertrophic

cartilage (teal), new marrow (gray), or new bone (burgundy) tissue unit.

• A hypertrophic cartilage (teal) tissue unit may transition into a new marrow (gray) or new

bone (burgundy) tissue unit. According to competing theories, hypertrophic cartilage is

eventually replaced by new bone and new marrow in one of two ways, either by trans-differ-

entiation [37, 38] or, as part of a two-stage process, they undergo apoptosis and are replaced

by mesenchymal stem cells, which then transform into osteoblasts [36].

• A mature cartilage (blue) tissue unit may transition into a hypertrophic cartilage (teal), new

marrow (gray), or new bone (burgundy) tissue unit. Hypertrophic cartilage develops from

mature cartilage and eventually gets replaced with new bone/marrow. Because the time

frame of the process in the mouse tibia is not clear, when comparing the day-7 to the day-10i

Target Region, it may appear that mature cartilage has been replaced by either hypertrophic

cartilage or new bone/marrow [39].

• A tissue unit that is young cartilage (light blue) may transition into mature cartilage (blue).

Cartilage cells in the callus undergo a maturation process from young cartilage cells to

mature cartilage cells and then to hypertrophic cartilage cells [10, 39].

Calculating similarity

At each time step, the current simulated Target Region is compared to the Target Region final

state and percent Similarity is calculated as follows:

%Similarity ¼ 100ð
P
ði¼2� 8Þ

ðCSi=CFiÞ
n
ðCSi=428ÞÞt;

where t designates the time step, and i specifies the TU type, 2–8. CSi is the count of TU type i
in the simulated Target Region; CFi is the count of TU type i in Target Region final state; 428 is

the number of active TUs in Target Region; n = 1 if CFi > CSi, and n = –1 if CSi > CFi.

A case can be made that, if there is strong similarity between gray and burgundy TUs in the

simulated and actual Target Region final states, then the similarity score should not be penal-

ized because there are too many simulated gray TUs and too few simulated burgundy TUs, or

vice versa. New marrow (gray) and new bone (burgundy) are always formed together. Thus, in

some cases, the decision to designate an 80×80 μm area of stained tissue section as either gray

or burgundy can be arbitrary; two experts may make different assignments. There are several

ways to address that issue but they involve adding at least one new TU type. Given our strong

parsimony guideline and the fact that we are at a very early stage in developing the Fig 1

approach, we elected to also calculate a Similarity value when gray are burgundy treated as the

same during the calculation. The resulting value is designated Upper-Limit Similarity, simply

UL-Similarity hereafter. A more realistic value may be between Similarity and UL-Similarity.
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Workflows

When working to discover plausible model mechanisms, there is a risk that the modeler, sub-

consciously or otherwise, will favor Mechanism features and logic that ensure that outcomes

of generated behaviors are as the modeler thinks that they should be. We strove to eliminate

that risk by adhering to the guidelines in steps 4 and 6 of the IR Protocol.

In developing model mechanisms, we did not aim to include established biological features.

Instead, we worked to develop model mechanisms that did not contradict known biology.

Along the same lines, our model mechanisms were developed not to specifically describe char-

acteristics of the fracture healing process, but instead to allow for a new, coarse-grained man-

ner in which to think about the process. Additional information about the disadvantages of

absolute grounding can be found in [40]. By adhering to a strong parsimony guideline (IR Pro-

tocol step 2), we avoided adding unnecessary details; doing so enabled us to avoid inscription

error. More details on overfitting and analog-to-referent mappings can be found in the Discus-

sion section of Kim et al. [26]. In the subsections that follow, we describe four workflow stages,

designated Mechanisms 1–4.

Mechanism 1. We sought logic that would enable each TU to transition from initial to

final state. We limited attention to Von Neumann neighbors, the four TUs that share an inter-

face. We identified 25 different types of initial-to-final state transition, along with six in which

the TU at the final state was the same as at the initial state. Their frequencies are graphed in S1

Fig. For each transition type, we tabulated neighbors by type. We also tabulated how those

neighbors transitioned from initial to final state. We used that information to devise condi-

tions that must be met before a particular type of transition could occur. Each time step, with

probability = 0.05 (chosen based on expected frequency of transition), each TU, selected ran-

domly, was given an opportunity to act. When a random double from [0.0–1.0) was< 0.05,

the TU stepped through its logic. Each TU transitioned to a final state only once. All transi-

tions were completed within a few hundred time steps.

We developed and tested a variety of TU-specific rules. The following is an example of the

two-stage logic structure, which was explored most extensively. Upon selection of a white TU,

the random double is< 0.05, so it is given an opportunity to achieve its final state. It has three

allowed transition options: white! gray, white! burgundy, or white! white. The above

frequency data was used in advance to specify a probability for each option. Suppose that

white! gray was selected. Specific conditions must be met in order for white! gray to

occur. They are as follows. Are there� 3 white neighbors,� 1 green neighbor, or� 2 gray

neighbors? If yes, achieve final state by replacing self with a gray TU. If no, final state was not

yet achieved. The vast majority of rules explored failed to enable the Target Region initial state

to reach more than 50% Similarity to the Target Region final state. During time steps following

that failure, one or more of its Von Neumann neighbors may transition. We explored allowing

a TU that failed on its first attempt to have at least one additional opportunity to successfully

transition during a subsequent time step, but that approach was abandoned when it became

evident that many locations within the Target Region would need multiple transitions.

Mechanism 2. The healing process, which was well underway on day-7, created localized

directional callus changes. White arrows on the right sides in Fig 3C and 3D indicate several

apparent trends, yet work on Mechanism 1 ignored those trends. For Mechanism 2, we

hypothesized that the logic employed by all TUs should be location dependent. We used one

of three probability grids to provide location dependent probability values. Several variants of

the three gradients were explored. The three grids in Fig 5 were used in generating the largest

Mechanism 2 Similarity values.
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We posited that TUs within the rectangular region in Fig 5B behave differently from those

elsewhere because they were being influenced by activities to their north, beyond the Target

Region’s edge. They use the Fig 5C grid exclusively. Because TUs within the triangular region

are isolated from other TUs by Bone, we posited that they would also operate independently;

we kept the Mechanism 1 logic for that region but used the probability values in Fig 5D. Else-

where, TUs utilized the Fig 5E grid. Probability values were employed as follows. Each TU nor-

malized the probability values at the grid locations corresponding to its four Von Neumann

neighbors. It then used the values to select one Moore neighbor for possible transition. Outside

of the triangular and rectangular regions, gray, burgundy, teal, and blue TUs apply that logic

each time step. TUs within that rectangular region operated similarly: a teal TU could be

replaced by blue; a green could be replaced by gray or burgundy. As with Mechanism 1, at

each time step, with probability = 0.05, each TU was given an opportunity to act.

