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Abstract 
In arder to achieve viable parallel processing three basic criteria must be met: (1) the system must provide a 
programming environment which hides the details of parallel processing from the programmer; (2) the 
system must execute efficiently on the given hardware; and (3) the system must be economically attractive. 

The first criterion can be met by providing the programmer with an implicit rather than explicit 
programming paradigm. In this way all of the synchronization and distribution are handled automatically. 
To meet the second criterion, the system must perform synchronization and distribution in such a way that 
the available computing resources are used to their utmost. And to meet the third criterion, the system 
must not require esoteric or expensive hardware to achieve efficient utilization. 

This dissertation reports on the Process-Oriented Dataflow System (PODS), which meets all of the above 
criteria. PODS uses a hybrid von Neumann-Dataflow model of computation supported by an automatic 
partitioning and distribution scheme. The new partitioning and distribution algorithm is presented along 
with the underlying principles. Four new mechanisms for distribution are presented: (1) a distributed array 
allocation operator for data distribution; (2) a distributed L operator for code distribution; (3) a range filter 
for restriction index ranges for different PEs; and ( 4) a specialized apply operator for functional parallelism. 

Simulations show that PODS balances communication overhead with distributed processing to achieve 
efficient parallel execution on distributed memory multiprocessors. This is partially due to a new software 
array caching scheme, called remote caching, which greatly reduces the amount ofremote memory reads. 
PODS is designed to use off-the-shelf components, with no specialized hardware. In this way a real PODS 
machine can be built quickly and cost effectively. The system is currently being retargeted to the Intel 
iPSC/2 so that it can be run on commercially available equipment. 

Keywords: single assignment, dataflow, multiprocessor, declarative programming, 
matrix multiply, SIMPLE 
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In order to achieve viable parallel processing three basic criteria must be met: (1) the system 
must provide a programming environment which hides the details of parallel processing 
from the programmer; (2) the system must execute efficiently on the given hardware; and 
(3) the system must be economically attractive. 

The first criterion can be met by providing the programmer with an implicit rather than 
explicit programming parad.igm. In this way ali of the synchronization and distribution are 
handled automatically. To meet the second criterion, the system must perform 
synchronization and distribution in such a way that the available computing resources are 
used to their utmost. And to meet the third criterion, the system must not require esoteric 
or expensive hardware to achieve efficient utilization. 

This dissertation reports on the Process-Oriented Dataflow System (PODS), which meets 
all of the above criteria. PODS uses a hybrid von Neumann-Dataflow inodel of 
computation supported by an automatic partitioning and distribution scheme. The new 
partitioning and distribution algorithm is presented along with the underlying principles. 
Four new mechanisms for distribution are presented: (1) a distributed array allocation 
operator for data distribution; (2) a distributed L operator for code distribution; (3) a range 
fil ter for restriction index ranges for different PEs; and ( 4) a specialized apply operator for 
functional parallelism. 

Simulations show that PODS balances communication overhead with distributed 
processing to achieve efficient parallel execution on distributed memory multiprocessors. 
This is partially due to a new software arra y caching scheme, called remote caching, which 
greatly reduces the amount of remote memory reads. PODS is designed to use 
off-the-shelf components, with no specialized hardware. In this way a real PODS machine 
can be built quickly and cost effectively. The system is currently being retargeted to the 
Intel iPSC/2 so that it can be run on commercially available equipment 
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CHAPTERl 

Background 

Scientific prograrnmers are the primary users of parallel systems today. The current 

parallel programming systems do not meet the needs of this important group. Recent user 

surveys show that only one user program in twenty executed on the Comell supercomputer 

is parallel, [P&B90]. These su.rveys also indicare that many more scientists would 

program f or parallel systems if they were not so difficult to progra.m. Hand-coded 

parallelism is too difficult and time consuming, while parallelizing compilers do not achieve 

sígnificant speed-up. 

What is needed is a system which provides scientific programmers with a means to express 

their problem clearly and to have it execute efficiently in parallel automatically. Add to this 

the desire to run on standard MIMD architectures (e.g., iPSC/2) and the problem becornes 

very difficult MIMD architectures require that programs be decomposed into independent 

processes, running asynchronously on the different processor nodes and communicating 

with one another through rnessage passing or through shared memory. The current state of 

the art in programming such machines efficiently is to let the programmer explicitly 

partition the program into processes and insert the necessary synchronization and 

cornrnunication primitives. This is very time-consuming and error-prone. Automatic 

generation of para.lle! programs from conventional lapguages has not, as yet, achieved 

sufficient speed-up to warrant wide-spread usage. 

To achieve these goals many declarative programming languages [A&E88] have been 

designed. Declarative programming languages are much better suited for program 

decomposition than procedural languages such as Cor FORTRAN. Declarative languages 

allow the programmer to describe the problem using high-level constructs, yet their 

1 
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sernantics eliminare uncontrolled side-effects though functional expressions and single 

assignment restrictions. 

Declararive languages have been developed primari.ly in the context of approach of radically 

different cornputer architectures, in particular, dataflow architectures, where parallelisrn is 

to be exploited at the instruction leve/. For conventional loosely-coupled MIMD systerns, 

this level of parallelisrn is too low; the communicarions costs are too high. By moving to 

iteration leve/ parallelism this problem can be overcome [Burns, 88]. Iteration leve! 

parallelism is achieved when clifferent iterations (or groups of iterations) from the same 

loop are run on clifferent PEs. 

Process-Oriented Dataflow Systems (PODS) make use of iterarion leve! parallelism and 

declarative programing on distributed rnemory MIMD machines. The PODS line of 

research is show in Figure 1.1 as the bold arrow. 

Imperative Languages with 
Parallel Extensions 

Networks of 
von N eumann Processors 

Declara ti ve 
Languages 

Dataflow 
Architectures 

FIGURE 1.1. LINES OF RESEARCH. 

Figure 1.1 shows the different lines of research in parallel processing. The first line 

involves running imperative languages with parallel extensions (e.g., FORTRAN* 
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[K&B88]) on Networks of von Neumann Processors (e.g., iPSC/2 [Intel, 89]). This 

approach is the least revolutionary and has had sorne commercial success. The second line 

of research is to take imperative languages and execute them on dataflow architectures 

(e.g., Monsoon [Pap88]). This direction has not seen much research, only the ASTOR 

[U&Z89, Z&U87] project in Germany has looked into this. The next line of research is to 

take a declarative language (e.g., ID [ANP87b], SISAL[A&085, MSS85]) and run them 

on von Neumann networks. This is where PODS is, and there are a number of others, 

notably Pingali and Rogers at Cornell [P&R90]. The final approach is the most 

revolutionary, running declarative languages on dataflow architectures invoives both new 

hardware and software. P-RISC [N&A89] and the Monsoon project are both taking this 

approach. 

In [Bic87], the basic principies of PODS were presented. The algorithms for subdividing 

dataflow graphs into communicating processes, however, were too simplistic, 

concentrating on oniy functional parallelism. In scientific code, most parallelism comes 

from loops iterating over large data structures (i.e., data parallelism). This issue has been 

add.ressed in subsequent studies [BNR89a, Bic90, BNR90a, BNR90b] which show that, 

for languages based on the single assignment principies (deciarative languages), a simple 

automatic partitioning of arrays exposes significant parallelism that can be exploited at run­

time. 

In PODS, the programming language ID Nouveau [Nik88] is used because it is one of the 

most developed and supported dataflow languages to date and has singie-assignment. 

Single-assignment is central to PODS. Given an ID Nouveau program, a compiler would 

produce a dataflow graph, where nodes represent individual instructions and ares show all 

data dependencies. This graph is then used to generate light-weight processes, referred to 

as "subcompact processes" (SPs). This is accomplished by partitioning the data.flow graph 



into subgraphs, each of which is executed as a sequential process on a given processing 

element (PE). 

4 

This d.issertation describes the partitioning method used to form the SPs, the SP 

d.istribution criteria, the logical implementation of PODS, the remote caching scheme used, 

and the results of experiments with an event-driven, instruction-level, simulator. The 

dissertation is organized as follows: 

• Chapter 1 Background - an overview of the pertinent basic concepts. This 

includes discussions on parallel programming, distributed memory MIMD a.rchitectures, 

the ID dataflow language, and the previous work on PODS. Knowledgeable readers may 

skip any or all of this chapter. 

• Chapter 2 PODS Partitioning and Distribution Model - a detailed d.iscussion of 

the inner workings of the partitioning of programs into SPs and their distribution. 

• Chapter 3 PODS Logical lmplementation - a discussion of the tasks necessary to 

make the PODS system work. The array caching scheme is presented along with a 

discussion of the special PODS instructions. This is followed up with a description of the 

PE a.rchitecture and the necessary support software. 

• Chapter 4 Simulations - a presentation of the experiments using Matrix Multiply 

and SIMPLE. The simulation approach is discussed and the results are examined. 

• Chapter 5 Conclusions - a discussion of the findings about PODS. Future 

research and related work are also discussed. 
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1. 1. Basic lssues in Parallel Processing 

1. 1. 1. Parallel Programming 

Parallel processing has been touted as the wave of the future for a number of years, yet its 

use is not yet common. This is because parallel processing requires parallel programrning. 

Fer the average, highly-intelligent, but inexperienced, scientific progranuner, the task of 

programming a parallel system can be daunting. 

In [K&B88], Karp and Babb discuss the complications which arise when trying to 

program in any ene of twelve parallel FORTRAN dialects. They state that even trivial 

examples frequently become a challenge. Programming parallel systems present 

' complications not found in sequential programming. Often parallel programing 

environments force the programmer to explicitly partition function and data according to the 

constraints of the architecture. Thus requiring the scientific programmer to become 

knowledgeable about the particular computer architecture being used. 

In debugging parallel programs, synchroniz.ation and timing are often the problem 

[K&T88]. By requiring the programmer to explicitly state the communication and 

synchroniz.ation points in a program, the system is opening itself to subtle timing errors. 

The difficult thing about timing errors is their unpredictability. Often a timing error may 

disappear based upon sorne seemingly unrelated fact (e.g. the load on the 1/0 network to 

the host), and reappear at a later date. 

In their 1989 report on supercomputers, the IEEE Scientific Supercomputer Subcommittee 

sited the lack of software as the major problem [IEEE89] in supercomputing tod.ay. 
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Ali of the above problems are addressed in PODS, the parallelization is implicit not explicit, 

the synchronization is hand.led automatically, and, due to the dataflow nature of PODS, the 

special timing problems of parallel programs are non-existent 

1.1. 2. Distributed Memory MIMD 

Distributed-memory MTh1D computers can be rnade massively parallel by adding PE's in a 

modular fashion. This modularity allows dramatic increases the theoretical maximum 

speed. As an example, the latest supercomputer frorn Intel, called the Delta System, will 

incorporate 528 i860 microprocessors and have a theoretical peak processing rate of 32 

billion floating-point operations per second [Ins91]. The problem is exploiting all of this 

parallelism. 

1. 2. Previous Research 

l. 2. l. Single Assignment Principie 

The Single Assignment Principle simply states that no variable will be assigned a value 

more than once. This would seem like a very limiting restriction, i.e. one rnay not even 

write x = x +l. However, researchers have found that a number of benefits can be derived 

from using single assignment in combination with afunctional language. A functional 

language is one which is based on function application and is therefore free of side effects. 

Sorne of the programming benefits of single assignm.ent functional languages [Veg88] are: 

• Programs can be written at a higher level. Time can be spent 

concentrating on the algorithm rather than the program details. 

• More algorithmic work can be expressed per line of code. This 

is important because evidence suggests that the number of lines 



of correct code per da.y is roughly a constant for a given 

programmer, independent of the language used 

• Functional languages a.re free of side effects. This greatly 

reduces unexpected modification of variables in other routines. 

Programs are easier to verify because proofs can be based upon 

the concept of a function rather than sorne complex von 

N eumann model. 

Functional programs can contain a great deal of implicit rather 

than explicit parallelism This is crucial to the PODS concept 
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As is described in the next section, ID Nouveau is the single assignment functional 

language which PODS uses. Sorne of the basic ID Nouveau principles are discussed in the 

next section. 

PODS specifically uses the following abilities of single assignment functional languages: 

• Irnplicit Parallelism - the ability of a programmer to code a 

parallel program without explicitly specifying the parallelism 

• Parallel Program Synchronization - single assignment 

automatically synchronizes the da.ta reads and writes of a 

program, thus preventing innocuous timing bugs. 

• Automatic Cache Coherency - single assignment allows remote 

caching to avoid the cache coherency problem. Thus an efficient 

implementation can be designed, see Section 3.3, Remote Array 

Caching. 
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1. 2. 2. ID Nouveau Dataflow Language 

ID (1rvine Dataflow) was bom at the University of California, Irvine in a 1978 technical 

report [AGP78]. Thís report laíd the foundations far all further versions of ID. ID has 

gone through rnany changes but still retaíns the basic dataflow ideas, the single assignment 

concept, and the compiler approach outlined by Arvind. The latest version is being worked 

at MIT and is called ID Nouveau. The ID Nouveau language environment, called 

ID-World, is a complete parallel language simulator. There are over twenty sites using 

ID-World and man y more will be appearing as ID-World expands outside of the LISP 

machine world and onto UNIX workstations. 

The syntax of ID Nouveau and its functional nature lead to clean algorithms, which in tum 

is easier toread and understand. Consider the quicksort code in Figure 1.2 below. Notice 

that ID Nouveau allows standard list operations which are easy to understand. 



def Quicksort A = 
{ 
Split L = 
{ startvalue = hd L; 

for v in L; 
if (v < startvalue) then cons Llist v; 
if (v == startvalue) then center = v; 
if (v > startvalue) then cons Rlist v; 

end for 
in 

Llist, center, Rlist 
} ; % Split 

in 
% Quicksort routine body 
if (length A < 2) 
then 

A 
el se 

{ 
L, Middle, R = Split(Data) 

in 
cons Quicksort(L) Middle Quicksort(R); 

} 
}; % Quicksort 

FIGURE 1.2. ID NOUVEAU QUICKSORT CODE. 

The split function is repeatedly called until each sublist has only one element it it Then the 

sublists are concatenated in order. This is a very clean and clear program for quicksort. 

Sin~le Assi~nment Approach 

The central issue for PODS in ID is its single assignment nature. All dataflow languages 

begin with single assignment, yet many diverge as further developments are made. ID has 

tried to stay true to its original single assignment concept: 

... a dataflow operation is purely functional and produces lli2 side­

effects as a result of its execution. 

9 
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This is the essence of single assignrnent; however, the issue of array handling is in conflict. 

To provide arrays this constraint has to be relaxed. ID Nouveau arrays (called 1-structures) 

produce a side-effect, but are not allowed to be updated to ensure deterrninacy. Yet, with 

no upd.ate how useful is an array? The answer to this question is still being researched. 

Arvind. Nikhil, and Pingali feel that they are very useful and that this is the best approach 

[ANP87a]. They believe that an upd.ate operator is inadequate and over-specifies 

algorithms is such a way that unnecessary copying of intermediare data structures and 

substantial unnecessary sequentialization occur. They also feel that automatic detection is 

not tractable in general, contrary to other researchers beliefs [A&K87, A&N87, P&W86]. 

Iteration 

Iteration is a major source of parallelism. How a language handles iteration is going to 

affect the ability of the programmer and compiler to exploit the parallelism in the loops. In 

ID N ouveau the evaluation of loops and conditionals is not eager. This is the sarne as 

V ALJSISAL for expressions [A&085]. This forces the predicare to be fired before either 

of the two branches of a conditional are fired. 

Asan example of iteration, consider the program below, tak:en from [Tra86]. It fiUs each 

element of its argument array with a value and retums the sum of all the elements. The 

loop body contains ordinary bindings (like the variable val), I-structure stores (for A[i]), 

and sorne newified variable bindings. These newified variable bindings describe how to 

compute the values the newified variables take on the next iteration of the loop, e.g. the 

variable i is incremented each time through the loop. These newified variables must have 

an initial binding outside the loop, otherwise it would have no value for the first iteration. 

Newified variables do not make sense outside of loops and are not allowed there. 



def fill it A = 
let 

i = lower bound A; 
sum O; 

in 
while i ~ upper bound A; 

val = (upper bound A - lower bound A) ~ 2 - i*i; 
A[i] = val; -
new sum = sum + val; 
new i = i + 1; 

return sum 

FIGURE 1.3. ID NOUVEAU ITERATION EXAMPLE. 

1 1 

I-Strnctures 

The basic array structure mechanism in ID Nouveau is the I-structure [ANP87a]. An 

I-structure is an incremental structure which obeys the single assignment rule. An 

I-structure is available as soon as it is allocated and the array elements are individually 

accessible. Consider the wavefront example below: 

A= matrix ((1, m) , (1, n)) ; 
{for i from 1 to m do 
A[i,1] = 1} 

{for j from 2 to n do 
A[l, j] = 1} 

{for i from 2 to m do 
{for j from 2 to n do 

in 
A} 

A[i, j] = A[i-1, j] + A[i-1, j-1] + A[i, j-1] } } 

FIGURE 1.4. ID NOUVEAU I-STRUCTURE EXAMPLE. 

Here a matrix has its upper and left borders filled with 1 's, while its interior is filled with 

the sum of the upper, left, and diagonal elernents. The matrix A will be returned as the 

value of the entire expression as soon as it is allocated. Meanwhile, ali the loop bodies are 

initiated in parallel, but sorne will be delayed until the loop bodies to the left and top 



(cartesian coordinare wise) complete. Thus a "wavefront" of processes fills the matrix in 

parallel. 

To achieve this flexibility I-structures use a presence bit. Each cell of an I-structure has a 

logical bit attached to it to determine if the cell's value is present. If a read occurs before 

the cell is written, the read is enqueued by the I-structure. When a write occurs, ali 

pend.ing reads are dequeued and processed. If a write occurs to a cell which has already 

been written, then a run-time error occurs. This is an efficient way to enforce single 

assignment. 
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I-structures do have a referential transparency problem. Referential transparency demands 

that the values returned by two calls to the same constructor function with the same 

arguments must never be distinguishable. Thus, in a functional language, one can never 

alter a data structure once it has been created, and consequently one must specify the 

contents of all elements of the structure at creation time (as in V AL/SISAL [A&085] and 

LUCID [W &A85]). Since ID Nouveau includes I-structures, and I-structures do not 

specify the contents of all elements at creation, ID Nouveau is nota completely functional 

language. Yet it is still single assignment and declarative. 

Referential transparency can be given up but determinacy cannot If a language possess the 

Church-Rosser property [Lan65], also called the confluence property, then overall program 

determinacy is guaranteed even if the machine exhibits non-determinacy in instruction 

scheduling. The Church-Rosser property requires that the answer computed by an 

expression be unaffected by the choice of which subexpressions are evaluated first. Since 

I-structures enqueue ali early reads until the cell is written to, and each cell is single 

assignment, 1-structures have the Church-Rosser property. No matter how one interleaves 

the execution of reads and writes, every fetch to a given I-structures element always returns 

the same value. 
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Djscussioo 

ID Nouveau is highly developed language system with rnany sites using its development 

environment (ID-World). The ID Nouveau language reference manual [Nik87a] describes 

a complete environment with a compiler, a context sensitive editor, and simulators with 

parallelism detectors. 

In [A&E88] a convincing argument is made for single assignment programming of 

scientific programming. In this technical report the SIMPLE hydrodynamics and heat 

conduction problem is detailed, andan efficient ID Nouveau program is designed. This 

design is then contrasted with a parallel version of the program in annotated FORTRAN 

where each program does the same number of arithmetic, load. and store operations. 

1.2.3. Hybrid Dataflow 

Since Dennis first described the first dataflow execution model [Den75], many architecture 

designers have attempted to apply the model to real systems. Dataflow is attractive because 

ali parallelism in a program is exposed for potential concurrent execution. In spite of the 

elegance of the model, dataflow is not widely used after more than twenty years of 

research. The focus has instead turned to the evolution of modem systems by extending 

them with dataflow techniques. The results of research in this a.rea include hybrid systems 

using large-grain or macro dataflow [Bab84, B&E87, DFL89, Ian88, Kap86, L&G86, 

S&H87]. 

Iannucci [Ian88] has reported on a hybrid dataflow / von Neumann architecture. This 

approach is similar to PODS in its use of ID Nouveau as the input language and split­

phased structure access. However the lannucci approach uses a finer gra.in scheduling 

approach, called scheduJing quanta (SQ). An SQ of two to three instructions is desirable 

for Iannucci's approach, and each iteration of a loop is a new SQ. In PODS, however, the 
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natural decomposition of the prograrn is used and SPs are allowed to run-in-place, thus 

reducing overhead Another d.ifference is in data structure distribution. There is no 

mechanism for spreading iterations of a single loop across processors in Iannucci's 

approach. Combining data structure distribution with loop distribution is a central goal in 

PODS. Finally Iannucci's mcxiel requires a special purpose architecture capable of fast 

context switching among very small SQs. PODS tries to generate SPs large enough to 

produce good computation-communication ratios on available distributed memory 

multiprocessors. Certainly PODS would benefit from a tailored architecture, but the model 

itself is not restricted to such. 

In [G&H89], Goldberg and Hudak presented Alfalfa, a system similar ata high level to 

PODS. They have implemented the ALFL functional programming language and run-time 

system on an Intel iPSC hypercube using what they call serial combinators. Serial 

combinators are similar to PODS SPs in that they are sequential threads that execute on a 

van Neumann processor. The run-time system handles thread creation and distribution. 

The main focus of their work is the study of the effects of dynamic sched.uling (diffusion 

scheduling) of parallel threads of execution. They show that diffusion scheduling works 

well in many cases, however, they have not addressed. the problem of distributing large 

data structures such as arrays. This is illustrated through the relatively poor performance 

achieved with the Matrix Multiply algorithm. 

1. 3. Overview of PODS Execution Model 

The primary objective of PODS is to achieve an efficient execution model for dataflow 

programs by reducing the overhead associated with scheduling each instruction individually 

[Bic90]. The greatest deficiency of the pure dataflow model is the excessive 

communication and token matching overhead associated with passing data from one 



operation to another. These operations may lie on the same or different processors, thus 

potentially forcing token traffic over the processor interconnection network. 
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Originally it was thought the normal communication overhead could be reduced by 

grouping the instructions into threads. This was based on the observation that man y 

threads of instructions in the dataflow graph must be executed sequentially due to inherent 

data dependencies. Grouping instructions in this manner is similar to Babb's Large Grain 

Data Flow (LGDF) [Bab84]. However, it was found this produced SPs which were too 

small for the communication to computation ratio of typical distributed-memory machines. 

1. 3 .1. Subcompact Processes (SP) 

In order to overcome the small SP problem, a different approach was tried and found to be 

sufficient. This approach uses the code-blocks inherent in the program. Each code-block 

is a different SP, which will then be distributed by the Partitioner as necessary. This is 

how PODS exploits the iteration leve! parallelism in a program. 

The code fragment below in Figure 1.5 shows a simple nested loop. For this loop there are 

three different program scopes which turn into SPs. The first takes care of initial actions, 

mainly array allocation. The second handles the L level of the loop, and the third handles 

the K leve! and the actual computations. 

(initial A := < >; Y := < >; ZX := < > 
f or L from 1 to LOOP do 

new A := (initial X := < > 
for K from 1 to 1000 do 

new X[K] := Q + Y[K]*(R* ZX[K+lO]+T*ZX[K+ll]) 
return X) 

return A[l]) 

FIGURE 1.5. SUBCOMPACT PROCESS EXAMPLE CODE. 
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Figure 1.6 shows che code fragment as a d.ataflow diagram. The SPs are outlined in bold 

lines. Notice that the SPs are grouped so that each one will be as independent from the 

others as pos si ble. This is were the parallelism is. SP 1 allocates the arrays and then 

passes that inforrnation on to SP2. There may be multiple versions of SP2 running (if it is 

distributed), each executing only part of the L-loop. Each SP2 will then spawn SP3, 

which will run in-place (SP3 would never be distributed if SP2 were). In Chapter 2 the 

algorithm for distributing SPs is discussed in detail. 
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X 

SP2 

SP3 

FIGURE 1.6. PODS SUBC01\1PACT PROCESSES E:XA1\1PLE. 

l. 3. 2. State Transitions 

Once the static SPs are formed they will need to be scheduled for execution. Instead of 

scheduling individual operators of a dataflow graph for execution, the level of granularity is 

changed to that of an SP. An SP is passive as long as itsfirst operator is disabled (i.e., it 

is still missing sorne operands). A passive SP resides in program memory. When all 
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operands for the first operator have arrived, the SP becomes active. This is accomplished 

by load.ing the SP into execution memory and creating a simple process control block 

(PCB) for it The PCB contains the following information: 

• the starting address of the SP in execution memory 

• a program counter pointing to the current instruction 

•a status field indicating whether the process is running, ready, or blocked 

The three states are defined as follows. An SP is said to be running when a PE is currently 

fetching and executing instructions from that sequence. An SP is ready when its current 

instruction is enabled (has all its operands), but the PE is not available to execute that SP. 

