
UC Irvine
ICS Technical Reports

Title
Exploiting iteration-level parallelism in declarative programs

Permalink
https://escholarship.org/uc/item/0j11x8nt

Author
Roy, John M.A.

Publication Date
1991

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/0j11x8nt
https://escholarship.org
http://www.cdlib.org/

Department of Information and Computer Science

University of California at Irvine

Irvine, CA 92717

Exploiting lteration-Level Parallelism
- in Declarative Program~

3
)1 (J'

John M.A . .B_oy - :;;:::-

March 1991

Notice: This Material
may be protected
by Copyright Law
(Title 17 U.S.C.)

Technical Report #91-24

Abstract
In arder to achieve viable parallel processing three basic criteria must be met: (1) the system must provide a
programming environment which hides the details of parallel processing from the programmer; (2) the
system must execute efficiently on the given hardware; and (3) the system must be economically attractive.

The first criterion can be met by providing the programmer with an implicit rather than explicit
programming paradigm. In this way all of the synchronization and distribution are handled automatically.
To meet the second criterion, the system must perform synchronization and distribution in such a way that
the available computing resources are used to their utmost. And to meet the third criterion, the system
must not require esoteric or expensive hardware to achieve efficient utilization.

This dissertation reports on the Process-Oriented Dataflow System (PODS), which meets all of the above
criteria. PODS uses a hybrid von Neumann-Dataflow model of computation supported by an automatic
partitioning and distribution scheme. The new partitioning and distribution algorithm is presented along
with the underlying principles. Four new mechanisms for distribution are presented: (1) a distributed array
allocation operator for data distribution; (2) a distributed L operator for code distribution; (3) a range filter
for restriction index ranges for different PEs; and (4) a specialized apply operator for functional parallelism.

Simulations show that PODS balances communication overhead with distributed processing to achieve
efficient parallel execution on distributed memory multiprocessors. This is partially due to a new software
array caching scheme, called remote caching, which greatly reduces the amount ofremote memory reads.
PODS is designed to use off-the-shelf components, with no specialized hardware. In this way a real PODS
machine can be built quickly and cost effectively. The system is currently being retargeted to the Intel
iPSC/2 so that it can be run on commercially available equipment.

Keywords: single assignment, dataflow, multiprocessor, declarative programming,
matrix multiply, SIMPLE

UNIVERSITY OF CALIFORNIA

IRVINE

Exploiting Iteration-Level Parallelism

in Declarative Programs

DISSERTATION

submitted in partial satisfaction of the requirements for the degree of

DOCTOR OF PHILOSOPHY

in Information and Computer Science

by

John Marc Andre Roy

Dissertation Committee:

Professor Lubomir Bic, Chair

Professor Nikil Dutt

Professor Alexandru Nicolau

1991

© by John Marc Andre Roy

Al! rights reserved.

ii

The dissertation of John Marc Andre Roy is approved,

and is acceptable in quality and fonn

for publication on microfilm:

University of California, lrvine

1991

iii

DEDICATION

To

my wonderful wife

for ali of her love, support, and understanding.

1 love you Charlene.

iv

TABLE OF CONTENTS

LIST OF FIGURESºººººººººººººº ººººººººººº·······º·º'ºº'º"····º····º··º·º············º····º··ºvili

LIST OF TABLES . º ... º º º º. º º º º º º º º º º .. º º º º º º .. º .. º º º º ... º. º º º. º º. º xi

ACKN"OWLEDGEJ\1ENTS .. º º .. º º º º º º º º .. º xii

CURRICULUM VITAE ··º·········º··········o····º·º·······º········º··ºº'''·················x.iii

PUBLICA TI O NS .. º º º º .. º º º º º º º º º º º º º . º. º º º º º º º ... º º º º. º .. º º º º º º ... º º º º º º º .. º º º º º º º . º .x.iii

ABSTRACT OF THE DISSERTATIONº .. º""ºº"ºº"º''º"'''""º'''ºº'ºººº'ººº"ººº'ººººxiv

Background º .. º º º. º. º º. º º .. 1
1.1. Basic Issues in Parallel Processing º º º º º º º .. 5

1.1º1 º Parallel Programming º º º º º º º. º º .. º º º º. º º .. º 5
1.1.2. Distributed Memory MThID 'º ºº .. ºº º' ºº' ºº'º ºº ºº' º ºº' ºº' º' ''ºº' ºº .º6

1. 2. Previous Research ... º ... º ... º º ... º º . º . º .. º º. º º º .. 6
1.2.1. Single Assignrnent Principie.º º º º.º º.º 6
1.2º2. ID Nouveau Dataflow Language 'ººº"ºº''ºº"'''""'"""""''""'8

Single Assignment Approach º º. º 9
Iteration º. 1 O
I-Structures ... 11
Discussion ... º 13

1.2.3. Hybrid Dataflow º ºº'ºººº'º'ºº'"""º"'º'""····º· 13
1 . 3. Overview of PODS Execution Model º º º º . . . 14

1.3.1. Subcompact Processes (SP) º 15
1. 3. 2. S tate Transitions º º 17
1.3.3. Distributed Memory Approach .. º 19
1.3.4. Discussion .. 20

1.4. Contributions of this Research .. 21
1.4 .1 . Execution Model Extensions º º .. º .. º º 21
1. 4. 2. Partitioning and Distribution Model 21
1.4.3. Remote Array Caching .. 22
1. 4. 4. .Logical Architecture .. º •• 22
1.4.5. Simulationsº ºººº'º'""ººº'"º"º'"'""''ºººº"'"º"''ºº'ºº"º'º 23

PODS Partitioning and Distribution Model.. º""º'"'""º"'º"""º'"º"ºº""ºº"º 24
2. 1 º Overview º º . º º º º ... 25
2. 2. U nderl ying Principies .. º 27