Mechanism 3. Mechanism 2 was insufficient. It exhibited non-biomimetic features. Rule

details used in the final version were getting complex and thus deviating from our strong parsi-

mony guideline. To enable achieving the targeted Similarity value and to produce a more bio-

mimetic process, we inferred that each TU would need to be somewhat more fine-grained and

use more location-dependent logic. We retained the requirement that the probability to act

Fig 6. Selected tissue unit (TU) activities. (A) This sequence is an example of a sequence of events occurring within a

single time step, and ending with a teal TU (outlined in yellow) transitioning into a burgundy TU. Step 1: the

burgundy TU outlined in white is selected randomly. A probability determines if it is (or is not) given an opportunity

to act, which it is given in this example. It will not have another opportunity to act until the next time step. Thereafter,

probabilities determine whether events at steps 2–4, in sequence, occur or not. The logic for all transitions is

diagrammed in Fig 7. Step 2: a burgundy TU can initiate change in only one of the three TU neighbors marked by

asterisks. With probabilities specified in Fig 7A, the east location is selected. Step 3: two questions are asked. Can the

TU at that location transition? If yes, is the precondition for transition met? A teal TU can transition. Had the

burgundy TU located north been chosen, the answer to the question would be no, because a burgundy is not allowed

to transition. Nothing further would happen during that time step. The transition precondition for a teal TU is that the

number of gray and burgundy TUs in the Moore neighborhood of the TU outlined in white be� 4. In this example,

the precondition is met (marked by circles). Step 4: A teal TU can transition to burgundy or gray with equal

probability. In this example transition to burgundy occurs. (B) An example of a non-biomimetic feature (asterisks)

occasionally encountered using Mechanisms 3 and 4 that requires a specialized rule, described in the text, to correct.

https://doi.org/10.1371/journal.pcbi.1005980.g006
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each time step be the same (0.05) for all TUs. The Mechanism 2 directional probabilities were

replaced by local vector values, which were refined during cycles through the IR Protocol. As

an example, for the version of Mechanism 3 reported here, we specified that a blue TU could

only cause a TU transition to the north, south, or east, and each direction was assigned a prob-

ability value. For blue TUs, those values were east = 0.6, north = 0.2, and south = 0.2. Once the

location was selected, the TU type that would be the product of the transition was selected.

The allowed transitions were those specified above. For example, a blue TU could transition to

Fig 7. Tissue Unit (TU) Logic for Mechanisms 3 and 4. (A) This panel shows an example transition, which occurs within a single time step. A selected TU, S, identifies

nearby locations for transition, selects a site, L, and, if the conditions further described in Fig 6A are met, L transitions to a new final state F. (B) Allowed transitions for

TUs are shown. A selected TU, S, may initiate a transition for one of its neighbor cells, as determined by the probabilities shown in Fig 8. The probability grid determines

whether a transition occurs for TU S, as well as if the conditions shown are met. For example, in the upper left panel of (B), suppose a blue TU is selected. It will next

determine the site for transition, L, according to the probabilities in Fig 8. If L is green or light blue, L will be allowed to transition to blue. (C) Detailed logic for whether a

transition occurs is shown. Details here are intended to expand upon Fig 6. At each time step, every TU is selected exactly once. Each TU is given an opportunity to act

each time step, according to a global probability. If selected, a TU, S, selects a site, L, for possible transition. Site L is selected based upon the probability grids in Fig 8 for

the selected TU S. Whether L transitions is also governed by the probability in the center of the grid for S. If the probability is met and if L is one of the allowed types,

shown in panel (B), L may transition.

https://doi.org/10.1371/journal.pcbi.1005980.g007
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a teal or green TU but only when it had� 4 blue Moore neighbors; otherwise, it remained

blue. In Mechanism 3, green and white do not expand, but other TU types could generate

them. Logic for a selected TU is shown in Fig 6, and rules for all transition types are illustrated

in Fig 7.

It seemed clear from comparisons of Fig 3 subregions that, during the day-7 to day-10

interval, Target Region was being influenced by events to its north. We inferred that at some

time after day-7, expansion activity north of Target Region, illustrated by the white arrows in

Fig 3D, would begin influencing the northernmost rows within the triangular and rectangular

areas in Fig 5B. We explored several scenarios and selected one for more thorough study:

expanding TUs just north of Target Region would “collide” with Target Region TUs on each

side of Bone, and a few of those invading TUs would actually enter the north edge of Target

Region. After several cycles through the IR Protocol exploring that scenario, we observed

more biomimetic simulated healing coupled with Similarity values� 70% when the invading

TUs used logic that was somewhat different from that used by the same TU type in Target

Region, so we selected a particular version of that scenario and refined it further.

We needed a way to trigger the collision from the north. Given that the Target Region is a

nonautonomous, smaller area of a greater whole, we considered specifying that it occur at

some randomly selected time step during each Monte Carlo execution, but that risked increas-

ing the variance for the time step with maximum Similarity. Our working hypothesis that a

single, consistently applied logic for each TU could account for transition to the final state was

falsified. Next, we tied the collision trigger to changes occurring within Target Region, which

was intended to be reflective of changes occurring outside the Target Region. We specified

that the collision be coincident with the first gray or burgundy TU reaching the northernmost

row of active TUs, which we took as an indication that we had progressed sufficiently toward a

simulated day-10 final state. Next, during that same time step, four blue invading TUs (blue�)

were added to the central area of the rectangular region, three to the top active row and one to

the row just below (variations on this theme work just as well). We use an asterisk to distin-

guish an original Target Region blue from an invading blue� TU. Although the TU types are

the same—blue—blue� used somewhat different logic. During that same time step, a gray� and

burgundy� TU are added left-of-enter at the top of the triangular region.