Finally, an SP is blocked when its current instruction is not enabled. 

current instruction 
gets last operand 

.FIGURE 1.7. PROCESS STATE TRANSITION DIAGRAM. 

The possible state transitions are illustrated in Figure 1.7. Initially, an SP is loaded in.to 

execution memory in the ready state. Whenever the PE becomes free, it begins executing 

one of the ready SPs in its execution memory; at that time, the status of the selected SP 

changes from ready to running. The PE continues executing the SP until it reaches the end 
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of the SP (at which time it is destroyed) or until it encounters an operator that does not yet 

ha ve ali its operands present. In the latter case, the SP is blocked and the PE switches to 

another ready SP. The blocked SP changes its status to ready as soon as the last operand 

for the current instruction arrives. 

This process-oriented. viewpoint pennits us to execute a dataflow program as a collection of 

communicating SPs. A given dataflow program is transformed into one or more SPs, 

which are mapped onto the available PEs. Each SP continues executing as long as it has ali 

the operands necessary to perf orm its current operation. When an operation produces a 

result token destined for a subsequent operation within the same SP, it is passed directly to 

the destination operand slot using a simple memory operation. Only when the token is 

destined for a different SP must it travel through the dataflow routing network (within the 

same PE or to another PE) and pass through the matching store. It is important to note that 

the amount of resources need f or a particular SP is known at load time. With this 

information the amount of parallelism can be reduced if necessary. 

1. 3. 3. Distributed Memory Approach 

In PODS, the memory is distributed as shown in Figure 1.8 below. The physical 

separation between the PEs is recognized and exploited Remote memory requests are 

performed in a split-pha.se manner. This allows the CPU to continue processing during the 

long remote memory latency. Local memory requests are handled instantly and do not 

cause the CPU to context switch. This is one reason PODS is able to exploit the power of 

massively parallel distributed-memory machines. 



LOCAL ACCESSES IN CONSTANT TIME 
WITii NO CONTEXT SWITCH 

• • 
ONL Y REMOTE MEMORY 

ACCESSES ARE SPLIT-PHASE 

~ . 
FIGURE 1.8. PODS MEMORY ACCESSING SCHEME. 

l. 3. 4. Discussion 

This mO<iel of execution has a number of advantages. Since it uses a program counter, 
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loops can be run in place efficiently. If necessary, due to dependencies, PODS can drop 

into completely sequential execution. When a process block occurs, the execution unit 

performs a simple context switch (no register storage is necessary) and takes the next ready 

SP off the ready list. And array accesses are split-phased to allow the long memory latency 

to be tolerated. 

In summary, PODS uses a combination of dataflow and von Neumann models of 

computation. It uses single assignment to reduce side-effects which aides parallelism. The 

declarative nature of ID, and its implicit programming of parallelism, allows the 

programmer to ignore the architecture, which increases programmer productivity. For a 

more detailed description of the execution model, the reader is referred to [Bic87, Bic90]. 



21 

1. 4. Contributions of this Research 

This research has made contributions on many levels. It extends the existing models (the 

PODS Execution Mooel and ID lnstruction Set). It presents new principles and algorithms 

(for partitioning and distribution). It exploits the abilities of old concepts in new ways 

(Remote Arra.y Caching). It explains how all of these can work. together in a logical 

rnanner (Logical Architecture). And it shows that this approach is efficient and scalable 

(the simulations). 

1. 4 .1. Execution Model Extensions 

The PODS Execution Mooel was extended to allow iteration level parallelism The 

previous mooel, based on the concept of sequential threads, produced SPs which were too 

small. The extension to iteration level parallelism allows larger SPs which are more easily 

distributed. 

1. 4. 2. Partitioning and Distribution Model 

The new PODS Partitioning and Distribution Model is based upon two existing and three 

new principies of parallel execution. The existing principies (the Equal Distribution 

Principie and the Centralization Principie) are well known and are continually pushing in 

opposite directions. The new principies (the Grouping Principie, the Virtual Sources 

Principie, and the Collector Writes Principie) explain ways in which the two existing 

principies can be managed. 

From these five principies, two partitioning and distribution algorithms were derived. The 

first shows how data should be partitioned and distributed to balance work load and speed 

up accesses. The second describes how code should be partitioned and distributed to 

balance parallel execution with communication costs. 
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Three primary and two secondary mechanisms were devised to make these algorithms 

work. The fust primary mechanism is a distributed array allocate operator which 

distributes data. The second is a distributed L operator, it spawns processes across the PEs 

to distribute code. The third is an index range filter for restricting the indices for different 

PEs. These form the basis for PODS distributed processing. The secondary mechanisms 

are: an APPL Y operator for functional distribution; and remote arra y caching for efficient 

array accesses. Together these provide an efficient means of applying the new partitioning 

and distribution algorithms. 

1. 4. 3. Remote Array Caching 

Remote Array Caching is a new approach similar to the concept of virtual memory and 

based upon the Virtual Sources Principle. This allows arrays to be accessed as if there 

were local to every PE. The locality-of-reference of computer programs is heavily 

exploited in Remate Array Caching. 

1. 4. 4. Logical Architecture 

A description of how all of these new concepts and approaches are implemented are 

contained in the Logical Architecture. The functional units in a PODS PE are: the 

Execution Unit, the Matching Store, the Routing Unit, the Array Manager, and the Memory 

Manager. Each of these is designed to run in parallel with the others. 

Extensions to the ID instruction set were necessary to allow PODS to execute on a von 

Neurnann CPU. Sorne of these extensions involve the addition of a program counter to 

each instruction's semantics. Others involve extensive modifications of existi.ng 

instructions (e.g. the L operator), and finally others involved totally new instructions to 

support the PODS Range Filters (e.g. INTERV AL_COUNT). 
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1. 4. S. Simulations 

The PODS Translator, Pa.nitioner, and Simulator were designed and written to test PODS 

concepts. The simulations were necessary to test the logical architecture for correctness 

and efficiency. These simulations have shown PODS to be an efficient and viable 

approach. 



CHAP1ER2 

PODS Partitioning and Distribution Model 

The performance of PODS comes from its ability to map the inherent granularity of a 

program onto a given archítecture. The inherent granularity of a program comes from its 

block structure. The larger (smaller) the loops and procedures, the larger (smaller) the 

granularity. This granularity controls the size of the PODS SPs. The partitioning and 

d.istribution model allows the hybrid nature of PODS to be exploited: sequential code is ron 

on an efficient von Neumann processor, and parallel code is distributed such that 

communicarion costs are not prohibitively high. This is not to say that ali programs will 

run well on PODS, bad code can be written f or any computer system. The aim of this 

model is to handle the large majority of code which will be executed on distributed memory 

MIMD machines and to flag code which is poorly written. 

The key elements of PODS partitioning and d.istribution are: 

1 . array partitioning, which uses a simple page grouping scheme to 

allow equal load across the PEs; 

2. arra y d.istribution, whích follows the partitioning such that each 

PE produces only those elements for which it is responsible; 

3. loop distribution, which considers data dependencies when 

distributing; 

4. functional distribution, whích atternpts to off-load functions if 

the calling PE is overloaded. 

24 
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Chapter 2 is organized as follows: (1) a quick overview of the model; (2) presentation and 

discussion of the underlying principies; (3) a detailed discussion of PODS instructions and 

processes; (4) a d.iscussion of array partition and distribution; (5) an in-depth examination 

of process distribution; (6) a discussion of functional distribution; and finally (7) a 

discussion of deadlock handling. 

2 .1. Overview 

In order to exploit a program's parallelism, the program must be partitioned, an activity that 

has been the subject of rnuch research. Because optima! partitioning is NP-cornplete, these 

partitioning techniques strive for near-optirnality, usually through the use of heuristics or 

programmer supplied directives. PODS perforrns partitioning autornatically using the 

decornposition implied by the program structure. Programs are broken into code-blocks 

by the ID Nouveau compiler and replicated on each PE, making al1 processors hornoge­

neous with respect to code. The key problern with partitioning and distribution in PODS is 

that of determining where to send tokens that activate SPs. Since the PEs are 

homogeneous, an instance of a specific SP can be executed anywhere simply by routing the 

initial activating tokens to a specific PE. Because each PE is aware only of its own state, 

this routing decision is binary: should an SP execute locally or rernotely? PODS decides 

which SPs will be distributed and which will run locally at compile time. At run-tirne 

PODS decides where the distributed SPs will be executed. The exact rnethods for this 

distribution are explained in this chapter. 

Simply put, the PODS partitioning and distribution uses data distribution to control 

execution distribution. There are two basic conceptual steps to achieve this. 

1. Using a simple global algorithm, partition the data and allocate 

each partition to a PE. 



2. Execute the program such that the owner of a particular array 

element will write that element 
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By using a simple global algorithm for array partitioning, each PE can easily calculate 

where a particular array element is located during execution. This additional checking costs 

29% more cycles for each array read or write, but allows arrays to be accessed in parallel 

with little orno comrnunication and without context switching. 

In order to realize the above, the following tasks are perfonned.: 

1. Arrays are cut-up into pages of fixed síze X, where X is 

determined by the hardware architecture. 

2. Arrays are grouped in to superpages which are assígned to PEs 

sequentially. 

3. Execution follows the array partitioning and distribution if it is 

executing loop code which has no Loop-Carried Dependencies 

(LCDs). 

4. For code with LCDs, the execution will stay on the current PE 

unless a function call is made. 

5. When a function call is made the execution may move to another 

PE depending upon the length to the current PE's task list. 

There are three primary mechanisms for achieving data parallelism. These mechanisms are: 

1 . The ALLOCA TE Operator: used to distribute data (data 

parallelism). 



2. The DIST-L Operator: used to spawn processes on ali PEs. 

3. The RANGE-FIL TER Operator: used to restrict loop indices 

ranges for different PEs. 

The basic approach to distribute code for data parallelism is to: 

1 . distribute the arrays 

2. decide which level of the nested loop to distribute 

3. this level gets the RANGE_FJL 1ER while its parent gets the 

DIST-L operators. 

The mechanism for functional parallelism: 

1. The APPL Y Operator: used to spawn function calls on a single 

remate PE (functional parallelism). 

In this way the work load is partitioned at compile time and distributed using an efficient 

run-time algorithm without the programmer's explicit instructions. 

2. 2. Underlying Principies 

There are two basic principies which apply to any parallel system. They are: 

1. The Equal Distribution Principie 

2. The Centralization Principie 

These two are supplemented by three PODS specific principies. These principies show 

ways in which the two basic principies can be reconciled somewhat The PODS specific 

principies are: 

27 
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1 . The Grouping Principie 

2. The Virtual Sources Principie 

3 . The Collector Writes Principie 

By using each of these principies, PODS is able to provide efficient execution of scientific 

programs on MIMD machines. Each principie is explained below. 

2. 2. l. Basic Principies 

For any assignment to be accomplished, the RHS calculations must be performed and the 

writing of the element must occur. Consider the simple assignment below: 

A[i] = sqrt(B[i+l] + C[i]) * exp(D[m+i]) 

FIGURE 2.1. SIMPLE ARRAY ASSIGNMENT. 

In this statement B[i+l], C[i], and D[m+i] are data sources which need to be collected 

together so that the calculations can be performed. Once they are performed the assignment 

can occur. The diagram below illustrates these how these three agents interact Note that 

each data source, the data collector, and the data storage could be on different PEs. 
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Data Sources Data Collector Data Storage 

FIGURE 2.2. EQUAL DISTRIBUTION PRINCIPLE. 

In order for the data sources to respond to multiple data collectors simulta.neously they 

should be spread over ali the available PEs. Since the access pattems are not know a 

priori, each PE should get an equal number of data sources. This is the Equal Distribution 

Principle. More concisely, 

Definition: EquaJ Distribution Principie 

In order to allow ma.Ximum parallel access, data sources, data collectors, 

and data storage should be distributed equally among the available PEs. 

This principie is implemented in PODS by partitioning each array and distributing the 

pieces equally among the PEs. 

The Centralization Principle concems the cost of communication and the overloading of the 

interconnect network. Once the agents are widely distributed a problem occurs. The 

communication costs become extremely high. In order to reduce the effects of 

communication delays, ali of the items (data sources, data collectors, and data storage) 

should be kept together (i.e. centralized). This is the Centralization Principie which states: 



Definition: Centralization Principie 

In order to reduce cornmunication costs and network overloading, data 

sources, data collectors, and data storage should be centralized on one PE. 
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These two principles are obviously in conflict. The PODS specific principles below show 

how the balance can be tilted in favor of distribution. 

2. 2. 2. PODS Specific Principies 

Groupin~ Principie 

In order to reduce the effects of cornrnunication delays without completely centralizing, the 

data sources should be grouped together until sorne size, x, is reached. The diagram below 

shows how the number of cornrnunication lines is reduced by grouping. 

• • • 
• • ·c===F~~-+--........ • • • 
• • • 

Grouped Data Sources Data Collector Data Storage 

FIGURE 2.3. GROUPING PRINCIPLE. 

This is the Grouping Principie which states the following. 
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Definition: Grouping Principie 

In arder to reduce communicati.on over the network. data sources should be 

grouped together unti.1 sorne reasonable size is reached. 

This principle fights against the Equal Distribution Principie, a balance between them must 

be maintained. In PODS this is achieved by grouping the arrays into pages of a fixed size 

which is only dependent on the hardware architecture. 

Virtual Sources Principie 

One aspect of single assignment is that data sources never need to be updated. This can be 

exploited by moving copies of the data sources into the collector for easy access. Locality 

of reference implies that the grouped data sources should be moved in toto when one of the 

data sourccs is needed. Thc diagram below shows how the amount of communication can 

be reduced by caching the data source in the collector without any cache coherency 

problems; the dashed lines are truly one way . 

• • --• • • --
• • • --

.---• • • 
Groupecl Data Sources 

Data Collector 
Data Storage with Virtural Sources 

FIGURE 2.4. VIRTUAL SOURCES PRINCIPLE. 

This is the Virtual Sources Principie which states the following. 



Deflnition~ Virtual Sources Principie 

Since each data source will never need to be updated, a copy should be 

moved into the data collector when any one of the grouped data sources is 

needed. The Virtual Sources Principle states that a single assignment 

system should cache data sources in its local memory to form a virtual 

source to reduce cornmunication. 

This principle allows remete reads to be reduced in PODS, and is implemented by remete 

access caching. 

Collector Writes prjnciple 
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In a single assignment system there will be only one write to a particular array element 

The thick black arrow in the diagrams above represents this write. Since there is only one 

collector and one write, these two should be on the same PE. The diagram below shows 

this. 

• • • •• •1------ltl 
• • • 
• • • 

Grouped Data Sources 

>--< 

Data Collector 
with Vinural Sources 

and Storage 

FIGURE 2.5. COLLECTOR WRITES PRINCIPLE. 
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The producer of an array element is the PE which collects the RHS calcularions needed for 

the formation of a LHS value. This PE, the collector, becomes the writer by executing the 

WRITE_ARRA Y instruction which assigns that array element a value. Since the 

single-assignment principle is in force; there will be one writer. This is the Collector 

Writes Principle which states the following. 

Definítion: Collector Writes Principie 

The Collector Writes Principle states that the system should map an array 

element such that the PE which holds that array element in its local memory 

(the owner) shall be the collector of the RHS data sources, and shall also be 

the writer of that array element 

This principle, in collaboration with the other principles, forces the execution to follow the 

data distribution. In PODS this is called Data Distributed Execution. 

2. 3. PODS Instructions and Processes 

The basic concept of a dataflow operator has n.ot changed, only the implementation of that 

concept. In PODS dataflow operators are implemented using PODS instructions. The 

basic dataflow concept (shown below) allows the dataflow graph to execute cleanly; 

without leaving tokens unconswned. 



input token 
(data, tag) 

OPERATOR 

output token 
(data, tag) 

output token 
(data, tag) 

FIGURE 2.6. BASIC DATAFLOW OPERATOR. 
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The standard dataflow implementation of this concept performs the following steps when a 

token arri.ves: 

1 . consume input tokens 

2. compute new data value 

3. compute new tag 

4. fonn new output tokens 

5. send output tokens to destination operators 

For PODS this implementation needs to be modified to contain the concept of an SP's state. 

An SP's state is basically a PODS activity name, which is discussed next in Section 2.3.1. 

2. 3 .1. Activity Names 

An activity name is the colored tag which identifies a token's complete context What is 

presented below is a logical implementation, a physical implementation would use unique 



frame IDs. Logically, activity na.mes consist of two parts: ( 1) the static part which is 

known at compile time; and (2) the dynamic pan which is built as the token moves from 

context to context. Figure 2.7 below shows the make-up of an activity name. 

Activity Name 

~amicPart Static Part 
context I rteration ~ l mstructlon l j)_Ort 

FIGURE 2.7. ACTIVITY NAME COMPONENTS. 

The static part is know by the compiler from the dataflow graph once the SPs are built 
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The dynamic pan is based upon the incoming token's activity name and is only affected by 

the context rnanipulating functions: D and D_INVERSE, L and L_INVERSE, A and 

A_INVERSE. The activity name is also known as the tag. The individual subparts are listed 

below, along with their function. 

• context: holds the pointer to past activity names, affected by L 

and L_INVERSE, A and A_lNVERSE. The context holds a token's 

tag in a linked list This list represents a11 of the execution 

scopes through which a given token has passed. This 

inf ormation is necessary for PODS to know how to move a 

token from one execution scope (i.e. SP) to another. 

• iteration: holds the current iteration number, affected by D and 

D_lNVERSE. 

• sp: holds the SP number, based on partirioned dataflow graph. 

• instruction: holds the instruction number within this SP. 
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2.3.2. 

port : holds the port number within this instruction, usually O or 

l. 

PODS Instruction Format 
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There are three types of PODS instructions. These types indicate how the instruction was 

derived from the output of the ID Nouveau compiler. The fust type is formed from a 

simple mapping from TTDA instructions and PODS instructions. These are the basic 

instructions such as ADD, and ARRA Y _READ. The second type actually disappears when 

the output is translated. These are the IDENT instructions which are used for 

synchronization. These are not needed because the sequential nature of SPs synchronizes 

instructions automatically. The third type is composed of new instructions which are added 

or modified to accomplish the distribution. These are the SWITCH, FORKJUMP, D and 

D_INVERSE, L and L_INVERSE (in both dist and local forms), A and A_INVERSE, and 

Al.LOCA TE. Each of these will be explained as they are encountered in this chapter. 

PODS instructions have the following fields (see Figure 2.10 for an example): 

l. Op Code - operation to be performed. 

2. Number Arguments - the number of arguments this operation 

needs before it is ready to fire. 

3. Operand List - slots for values of operands. Initially sorne of 

the operands are constants which are set at compile time. Each 

constant is represented by the pair (value, port). Other operand 

ports are flagged with a special "sticky bit" (STKY) which means 

that once a token is received on that port, it is then held there 

and does not need to be replenished for the instruction to fue. 



4. Local Destination List - output value destinations which are 

withln th.is SP. Each destination is represented by the pair 

[instruction number, port]. 

5. Route ID - ID of mute to be used when output tokens are to be 

sent to other SPs. This is not a list because the routing 

information is stored in the Routing U nit and not in the 

Execution Unit A route ID is simply a shon-hand for: [SP ID, 

instruction number, port] [SP ID, instruction number, pon] [SP 

ID, instruction number, port] ... , see Chapter 3 for complete 

details. 

6. Comments - variable names from the source ccxl.e, shown in 

brackets, " { } ". 

Values can be sent using any of the following paths: 

1. U sing the local destination list This is the way almost ali of the 

operators communicate. Only L and A operators can send tokens 

to other SPs. 

2. U sing the route list This is performed in one of three ways 

depending on the type of L or A operator. Only L or A operators 

have routes. 

(1) the DIST-L operator sends tokens to SPs on every PE. 

(2) the LOCAL-L operator sends the token to a different SP 

on the same PE. 
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(3) the A operator sencis th.e token to a different SP on some 

PE. Which PE is decided by a hash function. 

2. 3. 3. PODS Dataflow Operator Implementation 

In PODS, an SP contains code anda state. The code represents the operations to be 

pe1formed and the state holds the status of these operations. 

CODE STATE 

context 
iteration number 
SPID 
program counter 

FIGURE 2.8. SP COMPONENTS. 
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When a token arrives at a PODS operator the state of the SP is used to decide the steps to 

execute this operator. All of the original ID operators which are not special operators are 

called basic PODS operators. All of the special operators are discussed individually after a 

discussion of the basic PODS operator implementation. 

The basic PODS operator implementation performs the following steps when a token 

arrives: 

1. Consume input tokens. 

2. Compute new data value. 



3. Compute new tag. 

4. If the context and SP ID are the same, then no tokens are 

formed, only data is stored into destination instruction and port. 

If either of these has changed, then form new output tokens and 

route them using the routes specified for this operator. 

5. Increment the program counter. 
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This implementation is the same as the basic dataflow version in Steps 1 - 3. Step 4 

however now checks the SP state to see how to deal with the output data, whether to store 

it locally within this SP orto forma token and route it to another SP. Notice that Step 4 

does not check the iteration nwnber of the tag. This is because the iteration number can 

only be changed by a D operator, and D operators do not change SP. Step 5 has been 

added to increment the program counter. There are a couple of operators (the D and 

FORKJUMP operators) which set the program counter to a value rather than just 

incrementing it Ali other operators follow these steps exactly. What follows is a 

description of the new PODS instructions, and why these implement the same semantics as 

the original ID operators. 

In order to show that the semantics of the original ID operators have not changed each 

operation type will be addressed. It is quite simple to understand the way in which PODS 

implements the semanti.cs of ID. The original ID had the following fields in its tag: context 

e, procedure p, statement number s, and iteration i. As explained above in the section on 

activity names, PODS uses a context e, a SP ID sp, an instructi.on number si, andan 

iterati.on i. PODS uses the context and iterati.on exactly the same, it is only the procedure 

and statement number which differ. 
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Basically the procedure cuts the dataflow program into subsets, and the statement number 

identifies the operator within the subset. PODS uses the same approach but just cuts the 

collection into smaller subsets. In Figure 2.9 below, the set of ali operators is cut into 

procedures Proc 1 - Proc4 (in bold lines), while the SPs are just subsets sp 1 - sp8. In this 

way the combination of the two field holds exactly the same information, i.e. the "address" 

of a particular operator. Also note that since each procedure cut is also an SP cut, then 

when a procedure change is made an SP change is also malee. 

SETof ALL 
OPERATORS 

Proc3 

Proc2 

Proc4 

FIGURE 2.9. ID VS PODS STATEMENT "ADDRESSING". 

Arithmetic and Lo~cal Q_perators 

The vast majority of ID operators fit into this the class of arithmetic and logical operators. 

In the original ID these operators only changed the statement number and the value of the 

token. This can be expressed by: 

ID Arithmetic & Logical 
e f ~ f e, p, s, i, v -> e, p, s , i. v 



In PODS exactly the same value calculation is performed, and the instruction number is 

changed. Expressing this in a similar format to the above: 

PODS Arithmetic & Logical e, sp, si, i, v -> e, sp, si', i, v' 
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Notice that the "address" (sp, si} for the output token specifics the receiving operator just 

as is done in ID with (p, s'). 

The switch operator falls into this class and is cliscussed along with a new instruction 

(forkjump) below. 

SWITCH and FORK.JUMP 

The SWITCH and RJRKJUMP work in conjunction to form a branch type of operation. The 

PODS SWITCH is much like the original ID SWITCH with the following exception: once 

tokens are passed along, the program counter is modified by a true or false relative offset 

The original ID SWITCH peñormed the following: 

ID SWITCH e, p, s, i, v ->e, p, s', i, v 

PODS performs the following which is exactly the same except the addressing clifferences, 

which are equivalent 

PODSSWITCH e, sp, si, i, v -> e, sp, si', i, v 

In order to execute a PODS SWITCH Steps 4 and 5 of the basic implementation need to be 

replaced. The new Steps 4 and 5 are: 

4. If the predicate is true, then store output values into true 

destination instructions. If the preclicate is false, then store the 

output values into the false destination instructions. 