2.2.1. Basic Principies .. 28
2.2.2. PODS Specific Principles .. 30

Grouping Principie .. 30
Virtual Sources Principle ... 31
Collector Writes Principie .. 32

2. 3. PODS Instructions and Processes .. 33
2.3.1. ActivityNames .. 34
2.3.2. PODS Instruction Fonnat º"ººº""""""º 36

V

2. 3. 3. PODS Dataflow Operator Implementation 38
Arithmetic and Logical Operators 40
switch and forkjump .. 41
d and d_inverse .. 43
l and l_inverse ... 45
a and a_inverse .. 47

2.4. Array Partitioning and Distribution ... 48
2.5. Distributing Processes ... 56

2.5.1. Data-Distributed Execution Principie 57
2.5.2. Range Filters ... · 61

Objective and Usage .. 61
Boundary Table .. 64
Master Array ... 65
Algorithrn ... 65

2.5.3. LCD Effects .. 67
2.5.4. Remoce Array Accesses ... 71

Remoce Reads .. 71
Remote Writes ... 73

2.5.5. For-Loop Distribution Algorithm 74
2.5.6. Examples ... 76

LCD Examples ... 76
Matrix Multiply .. 84

2.6. Functional Distribution ... 89
2. 7. Deadlock Handling ... 90

PODS Logical Implementation .. 95
3 .1. System Overview ... 95
3.2. Logical PE Architecture .. 97

3.2.1. Execution Unit ... 99
3.2.2. Routing Unit .. 100

• 3.2.3. Array Manager .. 102
3.2.4. Memory Manager ... 104
3.2.5. Matching Unit ... 104

3.3. Remote Array Caching .. 104
3.4. Software Suppon .. 108

3.4.1. ID World and GITA Compiler 109
3.4.2. Translator .. 109
3.4.3. Partitioner ... 111
3.4.4. Simulator .. 113

PODS Simulations .. 114
4. 1. Overview : ... 114

4. 1.1. Simulator Approach _ ... : 114
4.1.2. Timing Assumptions ... 116

Execution Unit. ... 116
Array Manager .. 117
Routing Unit .. 118
Memory Manager ... 119
Matching Store .. 119
Network ... 119

4.2. Measures of Effectiveness (MOEs) .. 119

vi

4.3. Exarnple Prograrns .. 121
4.3.1. ~ttixM~tiply ... 121

D1scuss1on ... 121
Results ... 122

4.3.2. SThiPLE ... 128
Discussion ... 129
Results ... 134

4.4. Summary ... 142

Conclusions .. 145
5.1. Related Work ... 145

5 .1.1. Iannucci's Hybrid Architecture 145
5.1.2. Gao's Hybrid Machíne .. 146
5 .1.3. Alfalfa .. 147
5. l. 4. Decoupled Multilevel Dataflow Model 14 7
5.1.5. Dynamic Structured Dataflow 148
5 .1.6. Pingali and Rogers' Compiler 148

5 .2. Advantages and Disadvantages of Single Assignment 149
5.3. Summary ... 150
5 .4. Future Research .. 153

5.4.1. HyperPODS ... 153
5 .4.2. PODS Compiler .. 154

References .. 156

Appendix A: Range Filter Algorithms .. 165

vii

Figure 1.1.

Figure 1.2.

Figure 1.3.

Figure 1.4.

Figure 1.5.

Figure 1.6.

LIST OF FIGURES

Lines of Research .. 2

ID Nouveau Quicksort Code ... 9

ID Nouveau Iteration Example .. 11

ID Nouveau I-Structure Example ... 11

Subcompact Process Example Code ... 15

PODS Subcompact Processes Example .. 17

Figure 1.7. Process State Transition Diagram ... 18

Figure 1.8. PODS Memory Accessing Scheme ... 20

Figure 2.1. Simple Array Assignment. .. 28

Figure 2.2. Equal Distribution Principle ... 29

Figure 2.3. Grouping Principie ... 30

Figure 2.4. Virtual Sources Principle .. 31

Figure 2.5. Collector Writes Principie ... 32

Figure 2.6. Basic Dataflow Operator ... 34

Figure 2.7. Activity Name Components ... 35

Figure 2.8. SP Components ... 38

Figure 2.9. ID vs PODS Statement "Addressing" .. 40

Figure 2.10. PODS SWITCH and FORKJUMP Instruction Examples42

Figure 2.11. PODS Branch ... 43

Figure 2.12. PODS Code Fragment for a Loop .. 45

Figure 2.13. Example L Operators .. .46

Figure 2.14. Example Apply and Inv _Apply Operators 48

Figure 2.15. Matrix Multiply ID Nouveau Source Code50

Figure 2.16. PODS Partitioning of A 2-D Array ... 52

Figure 2.17. 2-D Array Read Pseudo-Code .. 55

viii

Figure 2.18. Example 2-D Array Remote Read55

Figure 2.19. Example 2-D Array Local Read. .. 56

Figure 2.20. Partitioning a 2D Iteration Space ... 58

Figure 2.21. Partitioning a 3D Iteration Space ... 59

Figure 2.22. Simple 2-D Array Fill .. 62

Figure 2.23. 2-D Array Fill with Range Filter .. 63

Figure 2.24. Algorithm for Second Level, Descending Range Fil ter for
A['*' ki .,, .. k'] 66 Cl l+ ,CJ J+ J