A blue� TU is assigned its own logic. If it has� 4 gray + burgundy Moore neighbors, it can

expand. The direction is biased southward, as these TUs have expanded from the north. The

TU that is the product of expansion can transition into a gray, burgundy, teal, or blue TU.

Gray� and burgundy� TUs also have their own logic, and their expansion is also biased south-

ward. The TU that is the product of expansion transitions into a gray�, burgundy�, white, or

green TU. All transitions are illustrated in Fig 7.

With introduction of blue� TUs, we encountered occasional unacceptable non-biomimetic

features of the type illustrated in Fig 6B. We inferred from Fig 3 that blue TU subregions

should expand and contract somewhat cohesively. However, as blue TUs expand downward,

they may encounter an obstacle—a column or “wedge” containing gray, burgundy, and/or teal

TUs. We observed such obstacles persisting. That persistence “splits” the blue subregion,

breaking the apparent cohesion. To prevent such occurrences, we added an additional rule: a

gray, burgundy, or teal TU with� 5 blue Moore neighbors replaces itself with a blue TU. After

including that rule, the average maximum Similarity value for Mechanisms 3 improved.

Mechanism 4. Values governing location selection probabilities for Mechanism 3 were

hard-coded for each TU type. Mechanism 4 was the result of work to address requirement 2

by increasing flexibility and streamlining Mechanism 3 activities. Each of the seven active TU

types was assigned a mini-grid of expansion probabilities, illustrated in Fig 8, which it applied

to its Moore neighborhood. Mini-grids are easily customizable, and are provided to the Analog
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through standard comma-separated values (CSV) files. The Mechanism 3 rule that prevented

splitting of an expanding blue subregion was carried forward without change. Simulated Tar-

get Region final states generated during executions of Mechanisms 3 and 4 are statistically

indistinguishable.

Internal control

What further improvements in similarity values, as calculated above, might reasonably be

achieved? We answered that question with Mechanism 4 internal control calculations that

draw on the fact that the closest Similarities that can be achieved for a simulated day-10i Target

Region will be those achieved by independent executions of the Mechanism that generated it.

The analog Healing Process from day-7 initial state to a simulated day-10 final state is unique

for each Monte Carlo execution of Mechanism 4. We selected one Mechanism 4 Monte Carlo

execution from 25 and recorded its Target Region configuration at the time step for which

simulated Target Region final state maximum Similarity was achieved. We designated it to be

the internal control simulated day-10i target state. We then measured maximum Similarity of

each of the other 24 Monte Carlo Healing Processes to that simulated day-10i target state. Data

are available and labeled as “Internal Control” in S1 Dataset.

Fig 8. Probabilities governing TU transitions in mechanisms 3 and 4. The center value is the probability each TU

will have an opportunity to act each time step. The value at each shaded location specifies the probability that a

transition event may occur at that location. The types of allowed transitions are illustrated in Fig 7. (A) The

precondition for transition is that each of these four TU types have� 4 Moore neighbors that are of the same type. (B)

These are the three TU types that enter Target Region from the north. Their rules are different from counterparts in A.

Gray� and burgundy� have no precondition for transition. They can transition into gray�, burgundy�, white, or green.

The precondition for a blue� transition is that� 4 Moore neighbors are blue� and/or are at the Target Region border.

It can transition into gray, burgundy, teal, or blue.

https://doi.org/10.1371/journal.pcbi.1005980.g008
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Data types, reuse, code availability, and sharing

Callus Analogs are a form of data, using both the implicit schema of MASON/Java and the

explicit schema of configurations. Analog and configuration data are maintained, archived,

and released using the Subversion version control tool in two repositories: one public for col-

laboration and one private (Assembla) for rapid and prototyping development with project

partners [36, 41]. Input-output (I/O) data is handled separately. Smaller data sets (tissue data)

are stored in CSV format.

The entire Callus Analog toolchain is open-source, thereby enabling repeatability. Similarly,

all generated and released data from the project is licensed and available as open data. Callus

Analogs are built and maintained for a cloud environment (e.g., Google Compute Engine) to

ensure platform and infrastructure repeatability across future experiments, project team mem-

bers, partners, and the wider community.

Adherence to simulation best practices

The protocols, procedures, and methods that we employ to ensure that results of Callus Analog

experiments are reproducible and to establish credibility that they are scientifically useful are

described in detail in [28]. Except as noted, we followed those best practices during the work-

flows described above. They include 1) quality assurance and control protocols, 2) face valida-

tion, 3) verification procedures for model mechanisms, 4) repeatability, 5) methods for

generating narrowly focused predictions, and 6) Callus Analog validation methods used dur-

ing IR Protocol cycles.

However, it is too early for systematic sensitivity analyses or efforts to quantify uncertainties

associated with particular Mechanism 4 configurations. That is because Callus Analog is still at

a very early stage; the focus is on acquiring new insights. Mechanism life cycles are expected to

remain relatively short. As soon as we target additional attributes, it is likely that Mechanism 4

will be falsified (because it cannot achieve those new targets). Thus, it will be necessary to alter

Mechanism 4 during additional cycles through the IR Protocol. We acquire evidence that we

are adhering to our strong parsimony guideline at IR Protocol step 2 in part through docu-

mentation of sources of uncertainty and focused assessments of simulated final state sensitivi-

ties to modest changes in the logic followed by each TU.

Results

Each execution of our Mechanisms is a unique, simulated healing process, which may (or not)

mimic an interval of actual fracture healing. Because the focus is on similarity to the day-10i

Target Region, we refer to the simulated state having maximum Similarity value for a given

Monte Carlo execution as the simulated day-10i Target Region final state. However, we cur-

rently have no data to guide mapping time steps to wet-lab clock time.