5 . If the predicate is true, then increment the program counter by 

the true relative jump. If the predicate is false, then increment 

the program counter by the false relative jump. 
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Once the input tokens are present the SWITCH tires, send.ing tokens to either the true or 

false branch and jumping to the next instruction to execute. The PODS instructions below 

were taken from Matrix Multiply. As described previously, the fields have the following 

meanings: (1) instruction number, (2) op code; (3) number of arguments; (4) operand slots; 

(5) destinations; and (6) a comrnent. For SWITCH the number of arguments is always five, 

port O is the pred.icate, port 1 is the value, port 2 is the true relative offset, port 3 is the false 

relative off set, and port 4 is the number of true destinations. The destinations are ordered 

such that the false destinations are last. The FORKJUMP always takes two arguments: one 

is the value to be passed (port 0), the other is the relative offset (port 1). 

10 SWITOi 5 
18 FORK..JtM? 2 

(1.00,2) (11.00,3) (2.00,4) -> [18,0) [19,0) [21,0) {I} 
(-17 .00, 0) -> [1,0) [2,1) 

FIGURE 2.10. PODS SWITCH AND FORKJUMP INSTRUCTION EXAMPLES. 

To form a simple branch the SWITCH and FORKJUMP are used together as shown in Figure 

2.11 below. The true relative jump of the SWITCH is set to 1, the false relative jump is set 

such that the program counter will jump .to the first false instruction on a false predicate. 

The FORKJUMP is used to skip the false instructions, its relative jump is set to go to the 

beginning of the unbranched instructions. 



Switch 

~ First T lnstruction ·~ 

Second T lnstruction 
Third T lnstruction ... 

Forkjump ~ 

First F lnstruction :"': F Second F lnstruction 
Third F lnstruction ... 
Last F lnstruction 

Beginning of Unbranched lnstructions --
FIGURE 2.11. PODS BRANCH. 

D and D INVERSE 

The D and D_INVERSE operators work in conjuncti.on with the SWITCH to execute loops. 

The PODS o and D_INVERSE operators differ slightly from the original ID operators 

because of the relati.ve jump capability and because the activity names are different in 

PODS. 

The o operator tak:es a token and perfomlS two operations: (1) it increments the iterati.on 

number of the token's tag in the outer-most context, and (2) it perfomlS a relati.ve jump. 

U sually this relative jump is negati.ve, and sends the program counter to an earlier 

instructi.on. The semantics of the ID D and D_INVERSE are: 

IDD e, p, s, i, v ->e, p, s', i+l, v 

ID D_INVERSE e, p, s, i, v -> e, p, s', O, v 
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For PODS the implementation performs something very similar. As for arithmetic and 

logical operators, the new "address" of the output token will be (sp, si') rather than the ID 

(p, s'). Otherwise PODS does exactly the same as ID. 

PODSD e, sp, si, i, v ->e, sp, si', i+l, v 

PODS D_INVERSE e, sp, si, i, v ->e, sp, si', O, v 

In order to execute a PODS D instruction Steps 4 and 5 of the basic implementation need to 

be replaced. The new Steps 4 and 5 are: 

4. Increment the iteration number, i, and store output values into 

destination instruction and port. 

5. Increment the program counter by the relative jump. 

The D_INVERSE operator implementation is very similar to the D operator's. In merely 

resets the iteration number to zero rather incrementing it. Specifically, the Step 4 of the 

basic implementation should read: 

4. Set the iteration number, i, to O and store output values into 

destination instruction and port. 

In order to produce a loop, the SWITCH takes the iteration variable and passes it into the 

loop body on a true predicare. Inside the loop body the iteration variable is modified 

(usually just incremented by one), and the D operator is placed at the end, see the code 

fragment from Matrix Multiply below. The D operator feeds both the predicate and the 

switch so Lhat t.he loop test can be performed. In the example below the relative offset of 

the D operator is -11, which will cause the program counter to be set to 9 (20-11 =9) after 

the D operator is executed. The loop body is from instruction 11 to instruction 19. The 
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D_INVERSE will reset the iteration number once the loop has exited. The loop will be exited 

from the SWITCH on a false predicate. Note that the SWITCH at instruction number 10 has 

a false relative offset of 11 and the last destinati.ons offset is to instruction 21 (21 = 10 + 

11). 

9 IE 2 (STKY, 1) -> (10,0] 
10 SWI'!Oi 5 (1.00,2) (11.00,3) (2.00, 4) -> [18,0] (19, 0] [21, 0] 
11 DIST IDPERATOR 1 (STKY,0) -> (12) 

12 DIST I.OPERATOR 1 (STKY, 0) -> (14) 
13 DIST IDPERATOR 1 (STKY,0) -> (15) 
14 DIST IDPERATOR 1 (STKY,0) -> (10) 
15 DIST I.OPERATOR 1 (STKY, 0) -> (11) 

16 DIST IDPERATOR 1 (STKY,0) -> (13) 
17 DIST IDPERATOR 1 (STKY,0) -> (16) 
18 DIST IDPERATOR 1 -> (1) 
19 PLUS 2 (1.00, 1) -> (20, O] {NEXT-I} 
20 D 2 (-11.00,1) -> (9, 0] (10, l] {I} 
21 DINV 1 -> 

FIGURE2.12. PODS CODEFRAGMENTFORALooP. 

L and L INVERSE 

In order to perform code distributi.on the original ID L operators need to be changed from 

their original implementation. In PODS L and L_INVERSE are used to route tokens between 

SPs. There are also two versions of each operator: a DISTRIBUTE version and a LOCAL 

version. 

In the original ID L operators were for entering and exiting loops. This is still true; 

however, in PODS entering and exiti.ng loops means entering and exiting an SP. In the 

original ID the procedure p of a tag does not change as the token passed though the L and 

L_INVERSE, however a new and unique context e is created. The new context is the 

concatenation of the old context, statement number, and itera.don. This is shown below: 

IDL e, p, s, i, v -> (clsli), p, s', O, v 
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ID L_INVERSE (clsli), p, s', i', v ->e, p, s, i, v 

In PODS the implementation is as follows: 

PODSL e, sp, si, i, v -> (clspli), sp', si', O, v 

PODS L_INVERSE (clspli), sp', si', i, v ->e, sp, si, i, v 

This implementation also generates a new, unique context c. This stored context is then 

used in the L_INVERSE for returning to the previous context The only real d.ifference is 

that the change in SP must be recorded in the tag. Referring back to Figure 2.9, L 

operators move the scope from one SP to another within the same procedure (e.g. from spl 

to sp2). Since the output token no longer has the same context, it wil1 be sent to the 

Routing Unit to be routed to the receiving SP. 

L and L_INVERSE operators perform routing by referencing a particular route list. The 

figure below shows two L type operators from Matrix Multiply. The LOCAL_LOPERATOR 

is using route list 7 with the LOCAL_LINV operator is using mute list 9. A route list is a list 

of destination addresses, each consisting of an SP, an instruction, and a port. This 

information is static and known at compile time. By duplicating this route table in every 

PE, each Routing Unit can find a particular instance of an SP. 

11

2 o I.CX:'AL !DPERM'OR 

-- 12 I.CX:'AL LnN 

1 
1 

-> (7) 
-> (9) 

FIGURE 2.13. EXAMPLE L ÜPERATORS. 

The LOCAL and DISTRIBU'IE versions of each operator tell the Routing Unit to (1) send the 

token only to its own PE, or (2) to distribute copies of this token to ali PEs. Tokens are 

distributed when the receiving SP is distributed This way ali of the PEs are given the 

1 
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needed tokens to start their pan of a loop. The decision whether to distribute or not is 

decided in the PODS Partitioner and the LOCAL or DISTRIBUTE version of the L operator is 

used. This is the way parallel processes get spawned, as discussed later in Section 2.5, 

Distributing Processes. 

A and A INYERSE 

The A and A_INVERSE operators (also known as APPL Y and INV _APPL Y) are the 

mechanism PODS uses for procedure calls. In this logical implementation the APPL Y 

operator collects the argument tokens until all are present, as compared to sending the 

tokens off as soon as they are ready. This may be changed in the future to support eager 

function evaluation. 

The A and A_INVERSE implementations are equivalent. but somewhat different than the 

original ID versions. In ID A and A_INVERSE peñonn: 

IDA c, p, s, i, v -> (clplstli), p', s', O, v 

ID A_INVERSE (clplstli), p', s', i', v -> c, p, st, i, v 

where (p, st) is the address of the instruction to retum to. In PODS the A produces two 

tokens rather than one. 

PODSA c, sp, si, i, v -> (clspli), sp', si', O, v and (clspli), sp', ai', O, st 

where (sp', ai') is the address of the a_inverse instruction and (sp, st) is the address of the 

instruction to retum to. In this way the A_INVERSE can use the retum address to build the 

appropriate tag as follows: 

PODS A_INVERSE (clspli), sp', ai', O, v and 

(clspli), sp', ai', O, st -> e, sp, st, i, v 



This is a simple and efficient method for calling procedures and is somewhat akin to the 

fastcall apply used by Iannucci, [Ian88]. The instructi.ons below were taken from 
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SIMPLE, and forma function call to and retum from the procedure TLU. APPLY operaton;. 

tak:e a variable number of arguments. One far the return instruction (port 0), one for the 

number of parameters to pass (port 1), and then one for each parameter (pons 2 to n+ 1 ). 

The INV _APPLY tak:es two arguments: one for the return value (pon 0), and one far the 

instruction number to return to (pon 1). 

frcm o::NDU:TICN-3 .p:xis 
9 APPLY 6 (10.00,0) (4.00,1) (STKY,2) (3.00,5) -> (121) (TLU) 
frcm Till. p:xis 
18 INV APPLY 2 -> (121) 

FIGURE 2.14. EXAMPLE APPLY AND INV _APPLY ÜPERATORS. 

2. 4. Array Partitioning and Distribution 

In scientific code a number of large arrays are used It is critica! that access to these arrays 

be efficient. This is the idea vector processors are based upon [H&B84]. In PODS, 

modified I-structures form the basis for array operations. I-structures are data structures 

which can be resized as necessary and enforce the single assignment principle with 

presence bits [ANP87a, ANP89]. PODS also uses presence bits, but arrays are of a fixed 

size which is determined at allocation time. 

The single assignment principle guarantees that only one instruction will ever write to an 

array element; it is the producer of that data. PODS exploits this fact by attempting to map 

each array element onto the same PE as its producer instruction, this is how PODS uses the 

Collector Writes Principie. However, it is not always possible, nor efficient for the 

collector to be the owner, as is explained below. By locality ofreference, the statements 

which read an array element will be "close" to the writer. Thus having the writer and 



owner the same will allow most array reads to be local rather tllan remate. Having local 

arra y reads is important, since once the array element is written there can be read many 

more times. Making these array reads efficient is central to PODS. 
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In arder to make the array reads efficient, the array caching scheme detailed in Chapter 3 is 

used. This simple scheme produces excellent results [BNR89b] as long as the array is 

accessed in the same direction as it is partitioned. For two dimensional arrays this means 

that arrays accessed in a row-major manner should be partitioned row-major. Generalizing 

to multiple dimensions, this rneans that first-major (last-major) code should be used to 

access first-major (last-rnajor) arrays. 

One approach to ensure that the direction is correct is to analyze each array's accesses and 

estimate which direction would be more efficient Analyzing the one filling algorithm 

(there usually will be only one dueto the single-assignment principie) could be done, but 

the reads matter more because there are many more of them. Analyzing the reads would 

require that the entire execution trace of the program be known at compile time, which is 

not possible. To see sorne of the difficulties, considera matrix-multiply function which 

takes arrays A and B as arguments. In ID Nouveau the code would be: 



Def mm A B = { (11,ul), (12,u2) = 2D bounds A; 
e = i _ ma tri x ( ( 11 , u 1 ) , ( 12 , u 2 ) ) ; -
In 
{ Far i <- 11 To ul Do 

{ For j <- 12 to u2 Do 
s = O; 

} ; 

C[i, j] = 
{ For k <- 11 To ul Do 

} 

Next s = s + A[i,k] * B[k,j]; 
Finally s 

} ; 
Finally C 

} 

FIGURE 2.15. MATRIX MULTIPLY ID NOUVEAU SOURCE CODE. 
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By examining this code it is easily seen that array A should be row-major and array B 

should be column-major based on the reads. However, an array is partitioned at allocation 

time and stays that way for its entire lifetime. So if the Matrix Multiply function was called 

with MM X Y, array X should be row-major and array Y should be column-major, and if 

called with MM Y X then the reverse is true. However, the binding between A (B) and X 

(Y) is dynamic and hence PODS cannot take advantage of it This late binding also 

prevents the proper direction for each array to be used every time. 

A better approach is to pick a direction and use it, letting the programmer know which 

direction is appropriate. This is the approach used by many popular languages toda y. For 

example, 'C' is row-major and FORTRAN is column-major. PODS uses row-major 

partitioning. 

In order to better understand this partitioning, consider the following example. A two 

dimensional array which is 8 x 256 is to be partitioned and distributed over 20 PEs. Por 

the iPSC/2 and the simulations herein, the best page siz.e is 32 elements or approximately 2 

kilobytes. Previous studies have shown that this is nota critica! para.meter [BNR89b]. 



FolloVlling the simple array partitioning algorithm. each array is divided into pages of 32 

elements in row-rnajor fashion. 

Once the array is cut into pages (linearly, in row-major), the pages are grouped together 

sequentially to form superpages; one superpage per PE, see Figure 2.16 below. The 

algorithm for achieving this is as follows: 

1. calculare the number of pages, 

#pgs = floor(number of elements / page size) 

2. calculate the number of pages per PE, 

#ppp = floor(#pgs / number of PEs) 

3. each PE gets #ppp pages 

4. the extra elements left over from step 1 are assigned to the last 

PE 

5 . the extra pages from step 2 are assigned, one to each PE, 

starting with the second to last PE and continuing to the first PE 
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Often a superpage will wrap around the logical array limits. This only needs to be handled 

properly when the array is accessed. It is also the case that somerimes a few PEs will end 

up with one more page in its superpage than the others. Both of these situations are 

handled by the boundary table. The handling of these cases will be explained in detail in 

Chapter 3, PODS Logical Implementation. For the example PE #O through PE #15 have 3 

pages, while PE #16 through PE #19 will have 4 pages. 
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FIGURE 2.16. PODS PARTITIONING OF A 2-D ARRAY. 

One key concept of this approach is that it is known globally and requires limited 

infonnation to use. It is the ALLOCA1E instruction which performs this data distribution. 

Each ALLOCA 1E works with a FORKJUMP and performs the following: 

1. The AILOCA1E requests an array ID from the local Array 

Manager (see Chapter 3). 

2. The SP continues executing until the ALLOCA1Es companion 

FORKJUMP (placed directly after the AILOCA1E). The SP will 

either block, until the Array Manager respond.s with an array ID 

or wil1 continue executing if the value has already returned. 

3. When the Array Manger receives the allocate request, it wil1 

allocate the necessary space, build the array header, build the 

boundary table, send the array ID to the requesting SP, and then 

send a remote allocation request onto all of the other PEs with 
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the arra y ID attached. In this way all of the PEs ha ve the same 

ID for the same array. The PE which executes the AL.LOCA TE is 

called the host PE, this PE number is also sent as part of the 

request. 

4. The remete PEs will receive the remote allocate request and build 

the header and tables, and allocate the appropriate space. 

For a two dimensional array PODS stores the following array header information in each 

PE: 

Field Name 
beginning_oTf set 
ending_ off set 
number_of_dimensions 
siz.e_diml 
siz.e_dim2 
ELEMENT_SPACE 
beginning rangel diml 
ending rañgel_diml 
beginníng_rangel_ dim2 
ending rangel dim2 
beginníng_rangel_diml 

ending_ rangel _ diml 

beginning_rangel_dim2 

ending_rangel_dim2 

NULL 

Descri _p_tion 
stan oTiliis PEs responsibility 
end of responsibility 
2 
size of first dirnension 
size of second dimension 
space allocated for this array on this PE 
start of first range interval in dim 1 
end of first range interval in dim 1 
start of first range interval in dim 2 
start of tirst range interval in dim 2 
start of second range interval in dim 
1 
start of second range interval in dim 
1 
start of second range interval in dim 
2 
start of second range intervaJ in dim 
2 

TABLE 2.1. PODS ARRA Y HEADER INFORMA TION. 
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The beginning_offset and ending_ offset are the staning and stopping points of this PEs 

area-of-responsibility expressed in the row-major linearized version of the array. The 

number _ of _ dimensions, size _ diml, and size _ dim2 fields hold the number of dirnensions 

and sizes of each for this array. The ELE.rvffiNT_SPACE is where the actuiU data is stored, 
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excluding the cache. The beginning_rangeX_dimY and ending_rangeX_dimY fields hold 

the starting and stopping points far each range inte:rval of this array. Superpages can wrap 

around an array climension, like PE #2 in Figure 2.16 above, this causes multiple range 

intervals in the boundary table. The bolded fields malee up the boundary table for this array 

on a given PE. Boundary Tables will be discussed. in detail in the section on range filters. 

The header is similar for other climension arrays. For example, for a iliree dimensional 

arra y the number _ of_ dimensions would be 3, there would be an extra climension size field, 

size _ dim.3, and there would be an additional beginning_range and encling_range for each 

segment Notice that the header size is fixed. at allocation time and will not grow. 

Continuing with the two dimensional array example in Figure 2.16, the header for PE #2 

would be: 

Field Name 
beginning_offset 
ending_offset 
number_ of_dimensions 
siz.e_climl 
siz.e_dim2 
ELEMENT_SPACE 
beginning_range l_diml 
ending_rangel_climl 
beginning_range l_dim2 
ending_rangel_dim2 
beginning_range l_diml 
ending_rangel_climl 
beginning_range l_dim2 
ending_range l_dim2 
NULL 

varue 
1-g-2 
287 
2 
8 
256 
space allocated for this array on this PE 
o 
o 
192 
255 
o 
o 
o 
31 

TABLE 2.2. 2-D ARRA Y EXAMPLE HEADER. 

To perform a two dimensional read the off set into the array must be calculated. first. Then 

the beginning and encling off sets must be checked. If the offset is not within the bounds 

then the read is remote and a message must be sent to the owning PE. If the read is local, 

the presence bit must be checked. If it is not present then the read must be enqueued, as in 
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1-structures. If the value is present then the memory location is read. The pseudo-code for 

performing the read is: 

offset = size dim2 * i + j 
if (offset < beginning offset) goto REMOTE READ 
if (offset ~ ending offset) gato REMOTE READ 
if (element not present) gota ENQUEUE READ 
value = array[offset] -

FIGURE 2.17. 2-D ARRA Y READ PSEUDO-CODE. 

Continuing with the above example, assume the expression below is being executed on PE 

#2. 

result = A[0,10] + A[l,10]; 

Assuming both elements have already been written, the first array read, A[O,l], would 

perform the following read calculations. 

offset = size dim2 * i + j 
= 256 * o + 10 
= 10 

if (offset < beginning offset) goto REMOTE READ 
10 < 192 -
goto REMOTE READ 

FIGURE 2.18. EXAMPLE 2-D ARRAY REMOTE READ. 

The REMOTE_READ sends a message to the owning PE (PE #1), who will respond with 

A[0,10]. PE #2 will continue on and encounter the second array read, A[l,10]. Note that 

PE #2 did not block this SP when the read was determined to be remate. Only when the 

insttuction which consumes the result is reached will the SP block. By that time A[0,10] 

may have been received. The second array read calculations would be: 
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offset = size dim2 * i + j 
256 * 1 + 10 
266 

if (offset < beginning offset) gato REMOTE_READ 
266 < 192-

if (offset ~ ending offset) goto REMOTE READ 
266 :2: 287 -

if (element not present) goto ENQUEUE_READ 
present 

value = array[offset] 
A[266] 

FIGURE 2.19. EXAMPLE 2-D ARRAY LOCAL READ. 

The value of array A@ offset 266 would be stored in the consuming instruction. When 

the consuming instruction was reached the SP would block if A[O, 10] hand not yet arrived, 

and PE #2 would stan executing the next SP from the task ready list. 

Array caching complicates this somewhat, but, it is independent of the PODS partitioning 

and distribution. In Chapter 3 array caching is examined. On a typical RISC processor 

(MIPS R3000) the caching version would take 22 cycles while a regular two dimensional 

read would take 17 cycles. This 29% additional overhead is well worth it 

Note that it is not necessary to distribute ali arrays. In the future more analysis may·show 

that certain arrays should be kept local and other distributed, this is an area of current 

research. 

2. 5. Distributing Processes 

Distributing code (i.e., processes) is the key issue in parallel processing. In PODS this is 

accomplished by following an execution distribution principie which tries to map the 

calculation of an array element to its owner as much as possible (i.e., Collector Writes 

Principie). The PODS implementation of the Collector Writes Principie is called Data 

Distributed Execution (DDE). 
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2. S. l. DataªDistributed Execution Principie 

The central concept in PODS code distribution is to follow the data distribution as much as 

possible. Placing the execution of an operation on the same PE as the location of its data 

will reduce communication costs and context switches. A system performs DDE when it 

rnoves execution to the PE where the data resides. 

Consider an n-dimensional index space, where the dirnensions are ordered by the levels of 

nesting. Say this multiple nested loop has index levels i¡, i1, ... , in. and that there is an 

array write at the inner-most leve! (A[i1, i2, .. ., in.]= x). The goal is to distribute the 

computations evenly across the PEs using DDE. This is achieved by picking one of the 

levels of the nest, say ia, and cutting up the index space along ia into number_of_PE 

ranges. The levels previous to ia are executed on one PE, while levels after ia are executed 

on every PE. Since the array write needs the value of every index, ali of the previous 

indices (ii. ii, ... , ia-1) must be broadcast to every PE, and, every following index (ia+l• 

ia+i, ... , in) must be generated locally- it is the ia level which is used to partition the 

iteration space. However, the data distribution is still followed. 

To better visualize this considera 2-d.imensional iteration space with indices i andj. Figure 

2.20 (a) shows the data partitioning of an array where the superpage assigned to each PE 

does not reach the end of the array dimension. Figure 2.20 (d) shows the data partitioning 

of a larger array, where the superpage is larger than the dimension. When the superpage 

just happens to match the array dimension size the partitioning acts just like it were smaller 

than the array dimension. Figures 2.20 (b), (e), (e) and (f) show the iteration space 

partitioning when i or j are used for ia. 
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FIGURE 2.20. PARTITIONING A 2D ITERATION SPACE. 

In order to ensure single assignrnent, the iteration space cannot exactly follow the data 

partitioning in every case. When any level other than the last level is used to partiti.on on, 

the remaining levels cannot be partitioned and rnust be assigned based upon the upper 
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levels. Figure 2.20 (b) and (e) show on which PE the calculations will be performed if the 

iterations were partitioned along i. This assignrnent is achieved by sirnply assigning 

iteration space areas based upon the first elernent in each row. This causes sorne interesting 

situations. In case (b) PE #3 has no iterations to run. While in case (e) PE #1 has two full 

rows to calculate. Notice that there can be sorne rernote writes, e.g. PE #1 writes to sorne 

of PE #2's elernents. 

When that last leve! is used to partition on the mapping is exact. This is because ali i¡, i2, 

... , in are available and each PE can cornpletely decide which iterati.ons to perform. 
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To generalize this to rnultiple dirnensions consider the figure below. In general, the data 

partitioning, case (a) below, will not exactly match any dirnension size. When a level is 

picked to distribute, all levels below it will use this level's partitioning. Case (b) shows the 

planes of iteration space responsibility when the i-th level is used. Case (e) shows the 

iteration spaces if the j-th level were used to distribute the iterations. If the k-th level were 

used the iteration space partitioning would exactly match the data partitioning, case (a). 

~i 

PE #1 
PE#2 
PE#4 

~i 

J ... 

PE #2 

~i 
j ... 

l]PE#l 

O PE #2 (clear) 

[) PE#3 

fijPE#4 

] ... 

FIGURE 2.21. PARTITIONING A 3D ITERATION SPACE. 

This would seem to indicare that the lower the level the better the partitioning. However, 

the upper levels must communicate their values ali the way down to the inner-most level. 

This causes ex.cessive communication. While distributing at the outer-most level can cause 
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miss matches, this can be overcome vía array caching. Seeing that the sooner the iterations 

are distributed the fewer the number of broadcasts necessary, PODS always distributes as 

soon as possible. 

These give rise to the distribution scheme below. 

1 . Given an array A: 

partition and distribute as described in Section 2.4, Array 

Partitioning and Distribution, above. 

2. Given a loop L: 

if L does not contain an arra y write, then do not distribute 

else distribute the outer-most level of the nest possible. 

3 . Once the level has been chosen, use the first element in that level 

to determine the iteration space partitioning. 