Figure 2.25. Non-rectangular Array Partitioning Example 67

Figure 2.26. Effects of Communication Speed on Overlapping Iterations 69

Figure 2.27. Remote Read Code Example .. 72

Figure 2.28. Remote Write Code Example .. 73

Figure 2.29. Impossible Collector Writes ... 74

Figure 2.30. Simple Array Filling Example Code .. 76

Figure 2.31. Simple Row-Major Array Partitioning ... 77

Figure 2.32. LCD Execution Wavefronts ... 84

Figure 2.33. Example Execution Trace for Matrix Multiply on 4 PEs 88

Figure 2.34. ID Nouveau Deadlock Code Example .. 92

Figure 3.1. Logical Units of a PODS PE .. 98

Figure 3.2. Routing Table ... 100

Figure 3.3. Routing Unit Block Diagram .. 101

Figure 3.4. Effects of Cache Size on Percentage of Remote Reads 107

Figure 3.5. Remote Reads for the Livermore Loops using Remote Caching 108

Figure 3.6. PODS Programming System .. 109

Figure 3.7. PODS Partitioner Block Diagram. .. 111

Figure 4.1. 2-D Array Read Pseudo-Code .. 117

Figure 4.2. Matrix Multiply ID Nouveau Source Code 122

lX

Figure 4.3. Urilization for Each Functional Unit (16 x 16 MM) 123

Figure 4.4. Average Execution Unit Utilizarion for Matrix Multiply 124

Figure 4.5. Urilization for each Execution Unit (16 x 16 MM on 8 PEs) 125

Figure 4.6. Utilization for each Execution Unit (16 x 16 MM on 16 PEs) 126

Figure 4.7. Speed-Up of Matrix Multiply ... 128

Figure 4.8. Sweep For-Loops in Conduction Code 130

Figure 4.9. Original Conduction Code with Multiple LCDs 131

Figure 4.10. Scalar Expanded Conduction Code Fragment 132

Figure 4.11. Utilization for Each Functional Unit (16 x 16 SIMPLE) 135

Figure 4.12. Execution Unit Utilization for SIMPLE .. 136

Figure 4.13. Execution Unit Utilization (16 x 16 SIMPLE on 32 PEs) 137

Figure 4.14. Execution Unit Utilization (32 x 32 SIMPLE on 32 PEs) 138

Figure 4.15. Executi.on Unit Utilization (64 x 64 SIMPLE on 32 PEs) 139

Figure 4.16. Speed-Up of SIMPLE ... 141

Figure A. l. Base Range Filter Algorithm for Outermost Level Distribution 165

Figure A.2. Base Range Filter Algorithm for Second Outermost Level Distribution ... 166

Figure A.3. Base Range Filter Algorithm for Third Outermost Leve! Distribution 167

Figure A.4. Range Filter Algorithm for Stepsize -!.. 168

Figure A.5. Second Leve! Distribution Range Filter for A[ci*i+ki,cj*j+kj] 169

Figure A.6. Range Filter for Third Level Distribution with Stepsize C 170

X

Table 2.1.

Table 2.2.

Table 2.3.

Table 2.4.

Table 2.5.

Table 2.6.

Table 2.7.

Table 4.1.

Table 4.2.

Table 4.3.

Table 4.4.

LIST OF TABLES

PODS Array Header Information ... 53

2-D Array Example Header .. 54

Example Boundary Table for a Given PE 64

Effects of Outer Loop Distribution with No LCDs 78

Effects of Inner Loop Distributi.on with No LCDs 79

Effects of Inner Loop Distribution with LCDs 81

Effects of No Distribution dueto LCDs ... 83

Measured Times of Operations on iPSC/2 116

Percent Overhead Instructions for Matrix Multi.ply 126

SP Stati.stics for Conduction .. 134

Percent Overhead Instructions for SIMPLE 139

xi

ACKNOWLEDGEMENTS

I would lik:e to express my thanks to my committee chair, Professor Lubomir Bic, for his

continuing insights through out the years, and for this diligence in helping me prepare this

dissertation.

I would lik:e to particularly thank my research associate, Mark Na gel, for his ideas and

progra.mming expenise. Without Mark this work would still be in the programming stages.

Good luck Mark.

Special thanks to my parents for their support and encouragement through out my entire

life.

Financia! support has been provided by a number of sources through out the years: Hughes

Aircraft Company, Fail-Safe Technology, JMAR Research Group, and from my wonderful

wife, Charlene. I would also like to thank the N ational Science Foundation for their

support of the PODS research through NSF grant #CCR-8709817.

xii

CURRICULUM VITAE

John M.A. Roy

1982 B.S. in Electrical Engineering, University of California, San Diego.

1982-1987 Systems Engineer, Hughes Aircraft Company, Fullerton, California.

1984 M.S. in Electrical Engineering, University of Southern California.

1987-1988 Senior Member of Technical Staff, Fail-Safe Technology, Los Angeles,
California.

1988-1989 Systems Consultant, JMAR Research Group, Irvine, California.

1989 M.S. in lnformation and Computer Science, University of California,
Irvine.

1989-1990 Vice-President, Engineering and Operations, Trintech USA, Irvine,
California.

1991-Present Vice-President, Engineering, National Paging, Santa Ana, California.

1991 Ph.D. in lnformation and Computer Science, University of California,
Irvine.
Dissertation: "Exploiting Iteration-Level Parallelism in Declarative
Programs."
Professor Lubomir Bic, Chair.

PUBLICA TI O NS

L. Bic, M. D. Nagel, J. M. A. Roy. Automatic Data/Program Partitioning Using the
Single Assignment Principie. Supercomputing '89 (1989), pp. 551-556.

L. Bic, M. D. Nagel, J. M. A. Roy. Executing Matrix Multiply on a Process Oriented
Dataflow Machine. Technical Report 90-08 (April 1990), Department of ICS, University
of California, Irvine.

L. Bic, M. D. Nagel, J. M. A. Roy. On Array Partitioning in PODS. In Advanced Topics
in Data-Flow Computing. J. L. Gaudiot, L. Bic, Eds. (Prentice Hall, Englewood Cliffs,
New Jersey, 1990), pp. 305-325.