Summarized maximum Similarity results for Mechanisms 2–4 are included in Table 1 and

the complete results are included in S1 Dataset. Examples of simulated Target Region final

states for Mechanisms 2–4 are provided in Fig 9. S1 Video is an example of the complete simu-

lated healing process for Mechanisms 2. It includes the final state having the largest Similarity

value. Mechanism 2 improved upon Mechanism 1, generated reasonable simulated states, but

failed to meet the biomimesis requirement. A feature of a simulated healing process that has

no known real counterpart is designated non-biomimetic. Fig 9A shows the simulated Target

Region having the largest maximum Similarity value from a set of 25 executions. Although

maximum Similarity values over 70% were achieved for Mechanism 2, at least two non-biomi-

metic features were observed. 1) In simulated final states, teal TUs were absent from the south-

east region of Target Region and that reduced Similarity values significantly. The small islands

Toward explanatory mechanisms of the fracture healing process

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1005980 February 2, 2018 20 / 32

https://doi.org/10.1371/journal.pcbi.1005980


of teal and blue TUs within a gray/burgundy region in Fig 9A may also be non-biomimetic fea-

tures. 2) Temporal profiles of Similarity values reached a plateau prior to time step 5000,

which persisted beyond time step 20,000. Consequently, the time step at which maximum Sim-

ilarity occurred appeared somewhat random.

Fig 9B shows the simulated Target Region having the largest Mechanisms 3 maximum Sim-

ilarity value from a set of 25 executions. S2 Video includes Fig 9B. Table 1 data shows that

Mechanism 3 improved on Mechanism 2. However, the absence of blue TUs adjacent to teal

in the lower right limited maximum Similarity values and may be a non-biomimetic feature.

Fig 9C and 9D, which are included in S3 and S4 Videos, are examples of simulated Target

Regions having the largest Mechanisms 4 maximum Similarity value from the set of 25

Table 1. Similarity criteria.

UL-Similarity Values Similarity Values

Mean Maximum UL-Similarity CV 1

Similarity

Mean

Time Step

CV

Time Step

Mean Maximum

Similarity

CV

Similarity

Mean Time Step CV

Time Step

Mechanism 2 83.2% 0.039 4532 0.454 73.2% 0.064 2866 0.796

Mechanism 3 93.9% 0.044 5511 0.119 77.0% 0.049 5494 0.142

Mechanism 4 93.3% 0.049 5274 0.099 77.6% 0.038 5244 0.148

Mechanism 4

Internal Control2
92.8% 0.047 5234 0.101 89.7% 0.045 5208 0.141

1CV: coefficient of variation, n = 25 Monte Carlo executions
2 Fig 9D served as Internal Control calculations.

https://doi.org/10.1371/journal.pcbi.1005980.t002

Fig 9. Examples of day-10 simulation results. From the sets of 25 maximum Similarity values (one for each Monte Carlo execution) from which the Table 1

values were derived, we selected these eight examples. The first four have the largest maximum Similarity value for the specified set: (A) Mechanism 2, (B)

Mechanism 3, (C) Mechanism 4 when calculating Similarity, and (D) Mechanism 4 when calculating UL-Similarity. (E-H) From all other Mechanism 4 maximum

Similarity values, we selected these four as exhibiting good overall biomimicry to the day-10i image based simply on visual comparisons. E and F are examples that

exhibit near maximum UL-Similarity.

https://doi.org/10.1371/journal.pcbi.1005980.g009
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executions summarized in Table 1. No non-biomimetic features were observed. Based on sim-

ple qualitative visual comparisons, we judged the similarity of Fig 9E–9H to the day-10i Target

Region to be comparable to that of Fig 9C and 9D, even though their Target Regions had

smaller maximum Similarity values. That observation indicates that, moving forward,

improved measurements of Similarity will be needed. S5 and S6 Videos includes Fig 9E and

9F.

Each Mechanism 4 is a unique, simulated healing process, which is intended to mimic the

interindividual variability of actual fracture healing. To observe and measure that uniqueness,

single Mechanism 4 executions were selected from those used to provide the summary results

for Mechanism 4 in Table 1. A Similarity value was calculated and plotted each time step in Fig

10.

Looking for such features and for wet-lab evidence that pushes the decision either way

should be part of future research Callus Analog research. We saved the images corresponding

to the maximum Similarity for both sets of 25 Mechanism 4 executions summarized in

Table 1. Similarity value is just one way to judge good overall biomimicry.

Assessments of simulated final state sensitivities to modest changes in TU logic help iden-

tify sources of uncertainty. They also provide evidence for how tightly we are adhering to our

strong parsimony guideline. For example, changing action and event probabilities in Mecha-

nism 4 by ± 10–15% for a particular TU produces changes in Similarity value for simulated

final state and temporal profiles that are well within the range produced by 25 Monte Carlo

executions; the behavior space of Mechanism 4 is not significantly altered. The following is a

specific illustration. We changed the Moore neighborhood probability values for blue (ran-

domly chosen) in Fig 8A from [0.2 north/south and 0.6 east] to [0.165 north/south and 0.67

east] and repeated the 25 executions tabulated Table 1 using the same seeds. The average maxi-

mum UL-Similarity was 93.6% vs. 93.3% in Table 1; and for Similarity it was 77.8% vs. 77.6%

in Table 1. For mean time step at which those value occurred, the new (vs. Table 1) time step

was 5317 (vs. 5274) for UL-Similarity and 5299 (vs. 5244) for Similarity. However, changing

how and when invasion of TUs from the north is triggered is an example of a change that can

have a more significant influence: for such changes, the behavior space of Mechanism 4 can be

significantly altered. Data labeled “Blue Probability 2” in S1 Dataset reflect this experiment.