The reason a certain level of nesting cannot be distributed is dependent on the loop-carried 

dependencies at that level. This is explained in detail in LCD Effects Section below. 

DDE can be greatly increased by array caching. In PODS, once a page is read into .local 

memory from a remote PE it is held in a software cache which is replaced using a Least­

Recently-U sed algorithm. Array caching is explained in detail in Chapter 3. 

DDE of for-loops is achieved in PODS by generating only those loop variables which mak:e 

the arra y accesses local. This is performed by range filters. The operat:ion of range filters 

is explained in detail in the next section. 



61 

2. 5. 2. Range Filters 

In this section, the concept of range filters is explained in detail, and explains how each PE 

restricts loop execution to its own portien of an array. 

Objective and Usa~e 

The objective of the range filter construct is to control which iterations of a d.istributed loop 

are to be executed by a given PE. The d.iagram below shows a simplified dataflow of the 

simple array filling loop in the upper right hand comer. Contrast this with the d.iagram in 

Figure 2.23; the same loop after the range filter has been inserted. In PODS the loop nest 

level in which the range filter is inserted is defined to be the distributed loop. 

A dataflow d.iagram with a 2-d.imensional range filter is shown in Figure 2.23. The items 

added to Figure 2.22 are bolded. The range filter replaces the pred.icate and needs the array 

A and the outer index i from the i-loop to determine whatj's a given PE is responsible for. 

The range filter takes these and the current indexj, and produces the next index for which 

this PE is responsible. Also notice that the L operators in the i-loop are now DIST-L 

operators. 



1 so 1 10 A = m.atrix(50, 10); 
for i = 1 to 50 

for j = 1 to 
10 A{i,j] = f(i,j); 

,. ................................................................................................................................................................................................... . 
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FIGURE 2.22. SIMPLE 2-D ARRAY FILL. 
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FIGURE 2.23. 2-D ARRAY FILL WITH RANGE FILTER. 
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Boundazy Table 

Boundary tables are generated at allocation time and referenced by the range filter to 

detennine the boundaries of its area-of-responsibility. In PODS, grouped ranges are used 

because they generate fewer superpage boundaries than interleaved ranges in general. 

In the table below, an array header for PE #1 with a 8 x 4 array (page size of 6) is shown. 

The values beginning_rangeX_diml and beginning_rangeX_dim2 are the beginning values 

for a given range interval in each of the two dimensions; similarly for ending_rangeX _ diml 

and ending_rangeX_dim2. A range interval is the area-of-responsibility for a given PE 

andina given dimension; there is one range interval for each entry in a boundary table. 

For example, range interval 1 runs from 1 to 1 in the i direction, and from 1 to 4 in the j 

d.irection. 

F1eld Name 
beginning_off set 
ending_offset 
number_of_dimensions 
size_d.iml 
size_dim2 
ELEMENT_SPACE 
beginning rangel diml 
ending rañgel_diml 
beginníng rangel dim2 
ending rañgel dim2 
beginníng rangel diml 
ending rañgel diml 
beginníng rangel dim2 
ending_ rañgel _ dim2 
NULL 

Valúe 
1 
6 
2 
8 
4 
space allocated for this array on this PE 
1 
1 
1 
4 
2 
2 
1 
2 

TABLE 2.3. EXAMPLE BOUNDARY TABLE FOR A GIVEN PE. 

The boundary table fields are bolded. For different numbers of PEs (four in this example) 

different distributions are produced. The page size comes into play because pages are used 

in caching and remote accesses. In this example the page siz.e of 6 splits the array into a 

non-rectangular arca for PE #l. 



65 

Master ArraY 

In Figures 2.22 and 2.23 above only one array is being written into inside the loop. 

However there can be more than one. In PODS, only one array, the master array, controls 

the partitioning for that loop. Currently the first array written into is chosen as the master 

array. Later on a more intelligent algorithm could be used, but this approach has produced 

acceptable results. 

Al~orithm 

The algorithm for the range filter is fairly straight forward. It is important to note, 

however, that the general algorithm is parameterized. The general algorithm functions by 

repeatedly extracting range intervals from the array boundary table. While within the 

range, the filter passes indices for elements within that range. The filter also keeps the loop 

ali ve by sending a continue token to the loop switch until ali ranges have been exhausted. 

In the figure below, mis just sorne variable used to count the intervals; i andj are the loops 

indices, and continue is the signa! to the loop body telling it whether to continue or not 

There are three new PODS instructions required to implement a RANGE_FIL 1ER: 

INTERV AL_COUNT (retrieve the number of range intervals for this arra y); and B_RANGE 

/E_RANGE (retrieve the beginning and ending values for the specified range interval). 

These new instructions simply read entries from the array header (generated at allocation 

time). With RANGE_FIL1ER, each PE has the same ccxle; only the local boundary tables are 

different. 



1 m = interval count of master array 
2 if m < O then exit 
3 if (Ci*i+ki) is not in interval m then decrement m and 

gato 2 
4 set j to the minimum of the loop end and (end of the 

interval-kj)/Cj 
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5 if (Cj*j+kj) is not in the interval or the first element 
of this dirnension is not owned then decrement rn and gato 
2 

6 if J is within the loop bounds then set continue to TRUE 
and send j and continue into the loop body 
else decrernent rn and gato 2 

7 if continue is TRUE do the loop body else gato 10 
8 true part of loop body 
9 if new j is within loop bounds set continue to TRUE, 

send j-and continue into the loop body, and gato 5 
else set continue to FALSE, send j and continue into the 
loop body, and gato 7 (with j set to new j) 

10 false part of loop body -

FIGURE 2.24. ALGORITiiM FOR SECOND LEVEL, DESCENDING RANGE FILTER FOR 
A(C1*I+K1,C¡*J+K¡]. 

The algorithm shown in Figure 2.24 is for a descending loop with a stepsize of 1 writing 

into array A(c¡*i+k¡,cj'"j+kj]. Array A is the master array in this case. Step #7 above is the 

SWITCH which between the true and false parts of the loop body. 

For different levels of distribution (distribute the first level of nested loop vs. other levels) 

or directions (ascending vs. descending), different range filters are used, see Appendix A: 

Range Filter Algorithms. The selection of the algorithm is done at compile time, so no 

more run-time overhead is used than necessary. 

In the case where the distribution is done a level above the lowest level, the RANGE_FIL TER 

checks only the first element in a range interval to see if that element belongs to it. This 

prevents other PEs with range intervals in the same index (e.g., PEs #1 & #2 for i = 2 

below) from both trying to execute a particular iteration. The figure below shows the 

partitioning for a 8 x 4 array, page size of 6 (same as the boundary table example above). 
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FIGURE 2.25. NON-RECTANGULAR ARRAY PARTITIONING EXAMPLE. 

If the RANGE_FILTER were at the i level, then each PE would be responsible for distinct 

rows of i, i.e. PE #1 has rows 1and2, PE #2 has only row 3, PE #3 has rows 4, 5, and 

6, and finally PE #4 has rows 6 and 7. 

. 2.5.3. LCD Effects 

LCDs have a major affect on the policies for code distribution. This section discusses 

those effects. 

If a for-loop performs a reduction it will have LCDs. If the for-loop fills an array it may 

have loop-carried dependencies. These LCDs prevent iterations from running in parallel. 

In PODS these LCD for-loops are executed in place justas they would on a sequential 

processor. This is the case where PODS degenerates into a sequential machine for the 

sequential code. The reason for this is the extreme cost of communication on distributed 

memory machines. 
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For distributed memory MIMD machines the ratio of the cornmunication time to execution 

time can be as great as 400, as in the iPSC/2 [iPSC89]. This means that the LCD distance, 

D, times the number of overlapping instructions, N, rnust be at least 400. i.e. 

D * N :=:: cornmunication time / execution time. 

A distance 4 LCD means that iteration i must wait fer iteration i-4. In order to see this 

better, considera loop body with 100 overlapping instructions. If D is less than 4 then it 

is better to execute the fer-loop on one PE rather than distribute the loop. If it were to be 

distributed, the fer-loop iterations would be grouped and assigned to PEs vía DDE. For 

example, iterations 1 through 4 to PE #1, 5 through 8 to PE #2, etc. For-loops with larger 

LCD distances or larger instruction overlap may be able to perform better when distributed, 

this is a current topic of research. 

In order to see how communication delay and overlapping execution interact, consider the 

Figure 2.26. In the first cast (Non-Distributed) the loop is executed on one PE, causing no 

communication delay. The second case (Distributed with Fast Communication) performs 

the best Its completion time (indicated by the dark horizontal lines) is the earliest of the 

three. Notice how the amount overlapping instructions must be comparable to the delay 

time fer any benet"it to occur. The third and final case (Distributed with Slow 

Cornmunication) shows what would happen if loops with LCDs were distributed when 

communication is costly, e.g. the iPSC/2. 



Distributed with 
Fast Communication 

PE #1 PE #2PE #3PE #4 PE # 1 PE #2 PE #3 PE #4 PE # 1 PE #2 PE #3 PE #4 

g sequential 
execution 

• overlapping E;;,'] communication 
exectuion dela y 

_.network 
message 

FIGURE 2.26. EFFECTS OF COMMUNICATION SPEED ON ÜVERLAPPING 11ERA TIONS. 
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Considering the abstra.ct case shown in Figure 2.20, given LCDs in all i¡ through ik, PODS 

distributes ik+l· To understand why this is better, cohsider the three different shapes of 

arrays: rectangular, long and narrow, and short and wide. When the array is rectangular, 

like in Figure 2.20 (e) and (t), PEj and PEj+l can pipeline. This overlapping execution will 

increase as the work at each element increases. lf there is very little work at each element 

then it is run sequentially. Note that this usually only occurs when ik+l is the innermost 

level of the nested loop. When the array is long and narrow, the same rules apply except 



even more work is needed at each element for distribution to show a gain. Finally, if the 

array is short and wide, like Figure 2.20 (b) and (c), multiple wavefronts occur thus 

providing sorne parallelism. 

So, for the scope of this discussion, the communication costs of distributed memory 

architectures is too high for for-loops with LCDs to be distributed. The communication 

cost overwhelms any efficiency gains from the overlapping iterations. Thus PODS does 

not distribute loops with LCDs. One outcome from this is that all distributed loops are 

array filling loops. 
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Based on the above, PODS needs a compiler which will reduce the number of LCDs so that 

the loops can be distributed. Scalar expansion is one optimization which does this. Any 

state-of-the-art vectorizing cornpiler will have (see Padua and Wolfe [P&W86]) scalar 

expansion. Since the ID Nouveau cornpiler is not intended for a rnachine which is aided by 

scalar expansion (GITA), it does not scalar expand. PODS, on the other hand, is aided by 

scalar expansion and would have this and other optimizations (e.g., loop interchange, and 

loop fission). 

PODS also needs a LCD Detector, which will detect when LCDs occur. The LCD Detector 

performs two rnajor phases. The first phase finds the loop bodies and the second traces 

these looking for array writes (I-structure STOREs) which use values from the same array 

(I-structure FETCHs). The first phase performs the following steps: 

1. Find all D operators. 

2. Search backward frorn each D until the same D or another D is 

found. Do not search beyond the SWITCH operator. 

3. If found D is the same, then the path search forms the loop 

variable path, else it forms the loop body path. 



The loop bod.ies are now traced using the following: 

1. Find ali I-structure STORE operators. 

2. Trace up the data dependency ares frorn each to find ali 

I-structure FETCH operators which feed this I-structure 

STO RE. 

3 . Trace up the data dependency ares from each index input to find 

the source the index value. 

4. If any I-structure FETCH uses the same array as the I-structure 

STORE and their index input paths d.iffer from each other, then 

there is a LCD. 

2. 5. 4. Remote Array Accesses 
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Remate l\ITilY accesses will occur dueto the d.istribution of arra y data. No new reads nor 

writes are added to the original ID program. Remate reads and writes are d.iscussed in this 

section. Array caching affects remate reads, but this is not part of the model and therefore 

d.iscussed in Chapter 3, PODS Logical Architecture. Also in Chapter 3 is a d.iscussion of 

the Array Manager which actualiy performs these operations. 

Remete Reads 

As a simple example of remote array reading, considera multiprocessor with 4 PEs. Using 

a page size of 32 elements, and 3 arrays A, B, and C, each of size 100. PE O, 1, and 2 will 

each contain a single page of each arra y. PE 3 will contain a partial page (4 elements) of 

each array. Consider the following loop: 



For i <- 1 To 100 Do 
{ 

A[i] 8(101-i] + C(i] 

FIGURE 2.27. REMOTE READ CODE EXAMPLE. 

All four processors begin executing simultaneously-PE O fills A(l..32), PE 1 fills 
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A(33 .. 64), PE 2 fills A(65 .. 96), and PE 3 fills A(97 .. 100). Note that for most of the loop, 

each processor must access elements of array B that lie on a different processor than the 

executing processor. Each one of these remote accesses entails a transfer of data from the 

producing PE to the consuming PE, an operation that is relatively expensive on al1 current 

distributed memory multiprocessors. It will never be possible to remove the need for 

remote accesses from distributed computations, so PODS must instead use a technique for 

diminishing their effect on the overa.ll computation time. The technique PODS uses is 

called remate access caching. 

Remote access caching takes advantage of the fact that in PODS, no array element may be 

written to multiple times. As a result of this,PEs can cache data that has been recently 

accessed without considering cache coherency problems. In the partitioning scheme 

defined above, each PE contains sorne number of pages of each array. To accomplish 

remote access caching, PODS defines a remote access as the retrieval and local storing of 

the entire page containing the remote da~m. That is, when a particular element is fetched 

from a remote PE, the entire page containing that element is sent back to the requesting PE 

when the requested element becomes available. Due to locality of reference in many 

algorithms, it is likely that the same PE will need another element from that page in the near 

future, so if the cache is checked first a remote access will often be avoided. Of course, if 

the next requested element was not available at the time the page was cached, then another 

remote access, transferring the same page, will be required. Note that the term "cache" 



used here does not refer to a specialized hardware device, used to reduce access time to 

rnain memory. Rather, it is a "software cache" used to reduce access time to remote 

memory rncxiules. 

Remote Writes 
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In the previous discussion, it was mentioned that occasionally the program structure makes 

remote writes unavoidable. A remote write is an array write where the data collector is on a 

different PE than data storage. When this occurs a message rnust be sent to the remote PE 

with the value, the array ID, and the indices. As an example of why this might happen, 

examine the following code segment: 

Far i <- 1 To 100 Do 
{ 

A[i] = B[i] 
C [i+lO] = B [i+SJ * 2 

FIGURE 2.28. REMOTE WRITE CODE EXAMPLE. 

To see why the PODS data parti.tioning methcxi causes remote writes in this case, consider 

that a write to C may occur at a location not owned by the PE executing the loop. For 

example, suppose i is 25. PE #O is responsible for writing A(25), however PE #1 is 

responsible f or writing C(35). Without loop fission, it is necessary either for PE #O to 

remotely write to C(35) or for PE #1 to remotely write to A(25). This is nota single 

assignment violation, but it is inefficient. In this case loop fission could sol ve the problem, 

however, in general, there is no simple solution. To avoid using different mapping 

functions for A and C, PODS allows remote writes instead. 

Remote writes are also necessary f or another reason. In ideal circumstances ali data is 

written to locally, but program structure can sometimes cause remote array writes. Note 
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that it is not always possible to determine, at compile time, which elernent is being updated 

by an assignment statement Consider the loop below: 

For k <- 1 To n Do 
{ 

A[f(k)] == B[g(k)] 

FIGURE 2.29. lMPOSSIBLE COLLECTOR WRITES. 

The functions/and g rnak:e it impossible to determine which elernent a given k will be 

assigning ar compile time. In this case each PE rnust calculate/(k) for ali /¿s to determine 

if that element of A is inside its area-of-responsibility. It should also be noted that arrays 

are single assignrnent and that thef(k) must be well behaved (one-to-one) over the range of 

k, otherwise a single assignment run-time error will occur. 

2. 5. 5. For-Loop Distribution Algoritbm 

Now that DDE has been introduced, the effects of LCDs have been discussed, and the 

rnechanisms for distribution have been explained, the actual for-loop distribution algorithrn 

can be presented. 

There are three primary rnechanisms for achieving distribution. The data distribution 

mechanisrn (ALLOCA1E operator) has already been discussed. For PODS to distribute SPs 

they need to be spawned on multiple PEs. It is the DIST-L operator which performs this. 

When PODS determines that a certain level of a nested loop is to be distributed, its parent 

SP gets DIST-L operators, and it gets the third primary rnechanism: the RANGE_Fil.. TER. 

At compile time the program is analyzed to determine which for-loops will be distributed. 

Those for-loops which are distributed will be augmented with RANGE_Fil..TER code. The 

task of the RANGE_FIL TER is to produce only those loop variables which make the arra y 



·accesses local. At load time, each PE will be given a copy of the enrire program (ali PEs 

are homogeneous). At run-rime tokens are sene to different PEs to start execution of a 

particular for-loop SP. 
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Since arrays are partitioned row-major the code will be row-major as well. If it is not 

row-rnajor it will run, but inefficiencies will occur. In order to efficiently execute a 

row-major nested loop the outer-most level of the nest should be distributed. This reduces 

communication cost and context switching, and allows the array caching to operate 

efficiently. Given these observations and the previous principles, the algorithm for-loop 

distribution determination is as presented below. 

Algorithm: Loop Distribution 

1. Starting with the outer-most cede-block, repeat the following 

until ali sets of nested loops are marked (depth-first traversa!) as 

either distributed or local . 

a. Consider the next inner code-block. If this code-block does 

not have an LCDs, then mark it and all descendent SPs will be 

local. 

b. If this inner SPs has a LCD, then goto step 2. 

c. If this is the inner most SPs , then consider the next 

unmarked SPs (depth-first) and goto step 2. 

2. In each marked SP a range fil ter replaces the predicare. 

3. In the parent of each marked SP the L operators are changed into 

DIST_L operators. 
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The outer-most SPs of an entire program cannot be d.istributed. This is because every 

program must start somewhere; i.e., there is a single first instruction in every program. If 

it is desirable, due to LCDs, to d.istribute this outer-most SP, then a dummy SP is set up to 

drive the original SP. 

2.5.6. Examples 

LCD Examples 

In a two leve! nested loop there are four basic cases which involve LCDs: (1) no LCDs in 

either i nor j; (2) LCD in i; (3) LCD in}; and (4) LCDs in both. PODS handles each of 

these cases efficiently. 

In the following examples the same array and filling loop will be used, however the filling 

function (FUNC) will be changed to add or subtract LCDs as necessary. Considera simple 

nested loop which fills an 8 x 4 array A. 

For i <- 1 To 8 Do 
For j <- 1 To 4 Do 
{ 

A[i,j] = FUNC(x) 

FIGURE 2.30. SIMPLE ARRA Y FILLING EXAMPLE CODE. 

For the above code there would be two SPs, one for the i loop and one for the j loop. 

Since there are no LCDs, either level can be d.istributed. Assume the array is partitioned as 

shown in Figure 2.31 below, and assume that the communication delay is a short five time 

units, and that a context switch is one time unit 
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FIGURE 2.31. SIMPLE ROW-MAJOR ARRAY PARTITIONING. 

Case 1: No LCDs 
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FUNC has no LCDs, e.g. A[ij] = B[ij]. If i were distributed the execution would be as 

shown in Table 2.4. The pai.rs of numbers in the table show when A[i,j] is being written; 

this only occurs in thej SP. The operations in italics are for the i SP. This assume PE 1 

starts out generating the i's needed and then broadcasts them to all of the PEs (including 

itself). When a PE gets an i value it starts the j SP. There are times when there is nothing 

in this PEs area-of-responsibility; thus the for i=x : 0. The initial be comes from the 

parent SP which contains the DIST_L operators, this is how ali of the initial parameters get 

broadcast Note that i is not broadcast in this case. 
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time PE 1 PEZ PE 3 PE4 
o 1mt1al be 
1 context sw commdelay commdelay commdelay 
2 geni=l commdelay commdelay commdelay 
3 gen i=2 commdelay commdelay commdelay 
4 context sw geni=3 gen i=4 gen i=7 
5 1, 1 context sw gen i=5 gen i=8 
6 1, 2 3, 1 gen i=6 context sw 
7 1, 3 3, 2 context sw 7, 1 
8 1, 4 3, 3 4, 1 7, 2 
9 context sw 3, 4 4,2 7, 3 
10 2, 1 4, 3 7, 4 
11 2, 2 4, 4 context sw 
12 2, 3 context sw 8, l 
13 2, 4 5, 1 8, 2 
14 5, 2 8, 3 
15 5, 3 8, 4 
16 5, 4 
17 context sw 
18 6, l 
19 6, 2 
20 6, 3 
21 6,4 

TABLE 2.4. EFFECTS OF ÜlITER LOOP DISTRIBUTION WITH NO LCDS. 

Notice that PE #1 will tak:e over elements 2,3 and 2,4 as the iteration space partitioning 

extends the area-of-responsibility based upon the first element. The communication delays 

will overlap with the operations and context switches so that the multiple i-loop 

communication delays do not delay the execution multiple times. Now if j were distributed 

the execution would be as follows in Table 2.5. The parent sp does not have DIST_L 

operators like above, it has regular L operators (which do not broadcast). Here the i's are 

broadcast from the i SP (in italics). 
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time PE 1 PE 2 PE:J PE4 
o parent sp 
1 context sw 
2 gen i=l 
3 gen i=2 commdelay commdelay commdelay 
4 geni=3 commdelay commdelay commdelay 
5 gen i=4 cornmde1: commde1: commde1: 
6 gen i=5 for i=l: for i=l: for i=l: 
7 gen i=6 context sw context sw context sw 
8 gen i=7 2,3 for i=2: 0 for i=2: 0 
9 gen i=8 2,4 context sw context sw 
10 1, 1 context sw for i=3: 0 for i=3: 0 
11 1, 2 3, 1 context sw context sw 
12 1, 3 3, 2 4, 1 fori=4: 0 
13 1, 4 3, 3 4,2 context sw 
14 context sw 3, 4 4, 3 fori=5: 0 
15 2, 1 context sw 4,4 context sw 
16 2, 2 for i=4: 0 context sw for i=6: 0 
17 context sw context sw 5, 1 context sw 
18 for i=3: 0 for i=5: 0 5, 2 7, 1 
19 context sw context sw 5, 3 7, 2 
20 for i=4: 0 for i=6: 0 5, 4 7, 3 
21 context sw context sw context sw 7,4 
22 for i=5: 0 for i=7: 0 6, 1 context sw 
23 context sw context sw 6, 2 8, 1 
24 for i=6: 0 for i=8: 0 6, 3 8, 2 
25 context sw context sw 6,4 8, 3 
26 for i=7: 0 context sw 8,4 
27 context sw for i=7: 0 
28 for i=8: 0 context sw 
29 for i=8: 0 

TABLE 2.5. EFFECTS OF lNNER LOOP DISTRIBUTION WIIB NO LCDS. 

Note that every PE is doing something, thus distributing additional levels of the nest would 

do nothing to speed up execution. In this case the j loop distribution must wait for each j to 

be generated. After the initial communication delays each PEs will start checking the i 

values they receive. If i is in the range (as determined by the RANGE_FILTER) thenj values 

will be generated, if not, the SP completes. This exarnple graphically shows that outer 

level distribution is better than inner level (execution time of 21 vs. 29), as described in 

Section 2.6.1 above. 
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Case 2: LCD in i 

FUNC uses i in such a way that there is a LCD, e.g. A[i,j] = A[i-1, j]. In this case PODS 

would not allow i to be d.istributed, and the RANGE_FU. TER would go in the jth level (i.e. 

be distributed). As in Case 1 when j was distributed, the iterations must wait for i to be 

generated. Since the LCD is in i the loop would execute as shown in Table 2.6 (execution 

time of 45). Note that Table 2.6 obeys the LCD restriction on i. The block' sin Table 2.6 

mean that the necessary array elernents have not yet been written. 
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time PE 1 PE 2 PEj PE4 
ro parent sp 
1 context sw 
2 geni=l 
3 geni=2 commdelay commdelay commdelay 
4 geni=3 commdelay commdelay commdelay 
5 geni=4 commdelt?' commdelt?' commdelt?' 
6 geni=5 for i=l: for i=l: for i=l: 
7 gen i=6 context sw context sw context sw 
8 gen i=7 block fori=2: 0 for i=2: 0 
9 geni=8 block context sw context sw 
10 1, 1 block for i=3: 0 for i=3: 0 
11 1, 2 block context sw context sw 
12 1, 3 block . block for i=4: 0 
13 1, 4 commdelay block context sw 
14 context sw commdelay block fori=5: 0 
15 2, 1 commdelay block context sw 
16 2,2 2,3 block fori=6: 0 
17 context sw 2,4 block context sw 
18 for i=4: 0 context sw block block 
19 context sw 3, 1 block block 
20 fori=5: 0 3, 2 commdelay block 
21 context sw 3, 3 commdelay block 
22 for i=6: 0 3, 4 commdelay block 
23 context sw context sw 4, 1 block 
24 fori=7: 0 fori=4: 0 4,2 block 
25 context sw context sw 4, 3 block 
26 fori=8: 0 fori=5: 0 4,4 block 
27 context sw context sw block 
28 fori=6: 0 5, 1 block 
29 context sw 5,2 block 
30 fori=7: 0 5, 3 block 
31 context sw 5,4 block 
32 for i=8: 0 context sw block 
33 6, 1 block 
34 6, 2 commdelay 
35 6, 3 commdelay 
36 6, 4 commdelay 
37 context sw 7, 1 
38 fori=7: 0 7,2 
39 context sw 7, 3 
40 fori=8: 0 7,4 
41 context sw 
42 8, 1 
43 8, 2 
44 8, 3 
45 8,4 

TABLE 2.6. EFFECTS OF INNER LOOP 0IS1RIBUTION WITH LCDS. 
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Cornparing this to Table 2.7 below, the execution time is shorter with inner loop 

distribution than with no distribution (sequentially). As the work per element grows or the 

array dlmensions increase, this advantage will grow. 