J. M. A. Roy, M. D. Nagel, L. Bic. Partitioning Declarative Programs into
Communicating Processes. Supercomputing '90 (1990), pp. 846-855.

xiii

ABSTRACT OF THE DISSERTA TION

Exploiting Iteration-Level Parallelism

in Dedarative Programs

by

John Marc Andre Roy

Doctor of Philosophy in Information and Computer Science

University of California, Irvine, 1991

Professor Lubomir Bic, Chair

In order to achieve viable parallel processing three basic criteria must be met: (1) the system
must provide a programming environment which hides the details of parallel processing
from the programmer; (2) the system must execute efficiently on the given hardware; and
(3) the system must be economically attractive.

The first criterion can be met by providing the programmer with an implicit rather than
explicit programming parad.igm. In this way ali of the synchronization and distribution are
handled automatically. To meet the second criterion, the system must perform
synchronization and distribution in such a way that the available computing resources are
used to their utmost. And to meet the third criterion, the system must not require esoteric
or expensive hardware to achieve efficient utilization.

This dissertation reports on the Process-Oriented Dataflow System (PODS), which meets
all of the above criteria. PODS uses a hybrid von Neumann-Dataflow inodel of
computation supported by an automatic partitioning and distribution scheme. The new
partitioning and distribution algorithm is presented along with the underlying principles.
Four new mechanisms for distribution are presented: (1) a distributed array allocation
operator for data distribution; (2) a distributed L operator for code distribution; (3) a range
fil ter for restriction index ranges for different PEs; and (4) a specialized apply operator for
functional parallelism.

Simulations show that PODS balances communication overhead with distributed
processing to achieve efficient parallel execution on distributed memory multiprocessors.
This is partially due to a new software arra y caching scheme, called remote caching, which
greatly reduces the amount of remote memory reads. PODS is designed to use
off-the-shelf components, with no specialized hardware. In this way a real PODS machine
can be built quickly and cost effectively. The system is currently being retargeted to the
Intel iPSC/2 so that it can be run on commercially available equipment

XIV

CHAPTERl

Background

Scientific prograrnmers are the primary users of parallel systems today. The current

parallel programming systems do not meet the needs of this important group. Recent user

surveys show that only one user program in twenty executed on the Comell supercomputer

is parallel, [P&B90]. These su.rveys also indicare that many more scientists would

program f or parallel systems if they were not so difficult to progra.m. Hand-coded

parallelism is too difficult and time consuming, while parallelizing compilers do not achieve

sígnificant speed-up.

What is needed is a system which provides scientific programmers with a means to express

their problem clearly and to have it execute efficiently in parallel automatically. Add to this

the desire to run on standard MIMD architectures (e.g., iPSC/2) and the problem becornes

very difficult MIMD architectures require that programs be decomposed into independent

processes, running asynchronously on the different processor nodes and communicating

with one another through rnessage passing or through shared memory. The current state of

the art in programming such machines efficiently is to let the programmer explicitly

partition the program into processes and insert the necessary synchronization and

cornrnunication primitives. This is very time-consuming and error-prone. Automatic

generation of para.lle! programs from conventional lapguages has not, as yet, achieved

sufficient speed-up to warrant wide-spread usage.

To achieve these goals many declarative programming languages [A&E88] have been

designed. Declarative programming languages are much better suited for program

decomposition than procedural languages such as Cor FORTRAN. Declarative languages

allow the programmer to describe the problem using high-level constructs, yet their

1

2

sernantics eliminare uncontrolled side-effects though functional expressions and single

assignment restrictions.

Declararive languages have been developed primari.ly in the context of approach of radically

different cornputer architectures, in particular, dataflow architectures, where parallelisrn is

to be exploited at the instruction leve/. For conventional loosely-coupled MIMD systerns,

this level of parallelisrn is too low; the communicarions costs are too high. By moving to

iteration leve/ parallelism this problem can be overcome [Burns, 88]. Iteration leve!

parallelism is achieved when clifferent iterations (or groups of iterations) from the same

loop are run on clifferent PEs.

Process-Oriented Dataflow Systems (PODS) make use of iterarion leve! parallelism and

declarative programing on distributed rnemory MIMD machines. The PODS line of

research is show in Figure 1.1 as the bold arrow.

Imperative Languages with
Parallel Extensions

Networks of
von N eumann Processors

Declara ti ve
Languages

Dataflow
Architectures

FIGURE 1.1. LINES OF RESEARCH.

Figure 1.1 shows the different lines of research in parallel processing. The first line

involves running imperative languages with parallel extensions (e.g., FORTRAN*

3

[K&B88]) on Networks of von Neumann Processors (e.g., iPSC/2 [Intel, 89]). This

approach is the least revolutionary and has had sorne commercial success. The second line

of research is to take imperative languages and execute them on dataflow architectures

(e.g., Monsoon [Pap88]). This direction has not seen much research, only the ASTOR

[U&Z89, Z&U87] project in Germany has looked into this. The next line of research is to

take a declarative language (e.g., ID [ANP87b], SISAL[A&085, MSS85]) and run them

on von Neumann networks. This is where PODS is, and there are a number of others,

notably Pingali and Rogers at Cornell [P&R90]. The final approach is the most

revolutionary, running declarative languages on dataflow architectures invoives both new

hardware and software. P-RISC [N&A89] and the Monsoon project are both taking this

approach.

In [Bic87], the basic principies of PODS were presented. The algorithms for subdividing

dataflow graphs into communicating processes, however, were too simplistic,

concentrating on oniy functional parallelism. In scientific code, most parallelism comes

from loops iterating over large data structures (i.e., data parallelism). This issue has been

add.ressed in subsequent studies [BNR89a, Bic90, BNR90a, BNR90b] which show that,

for languages based on the single assignment principies (deciarative languages), a simple

automatic partitioning of arrays exposes significant parallelism that can be exploited at run­

time.

In PODS, the programming language ID Nouveau [Nik88] is used because it is one of the

most developed and supported dataflow languages to date and has singie-assignment.