Discussion

Given the reality illustrated in Fig 4, the prospect of discovering plausible mechanism-based

explanations of fracture healing by relying solely on results of wet-lab experiments is problem-

atic. We sought computational methods that could be facilitative, and we ruled out pattern-

based methods because the generative methods cannot be made biomimetic [42]. We also

ruled out established biomedical multiscale modeling and simulation methods, as recently

reviewed by Walpole et al. [43]. A requisite for those methods is sufficient information and

knowledge to provide an adequately detailed mechanism-based explanation that is believed to

account for the phenomenon of interest. That requisite can be met when the focus of the

research can be characterized as being right-of-center on the four Fig 11 spectra. Each spec-

trum represents a broad attribute of the research. Location on the spectrum characterizes the

current reality. While the conventional inductive methods of multiscale modeling and simula-

tion are located right-of-center, fracture-healing research cannot yet meet that requisite

because it is characterized by locations on all four spectra that are considerably center-left. For

center-left locations, combining analogical models (e.g., electrical, mechanical, chemical, sys-

tems engineering, etc.) and analogical reasoning is a proven alternative strategy for developing

plausible explanations of phenomena [34, 35]. But because there are no material systems that
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Fig 10. Temporal profiles of Similarity values for selected executions. Single executions were selected from those used to provide the summary results for

Mechanism 4 in Table 1. (A) Profiles selected from the 25 Monte Carlo executions when calculating Similarity. The three profiles with the widest line widths

exhibited the largest maximum Similarity values. The three profiles with narrowest line widths exhibited the three smallest maximum Similarity values. Arrows at

bottom: those on the left mark the three earliest occurrences of a maximum Similarity value. Those on the right mark the three latest occurrences of a maximum

Similarity value. (B) Profiles selected the 25 Monte Carlo executions when calculating UL-Similarity. The presentation is as described in A but y-axis values are

different. (C) Examples are plotted of ascending portions of Similarity value profiles when calculating Similarity. Two of widest profiles exhibit the steepest increase.

The wide profile at bottom exhibits the slowest increase. The three narrow profiles were selected randomly from the other 22.

https://doi.org/10.1371/journal.pcbi.1005980.g010

Fig 11. Characteristics of obstacles listed in the introduction. Each spectrum provides a different perspective on

research aimed at characterizing and explaining a phenomenon, fracture healing in this case. Relative to research in

other biomedical domains, fracture-healing research can be characterized by a left-of-center location on each

spectrum. Spectra locations considerably right-of-center are most supportive of the conventional inductive methods

used by current multiscale modeling and simulation researchers. The green shaded curve illustrates that, as one moves

leftward, the number and variety of equally possible explanations increases dramatically, which can be a serious barrier

to progress.

https://doi.org/10.1371/journal.pcbi.1005980.g011
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can serve as analogical models, we focus on developing analogical model mechanisms in

software.

Fracture-healing research focus issues are located center-left on the four spectra. Conse-

quently, there are many equally possible explanations for the healing phenomenon. That real-

ity is illustrated in Fig 4 and by the green curve in Fig 11. The conventional strategy is to

perform new experiments that generate new data and knowledge. In doing so, one’s location

shifts rightward and that shrinks the number and variety of equally possible and plausible

explanations. Given the Fig 4 reality, that approach is not available. As explained in [22] and

demonstrated in [23, 24, 26, 28], an advantage of utilizing a software-based model mechanism

approach is that, by keeping model mechanism entities parsimoniously coarse-grain and con-

crete, we limit the variety and space of model mechanisms capable of generating the targeted

phenomenon.

By showing that Mechanism 2 was inadequate, we eliminated it from further consideration

along with all finer-grain variants of Mechanism 2. By so doing, we shrank the space of possi-

ble model mechanisms. In moving from Mechanism 2 to 3, the granularity of model mecha-

nism entities is unchanged, but their activities are changed. Thus, we are working within a

marginally smaller space of possible model mechanisms. As demonstrated in [28], we can

reduce that space significantly by increasing the number and variety of targeted phenomena—

validation targets—that must be generated by the analog system, and that is our plan moving

forward.

During our effort to keep the Callus Analog simple, we encountered conflicting demands.

To be scientifically useful and facilitate discovery, a Callus Analog must be sufficiently biomi-

metic in both model mechanism and generated phenomena. Increasing biomimicry requires

that we make Callus Analog features finer-grain. However, making a Callus Analog finer-grain

absent an evidence-based reason for doing so (as stipulated by the IR Protocol) risks dramati-

cally increasing the space of equally possible explanatory mechanisms. Adhering to a strong

parsimony guideline at step 2 of the IR Protocol helps resist that pressure.

Simulated healing

Each Callus Analog execution provides a record of an analog Healing Process, which is the

top-level analog phenomenon. Executions generate the succession of changes by which earlier

states of the Target Region gradually become a simulated Target Region final state. Each video

explains how the initial state is transformed into a final state that is measurably similar to Tar-

get Region final state. It is too early to claim that strong analogies exist between features of sim-

ulated and actual fracture healing for Mechanism 4. Nevertheless, we can hypothesize that, at

comparable levels of granularity, the simulated healing processes seen in the S3–S6 Videos

have actual fracture healing counterparts. Taken together, each video is a low-resolution

(coarse-grain) model of explanation—a theory—that maps to a 4-day portion—day-7 to day-

10—of the tibia fracture healing process in a mouse. There are currently no comparably

detailed competing theories of fracture healing. Because Callus Analog mechanisms are con-

crete, they are easy targets for scientific challenge, and it is through that use that we anticipate

Callus Analogs will provide scientific value moving forward.

The changes occurring within the Target Region during Mechanism 4 executions are inter-

mediate level phenomena; they have histomorphometric counterparts in callus tissue sections.

Two examples are the eastward progression of teal TUs replacing blue TUs and the eastward

expansion of the mixture of gray and burgundy TUs. The mechanisms responsible for those

intermediate level phenomena are mediated by the individual activities of the participating

TUs. The logic dictating TU actions at each time step, as illustrated in Fig 7C, provides
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Mechanism orchestration. A change in TU type at a particular grid location is the lowest level

(finest-grain) model mechanism phenomenon.

Iterative mechanism improvement

Mechanisms 1–4 were developed sequentially. Derived results were most useful when a partic-

ular configuration (logic, utilization of neighborhood information, probability values, etc.)

failed to meet expectations. Some failures were marked by poor maximum Similarity values.

Others were marked by a feature or features within Target Region that was unexpected or

judged non-biomimetic. In such cases, we would hypothesize a plausible explanation for the

problem and a possible solution, and then conduct experiments to challenge that hypothesis

and solution. When successful, we achieved an incremental Analog improvement. Failures

provided new knowledge by enabling us to marginally shrink the space of plausible Callus

Analog healing processes. Mechanism 1 was unsuccessful because it was flawed in several

ways. Nevertheless, observations made during IR Protocol cycles stimulated ideas for other

logic that might be explored, including the ideas that drove development of Mechanism 2 and,

later, Mechanism 3.