Case 3: LCD in j 

FUNC uses j in such a way that there is a LCD, e.g. A[i,j] = A[i, j-1]. In this case PODS 

would distribute i, and the RANGE_FIL TER would go in the ith level . As in Case 1 when i 

was clistributed, the iterations will ran in parallel right away. And since the LCD is inj the 

loop would execute exactly like the first part of Case 1 (execution time of 21). Note that 

Table 2.4 obeys the LCD restriction on j. 

Case 4: LCD in i and j 

In this case FUNC would be something like A[ij] = A[i-1, j-1]. Since there are LCDs in 

each level, PODS would not distribute this loop at ali and the execution would be as shown 

below in Table 2.7 (total execution time of 49). The load balance in this case is also very 

poor. 



time PE 1 PE 2 PEJ PE4 
~ parent sp 
1 context sw 
2 geni=l 
3 gen i=2 
4 geni=3 
5 gen i=4 
6 gen i=5 
7 gen i=6 
8 gen i=7 
9 gen i=8 
10 context sw 
11 1, 1 
12 1, 2 
13 1, 3 
14 1, 4 
15 context sw 
16 2, 1 
17 2, 2 
18 2, 3 
19 2,4 
20 context sw 

43 7,3 
44 7,4 
45 context sw 
46 8, 1 
47 8, 2 
48 8, 3 
49 8, 4 

TABLE 2. 7. EFFECTS OF NO DISTRIBUTION DUE TO LCDS. 

It is interesting to note that Cases 2 and 3 are still executed in parallel by PODS even with 

the LCDs. In general Case 2 could generate multiple diagonal wavefronts, while Case 1 

would execute with a horizontal sweep. The diagrams below illustrate the different 

execution pattems. The numbers in each cell are the time each cell would be filled. By 

tracing lines through equal times the wavefront can be seen. 
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FIGURE 2.32. LCD EXECUTION W A VEFRONTS. 

Matrix Multiply 
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To better understand the distribution algorithm reconsider the Matrix. Multiply code shown 

previously in Figure 2.15. There are three code-blocks in this function which turn into 

SPs: one for i-loop (MM-O); one for j-loop (MM-1); and one for k-loop (MM-2). This 

function has no LCDs in the i or j loops, only in the k-loop. Using the loop distribution 

determination algorithm above, the outer-most code-block (the i-loop) cannot be distributed 

without setting upa dummy parent. The next innercode-block (thej-loop) has no LCD 

and will thus be distributed. All descendent code-blocks (only the k-loop) wil1 be local. 

The files below are the exact inputs that were used to run Matrix Multiply on the PODS 

Simulator. 
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M+-0 
t opcode ·~ arg5 

(value, port) dest [i, p] rc.ute (r) {e} 

o ppa.pr o -> (12,0] {B} 
1 ppa.pr o -> (13,0] (7, 0] (2,0] (5, 0] 

(4, 0] (3, O] {A} 

2 UPPER l3CX.lND 2 (0.00,1) -> (6,2] (9, 1] (11,0] 
3 ~ l3CX.lND 2 (l. 00, 1) -> (6, 3] (14,0] 
4 UPPER l3CX.lND 2 (1.00,1) -> (6, 4] (15,0] 
5 ~ l3CX.lND 2 (0.00, 1) -> (6, 1] (16,0] 
6 ALI.CCA1'E 5 (2.00,0) -> (8, O] 
7 ~ l3CX.lND 2 (0.00,1) -> (9,0] (10, 1] 
8 FOOKJtM> 2 (1.00,1) -> (17,0] 
9 LE 2 (STKY,l) -> (10,0] 

10 SWI'!Oi 5 (1.00,2) (11.00,3) (2.00,4) -> (18,0] (19, 0] (21, 0] (I} 
11 DIST I.OPERA'.l'OR 1 (STKY,0) -> (12) 
12 DIST I.OPERA'.l'OR 1 (STKY,0) -> (14) 
13 DIST I.OPERA'.l'OR 1 (STKY,0) -> (15) 
14 DIST I.OPERA'.l'OR 1 (STKY,0) -> (10) 
15 DIST I.OPERA'.l'OR 1 (STKY,0) -> (11) 
16 DIST I.OPERA'.l'OR 1 (STKY,0) -> (13) 
17 DIST I.OPERA'.l'OR 1 (STKY, 0) -> (16) 
18 DIST I.OPERA'.l'OR 1 -> (1) 
19 PWS 2 (l. 00, 1) -> (20, 0] {NEXT-I} 
20 D 2 (-11.00,1) -> (9,0] (10,1] (I} 
21 DnN 1 -> 

In SP MM-O the PROMPT instructions acquire the A and B matrices used in the Matrix 

Multiply. The UPPER_BOUND and LOWER_BOUND instructions access the array 

headers to setup the loop boundaries. ALLOCATE then remotely distributes the C array 

and feeds a FORKJUMP operator. This FORKJUMP is necessary for the array manager 

to have a place to return the array identifier itjust allocated. The LE, SWITCH, PLUS, D, 

and DINV are the standard dataflow operators. The new PODS operator is the 

DIST _LOPERA TOR, which performs the standard L operator dataflow operations, but 

also sends its tokens to ali PEs. This is how i gets distributed. 

In SP MM-1 below, there is the local equivalent of the DIST_LOPERA TOR, the 

LOCAL_LOPERATOR, which sends its tokens only to itself. LOCAL_LOPERATORs are 

only used when the operations have already been distributed, and more distribution would 

just create network overhead without additional parallelism. MM-1 also has a range filter 

inserted into it, from instruction O to 18 and 29 to 30. 
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t-M-1 
# opcod! #args args (value, p:irt) de.st. [i, p] route (r) {e) 

o INTERVAL CXXlNT 1 (STKY,0) -> [l, l] 
1 LT 2 (0.00,0) (STKY,l) -> [2,0J 
2 SWITCH 5 (0.00, 1) (1.00,2) (29.00, 3) (3. 00, 4) -> [3, OJ [5, 0] [8, l] 

[31,0] 
3 B AAN3E 3 (STKY, 1) (0.00,2) -> [4, 1) 
4 GE 2 (STKY,0) -> [7, OJ 
5 E RAN3E 3 (STKY,l) (0.00,2) -> [6, O] 
6 GE 2 (STKY,l) -> [7, l] 
7 AND 2 -> [8, OJ 
8 SWITCH 5 (1.00,2) (9.00,3) (3.00, 4) -> (9, O] [10,0J [16, l] [17,0] 
9 E RAN3E 3 (STKY, 1) (1.00,2) -> [11,l] 

10 B RAN3E 3 (STKY,l) (1.00,2) -> [11, O] (12,l] 
11 LE 2 (STKY,l) -> (12, 0) [16, O] 
12 SWITCH 5 (1.00,2) (4.00,3) (3.00, 4) -> [13, l] [15, O] [19, l] 
13 LE 2 (STKY,0) -> [14,0) 
14 SWITCH 5 (STKY,l) (1.00,2) (-3.00,3) (0.00,4)-> (11,0J [12,1) 
15 LE 2 (STKY,l) -> (16,0J (19, OJ 
16 SWITCH 5 (STKY,0) (S'l'KY, 1) (3.00,2) (l. 00, 3) (0.00,4)-> [17,0] 
17 PllJS 2 (1.00,1) -> [18,0J 
18 FORKJlM? 2 (-17.00,1) -> [l, O] [2, 1) 
19 SWITCH 5 (1.00,2) (12 .00,3) (3.00, 4) -> [20,0) (26,0) (27, 3) (31, O] 

{J) 

20 ux::AL LOPERATOR 1 -> (7) 

21 ux::AL LOPERATOR 1 (STKY,0) -> (2) 
22 ux::AL LOPERATOR 1 (STKY, 0) -> (3) 
23 ux::AL LOPERATOR 1 (STKY, 0) -> (4) 
24 ux::AL LOPERATOR 1 (STKY,0) -> (5) 
25 ux::AL LOPERATOR 1 (STKY, 0) -> (6) 
26 PllJS 2 (1.00,1) -> (28, O] {NEXT-J} 
27 WRITE ARRAY 4 (STKY,l) (S'l'KY,2) -> 
28 D 2 (1.00,1) -> [11, O] [12, 1] [29, 1) {J} 

29 GE 2 (STKY, 0) -> (30,0J 
30 SWITCH 5 (0.00,1) (-11.00, 2) (-19.00, 3)-> (19,0J 
31 DINV 1 -> 

SP MM-2 is a simple local loop which performs a reduction-like operation. MM-2's LCD 

causes it to be run on one PE and not distributed. The LOCAL_LINV operator routes the 

sum (S) back to its parent SP which is on the same PE since it is a local operation. This 

route uses route list 9 which is programmed into every Routing Unit. 



M-1-2 

* opcode 

O IE 
1 SWITOi 

{TRIWER} 

2 SWITCl:I 
3 READ ~ 
4 PWS 
5 READ ~ 
6 MJLT 
7 PWS 
8 D 
9 D 

10 DINV 
11 DINV 
12 r..o::AL LINV 
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fa.rg:3 a.rg:3 (value, port) dest [i, p] route (r) (e) 

2 (STKY, 1) -> [2,0) [ 1, O] 
5 (1.00,2) (1.00,3) (3.00,4) -> [3,2] [5, l] [ 4, O] [10, O] 

5 (0.00,1) (1.00,2) (8.00,3) (1.00,4)-:> [7,0] [11, OJ {S} 
3 (STKY,0) (STKY,l) -> [6,0J 
2 (1.00,1) -> [8, OJ {NEXT-K) 
3 (STKY, 0) (STKY',2) -> [6, l] 
2 -> [7, l] 
2 -> [9, OJ {NEXT-S} 
2 (l. 00, 1) -> [O, O] [l, l] {K} 
2 (-9.00,1) -> (2, l] {S} 
1 -> 
1 -> [12, OJ 
1 -> (9) 

The routing file below is the "program" that the Routing Unít follows for sendíng tokens to 

different SPs. Notice that route list 9, used by MM-2, sends the sum to MM-1, instruction 

27, port O. Checking MM-1 we see that instruction 27 is the WRITE_ARRA Y instruction 

which is filling array C. 

DISPLAYDG ROOITS 
t dest.ination.s [sp, in.st, port] 

1 -> [l, 25, OJ (1, 27, 2] [l, 4, O] (1, 6, l] 
2 -> [2, O, O] (2, 1, l] 
3 -> [2, o, l] 
4 -> [2, 5, O] 
5 -> [2, 3, O] 
6 -> [2, 3, l] 
7 -> (2, 5, 2] 
9 -> [l, 27, OJ 

10 -> [l, 13, O] [l, 14, l] 
11 -> [l, 15, l] [l, 29, OJ 
12 -> [l, 22, O] 
13 -> [l, 21, 0) 
14 -> (1, 23, O] 
15 -> [l, 24, O] 
16 -> [l, 27, l] (1, O, OJ (1, 3, l] (1, 5, l] (1, 9, l] (1, 10, l] 

Figure 2.33 illustrates the distribution of the three Matrix Multiply SPs across four PEs. 

The cwved lines represent broadcasts, the straight lines represent execution time, and the 

bold lines correspond to the comments on the right-hand side of the figure. For this 

example assume the Matrix Multiply starts out on PE #2. There SP O begins execution, 

and enoounters the "ALLOCATE C' instruction. This instruction initiates a broadcast 



message to the other PEs. U pon receipt of this message, each PE allocates its portien of 

the array. Next, SP O generares and broadcasts the first value for i. Note that SP O does 

not have a range generator, thus it will generare al/ i-indices. 

PE #1 PE #2 PE #3 PE #4 

SP O 

r•ll¡ateC~ 

~ =0 ~ 
SP l ( 1 SP 1 

SPI 1 ¡,¡ 

j=O 

SP 2 

le-loop 

SP 1 

j =l 

1 

:-.1 o 
J = 

SP 21 
k-loop 

SP 11 
j =1 

1 

SP 1 

SP l 

e is distributed 

• i = O is broadcast, 
starts j loops 
• only PE #3 has resp­
onsibility when i is O 
•PE #3 begins j loop 
• all other SPs stop 

le-loop for (0,0) runs 
locally and reports 
sum back to SP l 

FIGURE 2.33. EXAMPLE EXECUTION TRACE FOR MATRIX MULTIPL Y ON 4 PES. 
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Each remote PE that receives an activating token (value 0) instantiates SP l. SP 1 does 

have a range filter, so it will process only those indices for which the current PE is 

responsible. Thus a number of PEs quickly execute essentially empty SPs because they 

have no elements for which they are responsible when i is O. In this case, PE 3 is the only 

PE with operations to perform when i is O. PE #3 executes SP #1, which spawns the 
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k-loop locally (the fact that the loop is local was detennined at compile time). The k-loop is 

a simple loop that generares a vector dot product and returns the result to its parent SP. The 

j-loop may now conti.nue with the j values for which it is responsible when i is O. 

In parallel with the execution of the first iteration of the i-loop, the original SP O continues 

generating and broadcasting successive values for i. This will cause new ready SPs to 

queue up in remete PEs. As other SPs block waiting for tokens, these new SPs will be 

selected for execution by the scheduler. 

Once the k-loop starts, it will access remote pages from different PEs as necessary. This is 

where the existence of the remote access cache becomes important - a large number of 

reads will access the local array cache rather than causing a remote read. 

Thus the SPs are efficiently distributed across the PEs. The distribution of Matrix Multiply 

across the set of PEs is efficient and uses little overhead. 

2. 6. Functional Distribution 

In PODS, functional distribution is not a primary concem. The APPLY operator is used to 

spawn function calls on a single remote PE, and the INVERSE_APPL Y is used to report any 

answers. Both of these operators are similar to the original ID operators, as described 

previously. 

PODS distributes functions at run time. Since all communication into and out of a function 

go through the calling SP, this decision does not have to be broadcast to the other SPs. 

Functional distribution occurs in two steps: the first step is to determine whether to 

distribute the function or not, and the second is to determine where to send it to if it is to be 

distributed. 
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Currently ali functi.on calls in PODS are distributed. In the furure the loading of the PE and 

the size of the function may be used to determine whether functions should be local or 

distributed. 

Once it has been detennined that a function will be distributed. where it will be sent to must 

be decided. In order to randomly distribute the work load the simple hash function below 

is used to generate the ID of the target PE. 

Target PE ID= (iteration + SP ID+ Calling PE ID) mod (number PEs) 

This will place different iterations on different PEs; necessary for calls inside of loops. By 

using the calling PE's ID the same functions called from different PEs will not all end up 

on the same PEs. Finally, the SP number adds to the randomness, particularly at the 

beginning of a program. 

This approach provides a fairly random distribution, which in turn tends to generare a 

balanced work load. Given more information, a more complex and possibly better 

distribution function may be used, but the simple approach achieves acceptable results 

without wasting interconnect bandwidth in order to maintain global state information. 

2. 7. Deadlock Handling 

Once SPs are formed they are checked for deadlock. Deadlock can occur when dynamic 

ares are present in such a way the actual instruction execution order depends on the indices 

u sed. 

Iannucci [Ian88] handles deadlock in such a way that the execution of very small SPs must 

be efficient This is not possible on currently available distributed memory MIMD 

machines. PODS instead produces a partitioning then checks it for deadlock. If it is 

deadlock-free then it will run efficiently. If it has deadlocks then the programmer is given 
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the choice to either change the offend.ing code. or have the partitioner split the SP to remove 

the deadlocks. 

PODS uses a cornbination of deadlock avoidance and detection. In PODS, unnecessary 

deadlocks occur only when an arra y read is placed befare its array write. In order to 

understand simple deadlock, consider the SP fragment below. The READ will request an 

I-structure read and the value would be sent to the '+ l '. But since the WRITE has not yet 

occurred (if A[i] already has a value then a single-assignment violation will occur), the '+ 

1' will block and will never unblock - causing deadlock. 

O regO <- read(A, i) 
1 regO <- regO + 1 

8 regO <- sorreva.lue 
9 write(regO, A, i) 

In order to avoid this PODS places array writes befare any reads of the same array. This is 

only lirnited by the static data dependencies. If A[i] = A[i+ l] + 1 (a LCD), then the array 

read of A[i+l] will be befare the array write into A[i]. This is nota problem. In the 

exarnple above, PODS would avoid the deadlock by ordering the instructions as follows. 

O regO <- sorreva.lue 
1 write(regO, A, i) 
2 regO <- read(A, i) 
3 regO <- regO + 1 

However, this will not always work. If another array.write to the same array occurs in the 

same SP then deadlock can occur. Once this has been detected. PODS splits the SP just 

after the array write to avoid the possible deadlock. This will avoid the deadlock because 

array writes do not have an output dependency are. Thus, putting instructions after an 

arra y write adds an irnplicit dependency are out of the array write. Splitting just after the 

array write will remove this added are, thus returning the dataflow graph to its original, 

deadlock-free state. 
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Consider the example below. This is the example Iannucci used to describe MDS. What 

follows is how PODS would handle it 

a= vector(0,2); 
a[OJ = O; 
a[l] = a[i] + 1; 
a[2J = a[j] - 2; 

in a [ 1 J - a [ 2 l ; 

FIGURE 2.34. ID NOUVEAU DEADLOCK CODE EXAMPLE. 

The unchecked PODS SP would look something like: 

SP O 
O write (0, A, 0) 
1 regO <- read(A, i) 
2 regO <- regO + 1 
3 write (regO, A, 1) 
4 regO <- read (A, j) 
5 regO <- regO - 2 
6 write(regO, A, 2) 
7 regO <- read(A, 1) 
8 regl <- read(A, 2) 
9 retum (regO - regl) 

This can cause an. unnecessary deadlock if i = 2 an.d j = O. In the code above (with i = 2 

and j = 0), instruction #2 blocks awaiting the read from instruction #l. This deadlock is 

unnecessary because a different ordering would not deadlock. By moving the bolded 

instructions #4 - #6 above to instructions #1 - #3 below, i = 2 andj =O would not cause a 

deadlock. to form another ordering. However, the code below would block on i =O and j 

= 1, where the code above would not. Both of these orderings cause unnecessary 

deadlocks because they can. be removed; a necessary deadlock would occur if i = 1 or j = 2 

(see Figure 2.34 above). 



SP O 
O write(O, A, 0) 
1 reqO <- read (A, j) 
2 reqO <- regO - 2 
3 write(regO, A, 2) 
4 regO <- read(A, i) 
5 regO <- regO + 1 
6 write(regO, A, 1) 
7 regO <- read(A, 1) 
8 regl <- read(A, 2) 
9 return(regO - regl) 

PODS would recognize that there are three array writes to the same array in the same SP. 

Therefore, the SP must be split after every write. This will form the following SPs. 

SP O 
O write(O, A, 0) 

SP 1 
O regO <- read(A, i) 
1 regO <- regO + 1 
2 write(regO, A, 1) 

SP 2 
O regO <- read(A, j) 
1 regO <- regO - 2 
2 write(regO, A, 2) 

SP 3 
O regO <- read (A, 1) 
1 regl <- read(A, 2) 
2 return(regO - regl) 
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This will remove the dynamic ares caused by placing instructions after an array write; array 

writes do not have output dependency ares. These unnecessary dependency ares are what 

cause the deadloc.k. These types of situations are possible but unlikely. In none of the 

Livermore Loops, nor Matrix Multiply, nor in any"of SIMPLE does code like this occur. 

Iannucci has designed a completely safe system, however it cannot run efficiently without 

special purpose hardware. PODS has been designed for the most lik:ely cases (scientific 

code), but can still operator on the abnormal cases (though notas efficiently as regular 

code). A detection method more complex than the simple array write test is currently being 
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investigated. It is based upon the LCD algorithm. This would allow PODS to create even 

larger SPs. 



CHAPTER3 

PODS Logical lmplementation 

This chapter d.iscusses the logical implementati.on of a Process-Oriented Dataflow System. 

The logical irnplementation describes the functional units and their tasks in PODS. The 

remete arra.y caching scheme is also presented. Once these are covered the logical 

architecture is examined. Finally, the supporting software suite is presented. 

3. l. System Overview 

The driving force behind the PODS logical implementation design was the desire to support 

the programmer with automatic, but efficient, parallelization of his code. To achieve this 

the logical implementation had to execute the partitioned ccxle with ~ little global 

information as possible. Global information is the root cause of many computational 

bottlenecks. And since PODS is to be used on MIMD machines with relatively slow 

communications; communications over the network have to be kept to a mínimum. 

With the above goals in mind, the logical PE design was constrained to contain a 

conventi.onal von Neumann CPU at its core. The suppon units would provide additional 

power to perf orm specialized tasks. It is envisioned that these unit would be placed on a 

single circuit board to forma complete PE. Over time the support units changed in number 

and functionality until the complete set below was finalized. 

• Executi.on Unit - main unit, performs ali ALU functions, a 

standard microprocessor (e.g., Intel 80386). 

• Matching Store - suppon unit, handles matching of incoming 

tokens. 
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.. Routing Unit - support unit, processes rnessages between PEs, 

similar to the Direct-Connect Model in the iPSC/'2. 

Array Manager- support unit, handles array manipulation 

requests and remete caching. 

Memory Manager - support unit, manages SP memory and 

loads SPs. 
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In order to produce partitioned code, a system ~oftware suite was built The suite consists 

of the ID World Compiler, the PODS Translator, the PODS Partitioner, and the PODS 

Simulator. The ID World Compiler was graciously supplied by MIT [Nik87b] and the 

other three programs were designed and built here at UC, Irvine. A parallel programmer 

would write in ID Nouveau, compile the program. run it through the translator, and then 

the partitioner to produce PODS cede. In the future a PODS compiler is envisioned that 

would replace the first three programs, and would be tailored for a specific MIMD 

architecture, like the iPSC/2. 

The PODS instruction set is designed along the lines outlined in Bic's original paper 

[Bic87]. It was designed to perform the required tasks (interna! and externa! token 

passing) as efficiently as possible. Though it was not tailored to a specific von Neumann 

CPU, the tasks required are not beyond the standard von Neumann CPU. 

U nderlaying ali of the instructions is the remote array caching scheme. This is a software 

caching scheme designed to exploit the locality of reference in most programs. This is 

critica! for slow communication MIMD systems. 
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3. 2. Logical PE Architecture 

The logical implementation describes the functional units and their tasks necessary in PODS 

[Roy90]. The design was constrained to contain a conventional von Neumann CPU at its 

core. The support units would provide additional power to perform specialized tasks. It is 

envisioned that these unit would be placed on a single circuit board to form a complete PE. 

This logical implementation is currently being modified to run directly on an iPSC/2. The 

way in which the tasks are performed is changing, but the tasks are still the same. 



MATCHING STORE 
contex t.sp. •. port.i teration 
contex t. sp. •. port.i ter ati on 
contex t.sp. •. port.iteration 

SCP 8 
SCP 1 
SCP 4 
SCP 7 
SCP 9 

SCP 4 (c.sp.*.p.l) 

SCP 9 (c.sp. * .p.0) 

SCP 4 (c.sp.*.p.2) 

values, 
dynamic 

addresses 

output token 

offset 1 
offset 2 

requests, 
values 

ARRA Y MANAGER 

queued 
.............................. .-..........., memory 
--.~~~~--requests 

l 1 1 1 fjc~el 1 1 1 1 

1 

remote values, 
remote requests 

local reads 

FIGURE 3.1. LOGICAL UNITS OF APODS PE. 
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Figure 3.1 shows how the functional units within a PE interact When an input token 

arrives it is run through the Matching Store. When the required tokens are present the 

Memory Manager will load the SP from the Program Memory into Execution Memory. 