Single-assignment is central to PODS. Given an ID Nouveau program, a compiler would

produce a dataflow graph, where nodes represent individual instructions and ares show all

data dependencies. This graph is then used to generate light-weight processes, referred to

as "subcompact processes" (SPs). This is accomplished by partitioning the data.flow graph

into subgraphs, each of which is executed as a sequential process on a given processing

element (PE).

4

This d.issertation describes the partitioning method used to form the SPs, the SP

d.istribution criteria, the logical implementation of PODS, the remote caching scheme used,

and the results of experiments with an event-driven, instruction-level, simulator. The

dissertation is organized as follows:

• Chapter 1 Background - an overview of the pertinent basic concepts. This

includes discussions on parallel programming, distributed memory MIMD a.rchitectures,

the ID dataflow language, and the previous work on PODS. Knowledgeable readers may

skip any or all of this chapter.

• Chapter 2 PODS Partitioning and Distribution Model - a detailed d.iscussion of

the inner workings of the partitioning of programs into SPs and their distribution.

• Chapter 3 PODS Logical lmplementation - a discussion of the tasks necessary to

make the PODS system work. The array caching scheme is presented along with a

discussion of the special PODS instructions. This is followed up with a description of the

PE a.rchitecture and the necessary support software.

• Chapter 4 Simulations - a presentation of the experiments using Matrix Multiply

and SIMPLE. The simulation approach is discussed and the results are examined.

• Chapter 5 Conclusions - a discussion of the findings about PODS. Future

research and related work are also discussed.

5

1. 1. Basic lssues in Parallel Processing

1. 1. 1. Parallel Programming

Parallel processing has been touted as the wave of the future for a number of years, yet its

use is not yet common. This is because parallel processing requires parallel programrning.

Fer the average, highly-intelligent, but inexperienced, scientific progranuner, the task of

programming a parallel system can be daunting.

In [K&B88], Karp and Babb discuss the complications which arise when trying to

program in any ene of twelve parallel FORTRAN dialects. They state that even trivial

examples frequently become a challenge. Programming parallel systems present

' complications not found in sequential programming. Often parallel programing

environments force the programmer to explicitly partition function and data according to the

constraints of the architecture. Thus requiring the scientific programmer to become

knowledgeable about the particular computer architecture being used.

In debugging parallel programs, synchroniz.ation and timing are often the problem

[K&T88]. By requiring the programmer to explicitly state the communication and

synchroniz.ation points in a program, the system is opening itself to subtle timing errors.

The difficult thing about timing errors is their unpredictability. Often a timing error may

disappear based upon sorne seemingly unrelated fact (e.g. the load on the 1/0 network to

the host), and reappear at a later date.

In their 1989 report on supercomputers, the IEEE Scientific Supercomputer Subcommittee

sited the lack of software as the major problem [IEEE89] in supercomputing tod.ay.

6

Ali of the above problems are addressed in PODS, the parallelization is implicit not explicit,

the synchronization is hand.led automatically, and, due to the dataflow nature of PODS, the

special timing problems of parallel programs are non-existent

1.1. 2. Distributed Memory MIMD

Distributed-memory MTh1D computers can be rnade massively parallel by adding PE's in a

modular fashion. This modularity allows dramatic increases the theoretical maximum

speed. As an example, the latest supercomputer frorn Intel, called the Delta System, will

incorporate 528 i860 microprocessors and have a theoretical peak processing rate of 32

billion floating-point operations per second [Ins91]. The problem is exploiting all of this

parallelism.

1. 2. Previous Research

l. 2. l. Single Assignment Principie

The Single Assignment Principle simply states that no variable will be assigned a value

more than once. This would seem like a very limiting restriction, i.e. one rnay not even

write x = x +l. However, researchers have found that a number of benefits can be derived

from using single assignment in combination with afunctional language. A functional

language is one which is based on function application and is therefore free of side effects.

Sorne of the programming benefits of single assignm.ent functional languages [Veg88] are:

• Programs can be written at a higher level. Time can be spent

concentrating on the algorithm rather than the program details.

• More algorithmic work can be expressed per line of code. This

is important because evidence suggests that the number of lines

of correct code per da.y is roughly a constant for a given

programmer, independent of the language used

• Functional languages a.re free of side effects. This greatly

reduces unexpected modification of variables in other routines.

Programs are easier to verify because proofs can be based upon

the concept of a function rather than sorne complex von

N eumann model.

Functional programs can contain a great deal of implicit rather

than explicit parallelism This is crucial to the PODS concept

7

As is described in the next section, ID Nouveau is the single assignment functional

language which PODS uses. Sorne of the basic ID Nouveau principles are discussed in the

next section.

PODS specifically uses the following abilities of single assignment functional languages:

• Irnplicit Parallelism - the ability of a programmer to code a

parallel program without explicitly specifying the parallelism

• Parallel Program Synchronization - single assignment

automatically synchronizes the da.ta reads and writes of a

program, thus preventing innocuous timing bugs.

• Automatic Cache Coherency - single assignment allows remote

caching to avoid the cache coherency problem. Thus an efficient

implementation can be designed, see Section 3.3, Remote Array

Caching.

8

1. 2. 2. ID Nouveau Dataflow Language

ID (1rvine Dataflow) was bom at the University of California, Irvine in a 1978 technical

report [AGP78]. Thís report laíd the foundations far all further versions of ID. ID has

gone through rnany changes but still retaíns the basic dataflow ideas, the single assignment

concept, and the compiler approach outlined by Arvind. The latest version is being worked

at MIT and is called ID Nouveau. The ID Nouveau language environment, called

ID-World, is a complete parallel language simulator. There are over twenty sites using

ID-World and man y more will be appearing as ID-World expands outside of the LISP

machine world and onto UNIX workstations.