From observations made during explorations leading to Mechanisms 1 and 2, we inferred

that, in order to make simulated healing processes more biomimetic, it would be necessary to

include two features. 1) Allow for multiple TU changes at any grid location during simulated

healing. 2) Have sustained directional influences, spanning many TUs, guiding or constraining

the direction and type of TU transitions. The latter may map to the combined net effects of

multiple factors such as angiogenic impairment [44], relative abundance and activity of

immune cells [45], signaling influencing osteogenic and chondrogenic transcription networks

[46], O2 gradients [47], and mechanical influences [48]. Callus Analog has achieved its current

objectives without needing to bring any of those influences into focus, consistent with our

strong parsimony guideline. As the list of targeted phenomena expands, it will become neces-

sary to make model mechanisms finer-grain. It is during such refinements that a newly added

Callus Analog feature may map to one or more of those influences.

The logic used by Mechanisms 3 and 4 limits the direction in which a TU can affect the tran-

sition of a neighbor, and it imposes preconditions on number and type of Moore neighbors that

must be present before a TU transition can occur. A consequence of those constraints was the

emergence of apparent cohesion of TUs within three areas that are clearly evident in Fig 9E–

9H: one area dominated by blue TUs, another dominated by teal TUs, and a third dominated

by gray and burgundy TUs. That apparent cohesion is clearly evident during S2–S6 Videos.

From the simulation engineering perspective, Callus Analog could be simplified if those

three areas were represented as large, quasi-autonomous, sub-Callus organized units, within

which TUs are simply parts under the control of each organized unit. However, there is, as yet,

no direct wet-lab evidence that would support or require such simplification. Interfaces

between those areas map to well-documented transition zones (e.g., see [39]). Moving forward,

features of transition zones will be added to an expanding list of targeted phenomena to further

shrink the space of plausible explanatory model mechanisms.

Special attention was given to understanding why, during an IR Protocol cycle, a model

mechanism failed. As Petersen states, "having that information is essential to the scientific pro-

cess because it is falsification that provides new knowledge: specifically, the current (falsified)

mechanisms are flawed—they are not a good analogy of the referent biological mechanisms"

[31]. Building upon and revising flawed hypotheses offers a new perspective and new way of

thinking about plausible networked callus healing processes, and that alternative way of think-

ing may well become the primary value of the Callus Analog approach.
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Current competing theories

Fracture healing occurs primarily through the process of endochondral ossification, a process

in which cartilage matrix is replaced by bone. This is the same process by which many bones

are formed and grow. During endochondral ossification at the fracture site, chondrocytes

express vascular endothelial growth factor, which induces vascular invasion of the cartilage

matrix [49–51]. Along with the invading vasculature, osteoclasts that have entered the callus

degrade the cartilage matrix. Previously, the chondrocytes were thought to undergo pro-

grammed cell death [52], and concurrently, osteoblasts, which are delivered by the vasculature

[19], replace cartilage matrix with bone. In this two-stage theory, chondrogenesis—cartilage

development—serves chiefly as a means for producing hypertrophic chondrocytes, and they,

in turn, initiate bone formation (carried out by other cells). However, a competing theory has

emerged. Chondrocytes enter a transient stem cell-like state from which they transform into

the osteoblasts and osteocytes that form the new bone [37, 38]. The earlier theory envisioned

chondrogenesis and osteogenesis as separate processes, whereas the more recent theory is

mechanistically simpler: it envisions chondrogenesis and osteogenesis as characteristic sequen-

tial features of the same process.

All of the wet-lab observations on which those two competing theories are based are below

the resolution of Mechanism 4. They are subsumed by the Fig 7 logic. So, at this stage, the

model does not provide evidence for or against either theory. As we add new target attributes

downstream, we envision replacing the Fig 7 logic with model mechanism details using the

tuneable resolution process of Kirschner et al. [33], which is a systems biology approach for

discretized multi-level, multi-compartment computational models. The process involves fine-

or coarse-graining of entities and activities. Such an approach allows for the adjustment of the

level of resolution specific to a question, an experiment, or a level of interest. At that stage we

should be able to challenge those competing theories.

Strengthening weaknesses; addressing limitations

Because we are still early stage, the Mechanism 4-based simulated healing process comes

with an ample supply of weaknesses and limitations. Both a weakness and limitation is that

there are no (fine-grain) 1:1 counterparts to the cellular entities and molecular level events

that are the focus of the majority of wet-lab experiments. As Callus Analog credibility

improves and finer-grain features are included as validation targets, it will become feasible

to increase model mechanism resolution further utilizing the tuneable resolution process in

Kirschner et al. [33].

The day-10i illustration is a stage 1 requirement. It is an important source of information

but also a source of uncertainty. A requisite for building an explanation for fracture healing is

having staged representations of the same fracture (e.g., on days 4, 7, 10, 14, 20, etc.) that are,

within reasonable tolerances, reliable, semi-quantitative, and scientific. There are currently no

protocols to achieve that requisite. However, many histologists, pathologists, and biologists are

trained in accurately illustrating representations of specimens, including tissue sections. A log-

ical next step would be to acquire two (or more) independently generated day-10i illustrations

of the same section and then document where and why they are similar and different. Thereaf-

ter, we envision protocols and methods for developing credible staged illustration representa-

tions becoming increasingly standardized, and, where feasible, automated. To increase

standardization, we can draw from the robust best practices developed over decades for stan-

dardization of pathologic and histologic evaluations and reporting. We can also draw on the

medical image registration methods [53] that enable rapid advances in computed tomography

and magnetic resonance imaging.
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Feature discretization and simplification at stage 2 helps manage uncertainties, but the pro-

cess itself is also a source of new types of uncertainty. There is a risk that increasing or decreas-

ing grid mesh density can alter analog-to-mouse healing process mappings in scientifically

meaningful ways. A good future time to assess that risk will be when Callus Analog insights

have advanced sufficiently to begin exploring the first testable theory of fracture nonunion.