Once in Execution Memory the Execution Unit will begin operating on itas it percolates to 

the top of the ready list The key is to keep the Execution Unit operating as muchas 



possible and to keep the number of context switches to a rninimum. In order to suppon 

this the Execution Unit calls upon the Array Manager and the Routing Unit to handle 

specialized tasks. 

Each of the tasks of the functional units is explained below. 

3. 2 .1. Execution Unit 
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The Execution Unit is a simple von Neumann machine which automatically blocks the 

executing process when a necessary operand is not available. This unit is the most heavily 

used and is the most complex. PODS is designed such that this unit can be a standard 

off-the-shelf microprocessor, e.g. Intel 80368. This will allow PODS to make use of 

advancements in rnicroprocessor technology, e.g. Intel i860. 

The Execution Unit uses the state transitions described in Chapter l. In order to execute 

one PODS instruction the following tasks need to be performed: 

1. check if all operands are available - if not block 

2. perform basic instruction to produce value 

3. pass value intemally to needy instructions 

4. if necessary, send message to Routing U nit with route list and 

value. 

5. increment or set program counter as directed by instruction 

These steps can easily be performed by an off-the-shelf microprocessor, and many 

optimizati.ons can be perfonned. For example, many instructions will never block since all 

of their operands are generated locally with the SP. Most instructions do not have routes 



attached, only interna! off sets for value passing. V alue passing is performed by using 

registers. Sec Bic's [Bic90] for a detailed discussion of the Execution Unit's functions. 

3.2.2. Routing Unit 
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The Routing Unit is loosely based upon the Direct-Connect Module in the iPSC/2. 

However, it must perform a number of tasks other than just making the connection. Ali of 

these tasks in vol ve the use of the Routing Table. 

The Routing Table is built at compile time and holds the static information necded to send a 

token from one SP to another. The figure below shows the structure of a Routing Table 

(note that is not limited to only 3 entries as shown). The Routing Table is only dependent 

upon the program, and is built by the PODS Translator. 

unique route ID 1 (sp inst port) (sp inst port) (sp inst port) 

unique route ID 2 (sp inst port) (sp inst port) NULL 

unique route ID 3 (sp inst port) NULL NULL 

unique route ID 4 (sp inst port) (sp inst port) (sp inst port) 

FIGURE 3.2. ROUTING TABLE. 

Each PE has a copy of the Routing Table. It is of a fixed size because it only holds static 

information, the dynamic information will be in the token's tag. To senda route the 

Execution Unit simply semis a local message to the Routing Unit. This message contains 

the route ID, the token's value, the token's tag, and whether this is to be a distributed or 

local or hash route. This is shown below in Figure 3.3. 



message from EU 
contains route ID, value, tag 
d.istribute/local/hashed flag 

Routing Table 
route ID ---------
~u1 i::::o~~~::l-~~~ 

local route: 
send new token to the 

Matching U nit of this PE 

distributed route: 
send new token to 

all PEs 

value 

FonnNew 
Token 

Routing U nit 

hashed route: 
send new token to 

selected PE 

FIGURE 3.3. ROUTING UNIT BLOCK DIAGRAM. 
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If the route is local the destination PE is this one, and the network need not be accessed. In 

the future, the Execution Unit may take on this local responsibility, but that would put more 

burden on the Execution U nit 

If the route is a hashed route, then the Rouci.ng Unit must take the token's context, combine 

it with the destination (sp inst port) from the Rouci.ng Table, and run it through the hash 

function to determine where this particular SP is located. It is possible that this SP will be 

on this PE, but the Routing Unit is the only unit which can determine that 
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If tt ·~ c::>ute is to be d.istributed, then each PE is sent a message with the token in it This is 

how an SP is distributed. Its parent SP calls the Routing Unit with a token and calls for it 

to be distributed. This will cause every PE to receive a copy of the token, and every PE 

will start up the appropriate SP. These distributed SPs have range filters which limit the 

indices which are actually generated. 

Asan example, considera token with the following: value = 1, context = (2,3), iteration 

number = 4, and route ID = 5. If this token were to be d.istributed, and route ID 5 

contained (1, O, 0) (1, 1, 1), then every PE would get two messages. The first message 

would be destined for context (2,3), iteration number 4, SP 1, instruction O, pon O and 

have the value l. The second would be for context (2,3), iteration number 4, SP 1, 

instruction 1, pon 1 and have the value l. 

In an actually implementati.on these messages would be batched together to reduce 

communication costs. 

3. 2 . 3. Array Manager 

The Array Manager handles ali array accesses, except local array reads. The Executi.on 

Unit will issue a request to the Array Manager toread. write, or allocate an array. This will 

not cause a context switch, the Execution Unit will keep on processing until a needed value 

is not available. This causes a shadow to occur between the time the value is requested and 

the time it is needed. In the future this shadow can be exploited to execution as many 

instructions as possible before reaching the needy instruction. 

When a request for an array read is received, the Array Manager determines whether the 

element is: 

1. cached and present - return value 
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2. local or cached, and not presem - enqueue request 

3. rernote - send rernote request to routing unit 

If the element was local and present then the Execution unit would have read it d.irectly. To 

enqueue a request a flag is set in the memory location of the cell to indicare that there are 

requests which will need to be serviced when the cell is written. This is much like 

Arvind's I-structures, [ANP87a, ANP89]. 

When a remate read is needed, the Routing Unit will send the request to the appropriate PE 

(based upon the global partitioning). If the value is present then the entire page is retumed. 

This page is then cached in the PE's software cache for that array. In this way the remote 

caching scherne is implemented, and further reads by this SP will most likely ha ve sorne 

locality-of-reference. The single assignment restriction prevents writes from needing to be 

replicated across the network and this allows a simple caching mechanism to operated 

without cache coherency problems. 

When an array write is requested, the Array Manager perfonns a similar set of tests, but the 

cache is never directly written. The cache will be updated when the page is brought over 

from the remote PE. When the value is actualiy written into the cell the queued read 

requests are dequeued and the value is send to the ali of the requesting SPs, be they local or 

remo te. 

To allocate an array, every PE needs to know that space should be reserved. To do this the 

Array Manager on the PE where the ALLOCATE operator is fired, called the host PE, will 

assign the array a unique ID. This ID is then sent to ali of the other PEs so that they will 

reserve the requested space and use the same ID. This ID is then retumed to the requesting 

SP so that it will be used as a reference the array from any PE. 



3. 2. 4. Memory Manager 

The Mernory Manager is quite simple. It has only one task, to load SPs from program 

memory to execution memory. In an actual implementation, this would simply be a SP 

frame manager with no copying of instructions, and would probably be part of the 

Matching U nit. 
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SP's are loaded as soon as ali of the tokens for the first instruction are present in the 

Matching Unit. There is no reason to load the SP earlier, since the SP cannot start 

executing until then. There is also no reason to load it any later, as the second instruction 

may be fed by the first. 

3. 2. 5. Matching Unit 

The task of the Matching U nit is to receive tokens and determine which SP they are 

destined for. Logically two tokens match if their dynarnic parts and SP numbers match. 

This will uniquely identify a specific SP. In an actual implementation this is implemented 

as a hash table lookup based upon the SP ID, and the frame pointer. This hash table can be 

handled by a small, quick, rnicroprocessor like the AMD 29000. 

3 . 3. Remote Array Caching 

This remote array caching scheme was presented previously in [BNR89b]. Por that paper 

the Livermore Loops benchmark programs were run anda cache size equal to 5% of the 

arra y siz.e was found to be sufficient. This scheme has not changed significantly since that 

time. 

Single assignment is essential to this remote array caching scheme, and a little explanation 

is in order. Single assignment principies allow the implementation of a simple automatic 

synchronization mechanism. Each memory cell has two states-undefined or defined. If a 
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cell is undefined, ü may also have a queue of read requests associated with it. Hardware 

enforces the write-before-read requirement. Sorne examples of architectures that ha ve this 

type of write-once/read-rnany rnernory access mechanism include HEP [Srni85, Srni81] 

and I-structure memory in dataflow [A&C86, ANP87a, ANP89]. 

Prior to execution, an array is either undefined or filled with initialization data (if specified 

in the program). Each PE may write only into undefined array cells. Race cond.itions a.re 

avoided by this single assignment policy. There will never be a race cond.ition for writes to 

memory cell, since only one PE may write to any panicular cell and writing more than once 

results in a run-time error. 

Thus the single assignment rule autornatically enforces synchronization in a disttibuted 

manner, no explicit synchronization mechanisms are necessary-a majar issue in other 

programming paradigms. 

In PODS remote writes are kept to a rninimum by the panitioning described in Chapter 2. 

However, remete reads and still occur quite often, since any instruction may read any data 

item. If data is mapped onto the reading PE, the access is local, otherwise it is remete; the 

PE must request the value from the responsible PE by sending a message. Remete reads 

are synchronized just like local reads-if the data item is not available, the request is 

queued, and if the data item is available, the page containing that ítem is sent back. During 

this remete read the requesting PE can perf orm other useful work. The requesting PE may 

resume executing this SP when the page arrives. This is where the benefits of array 

caching come in, and array caching is greatly simplified because of the single assignment 

principle. 

Since the central idea in single assignment programming is to permit only one write to any 

element, by requiring single assignment we can guarantee that a page fetched from a remete 

PE and cached locally will not need any further updates during the lifetime of the arra y, 
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ignoring far now the possibility of partially filled pages. Given this, each PE may safely 

cache a remotely fetched page in a local data cache, preventing future accesses of the same 

remate page. The cache used will be of fixed size anda least-recently-used (LRU) 

replacement strategy is employed. 

Without single assignment, partitioning data among PEs is possible, but it would require 

excessive communication overhead to allow any instruction to write to any location of an 

array. In addit:i.on, array caching would be nearly useless as each write performed would 

require the upd.ate of ali remete caches containing the modified page. The rnachine could 

broadcast or multicast these updates to avoid the inefficiencies of individual messages, but 

the broadcasts would still strain th;~ network facilities. Not only that, but without single 

assignment the caches would be inconsistent for the duration of the page modification 

broadcast (cache coherency problem). If no cache approach is taken, no page modification 

broadcasts will be necessary, and there will be no inconsistency problems. But, the use of 

caching leads to considerable decreases in total remete accesses peif ormed. 

It has been shown [BNR89b] that a software cache size of 5% of the array size is sufficient 

to reduce the number of remote re ad significantly. Tests with scientific code ha ve shown 

that the percentage of remote reads can be reduce to less than 10% of the total number of 

reads in most cases. Figure 3.4 below shows the effects of d.ifferent size caches on 

percentage of remote reads for a number of the Livermore Loops scientific benchmark 

programs [LLL83]. Notice that nearly ali of the kemels d.rop below 10% when caching is 

used. The only exception is Matrix Multiply; this is because it reads one entire column of 

one matrix and one entire row of the other in order to write one element. PODS uses a 5% 

array cache. 
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FIGURE 3.4. EFFECTS OF CACHE SIZE ON PERCENTAGE OF REMOTE READS. 

As can be seen in Figure 3.5 below, the percentages of remote accesses are usually less 
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than 5% when a 5% cache size is used, independent of the number of PEs. This caching 

can have anywhere from a minimal effect to an extremely large effect Large reductions, 

such as 1/20th of the original remote reads, have been observed. Scientific code 

demonstrates significant reductions (see [BNR89b]). 
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FIGURE 3.5. REMOTE READS FOR THE LIVERMORE LOOPS USING REMOTE CACHING. 

Ata high-level this approach is similar to that taken by Callahan and Kennedy in [C&K88]. 

They describe a number of the software oriented issues involved in distributing arrays 

across distributed memories. Unlike this approach, they allow a completely general 

distribution function for allocating array elements. This is very powerful, but forces the 

programmer to explicitly program in the decomposition and can lead to expensive run-time 

calculations. This differs from the automatic parallelization goal of PODS. 

3. 4. Software Support 

In order to actually use PODS a number of support programs are necessary. These are 

shown in Figure 3.6 below. 



.id file 

PODS 
Partitioner 

PODS 
Simulator 
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FIGURE 3.6. PODS PROGRAMMING SYSTEM. 

3. 4 .1. ID World and GITA Compiler 

ID World is a software environment written at MIT [Nik87b] in LISP. As a pan of the 

environment there is a GIT A compiler which can prcxiuce dataflow graphs for the GIT A. 

The compiler itself [Tra86] makes use of peephole and other optimizations upon the ccxie. 

The idea here was to leverage previous work in the field until the needs of PODS were 

better understood. In the future a direct PODS compiler is in order. 

3. 4. 2. Translator 

The PODS Translator takes a set of .graf files which make up a program and converts the 

GIT A ccxie in to PODS code. This is usually a one-to-one translation. In order for PODS 

to properly execute the dataflow graphs they must be ordered. 

SPs, being small segments of sequenti.al code, have to worry about supplying tokens. An 

operator should only send tokens to instructions which come later in the SP. Tbe exception 
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to this rule is the D operator, which sends data back to the beginning of a loop. As 

Iannucci has pointed out [Ian88] it is not always possible to properly order a dataflow 

program so that the instructions are in a set, correct order. This is dueto the dynamic ares 

which can occur. In Chapter 2 this is discussed in the context of deadlock avoidance, and 

the PODS Partitioner is the program which ensures this. 

Specifically the tasks of the PODS Translator are: 

1 . Instruction Translation - most GIT A instructions get con verted 

directly over to a PODS instruction one-to-one. Sometimes 

groups of GIT A instructions make one PODS instruction. This 

is a format change only. 

2. Removal of U nnecessary Instructions - for GIT A a number of 

IDENT instructions are inserted for synchronization purposes; 

these are unnecessary in PODS because of the synchronization 

imposed by a program counter. 

3. Building of Routing Table - for every dependency are which 

goes from one .graf file to another, an entry into the Routing 

Table is needed 

4. Ordering Instructions - by following the dependency ares the 

PODS instructions are placed in order such that no instructions 

depend upon the input from a later instruction. This handles the 

static dependency problem, the dynamic dependency problem is 

handled in the PODS Partitioner (deadlock avoidance). 
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3. 4. 3. Partitioner 

The PODS Partitioner breaks apart the program into static SPs. It is primarily responsible 

for implementing the distribution scheme discussed in Chapter 2. 

To break apart the data.flow graph the Partitioner starts with the code-blocks generated by 

the GITA compiler. From there deadlock detection is used and the SPs are split as 

necessary. Once it has been determined that an SP will be distributed. the Partitioner then 

adds the range filters and the DISTRIBUTE versions of the L operators. The .pods files are 

produced and the prograrn is now ready to be run or simulated. Figure 3.7 shows the 

Partitioner Block Diagram . 

. trans files 

Deadlock 
Detector 

. trans files 

SP Spliter 

.graf files 

LCD 
Detector 

Distribution . .., _____ ...,¡ 

Algorithm 

Distribution 
Code Inserter 

.pods files 

FIGURE 3.7. PODS P ARTITIONER BLOCK DIAGRAM. 
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The Deadlock Detector uses the scheme described in Chapter 2 and informs the SP Spliter 

where deadlocks rnay occur. The SP Spliter breaks up the SPs as directed. This deadlock 

prevention is not necessary very often; it was not necessary anywhere in SIMPLE nor 

Matrix Multiply. The LCD Detector feeds the Distribution Algorithm Unit the loop-canied 

dependency status of each code-block. The Distribution Algorithm Unit then executes the 

algorithm discussed in Chapter 2. Finally the Distribution Code Inserter places the 

appropriate range filters into the code and annotates the L operators with either DISTRIBUTE 

or LOCAL. 

The LCD Detector is simple because of the dataflow nature of ID Nouveau (see Section 

2.5.3, LCD Effects) and the .graf files it generates. The LCD Detector is written in 'C' and 

follows the algorithm outlined in Chapter 2. The SP Spliter sirnply break a given SP up 

after every write to the problem array; the problem arra y is specified by the LCD Detector. 

Specifically the tasks of the PODS Partitioner are: 

1 . Deadlock Detection and A voidance - perfonned by the 

Deadlock Detector and SP Spliter; uses algorithm discussed in 

Section 2.7, Deadlock Handling. 

2. LCD Detection - perf ormed by the LCD Detector; uses 

algorithm discussed in Section 2.5.3, LCD Effects. 

3 . SP Distributi.on Determination - used output from LCD 

Detector to apply distribution algorithm discussed in Section 

2.5.5, Por-Loop Distribution Algorithm. 



4. Distribution Codc Insertion - inserts proper range filter and 

DISTRIBUTE or LOCAL versions of L operators; uses approach 

outlined in Section 2.5.2, Range Filters. 

3. 4. 4. Simulator 

The PODS Simulator is the subject of Chapter 4. 
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CHA.P1ER4 

PODS Simulations 

In this chapter the PODS Simulator and two example programs, Matrix Multiply and 

SIMPLE, are examined. The results of multiple test cases are analyzed and discussed. 

In the PODS Programming System, the simulator is the last program in the support 

software suite. The PODS Simulator was designed and build to test the logical 

implementation of PODS. Each PE is simulated down to the instruction leve!, with 

different functional units operating in parallel (see Chapter 3 for a description of the 

functional units). The PODS Simulator takes in a program and executes it step by step as if 

the program were actually running on PODS. In this manner the system can be measured 

and monitored as if running real programs. 

In order to compare the results of PODS simulations to the outside world, the PODS 

Simulator is set-up as if it were executing on Intel 386 microprocessors in a hypercube 

configuration. This is not an exact simulation of Intel's iPSC/2, but timing comparisons to 

programs on iPSC/2 systems are valid. The major, real-world program described herein is 

the SIMPLE benchmark [CH&R] developed by Lawrence Livermore Laboratory. This 

code is indicative of the large scale scientific code which is executed on supercomputers 

today. 

4 .1. Overview 

4 .1.1. Simulator Approach 

The PODS Simulator is an event-driven simulator which uses SMPL at its core. 

MacDougall has written an excellent book [Mac87] which describes SMPL and its proper 
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usage. In the PODS Sirnulator, as in any simulation, certain assumptions are necessary. 

These ha ve been kept to a minimum are are based on known or measured statistics. 

There is a hardware configurati.on configurati.on file which holds the following hardware 

parameters: 

• NUMBER_OF _PE - the number of processing element to 

simula te 

• PAGE_SIZE- the size of an array page (set at 32 array 

elements) 

• BROADCAST_NET- whether a broadcast type of message is 

available or not (set to true) 

• CACHE_PERCENT- the size of the software cache for each 

array (set at 5%) 

The hardware configuration file also holds the following timing parameters: 

• NE1WORK_ TIME - the time for a message to propagate over 

the network 

• SINGLE_ROUIB_ TIME - the time to build a single message 

token into a batch inside the Routing Unit 

• MS_SETUP _TIME- the time for the Matching Unit to find if a 

token has a match 

" MM_SETUP _TIME - the time for the Memory Manager to 

wake-up when a new SP is to be loaded 
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" SINGLE_CONTEXT_SWITCH_ TIME- the time for a fast 

context switch 

The values for these, and other timing pararneters, is discussed in the next section. 

4 .1. 2. Timing Assumptions 

In order to estimare the arnount of ti.me a CISC would ta.lee to perform a given operation, 

the PODS Simulator is sized to the Intel iPS02's PEs. These are Intel 80386/80387 

CPU's at 16 MHz. with Direct-Connect Modules for communication. All timing is done 

in µseconds. Each functional unit's timing is described below 

Execution Unit 

This is the ALU and associated units. Its timing is based upon three calculations: (1) the 

time it takes to perform a fast context switch; (2) the time to perform a local array read.; and 

(3) the ti.me of each normal operati.on. Time for each normal operation was measured on 

the iPSC/2 with the following results: 

iPSC/2 Instructi.on 
integer add 
integer subtraction 
bitwise logical 
floating point negate 
floating point compare 
floati.ng point power 
floati.ng point abs 
floating point square root 
floating point multiply 
floating point di vision 
floating point addition 
floatin_g_}2_oint subtraction 

Execution time Ú:!:_sec) 
-0.30ff 
0.300 
0.558 
0.555 
5.803 

96.418 
12.626 
18.929 
7.217 
10.707 
6.753 
6.757 

TABLE 4.1. MEASURED nMEs OF OPERATIONS ON IPSC/2. 



The time for a local array read is based on the pseudo code in Figure 4.1 below. 

offset= size.dim2 * i + j 
if (offset < beginning offset) gota REMOTE READ 
if (offset ~ ending offset) gato REMOTE READ 
if (element not present) gato ENQUEUE READ 
value = array[offset] -

FIGURE 4.1. 2-D ARRA Y READ PSEUDO-CODE. 

The time for a local array read (assuming the value is present) is: 1 integer multiply + 1 

integer add + 3 integer compares+ 1 local read. This works out to be 2.7 µseconds. 
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The time for a fast context switch is based on the 80386 CALL ptrl6:32 instruction. This 

is a full 32 bit indirect procedure call. The worst case for this is 21 clock cycles or 1.312 

µseconds at 16 Mhz. 

ArraY Mauaiw 

The Array Manager handles ali array operations except local array reads (which are 

performed by the Execution Unit). The Array Manager handles the following tasks in the 

indicated times. 

• FreeArray: number_arrays * memory_read_time 

• ArrayWrite: memory_write_tirne + number_queued_reads * 
message_time 

• CachedRead: memory _read_time + message_time if not present 

• RemoteRead: memory_read_time + enqueued_read_time or 

message_time 



where 

.. ReceivePage: page_size * memory_write_time 

• Send.Page: page_size * mernory _read_time + message_time 

AllocateArray: 100.0 µseconds + message_time 

• memory _read_time is the time for a local read = 0.3 µseconds 

• memory _ write_time is the time for a local write = 0.4 µseconds 

• message_time is the time for a signa! from one functional unit to 

another on the same PE= 1.0 µseconds 

• enqueued_read_time is the time to push an early read onto a 

stack = 3 * memory_read_time + 5 * mernory_write_time = 2.9 

µseconds 

Routin& Unit 
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This is basically the Direct-Connect Module with sorne extra operations. This unit is 

responsible for taking a token, forming the rnessage, and sending it over the network to the 

correct PE and SP. Dunigan [Dun88] has done sorne extensive testing of the iPSC/2 and 

found that the communication can effectively be expressed using the following equations: 

if (rnessage_length <= 100 bytes) then 390 µsec 

if (rnessage_length > 100 bytes) then 697 + 0.4 * rnessage_length µsec 

The extra operations calculate the SP and PE to which the token will be sent When the 

Routing Unit receives a token to route, a simple table look-up is used to find the destination 

SPs. Thls is then used in a hash function to find the destination PE. Since tokens are less 



than 100 bytes, and they are batched together in groups of 20, the simulation uses an 

estímate of 19.5 µseconds for each token added. to a batch. 

Memozy Mana¡¡er 
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The Memory Manger sirnply grabs execution rnemory frames from free memory. This is a 

list manager, one list for free SP frames and one for used SP frames. To perform its 

operations the Memory Manger need only add or delete from a linked list This is a 

constant time operation which talces approximately 3 memory references or 0.9 µseconds. 

Matchin~ Store 

The Matching Store must search the hash table for the appropriate SP. This is a simple 

hash search which takes 15 µseconds. 

Network 

The Network is sirnply the physical propagation time. The Routing Unit handles all of the 

transrnission setup. The iPSC/'2 has a theoretical 100 Mbyte per second bandwidth. 

Assurning each message is approxirnately 100 bytes, the time for l hop is 1 µsecond. The 

network time is set to 2.5 µseconds, simulating an average of 2.5 hops. The Network can 

only handle so many messages at a ti.me, this is estimated to be half the number of PEs. 

4. 2. Measures of Effectiveness (MOEs) 

The motivation behind the following Measures of Effectiveness (MOEs) is to gauge how 

well PODS will perform on a real system with real-world problems, and how does this 

compare to what is available today. 

FunctionaJ Unit Balance - how well balanced are the functional units which make up 

the PE? This is measured by SMPL as the fraction of the time which a given facility is 



busy, i.e. the utilization. Since PODS PEs contain parallel functional units, the balance 

between the units is important. If one of the support units, e.g. the Routing Unit, were 

very heavily loaded then the Execution Unit may be waiting for it This would point to 

possible improvements in the logical architecture design. 
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Execution Unit Utilization - what percent of the time are the Execution Units 

operating? Do sorne PEs sit id.le awaiting the outcome of other PEs? Ideally utilization 

should be 100% for each PE, this is never actually possible. This is measured by SMPL as 

the accumulated busy time of the each execution unit, divided by the total run time. 