The syntax of ID Nouveau and its functional nature lead to clean algorithms, which in tum

is easier toread and understand. Consider the quicksort code in Figure 1.2 below. Notice

that ID Nouveau allows standard list operations which are easy to understand.

def Quicksort A =
{
Split L =
{ startvalue = hd L;

for v in L;
if (v < startvalue) then cons Llist v;
if (v == startvalue) then center = v;
if (v > startvalue) then cons Rlist v;

end for
in

Llist, center, Rlist
} ; % Split

in
% Quicksort routine body
if (length A < 2)
then

A
el se

{
L, Middle, R = Split(Data)

in
cons Quicksort(L) Middle Quicksort(R);

}
}; % Quicksort

FIGURE 1.2. ID NOUVEAU QUICKSORT CODE.

The split function is repeatedly called until each sublist has only one element it it Then the

sublists are concatenated in order. This is a very clean and clear program for quicksort.

Sin~le Assi~nment Approach

The central issue for PODS in ID is its single assignment nature. All dataflow languages

begin with single assignment, yet many diverge as further developments are made. ID has

tried to stay true to its original single assignment concept:

... a dataflow operation is purely functional and produces lli2 side­

effects as a result of its execution.

9

10

This is the essence of single assignrnent; however, the issue of array handling is in conflict.

To provide arrays this constraint has to be relaxed. ID Nouveau arrays (called 1-structures)

produce a side-effect, but are not allowed to be updated to ensure deterrninacy. Yet, with

no upd.ate how useful is an array? The answer to this question is still being researched.

Arvind. Nikhil, and Pingali feel that they are very useful and that this is the best approach

[ANP87a]. They believe that an upd.ate operator is inadequate and over-specifies

algorithms is such a way that unnecessary copying of intermediare data structures and

substantial unnecessary sequentialization occur. They also feel that automatic detection is

not tractable in general, contrary to other researchers beliefs [A&K87, A&N87, P&W86].

Iteration

Iteration is a major source of parallelism. How a language handles iteration is going to

affect the ability of the programmer and compiler to exploit the parallelism in the loops. In

ID N ouveau the evaluation of loops and conditionals is not eager. This is the sarne as

V ALJSISAL for expressions [A&085]. This forces the predicare to be fired before either

of the two branches of a conditional are fired.

Asan example of iteration, consider the program below, tak:en from [Tra86]. It fiUs each

element of its argument array with a value and retums the sum of all the elements. The

loop body contains ordinary bindings (like the variable val), I-structure stores (for A[i]),

and sorne newified variable bindings. These newified variable bindings describe how to

compute the values the newified variables take on the next iteration of the loop, e.g. the

variable i is incremented each time through the loop. These newified variables must have

an initial binding outside the loop, otherwise it would have no value for the first iteration.

Newified variables do not make sense outside of loops and are not allowed there.

def fill it A =
let

i = lower bound A;
sum O;

in
while i ~ upper bound A;

val = (upper bound A - lower bound A) ~ 2 - i*i;
A[i] = val; -
new sum = sum + val;
new i = i + 1;

return sum

FIGURE 1.3. ID NOUVEAU ITERATION EXAMPLE.

1 1

I-Strnctures

The basic array structure mechanism in ID Nouveau is the I-structure [ANP87a]. An

I-structure is an incremental structure which obeys the single assignment rule. An

I-structure is available as soon as it is allocated and the array elements are individually

accessible. Consider the wavefront example below:

A= matrix ((1, m) , (1, n)) ;
{for i from 1 to m do
A[i,1] = 1}

{for j from 2 to n do
A[l, j] = 1}

{for i from 2 to m do
{for j from 2 to n do

in
A}

A[i, j] = A[i-1, j] + A[i-1, j-1] + A[i, j-1] } }

FIGURE 1.4. ID NOUVEAU I-STRUCTURE EXAMPLE.

Here a matrix has its upper and left borders filled with 1 's, while its interior is filled with

the sum of the upper, left, and diagonal elernents. The matrix A will be returned as the

value of the entire expression as soon as it is allocated. Meanwhile, ali the loop bodies are

initiated in parallel, but sorne will be delayed until the loop bodies to the left and top

(cartesian coordinare wise) complete. Thus a "wavefront" of processes fills the matrix in

parallel.

To achieve this flexibility I-structures use a presence bit. Each cell of an I-structure has a

logical bit attached to it to determine if the cell's value is present. If a read occurs before

the cell is written, the read is enqueued by the I-structure. When a write occurs, ali

pend.ing reads are dequeued and processed. If a write occurs to a cell which has already

been written, then a run-time error occurs. This is an efficient way to enforce single

assignment.

12

I-structures do have a referential transparency problem. Referential transparency demands

that the values returned by two calls to the same constructor function with the same

arguments must never be distinguishable. Thus, in a functional language, one can never

alter a data structure once it has been created, and consequently one must specify the

contents of all elements of the structure at creation time (as in V AL/SISAL [A&085] and

LUCID [W &A85]). Since ID Nouveau includes I-structures, and I-structures do not

specify the contents of all elements at creation, ID Nouveau is nota completely functional

language. Yet it is still single assignment and declarative.

Referential transparency can be given up but determinacy cannot If a language possess the

Church-Rosser property [Lan65], also called the confluence property, then overall program

determinacy is guaranteed even if the machine exhibits non-determinacy in instruction

scheduling. The Church-Rosser property requires that the answer computed by an

expression be unaffected by the choice of which subexpressions are evaluated first. Since

I-structures enqueue ali early reads until the cell is written to, and each cell is single

assignment, 1-structures have the Church-Rosser property. No matter how one interleaves

the execution of reads and writes, every fetch to a given I-structures element always returns

the same value.

13

Djscussioo

ID Nouveau is highly developed language system with rnany sites using its development

environment (ID-World). The ID Nouveau language reference manual [Nik87a] describes

a complete environment with a compiler, a context sensitive editor, and simulators with

parallelism detectors.