The cellular components of all 80×80 μm areas within the day-7 tissue section Target

Region are heterogeneous, but discretization requires that the corresponding analog grid space

be occupied by one of nine TU types. To limit unintended bias, we can, as above, continue to

draw from the mature best practices of pathologists to develop protocols to minimize added

uncertainties. Longer term, we envision discretization protocols becoming automated. Near-

term, several strategies can be explored to discover and ameliorate discretization weaknesses.

Here are two examples. 1) Acquire two (or more) independently generated target region dis-

cretizations, and then independently develop a plausible explanatory analog for each that

achieves the same final state Similarity criteria. 2) There will always be instances where it will

be difficult for a domain expert or an automated process to make some TU assignment, such

as choosing between a new marrow TU (gray) or an osteoblast-dominated TU (burgundy),

because those cell types are similar. In such cases, those grid spaces can be given a new designa-

tion, TU = g/b. At the start of each simulation experiment, all g/b spaces are randomly desig-

nated as either gray or burgundy. The result is a set of Monte Carlo Target Region starting

states. One then cycles through the IR Protocol for each in parallel until the Target Region

final state Similarity criterion is achieved. Both strategies require increased work, and automat-

ing IR Protocol tasks will help avoid reducing the overall workflow pace.

Selecting an initial target region at stage 3 was essential to demonstrate feasibility. Moving

forward, the approach must be expanded in stages to cover the entire callus, possibly as fol-

lows. First, develop and improve simulated healing processes for small portions of a callus and

then explore how best to merge them incrementally to simulate more of the fracture healing

phenomenon. It seems likely that multiple sub-callus processes will be needed to simulate heal-

ing within the entire callus. Evidence suggests that different callus subregions can be at some-

what different stages of repair and may progress at different paces. Separate simulations of

independent subregions will help bring these issues into focus. A plausible next step would be

to select a new day-7 target region (possibly larger than 25×25) and determine if Mechanism 4

is able to achieve a corresponding day-10i final state with Similarity values� 70%. Following

that, we envision extending those two analog healing processes forward to day-14 and back-

ward to day-4.

Each Mechanism 4 video is a sample from the circumscribed space of model healing pro-

cesses, and each is biomimetic. Are all other Mechanisms in that space also biomimetic? It is

too early to answer, but it seems likely that the answer is no. Each video (the record of one

Monte Carlo trial) provides a means to search for and address the emergence of non-biomi-

metic features. Observing more videos provides one with a better overall impression of the

space of simulated healing. Domain experts observing videos can identify features that may be

non-biomimetic, such as the small islands of teal and blue TUs within a gray/burgundy region

in Fig 9A. Features that appear in one video may not appear in another. Assume that domain

experts identify a likely non-biomimetic feature in several Mechanism 4 videos. Mechanism 4

would be falsified. We would then seek a marginally different—yet still parsimonious—model

mechanism in which the logic used by each agent type has been revised to avoid exhibiting the

non-biomimetic feature, while still meeting all similarity criteria. The revised Mechanism

would circumscribe a smaller set of analog healing processes. In the preceding scenario, the

videos provide domain experts with an entirely new means of thinking about callus healing.

More broadly, simulated healing provides a new perspective on the actual healing process, and
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it is from that perspective that we encourage the use of simulations to enhance mechanism dis-

covery. Doing so can help overcome translation barriers through the development of coarse-

grained mechanism-based explanations. Later, as additional validation targets are met, incre-

mentally better explanations will shrink the space of possible mechanism-based theories, and

putative mechanisms will become finer-grained, which we anticipate will enable novel inter-

vention strategies to be brought into focus.
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S1 Fig. Frequency of allowed transitions used in Mechanism 1 development. This plot

depicts the frequency of the 25 allowed transition types, which include transitions where the

final state was the same as the initial state.

(TIF)

S1 Text. Discovering biologically explanatory mechanisms. Forward/backward chaining

reasoning strategies are described. Such strategies aid discovery of explanatory model mecha-

nisms. Moving forward, we will rely on those strategies to expand Callus Analog to earlier

(e.g., day-4) and later (e.g., day-14) stages of fracture healing. Mechanism is defined. To meet

the definition of mechanism, the software mechanisms must exhibit the features listed in S1

Table within S1 Text. The table describes features that should be exhibited by an explanatory

mechanism, along with the Callus Analog counterparts.

(PDF)

S1 Dataset. Raw data for results. All data reported in the manuscript are provided in the

spreadsheet. The spreadsheet is organized by tabs. The “Statistics” tab contains the summa-

rized data provided in Table 1 of the manuscript. Similarity and UL-Similarity data are pro-

vided for the Monte Carlo trials of each mechanism.

(XLSX)

S1 Video. M2 maximum UL-Similarity. This video demonstrates the run for which we

obtained maximum UL-Similarity for Mechanism 2. The maximum UL-Similarity occurs

around 6 seconds into the video. Gray and burgundy fluctuate toward the end, and the north-

west corner of the region undergoes immediate change, unlike in Mechanisms 3 and 4.

(MP4)

S2 Video. M3 maximum UL-Similarity. Here, we show the run for maximum UL-Similarity

for Mechanism 3. Blue�, gray�, and burgundy� were triggered around 13 seconds, when a blue

TU reached the northernmost row of active TUs. Maximum UL-Similarity was achieved at

around 16 seconds.

(MP4)

S3 Video. M4 maximum UL-Similarity. We provide the run for maximum UL-Similarity for

Mechanism 4. The trigger is noticeable, as in S2 Video. Maximum UL-Similarity was again

achieved at around 16 seconds.

(MP4)

S4 Video. M4 maximum Similarity. This video shows the run where maximum Similarity

was achieved for Mechanism 4. The trigger is noticeable, as in S2 and S3 Videos. Maximum

Similarity occurs around the 18-second mark.

(MP4)

S5 Video. M4 sample video. This video is smooth and appears biomimetic- it represents one

of the better Mechanism 4 runs. Maximum UL-Similarity occurs around 17 seconds into the
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video.

(MP4)

S6 Video. M4 sample video 2. We show another example of a Mechanism 4 run. Here, maxi-

mum UL-Similarity is achieved a bit earlier, around the 12-second mark.