Execution Unit Load Balance - how equally distributed is the work load? Ideally 

each PE will put in the same amount of work. This shows if there are any "hot-spots" 

where sorne PEs are doing ali the work while others are idle. 

Parallelization Overhead - how many of the instructions executed are "work" 

instructions and how many are due to parallelization. This shows how much additional 

overhead there is in the parallel version of the program. In the PODS Simulator the 

dynamic work instructions as well as the total dynamic instructions are counted. Work 

instructions are those which must be executed no matter how many PEs are used. i.e. Ali 

instructions except the range filter instructions. 

Efficiency Comparison - how efficient is the parallel version on one PE when 

compared to a real sequential version (usually 'C' or FORTRAN). Usually the parallel 

version will be less efficient because of the additiónal tasks which must be perfonned for 

multiple PEs even though there is only one operating. Also, commercial systems have 

additional optimizations which research systems do not. If this comparison shows that the 

parallel system is within 100% of the sequential version on one PE, then the parallel system 

is not grossly inefficient, and the scalability results can be considered to have a valid base 



time. Far Matrix Multiply and SIMPLE, 'C' versions were compiled using the Intel 

supplied compiler and timed on the iPSC/2 host. 
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Scalability - how much do problems speed-up as the number of PEs is increased? 

Ideally linear speed-up is possible. However, overhead and program dependencies prevent 

this from being achieved. This can be seen by plotting the number of PEs vs the speed-up, 

where speed-up is defined to be the time of a single PE run divided by the time of the 

multiple PE run. This is the most important measure of effectiveness of a parallel 

processing system. 

4. 3. Example Programs 

The results presented here are for two diff erent programs. Thc first program is for matrix 

multiplication and is discussed in detail in Chapter 2. Thc second program is SIMPLE, a 

benchmark program written by Crowley et. al. [CH&R] at Lawrence Livermore 

Laboratory. This benchmark was designed to a test computer systems performance on the 

type of large scientific programs which the laboratory runs. It is used here to show how 

well PODS executes large scientific programs. For more detall on SIMPLE see [P&R90]. 

4. 3 . 1. Matrix Multiply 

A detailed discussion of the Matrix Multiply example is contained in Chapter 2. However, 

a brief discussion here is also in arder. 

Discussion 

Consider the implementation of Matrix Multiply in ID Nouvcau shown in Figure 4.2. Thc 

ccxle follows the basic scquential Matrix Multiply algorithm below, vcry closcly. 

C[i, j] = f A[i, k] * B[k, j] 
k = 1 



The use of Next s in line #9 creates a LCD while perfonning a reduction operation. The 

array write into e in line #7 controls the part:itioning, i.e., array e is the master array. 

%%% Matrix Multiply 
1 Def mm A B = { (11, ul), (12, u2) = 2D bounds A; 
2 e= i_matrix ((11,ul), (12,u2)); 
3 In 
4 { For i <- 11 To ul Do 
5 { For j <- 12 to u2 Do 
6 s = O; 
7 C[i,j] = 
8 { For k <- 11 To ul Do 
9 Next s = s + A[i,k] * B[k,j]; 

10 Finally s 
11 } 
12 }; 
13 Finally C 
14 } 
15 } ; 

FIGURE 4.2. MATRIX MUL TIPL Y ID NOUVEAU SOURCE CODE. 
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This function contains a number of items worth noting: ( 1) there are three different SPs 

(one far each far-loop nest level); (2) a new array, C, must be dynamically allocated and 

distributed efficiently; (3) there is a loop-carried dependency in the innermost loop (the sum 

variable, s); (4) the two input arrays, A and B, have different access patterns; and (5) the 

sizes of the input arra.ys are not known at compile time. These attributes malee the Matrix 

Multiply algorithm an interesting test case. 

Results 

Functional Unit Balance. Figure 4.3 below shows the average utilization far the 

different functional units when the 16 x 16 case is run. Notice that ali of the support units 

are not being heavily utiliz.ed. Thus the Execution Unit is not being slowed by the support 

units. This shows that the support units are truly operating in a support function and are 



not performing extensive operations. This bodes well for HyperPODS, where ali PE 

functions will be perfonned by one CPU. 
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FIGURE 4.3. UTil..IZATION FOR EACH FlJNCTIONAL UNIT (16 X 16 :MM:). 

The Execution U nit has the highest utilization until the parallelism drops below that 

necessacy to keep all of the PEs active. The important case above is the 8 PE situation. 

This is where the problem size meets the available PEs. In this case the Execution Unit 

utiliz.ation is more than double that of the most loaded suppon unit (78% vs 35% for the 

Matching Store). 
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Execution Unit Utilization. Since the Execution Unit is the major unit doing the work 

done by a PE, as shown above, its utilizati.on is critica!. For Matrix Multiply the Execution 

U nit utiliz.ation increases as the problem size increases. This is true in general and is due to 
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the increase in the parallelism in larger problems. As Figure 4.4 shows below, PODS is 

only able to spread the available parallelism so far, and as more PEs are made available 

PODS is unable to fully utilize ali of them. 
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FIGURE 4.4. AVERAGE EXECUTION UNIT UTILIZATION FOR MATRIX MULTIPLY. 

This inability to work all of the Execution Units fully will show up in the scalability of the 

program. When the average utilization nears 80% this is usually the end of the speed-up. 

For a the 10 x 10 case this occurs at 4 PEs, for 16 x 16 at 8 PEs, and for 32 x 32 at 16 

PEs. The scalability results below bear this out This 80% number is only indicative of 

Matrix Multiply-like problems. SIMPLE, being much more complex does not exhibit this 

problem. 
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Execution Unit Load Balance. Load balance is more of an issue when Execution Unit 

utilization is less than 80%. For utilizations greater than 80%, most of the PEs must be 

worlcing about the same or the utiliza.don would be lower. For this reason it is more 

interesting to consider the load balance for the medium sired problem, 16 x 16 arrays, than 

the large problem. 

Figure 4.5 shows each Execution Unit's utilization for the 16 x 16 case on 8 PEs. Contrast 

this to Figure 4.6 where most of the work is being perlormed on only half of the PEs. 

This is where the iteration level parallelism is completely used up. This is what causes the 

flat speed-up curve at from 8 PEs on up to 32 PEs for the 16 x 16 Matrix Multiply (see 

Figure 4.7 below). 
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FIGURE 4.5. UTil..IZATION FOR EACH EXECUTION UNIT (16 X 16 MM ON 8 PES). 
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Parallelization Overhead. For Matrix Multiply the amount of overhead due to 

parallelization decreases as the problem size increases. The table below shows dynamic 

instruction counts for clifferent problem sizes. Ali of these counts are for the 32 PE system 

(worst case). 

Problem Size 

1 X 10 
16 X 16 
32 X 32 

Work Instructions Total Instructions 

10,851 
43,083 
336,011 

1 ' 7 
50,460 

362,028 

Percent 
Overhead 

TABLE 4.2. PERCENT ÜVERHEAD lNSTRUCTIONS FOR MATRIX MULTIPLY. 



This indicares that, for Matrix Multiply-like algorithrns, the amount of parallelization 

overhead in PODS is acceptable at large input sizes. This is one reason that speed-up 

increases (see scalability below) as the problem siz.e increases. 
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Efficiency Comparison. A16 x 16 Matrix Multiply, ~tten in 'C' and compiled for a 

single iPSC/2 PE, takes 0.1 seconds to execute. The PODS Simulator estimates that the 

program would run in 0.190 seconds. This is within 100% of the commercial 'C' version, 

and shows that PODS is not grossly inefficient, even on one PE. 

It is also interesting to compare the number of dynamic work instructions the two systems 

execute. The standard C compiler on the iPSC/2 produces code which executes 51,893 

instructions, while PODS executes 43,083. This ratio of about 1.2: 1 holds true for ali of 

the Matrix Multiply cases. This means that PODS executes about the same number of the 

same size instructions as a commercial system. The reason PODS is slower on one PE, is 

because of the multiple PE tasks it is performing. 

Scalability. Figure 4.7 shows the speed-up of different size Matrix Multiply runs. For 

comparison the speed-up predicted for Iannucci's hybrid system is plotted [Ian88]. 
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FIGURE 4.7. SPEED-UP OF MA 1RIX MUL TIPL Y. 

Iannucci's machine is finer grain and is able to exploit more of the parallelism in the small 

10 x 10 problem. PODS does not reach this type of performance until the 32 x 32 problem 

is run. Since Iannucci's machine requires a new CPU design and system architecture, it is 

impossible to know how well it compares to a commercial system. Leaving open the 

question of absolute run times and true scalability. It will be interesting to see how cost 

effective the system will be once it is built 

4.3.2. SIMPLE 

Simulating the execution of of ali of SIMPLE on the PODS Simulator is not possible dueto 

memory limitarions. So SIMPLE was broken up into its.component routines. The major 

routines were run through the translator then through the partitioner, and finally simulated 
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on the PODS Simulator. These majar routines are: VELOCITY_POSITTON, 

HYDRODYNAMICS, and CONDUCTION. Ali of the other procedures are eíther run only once 

(e.g. GENERATOR) orare called by one of the above. This breaking up of SIMPLE is 

appropriate because the routines feed each other in a sequential fashion. There rnay be 

sorne parallelism which is not being exploited., but it is minimal. 

The most important routine is CONDUCTION, both VELOCITY_POSITTON, and 

HYDRODYNAMICS are rnuch easier to parallelize. VELOCITY _POSITTON has no LCDs, no 

function calls, and runs in parallel very well. HYDRODYNAMICS has only 5 SPs 

(CONDUCTION has 15 SP) and is basically one big nested loop; it is not nearly as cornplex 

as CONDUCTION. CONDUCTION is the most difficult to parallelize because of: (1) the sweep 

phases where every element is recalculated twice, based upon its neighbors; (2) the 

complexity of 15 SP plus multiple function calls; and (3) the large number of LCDs with 

both incrementing and decrementing for-loops. These LCD's prevent iteration level 

parallelism from be gin distributed efficiently. For these reasons CONDUCTION is examined 

in detail the discussion section, while the final results for all of SilVlPLE added together is 

presented below in the results section. 

Discussion 

The original ID code for SilVlPLE was written at MIT based upon the Lawrence Livermore 

version. This original ID code was then updated to ID Nouveau. CONDUCTION is a 

complex routine with multiple function calls and code blocks. 

The sweep operations in CONDUCTION cause LCD to occur in the inner-most nest of the 

loops. Figure 4.8 shows one of the sweep blocks (there are two nearly identical sweeps) 

inside of CONDUCTION. Notice that the local arrays a and b are allocated at the outer level 

(lines #3 and #4), filled in the next inner nest (lines #11 - #13), and then used to fill the 

theta _bar arrays (lines # 16 and # 17). Both of these last two loops ha ve LCDs. In lines 
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#12 and #13 b[l-1] is used to produce b[l], generating a LCD with distance l. In lines #16 

and #17 theta_bar[k.1+1] is used to produce theta_bar[k,l]. This generates a LCD with 

distance 1 because the for-loop is decrementing (see downto in line #15). 

% Alternating direction sweeps 
% z sweep 

1 theta bar = i_matrix ( (kmn+l, kmx) , ( lmn+l, lmx+l) ) ; 

2 {far k <- kmn+l to kmx do 
3 a= i array (lmn,lmx); 
4 b = i=array (lmn,lmx); 

% a[lmn],b[lmn] are ~ot used because cbb[*,lmn]=O 
5 a [ lmn ] = .J ; 
6 b[lmn] = 0.0; 

7 
8 
9 

10 
11 
12 
13 

14 

15 
16 
17 
18 

19 

{far 1 <- lmn+l to lmx do 

} ; 

y= sigma[k,l]+cbb[k-1,1] 
+cbb[k-1,1-1]*(1-a[l-l]); 

a[l] = cbb[k-1,1)/y; 
b[l] = (sigma[k,l]*theta hat[k,l] 

+cbb[k-l,l-l]*b[l-1))/y 

%%% back substitution 
theta_bar[k,lmx+l] = O; 

% theta[k,lmx+l] is not used because a[lmx]=O 

{ for 1 <- lmx downto lmn+l do 
theta bar[k,l] = a[l]*theta bar[k,l+l] 

- + b[l] -
} ; 

} ; 

FIGURE 4.8. SWEEP FOR-LOOPS IN CONDUCTION CODE. 

These sweep operations can severely limit parallelism in sorne systems. In PODS the outer 

nest of the for-loop (either k or l) is distributed across the available PEs. Once this is done 

then no future distribution is necessary. 
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In another part of CONDUCTION there is a nested for-loop with LCDs at all levels: lines #30 

- #32 for the outer level, and lines #20 and #21 for the inner level. This for-loop is shown 

in Figure 4.9. This for-loop would be modified by a scalar expanding compiler. 

1 delta theta max, internal eps = 
2 -{ - -
3 delta_theta = O; internal_eps = O; 
4 in 
5 {for k <- kmn+l to kmx do 
6 y, col internal eps = 
7 {- -

8 delta_theta_col = O; col_internal_eps=O; 
9 in 

10 {for 1 <- lmn+l to lmx do 
11 i = table look up 
12 theta-table theta transp[l,k] 
13 indexl[k, l] 3; -
14 j = index2[k,l]; 
15 last indexl[k,l] = i; 
16 eps k 1 = polynomial theta transp[l,k] 
17 - - rho[k,l] i j T Coefficients; 
18 p[k,l] = polynomial theta transp[l,k] 
19 rho[k,l] i j-P Coefficients; 
20 next col internal eps = -
21 col Tnternal eps + mass [k, 1) *eps k l; 
22 eps[k,l] = eps k-1; --
23 y= abs(theta hat[k,l] -
24 theta transp[l,k])/theta transp[l,k]; 
25 next delta theta col = -
2 6 if y > delta theta col 
27 then y else delta theta col 
28 finally delta theta col, col internal eps} 
29 } ; - - - -

30 next delta theta = if y > delta theta then y 
31 - else delta theta; 
32 next internal eps = internal eps + col internal eps 
33 finally delta_theta, internal_eps } - -

34 } ; 

FIGURE 4.9. ORIGINAL CONDUCTION CODE WITH MULTIPLE LCDS. 

The above code was replaced with the following in Figure 4.10. The lines in bold below 

were added or modified ( lines #1, #2, #28, #29, and #31 - #42). 



1 
2 

3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 

28 
29 
30 } ; 

%%% changed by jmar 
vect cie = i array (kmn, kmx) ; 
vect_y = i_array (kmn, kmx); 

{for k <- kmn+l to kmx do 
y, col internal_eps = 
{ 

delta theta col O; col_internal_eps=O; 
in 

{for 1 <- lmn+l to lmx do 
i = table look up 

theta-table theta_~ransp[l,k] 
indexl[k,l] 3; ~ 

j = index2[k,l]; 
last indexl[k,l] = i; 
eps k 1 = polynomial theta transp[l,k] 

- - rho[k,l] i j T Coefficients; 
p[k,l] = polynomial theta transp[l,k] 

rho[k,l] i j-P Coefficients; 
next col internal eps = col-internal eps 

- -+ mass[k,l]*eps k I; 
eps[k,l] = eps k l; - -
y= abs(theta hat[k,l] -

theta transp[l,k])/theta transp[l,k]; 
next delta theta col = -

if y >-delta-theta col 
then y else delta theta col 

finally delta_theta_col, col_Internal_eps} 
} i 

vect y[k] = y; 
vect_cie[k] = col_internal_eps; 

%%% added by jmar 
31 delta theta max, internal_eps = 
32 { - -
33 delta theta = O; internal_eps = O; 
34 in 
35 {for k <- kmn+l to kmx do 
36 next delta theta = if vect y [k] >delta theta 
37 then vect_y [k] -
38 else delta theta; 
39 next internal_eps = internal eps + 
40 - vect cie[k]; 
41 finally delta_theta, internal_eps} -
42 } ; 

FIGURE 4.10. SCALAR EXPANDED CONDUCTION CODE FRAGMENT. 
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This se.alar expansion does not change the output in any way and is a standard compiler 

optimization. 

Another interesting point is that three different subroutines are called: POL YNOMIAL, 

TABLE_LOOK_UP, and BOUNDARY_HEAT_FLOW. With POLYNOMIAL and 

TABLE_LOOK_UP being called rnany ti.mes inside the inner for-loop. These function calls 

are spun off onto other processors to allow more parallelism to be exploited. 

Once the scalar expansion is done, all of the for-loops, except the one add.ed by the 

expansion (lines #31 - #42), are distributed at the first level of the nest. This allows 

CONDUCTION iterati.ons to be spread across all available PEs, thus producing excellent 

speed-up. 

The 22 SPs which PODS forms for CONDUCTION are shown in Table 4.3 below along 

with sorne statisti.cs for each SP. 



CONDUCTION-1. pods 
CONDUCTION-1-0.pods 
CONDUCTION-1-1.pods 
CONDUCTION-2.pods 
CONDUCTION-2-0.pods 
CONDUCTION-2-1.pods 
CONDUCTION-3.pods 
CONDUCTION-4.pods 
CONDUCTION-4-0. pods 
CONDUCTION-5.pods 
CONDUCTION-5-0.pods 
CONDUCTION-6.pods 
CONDUCTION-6-0.pods 
BHF.pods 
BHF-0.pods 
BHF-1.pods 
TLU.pods 
TLU-1.pods 
TLU-0.pods 
POLY. ods 

39 
12 
26 
40 
12 
26 
29 
37 
38 
31 
27 
28 
27 
22 
20 
20 
19 
9 
10 
40 

Dístriburion omments 

Main SP, drives others 
LCD prevents distribution, 
added by scalar expansion 
Distributed For-Loop SP 
Local For-Loop SP 
Local For-Loop SP 
Distributed For-Loop SP 
Local For-Loop SP 
Local For-Loop SP 
Distributed For-Loop SP 
Pistri.buted For-Loop SP 
1.bcal For-Loop SP 
Distributed For-Loop SP 
LocatFor-Loop SP 
Distributed For-Loop SP 
Local For-Loop SP 
Main SP of Procedure 
Small SP, local to BHF 
Small SP, local to BHF 
Main SP of Procedure 
Small SP, local to TLU 
Small SP, local to TLU 
Procedure SP 

TABLE 4.3. SP STATISTICS FOR CONDUCTION. 

Results 

These results are for a1l of the Sll\1PLE routines added together. This is valid because each 

of the routines feeds the next one. If there is sorne iteration level parallelism available 

between routines, then the results will be better than shown here. This was necessary due 

to the performance limitations of the PODS simulator. 

Functional Unit Balance. Smaller problem sizes stress the distribution of work 

between functional units more than larger ones. This is because larger problems have more 

available parallelism andan unbalance PE rnay not show a drop in utilization. The worst 

case, 16 x 16, utilization is shown in Figure 4.11. 
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FIGURE 4.11. UTILIZATION FOR EACH FUNCTIONAL UNIT (16 X 16 SIMPLE). 

The support units once again act in a support role, never reaching any significant utilization 

unit the available parallelism has been used up, at around 8 PEs. Even at 32 PEs the 

support units do not have any bottlenecks, the only change is that the Execution Units 

utilization has d.ropped to a level comparable to the support units. 

Execution Unit Utili:zation. For a 64 x 64 SIMPLE the utilization starts out at 

approximately 70% for 1 PE and goes down to 50% for 32 PEs (see Figure 4.12 ). Once 

again on small problems (16 x 16) the Execution Unit utilization is much lower than on 

large problems (64 x 64). 
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FIGURE 4.12. EXECUTION UNIT UTILIZA TION FOR SIMPLE. 

It is interesting that SIMPLE continues to speed-up even with Execution Units which are 

50% id.le (see Figure 4.16 below). This differs from the Matri.x Multiply example above, 

which stopped speeding-up when utilization drops below 80%. This is dueto the 

complexity difference between SIMPLE and Matrix Multiply. 

Execution Unit Load Balance. SIMPLE, being rnuch more complex than Matrix 

Multiply, spread its load much better. Even in the worst case (16 x 16 on 32 PEs), where 

little speed-up is begin gained, every PE contributes to the final solution (see Figure 4.13). 
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FIGURE 4.13. EXECUTION UNIT UTILIZATION (16 X 16 SIMPLE ON 32 PES). 

When a rnediurn sized problern is run the load balance is better, see Figure 4.14. 
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FIGURE 4.14. EXEClITION UNIT UTILIZATION (32 X 32 SIMPLE ON 32 PES). 

Finally, when a large problem is run the load balance is quite flat on 32 PEs. This is a 

much more realistic size problem far scientific programs. 
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FIGURE 4.15. EXECUTION UNIT UTILIZATION (64 X 64 SIMPLE ON 32 PES). 

Parallelization Overhead. The table below shows dynamic instruction counts for 

different problem sizes. All of these counts are for the 32 PE system (worst case). 

Wor Instructions o Instructions Percent 
Overhead 

4 ,71 5 ' 1 .54% 
215,546 . 240,288 10.30% 
907,711 993,322 8.62% 

TABLE 4.4. PERCENT OVERHEAD INSTRUCTIONS FOR SIMPLE. 
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The percentage of overhead in SIMPLE is smaller than for Matrix Multiply. This is dueto 

the size of the for-loop bodies being larger in SIMPLE (see CONDUCTION code above). 

Keeping the parallelization overhead low is central to efficient parallel processing. 
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Effidency Comparison. For a 32 x 32 input CONDUCTION takes 0.9 seconds on a 

single iPSC/2 PE. This was measured by compiling the standard 'C' version of SIMPLE, 

then nmning one iteration of the main loop, and subtracting the setup time (mainly the 

GENERATE routines). CONDUCTION is used here rather than the total SIMPLE because of 

the function calls and other operations between the major routines which do not appear in 

the total. This would cause the single iPSC/2 PE time to be inflated compared to the PODS 

time. However, the PODS Sirnulator still estimates that the program would run in 1.72 

seconds. This is once again within 100% of the comrnercial version, and shows that 

PODS is not grossly inefficient This has been found to be true on all of the test cases. 

Scalability. This is the true test of a parallel system - how well does it speed-up for 

real-world type problems. Figure 4.16 shows the speed-up of different size SIMPLE runs. 

For comparison the speed-up Pingali and Rogers obtained for a 64 x 64 run is also plotted. 

[P&R90] 
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FIGURE 4.16. SPEED-UP OF SIMPLE. 

For the srnall 16 x 16 case, PODS tops out ata speed-up of 8.1. Eventually the 

parallelization overhead would cause this srnall problem to even run slower as the number 

of PEs increased There is not yet a way for PODS to determine when a problem is so 

srnall that it should not be spread across ali of the available PEs. PODS either runs the SP 

in place or distributes it across ali PEs. 

For the 32 x 32 case, speed-up tops out at 12.4. This order-of-magnitude speed-up is quite 

acceptable and is comparable to the speed-up obtained by Pingali & Rogers on the 64 x 64 

case. 

The 64 x 64 problem size is much more likely for scientific coding and is thus a better 

gauge for the success of PODS in parallelizing scientific code. For the 64 x 64 case, PODS 
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is able to spread the work efficiently across all of the PEs, achieving a speed-up of 18.9 on 

32 PEs. It is unlikely that a greater speed-up would occur on 64 PEs since the average 

Execution Unit utilization is 44%. And based upan the 16 x 16 case, once the Execution 

Unit utilization drops below 40% little speed-up is possible for SIMPLE. This speed-up is 

better than Pingali & Rogers' 64 x 64. 

The reason PODS performs better is due to the remate caching in PODS. Pingali & Rogers 

send the data values to the PE where they are needed. This causes a large number of 

individual messages to be sent, thus their extreme interest in batching messages. In PODS 

the individual messages are also batched, however array data is passed a page at a time. 

The remete caching allows PEs to access arra y elements as if they were local. Using this 

locality of reference, PODS is able toread over 187,000 data elements from caches in the 

CONDUCTION routine alone. This concept is heavily supported by the single assignment 

nature of ID Nouveau [Roy90]. Single assignment allows PODS to ignore cache 

coherency problems and to efficiently partition the arrays. 

4.4. Summary 

This chapter discussed the PODS Simulator and sorne results of interesting benchmark 

problems. The simulation is event-driven and is based on SMPL. The timing assumptions 

were based on the iPSC/2 computer system. The simulator is like an emulator in that it 

actually executes the code at the instruction level. Each different type of instruction takes 

different amount of simulated time. Thus a reasonable estimated of the actual run-time was 

achieved. 