In [A&E88] a convincing argument is made for single assignment programming of

scientific programming. In this technical report the SIMPLE hydrodynamics and heat

conduction problem is detailed, andan efficient ID Nouveau program is designed. This

design is then contrasted with a parallel version of the program in annotated FORTRAN

where each program does the same number of arithmetic, load. and store operations.

1.2.3. Hybrid Dataflow

Since Dennis first described the first dataflow execution model [Den75], many architecture

designers have attempted to apply the model to real systems. Dataflow is attractive because

ali parallelism in a program is exposed for potential concurrent execution. In spite of the

elegance of the model, dataflow is not widely used after more than twenty years of

research. The focus has instead turned to the evolution of modem systems by extending

them with dataflow techniques. The results of research in this a.rea include hybrid systems

using large-grain or macro dataflow [Bab84, B&E87, DFL89, Ian88, Kap86, L&G86,

S&H87].

Iannucci [Ian88] has reported on a hybrid dataflow / von Neumann architecture. This

approach is similar to PODS in its use of ID Nouveau as the input language and split­

phased structure access. However the lannucci approach uses a finer gra.in scheduling

approach, called scheduJing quanta (SQ). An SQ of two to three instructions is desirable

for Iannucci's approach, and each iteration of a loop is a new SQ. In PODS, however, the

l..+

natural decomposition of the prograrn is used and SPs are allowed to run-in-place, thus

reducing overhead Another d.ifference is in data structure distribution. There is no

mechanism for spreading iterations of a single loop across processors in Iannucci's

approach. Combining data structure distribution with loop distribution is a central goal in

PODS. Finally Iannucci's mcxiel requires a special purpose architecture capable of fast

context switching among very small SQs. PODS tries to generate SPs large enough to

produce good computation-communication ratios on available distributed memory

multiprocessors. Certainly PODS would benefit from a tailored architecture, but the model

itself is not restricted to such.

In [G&H89], Goldberg and Hudak presented Alfalfa, a system similar ata high level to

PODS. They have implemented the ALFL functional programming language and run-time

system on an Intel iPSC hypercube using what they call serial combinators. Serial

combinators are similar to PODS SPs in that they are sequential threads that execute on a

van Neumann processor. The run-time system handles thread creation and distribution.

The main focus of their work is the study of the effects of dynamic sched.uling (diffusion

scheduling) of parallel threads of execution. They show that diffusion scheduling works

well in many cases, however, they have not addressed. the problem of distributing large

data structures such as arrays. This is illustrated through the relatively poor performance

achieved with the Matrix Multiply algorithm.

1. 3. Overview of PODS Execution Model

The primary objective of PODS is to achieve an efficient execution model for dataflow

programs by reducing the overhead associated with scheduling each instruction individually

[Bic90]. The greatest deficiency of the pure dataflow model is the excessive

communication and token matching overhead associated with passing data from one

operation to another. These operations may lie on the same or different processors, thus

potentially forcing token traffic over the processor interconnection network.

15

Originally it was thought the normal communication overhead could be reduced by

grouping the instructions into threads. This was based on the observation that man y

threads of instructions in the dataflow graph must be executed sequentially due to inherent

data dependencies. Grouping instructions in this manner is similar to Babb's Large Grain

Data Flow (LGDF) [Bab84]. However, it was found this produced SPs which were too

small for the communication to computation ratio of typical distributed-memory machines.

1. 3 .1. Subcompact Processes (SP)

In order to overcome the small SP problem, a different approach was tried and found to be

sufficient. This approach uses the code-blocks inherent in the program. Each code-block

is a different SP, which will then be distributed by the Partitioner as necessary. This is

how PODS exploits the iteration leve! parallelism in a program.

The code fragment below in Figure 1.5 shows a simple nested loop. For this loop there are

three different program scopes which turn into SPs. The first takes care of initial actions,

mainly array allocation. The second handles the L level of the loop, and the third handles

the K leve! and the actual computations.

(initial A := < >; Y := < >; ZX := < >
f or L from 1 to LOOP do

new A := (initial X := < >
for K from 1 to 1000 do

new X[K] := Q + Y[K]*(R* ZX[K+lO]+T*ZX[K+ll])
return X)

return A[l])

FIGURE 1.5. SUBCOMPACT PROCESS EXAMPLE CODE.

16

Figure 1.6 shows che code fragment as a d.ataflow diagram. The SPs are outlined in bold

lines. Notice that the SPs are grouped so that each one will be as independent from the

others as pos si ble. This is were the parallelism is. SP 1 allocates the arrays and then

passes that inforrnation on to SP2. There may be multiple versions of SP2 running (if it is

distributed), each executing only part of the L-loop. Each SP2 will then spawn SP3,

which will run in-place (SP3 would never be distributed if SP2 were). In Chapter 2 the

algorithm for distributing SPs is discussed in detail.

17

X

SP2

SP3

FIGURE 1.6. PODS SUBC01\1PACT PROCESSES E:XA1\1PLE.

l. 3. 2. State Transitions

Once the static SPs are formed they will need to be scheduled for execution. Instead of

scheduling individual operators of a dataflow graph for execution, the level of granularity is

changed to that of an SP. An SP is passive as long as itsfirst operator is disabled (i.e., it

is still missing sorne operands). A passive SP resides in program memory. When all

18

operands for the first operator have arrived, the SP becomes active. This is accomplished

by load.ing the SP into execution memory and creating a simple process control block

(PCB) for it The PCB contains the following information:

• the starting address of the SP in execution memory

• a program counter pointing to the current instruction

•a status field indicating whether the process is running, ready, or blocked

The three states are defined as follows. An SP is said to be running when a PE is currently

fetching and executing instructions from that sequence. An SP is ready when its current

instruction is enabled (has all its operands), but the PE is not available to execute that SP.

Finally, an SP is blocked when its current instruction is not enabled.

current instruction
gets last operand

.FIGURE 1.7. PROCESS STATE TRANSITION DIAGRAM.