(MP4)

Acknowledgments

We thank domain experts Louis Gerstenfeld, Dana Graves, and Kurt Hankenson for validating

the day-10i illustration. We also thank Glen E.P. Ropella and Andrew K. Smith for construc-

tive criticism.

Author Contributions

Conceptualization: Ryan C. Kennedy, Meir Marmor, C. Anthony Hunt.

Data curation: Ryan C. Kennedy, Meir Marmor.

Formal analysis: Ryan C. Kennedy.

Funding acquisition: C. Anthony Hunt.

Investigation: Ryan C. Kennedy, Meir Marmor, Ralph Marcucio.

Methodology: Ryan C. Kennedy, Meir Marmor, C. Anthony Hunt.

Project administration: Ryan C. Kennedy, C. Anthony Hunt.

Resources: Ryan C. Kennedy, Ralph Marcucio.

Software: Ryan C. Kennedy.

Supervision: Meir Marmor, C. Anthony Hunt.

Validation: Ryan C. Kennedy, Meir Marmor, Ralph Marcucio.

Visualization: Ryan C. Kennedy, C. Anthony Hunt.

Writing – original draft: Ryan C. Kennedy, Meir Marmor, C. Anthony Hunt.

Writing – review & editing: Ryan C. Kennedy, Meir Marmor, Ralph Marcucio, C. Anthony

Hunt.

References

1. Einhorn TA. Enhancement of fracture-healing. J Bone Joint Surg Am. 1995 Jun; 77(6): 940–956. http://

journals.lww.com/jbjsjournal/Citation/1995/06000/Enhancement_of_fracture_healing_.16.aspx PMID:

7782368

2. Harvey N, Dennison E, Cooper C. Osteoporosis: impact on health and economics. Nat Rev Rheumatol.

2010 Feb; 6(2): 99–105. https://www.nature.com/nrrheum/journal/v6/n2/full/nrrheum.2009.260.html

PMID: 20125177

3. Nandi SK, Roy S, Mukherjee P, Kundu B, De DK, Basu D. Orthopaedic applications of bone graft &

graft substitutes: a review. Indian J Med Res, 2010 Jul; 132: 15–30. http://imsear.li.mahidol.ac.th/

handle/123456789/135534 PMID: 20693585

4. Hustedt JW, Blizzard DJ. The controversy surrounding bone morphogenetic proteins in the spine: a

review of current research. Yale J Biol Med. 2014 Dec 12; 87(4): 549–561. https://www.ncbi.nlm.nih.

gov/pmc/articles/PMC4257039/ PMID: 25506287

5. Turner WG. The Use of the Bone Graft in Surgery. Can Med Assoc J. 1915 Feb; 5(2): 103–109. https://

www.ncbi.nlm.nih.gov/pmc/articles/PMC1487122/ PMID: 20310598

Toward explanatory mechanisms of the fracture healing process

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1005980 February 2, 2018 29 / 32

http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1005980.s009
http://journals.lww.com/jbjsjournal/Citation/1995/06000/Enhancement_of_fracture_healing_.16.aspx
http://journals.lww.com/jbjsjournal/Citation/1995/06000/Enhancement_of_fracture_healing_.16.aspx
http://www.ncbi.nlm.nih.gov/pubmed/7782368
https://www.nature.com/nrrheum/journal/v6/n2/full/nrrheum.2009.260.html
http://www.ncbi.nlm.nih.gov/pubmed/20125177
http://imsear.li.mahidol.ac.th/handle/123456789/135534
http://imsear.li.mahidol.ac.th/handle/123456789/135534
http://www.ncbi.nlm.nih.gov/pubmed/20693585
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4257039/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4257039/
http://www.ncbi.nlm.nih.gov/pubmed/25506287
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1487122/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1487122/
http://www.ncbi.nlm.nih.gov/pubmed/20310598
https://doi.org/10.1371/journal.pcbi.1005980


6. Vodovotz Y, An G. Chapter 1.1. Interesting Times: The Translational Dilemma and the Need for Trans-

lational Systems Biology of Inflammation. In: Vodovotz Y, An G, authors. Translational Systems Biol-

ogy. London: Academic Press; 2014. pp. 3–8. https://www.elsevier.com/books/translational-systems-

biology/vodovotz/978-0-12-397884-4

7. Ioannidis JP. To replicate or not to replicate: the case of pharmacogenetic studies: Have pharmacoge-

nomics failed, or do they just need larger-scale evidence and more replication? Circ Cardiovasc Genet.

2013 Aug; 6(4):413–418. http://circgenetics.ahajournals.org/content/6/4/413 PMID: 23963161

8. Begley CG, Ellis LM. Drug development: Raise standards for preclinical cancer research. Nature. 2012

Mar 28; 483(7391): 531–533 https://www.nature.com/nature/journal/v483/n7391/full/483531a.html

PMID: 22460880

9. Darden L. Thinking again about biological mechanisms. Philos Sci. 2008; 75: 958–69. http://www.

journals.uchicago.edu/doi/abs/10.1086/594538

10. Einhorn TA, Gerstenfeld LC. Fracture healing: mechanisms and interventions. Nat Rev Rheumatol.

2015 Jan 1; 11(1): 45–54. http://www.nature.com/nrrheum/journal/v11/n1/abs/nrrheum.2014.164.html

PMID: 25266456

11. Bais M, McLean J, Sebastiani P, Young M, Wigner N, Smith T, Kotton DN, Einhorn TA, Gerstenfeld LC.

Transcriptional Analysis of Fracture Healing and the Induction of Embryonic Stem Cell–Related Genes.

PLoS One. 2009 May 5; 4(5): e5393. http://journals.plos.org/plosone/article?id=10.1371/journal.pone.

0005393 PMID: 19415118

12. Pezzulo G, Levin M. Top-down models in biology: explanation and control of complex living systems

above the molecular level. J R Soc Interface. 2016 Nov 1; 13(124): 20160555. http://rsif.

royalsocietypublishing.org/content/13/124/20160555 PMID: 27807271

13. Fonstad MA. Cellular automata as analysis and synthesis engines at the geomorphology–ecology inter-

face. Geomorphology. 2006 Jul 30; 77(3): 217–34. http://www.sciencedirect.com/science/article/pii/

S0169555X06000134
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