Different measures of effectiveness were used to evaluate PODS on the classic Matrix 

Multi.ply problem and on the more complex SIMPLE hydrodynamics problem. In all cases 

the parallelization overhead was low and the support units did not slow down the Execution 

Unit It is important to note that the single PE time for PODS was not grossly inefficient 
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when compared to commercial 'C' systems when run on the same size CPU. This gives 

the speed-up computations a solid base execution time from which to wark. 

Por Matrix Multiply (a small problem) the Execution Unit utilization was high (80% and 

greater) until the available iteration level parallelism was used up. When this occurred the 

load balance was d.riven way down. Half the PEs were being utilized at 80% and half at 

less than 3%. This unequal load balance caused the speed-up to end abruptly. As the 

problem size was increase this unequal load balance was staved off until greater and greater 

numbers of PEs were made available. This points to a future enhancement-PODS needs 

to know how many PEs to distribute a problem across. Currently PODS decides to 

distribute ar not to distribute, there is no algorithm for gauging when a problem is so small 

that all of the available PEs should not be used. 

Far comparison purposed the 10 x 10 Matrix Multiply speed-up pred.icted for Iannucci's 

Hybrid Architecture is included Iannucci is able to achieve impressive speed-up on small 

problems because of the finer grain. PODS is designed to exploit iteration level 

parallelism, and there is not that much available on the 10 x 10 Matrix Multiply. Iannucci's 

system requires new hardware components while PODS is designed far off-the-shelf 

components. It will be interesting to see how cost effective it is once it is built 

The more complex SIMPLE hydrodynamics program showed how well PODS performs 

on scientific programs. Being much more complex, SIMPLE contains much of the 

iteration level parallelism PODS is designed to exploit. The Execution Unit utilization was 

notas high for SIMPLE as it was for Matrix Multiply. This is to be expected, the simple, 

regular nature of Matrix Multiply is rnuch easier to distribute evenly. However, with 

SIMPLE there is not the abrupt load imbalance that Matrix Multiply encounters. The 

complexity in SIMPLE allows speed-ups to continue raising even though the Execution 

Unit utilization is only 50%. 
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Pingali and Rogers ha ve rnn the ID version of SIMPLE on an iPSC/2. Their results were 

quite good. but PODS is able to achieve an even greater speed-up. This is due to the 

individual message passing which they use. Pingali and Rogers' static scheduling allows 

one PE to know when another PE needs the value just calculated. They then send this 

value to the needy PE. Recognizíng early on that this would cause numerous messages, 

they batched messages together in order to reduce communication costs. In PODS, 

individual messages are also batched, however, array references are handled differently. 

The remate caching of array values allows the locality of reference to be exploited. This 

can be a majar source of speed-up, on the larger SIMPLE runs over 187 ,000 cached arra y 

reads occur out of the 210,000 total reads. This, in conjunction with the efficient 

distribution of work, allows PODS to achieve even greater speed-ups. 



CHAPTER5 

Conclusions 

This chapter presents the related research projects at other universities and sorne of the 

advantages and disadvantages of single assignment, followed by a summary of the 

conclusions found in this research. The areas for future research are discussed as well. 

5. l. Related Work 

Ali of these research project recognize the need to integrate the Dataflow and von Neumann 

rnodels of cornputation. Different cornpiler technology and hardware are used with various 

levels of success. 

5. l. l. Iannucci's Hybrid Architecture 

The Dataflow / von Neurnann Hybrid Architecture proposed by Iannucci [Ian88] differs 

frorn PODS in that it requires a new CPU specifically designed for the architecture, where 

PODS uses off-the-shelf components. A compiler is used to partition the program into 

scheduiing quantums [Ian88]. Scheduling quantums are collections of dataflow 

instructions subject to sequential execution. The Method of Dependency Sets is used to 

generate these scheduling quanturns without deadlock. 

Like PODS this approach executes only one thread ata time, while blocking others which 

are awaiting values. Given that the scheduling quanturns are usually less than five 

instructions long, the need for a fast context switch is high. In PODS the average SP is 

over 25 instructions long. Iannucci's rnodel predicts that 23,569 instructions would be 

executed for a 10 x 10 Matrix Multiply [Ian88]. For the same program PODS only 

executes 15,072 instructions; thus each PODS instruction does 1.5 times the work. 

Together these reduce the need for a fast context switch significantly. 

145 
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Iannucci's abiliry to exploit a fair amount of parallelism from a 10 x 10 Matrix Multiply 

(nearly 20 times speed-up) is impressive. It will be interesting to see how cost effective the 

new architecture with the its new CPU will be. 

S .1. 2. Gao's Hybrid Machine 

At McGill University Guang Gao has been working on a hybrid machine which basically 

adds control-flow to dataflow [Gao90]. This is achieved with a signal graph which is 

similar to the PODS routing table. However, Gao does not use the concept of sequential 

threads. Instead his granularity is a single instruction. He makes use of the pipelinned 

architectures available for von Neumann execution, but the next instruction is not 

necessarily stored right after the present one. A signal graph indicates which instruction 

will be loaded next This had advantages and disadvantages. 

The flexibility of this approach is very high. Depending upon the signa! graph the system 

will function as a dataflow machine or as a von Neumann machine. This can change back 

and forth from instruction to instruction. The amount of overhead this incurs is unknown. 

There is also the problem of a completely new hardware architecture, which may make this 

approach intractable from a cost standpoint 

Another difference from PODS is the use of SISAL [MSS85] rather than ID Nouveau. 

SISAL has a number of good concepts, however, any parallel architecture will have a 

difficult time supporting the dynamic arrays, the update operator, and the recursive function 

calling required. These force the memory manager to be highly efficient at allocating and 

deallocating space. Additionally, the overall machine performance depends on a careful 

layout of these dynamic arrays to reduce memory contenti.on, a difficult problem at best 
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5. 1. 3. Alf aifa 

The Alfalfa system [G&H89] is mainly concemed with different dynamic scheduling 

techniques and does not address the problem of distributing large data structures, such as 

arrays. They achieve sorne impressive results for problems involving little to no data 

communication, however, for Matrix Multiply, they see poor speed-up results. They claim 

that this is due to the slow message passing time of the iPSC, but PODS shows that a data 

cache combined with simple scheduling can overcome the long latencies associated with 

accessing rernote data 

5 .1. 4. Decoupled Multilevel Dataflow Model 

The Decoupled Multilevel Dataflow Model at USC [E&G90] is a macrcKiataflow project 

aimed at the exploitation of vinual space, multilevel memory hierarchies, and RISC design 

principles. The variable resolution (different size macro operators) allows programs to be 

rnatched with the system. With vector and larger operators the standard von Neumann 

optimizations can be used. 

This system uses SISAL as Gao <loes and will have sorne of the same difficulties. The 

problem is compounded by the need for vector extensions to SISAL so that the 

programmer can tell the system what to vectorize. This places the additional burden of 

specifying parallelism on the programmer. 

The amount of overhead the system incurs, and the cost effectiveness of building a new 

CPU have yet to be determined. It is possible that this variable resolution will be very 

effective at matching a programs inherent parallelism to the processor's capabilities. 
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S .1. S. Dynamic Structured Dataflow 

The Dynamic Structured Dataflow project [Got90] at the Israel Academy of Sciences 

Foundation for Basic Research is working on an execution model with arbitrarily fine 

granularity. This approach is similar to the original PODS concept of SCSs, but here the 

scheduling and resource allocation is done dynamically, where the original PODS attempted 

to detennine the best groupings at compile time. The current PODS uses iterati.on level 

parallelism rather than ses threads. 

In Dynamic Structured Dataflow, the need for a fast context switch is very high, anda fair 

amount of effort has been put into the Parallel Work Conveyor [G&K80] which satisfies 

this requirement. Currently the project is wo.rking on an architectural specification and 

simulator. It will be interesting to see how large of a granularity the system produces and 

how well thc Parallel Work Conveyor operates. These will be very important to efficient 

execution. 

S. l. 6. Pingali and Rogers' Compiler 

At Cornell Pingali and Rogers have been working on a compiler [P&R90, R&P88, 

R&P89] which will take ID Nouveau and compile it into 'C' for execution on an Intel 

iPSC/2. Their language (ID Nouveau) and architecture (iPSC/2) are the same as the current 

PODS, however from there on the approaches differ significantly. 

In PODS there is an underlying execution model which is very different from that used in 

standard von Neumann processors. Pingali and Rogers have stayed with the standard von 

Neumann model. This places PODS closer to true dataflow, and, as such, is better able to 

exploit irregular parallelism. 
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Pingali and Rogers exploit the locality of data reference in large programs, however they do 

not ha ve anything analogous to the remete array caching in PODS. It is conceivable that 

this could be added to their compiler. It is unclear how this would affect their speed-up. 

One of the most critica! elements of their work is the batching of messages. In their 

system a PE knows when and where to sent a data value to another PE. This would create 

a large number of messages if it were not for the batching which is used. In would be 

interesting to incorporate sorne of their ideas into PODS. 

Their performance on an iPSC/2 running SIMPLE is quite good. This seems to be due to 

the clear and concise nature of a compiler which takes ID Nouveau and produces 'C' code 

for a parallel machine. This approach has stimulated the desire to build such a compiler for 

PODS. 

S. 2. Advantages and Disadvantages of Single Assignment 

The proper use of single assignment is central to PODS. The main advantage of single 

assignment is its ability to implicitly expose parallelism With single assignment only the 

definitional data dependencies restrict parallelism. There are no extra dependencies based 

upon storage location naming. This is critica! for parallel program synchronization, 

otherwise innocuous timing bugs can occur. 

Exposing this much parallelism can cause resource overloading. The reality of physical 

machines requires that the parallelisrn be throttled by the operating system. This throttling 

can take significant overhead. This disadvantage is minimized in PODS by the large 

granularity of the SPs. 

An oft criticized feature of implicit parallelism is the inability of a prograrnmer to override 

the synchronizarion when he knows a better way. This lack of control is unsettling to 
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man y parallel programmers. This is because the current state of parallel programrning an 

requires the programmer to take control or take his chances. See [Kar87] for a look at 

parallel prograrnming today. 

Another danger is too rnuch copying of intermediate arra y elements. If an update or replace 

arra y operator is available, grossly inefficient programs can be written. Aids for detecting 

this type of inefficiency are needed. 

In an architecrural sense single assignment has sorne problems. The fact that memory is 

finite rneans that memory locations will have to be written over. i.e. a variable's definition 

(its one and only assignment) will not exist forever. This presents the problem of knowing 

when a variable is no longer needed by any of the processors. 

The final factor is the ease (or difficulty) to program in a single assignment language. See 

[ANP87a] for a convincing argumentas to the ease of single assignment programming. 

The combination of single assignment, areas-of-responsibility, and caching leads to low 

communicat:i.on overhead and well-balanced loads when applied to the majority of the 

Livermore Loops [BNR89b, LLL83], Matrix Mult:i.ply, and SIMPLE [CH&R]. Single 

assignment permits the exploitation of large numbers of PEs automat:i.cally. 

Synchronization problems are solved through the adopt:i.on of the single assignment policy. 

By segmenting array writes using the area-of-responsibility concept, all PEs perform 

roughly the same number of remete accesses. These two concepts allow caching to be 

implemented without extensive communication, and caching is central to reducing remete 

array accesses. 

5. 3. Summary 

This dissertation has discussed the Process-Oriented Dataflow System and its suitability for 

running scientific programs on distributed-memory MThID machines. The partitioning and 



distribution algorithms, along with their underlying principies, have been examined and 

discussed. The logical implementation which was used in the simulations has been 

presented along with the suppon software suite. The remote array cachlng scheme used 

has been described. The event-driven simulation was explained and the results of 

experiments with Matrix Multiply and SIMPLE were examined 

1s1 

It has been found that PODS can achieve speed-ups of nearly 20 times on large versions of 

SIMPLE. This surpasses the speed-up of other approaches on similar architectures. This 

speed-up is sufficient to warrant recoding of large scientific programs from FORTRAN or 

C to ID Nouveau; usually a 10 times speed-up is considered large enough. When large 

scientific programs are written, they are usually written by scientists, not computer 

programmers. ID Nouveau will be easier for scientists to use because of its declarative 

nature. Combine this with the automatic parallelization in PODS and this approach is much 

more productive for parallel scientific prograrnming. 

The basic PODS mcxiel of execution with its ability to "degenerate" to a von Neumann 

machine as necessary, has the following advantages: 

• the number of tokens through matching store and across the 

routing network in general is reduced due to the use of SPs. 

• instruction fetch/execution is as efficient as in a typical von 

Neumann architecture, especially when loops run in-place. 

• programmers may ignore such parameters as the number of 

available PEs- the automatic partitioning allows a higher level 

of abstraction. 



• SPs are long and execute an average of 70 instructions before a 

context switch - reducing context switches greatly increase the 

efficiency and scalability of the system. 

The mechanism for distributing arrays in PODS not only allows for larger arrays than 

normally available in such machines, but it also takes advantage of locality of reference. 

The remete array caching scheme future enhances the locality. 

Both SIMPLE and Matrix Multiply have been used as performance measures. Matrix 

Multiply is a good measure lx(cause it has severa! interesting properties: 

• there are multiple code-blocks 

• a new array must be dynamically allocated and distributed 

• there is a loop-cani.ed dependency in the innermost loop 

• the two input arrays, A and B, have different access patterns 

• the sizes of the input arrays are not known at compile time 
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Matrix multiply also forms the basis for many irnportant scientific algorithms such as: LU 

decomposition, convolution, and the Fast-Fourier Transform. SIMPLE is a good measure 

because of its size (nearly 1000 FORTRAN instructions) and complexity (numerous SPs 

and function calls with many dynamic array). SIMPLE was also designed as a benchmark 

program by one of the largest users of supercomputers, Lawrence Livermore Laboratory. 

In summary, PODS allows MIMD machines to exploit vector and data parallelism 

efficiently, while still providing the flexibility of distributed-memory MIMD machines. 



153 

5. 4. Future Research 

This is the first step in the development of a new approach to parallel processing. To 

further understand the advantages and disadvantages of this approach, a variety of issues 

need to be examined: 

• Reduction operators are not fully exploited. How can vector to 

scalar operations be implemented? Current ideas include a 

mechanism to allow collection of subrange results. 

• How well can scientific programmer use ID Nouveau and 

PODS? 

• How well does PODS execute non-scientific code? 

• Should the programmer be able to specify any panitioning 

parameters? 

• How well does PODS run on real hardware? 

To investigate these issues two major projects are in the works: the first is HyperPODS, an 

implementation of PODS on an Intel iPSC/2; the second is a PODS compiler which would 

take ID Nouveau and compile it directly for a particular implementation of PDS (e.g., 

HyperPODS). 

5. 4 .1. HyperPODS 

HyperPODS is currently being build using the logical implementation described herein. So 

far the logical implementation has served well, but changes wil1 undoubtedly be necessary. 

The issues below will have to be addressed: 



• Register Allocation - the passing of tokens intemal to an SP 

will be done through registers. 

Presence Bits - these are not supported in the hardware, but are 

necessary for I-structures. 

" Blocking of an SP - this will have to be done at certain 

instructions and not others. The efficiency of this is important to 

context switch times. 

• Matching Store - this support unit is the most utilized. It must 

be efficient. 

• Routing Unit - the batching of messages will ha ve to be done 

in the CPU and the interaction with the Direct-Connect Module 

is critical to the scalability of the system. 

• Array Manager - the enqueuing and dequeuing of reads will 

require dynamic memory allocation. 

• Resource Limitations - PODS may ha ve to be throttled down to 

prevent deadlock. The exact implementation of this is unclear. 

These are just a few of the research issues which the PODS team will be addressing in 

HyperPODS. 

5. 4. 2. PODS Compiler 
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The development of HyperPODS and the success of Pingali and Rogers has lead to 

renewed interest in a PODS Compiler. The GITA Compiler currently in use is written in 

LISP and takes up a large amount of memory when executing. More importantly there are 



optimizations which PODS can use which are not in the GITA Compiler (e.g., scalar 

expansion). The PODS Compiler would replace the GIT A Compiler and the PODS 

Translator. The PODS Partitioner could be incorporated, but this is not necessary. 
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Once HyperPODS and a PODS Compiler for it are finished, the complete PODS system 

can be sent to beta-test si tes at facilities which have an iPSC/2 and are interested in getting 

more scientific programs to be parallel. This will be the true test of the PODS concept. 
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Appendix A: Range Filter Algorithms 

This appendix presents the different range filter algorithms used in PODS. There are three 

base algorithms and three parameterizations used to generate a specific range filter. 

When a level of a nest (say ia) is clistributed, the range filter needs to consider al! of the 

indices above it, i 1 to ia-1. This produces three different base algorithms in the current 

PODS. The first base algorithms is the most common, and uses only the first level index, 

see Figure A.1 below. This range filter is the most common because PODS will clistribute 

the outermost level whenever possible. 

1 rn = O 
2 if rn > interval count of master array then exit 
3 set i to the rnaxirnurn of the beginning of the interval 

and the loop beginning 
4 if i is not in the interval or the first elernent of this 

dirnension is not owned then incrernent rn and gota 2 
5 if i is within the loop bounds then set continue to TRUE 

and send i and continue into the loop body 
else incrernent rn and goto 2 

6 if continue is TRUE do the loop body else goto 9 
7 true part of loop body 
8 if new i is within loop bounds set continue to TRUE, 

send i-and continue into the loop body, and goto 4 
else set continue to FALSE, send i and continue int.o the 
loop body, and goto 6 (with i set to new i) 

9 false part of loop body -

FIGURE A. l. BASE RANGE FIL TER ALGORITHM FOR ÜU1ERMOST LEVEL 
DISTRIBUTION. 

The general algorithm functions by repeatedly extracting ranges from the array boundary 

table. While within the range, the filter passes indices for elements within that range. The 

filter also keeps the loop alive by sending a continue token to the loop switch until all 

ranges ha ve been exhausted. In the figure above, mis just sorne variable used to count the 
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intervals; i is the loop index, and continue is the signal to the loop body telling it whether 

to continue or not. 

The next base algorithm is for loops which are d.istributed at the second outermost level. In 

this case the range filter must consider two indices, i andj. Figure A.2 below shows this 

algorithm Notice that it is only slightly d.ifferent the first case; line #3 is added andj rather 

than i is checked in lines #4 - #10. 

1 m = O 
2 if m > interval count of master array then exit 
3 if i is not in interval m then increment m and gato 2 
4 set j to the maximum of the beginning of the interval 

and the loop beginning 
5 if j is not in the interval or the first element of this 

dimension is not owned then increment m and gato 2 
6 if j is within the loop bounds then set continue to TRUE 

and send j and continue into the loop body 
else increment m and gato 2 

7 if continue is TRUE do the loop body else goto 10 
8 true part of loop body 
9 if new j is within loop bounds set continue to TRUE, 

send j-and continue into the loop body, and goto 5 
else set continue to FALSE, send j and continue into the 
loop body, and goto 7 (with j set to new j) 

10 false part of loop body -

FIGURE A.2. BASE RANGE FIL TER ALGORITHM FOR SECOND OUTERMOST LEVEL 
DISTRIBUTION. 

The final case handles the situation when the third level of a nest is distributed. Once again 

this is a simple extension of the first case: adding additional lines to check the additional 

levels (lines #3 and #4) and checking k rather than i. This algorithm can easily be extended 

to handle further levels once PODS handles arrays with more than three dimensions. 



1 m = O 
2 if m > interval count of master array then exit 
3 if i is not in interval m then increment m and gato 2 
4 if j is not in interval m then increment rn and gota 2 
5 set k to the maximum of the beginning of the interval 

and the loop beginning 
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6 if k is not in the interval or the first elernent of this 
dimension is not owned then incrernent m and gato 2 

7 if k is within the loop bounds then set continue to TRUE 
and send k and continue into the loop body 
else increment rn and gato 2 

8 if continue is TRUE do the loop body else gato 11 
9 true part of loop body 
10 if new k is within loop bounds set continue to TRUE, 

send k-and continue into the loop body, and gato 6 
else set continue to FALSE, send k and continue into the 
loop body, and gato 8 (with k set to new_k) 

11 false part of loop body 

FIGURE A.3. BASE RANGE FlLTER ALGoR.ITHMFOR THIRD 0U1ERMOST LEVEL 
DISTRlBlmON. 

Once the base algorithm is selected the three parameterizations are applied. These are: 

1. Loop direction parameterization, 1 to n vs. n downto l. 

2. Indices parameterization, A[i, j] vs. A[c¡*i+k¡, Cj*j+kj]. 

3 . S tepsize parameterization, step by 1 vs. step by C. 

These parameterizati.ons are independent of each other. The first, loop directi.on 

parameterizati.on is quite simple. Lines # 1, #2, and #3 need to be replaced as shown in 

bold in Figure A.4 below. In this way the intervals are accessed in descending order. 

Note that the interval counter mis decremented rather than incremented 



1 m = interval count of master arra.y 
2 if m < O then ex:it 
3 set i to the minimum of the and of the interval 

and tha loop end 
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4 if i is not in the interval ar the first element of this 
dimension is not owned then decrement m and gota 2 

5 if i is within the loop bounds then set continue to TRUE 
and send i and continue into the loop body 
else decrement m and gato 2 

6 if continue is TRUE do the loop body else gato 9 
7 true part of loop body 
8 if new i is within loop bounds set continue to TRUE, 

send i-and continue into the loop body, and gota 4 
else set continue to FALSE, send i and continue into the 
loop body, and gato 6 (with i set to new i) 

9 false part of loop body -

FIGURE A.4. RANGE FIL TER ALGORITHM FOR SlEPSIZE -1. 

The second parameterization is for complex indices like A[c¡*i+k¡, Cj*j+kj]. The range 

filter for this situati.on needs different index check conditions. Figure A.5 shows the 

algorithm for a second level distribution (alongJ) writi.ng into A[c¡*i+k¡, Cj*j+kj]. 
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1 m = O 
2 if rn > interval count of master array then exit 
3 if (c1*i+ki) is not in interva.l m then increment 

m a.nd goto 2 
4 set j to the ma.ximum of the loop beqinninq and 

(beqinninq of the interva.l-kj) / Cj 
5 if ( Cj * j +kj) is not in the inte:rval or tbe first 

element of this dimension is not owned then 
increment m a.nd qoto 2 

6 if j is within the loop bounds then set continue to TRUE 
and send j and continue into the loop body 
else incrernent m and goto 2 

7 if continue is TRUE do the loop body else goto 10 
8 true part of loop body 
9 if new j is within loop bounds set continue to TRUE, 

send j-and continue into the loop body, and gato 5 
else set continue to FALSE, send j and continue into the 
loop body, and gota 7 (with j set to new j) 

10 false part of loop body -

FIGURE A.5. SECOND LEVEL DISTRIBUTION RANGE FlLTER FOR A[C1*I+Kr,C1*J+K1]. 

The lines in bold (lines #3 - #5) ha ve different check conditions than those in Figure A.2; 

this is the only change. 

The third parameterization is also quite simple. This handles the case where the stepsize is 

not 1 nor -1, but sorne constant c. Note that this stepsize is important only on the level of 

the nest which is distributed. Figure A.6 shows the algorithm for a third level distribution 

with stepsize c. Note that line #5, in bold, is the only modification. 
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·¡1 m = O 
2 if m > interval count of master array then exit 
3 if i is not in interval m then increment m and gato 2 
4 if j is not in interval m then increment m and gato 2 
5 set k to the (first multiple of C + sta.rt o-t: 

loop) > start of interva.l m 
6 if k is not in the interval or the first element of this 

dimension is not owned then increment m and gato 2 
7 if k is within the loop bounds then set continue to TRUE 

and send k and continue into the loop body 
else increment m and gato 2 

8 if continue is TRUE do the loop body else gota 11 
9 true part of loop body 
10 if new k is within loop bounds set continue to TRUE, 

send k-and continue into the loop body, and gota 6 
else set continue to FALSE, send k and continue into the 
loop body, and gato 8 (with k set to new k) 

11 false part of loop body -

FIGURE A.6. RANGE FIL TER FOR THIRD LEVEL DIS'IRIBUTION WITH STEPSIZE C. 

Asan example consider the loop range: for k = 2 to 30 stepsize 3. Valid values of k are: 2, 

5, 8, 11, 14, 17, 20, 23, 26, and 29. If an interval m, for a given PE, ran from 6 to 16 

inclusive, then k would start out at 8, and stop at 14. 

The three basic algorithms plus the three parameterizations allow PODS to insert the proper 

range filter at compile time. 