The possible state transitions are illustrated in Figure 1.7. Initially, an SP is loaded in.to

execution memory in the ready state. Whenever the PE becomes free, it begins executing

one of the ready SPs in its execution memory; at that time, the status of the selected SP

changes from ready to running. The PE continues executing the SP until it reaches the end

19

of the SP (at which time it is destroyed) or until it encounters an operator that does not yet

ha ve ali its operands present. In the latter case, the SP is blocked and the PE switches to

another ready SP. The blocked SP changes its status to ready as soon as the last operand

for the current instruction arrives.

This process-oriented. viewpoint pennits us to execute a dataflow program as a collection of

communicating SPs. A given dataflow program is transformed into one or more SPs,

which are mapped onto the available PEs. Each SP continues executing as long as it has ali

the operands necessary to perf orm its current operation. When an operation produces a

result token destined for a subsequent operation within the same SP, it is passed directly to

the destination operand slot using a simple memory operation. Only when the token is

destined for a different SP must it travel through the dataflow routing network (within the

same PE or to another PE) and pass through the matching store. It is important to note that

the amount of resources need f or a particular SP is known at load time. With this

information the amount of parallelism can be reduced if necessary.

1. 3. 3. Distributed Memory Approach

In PODS, the memory is distributed as shown in Figure 1.8 below. The physical

separation between the PEs is recognized and exploited Remote memory requests are

performed in a split-pha.se manner. This allows the CPU to continue processing during the

long remote memory latency. Local memory requests are handled instantly and do not

cause the CPU to context switch. This is one reason PODS is able to exploit the power of

massively parallel distributed-memory machines.

LOCAL ACCESSES IN CONSTANT TIME
WITii NO CONTEXT SWITCH

• •
ONL Y REMOTE MEMORY

ACCESSES ARE SPLIT-PHASE

~ .
FIGURE 1.8. PODS MEMORY ACCESSING SCHEME.

l. 3. 4. Discussion

This mO<iel of execution has a number of advantages. Since it uses a program counter,

20

loops can be run in place efficiently. If necessary, due to dependencies, PODS can drop

into completely sequential execution. When a process block occurs, the execution unit

performs a simple context switch (no register storage is necessary) and takes the next ready

SP off the ready list. And array accesses are split-phased to allow the long memory latency

to be tolerated.

In summary, PODS uses a combination of dataflow and von Neumann models of

computation. It uses single assignment to reduce side-effects which aides parallelism. The

declarative nature of ID, and its implicit programming of parallelism, allows the

programmer to ignore the architecture, which increases programmer productivity. For a

more detailed description of the execution model, the reader is referred to [Bic87, Bic90].

21

1. 4. Contributions of this Research

This research has made contributions on many levels. It extends the existing models (the

PODS Execution Mooel and ID lnstruction Set). It presents new principles and algorithms

(for partitioning and distribution). It exploits the abilities of old concepts in new ways

(Remote Arra.y Caching). It explains how all of these can work. together in a logical

rnanner (Logical Architecture). And it shows that this approach is efficient and scalable

(the simulations).

1. 4 .1. Execution Model Extensions

The PODS Execution Mooel was extended to allow iteration level parallelism The

previous mooel, based on the concept of sequential threads, produced SPs which were too

small. The extension to iteration level parallelism allows larger SPs which are more easily

distributed.

1. 4. 2. Partitioning and Distribution Model

The new PODS Partitioning and Distribution Model is based upon two existing and three

new principies of parallel execution. The existing principies (the Equal Distribution

Principie and the Centralization Principie) are well known and are continually pushing in

opposite directions. The new principies (the Grouping Principie, the Virtual Sources

Principie, and the Collector Writes Principie) explain ways in which the two existing

principies can be managed.

From these five principies, two partitioning and distribution algorithms were derived. The

first shows how data should be partitioned and distributed to balance work load and speed

up accesses. The second describes how code should be partitioned and distributed to

balance parallel execution with communication costs.

22

Three primary and two secondary mechanisms were devised to make these algorithms

work. The fust primary mechanism is a distributed array allocate operator which

distributes data. The second is a distributed L operator, it spawns processes across the PEs

to distribute code. The third is an index range filter for restricting the indices for different

PEs. These form the basis for PODS distributed processing. The secondary mechanisms

are: an APPL Y operator for functional distribution; and remote arra y caching for efficient

array accesses. Together these provide an efficient means of applying the new partitioning

and distribution algorithms.

1. 4. 3. Remote Array Caching

Remote Array Caching is a new approach similar to the concept of virtual memory and

based upon the Virtual Sources Principle. This allows arrays to be accessed as if there

were local to every PE. The locality-of-reference of computer programs is heavily

exploited in Remate Array Caching.

1. 4. 4. Logical Architecture

A description of how all of these new concepts and approaches are implemented are

contained in the Logical Architecture. The functional units in a PODS PE are: the

Execution Unit, the Matching Store, the Routing Unit, the Array Manager, and the Memory

Manager. Each of these is designed to run in parallel with the others.

Extensions to the ID instruction set were necessary to allow PODS to execute on a von

Neurnann CPU. Sorne of these extensions involve the addition of a program counter to

each instruction's semantics. Others involve extensive modifications of existi.ng

instructions (e.g. the L operator), and finally others involved totally new instructions to

support the PODS Range Filters (e.g. INTERV AL_COUNT).

23

1. 4. S. Simulations

The PODS Translator, Pa.nitioner, and Simulator were designed and written to test PODS

concepts. The simulations were necessary to test the logical architecture for correctness

and efficiency. These simulations have shown PODS to be an efficient and viable

approach.

CHAP1ER2

PODS Partitioning and Distribution Model

The performance of PODS comes from its ability to map the inherent granularity of a

program onto a given archítecture. The inherent granularity of a program comes from its

block structure. The larger (smaller) the loops and procedures, the larger (smaller) the

granularity. This granularity controls the size of the PODS SPs. The partitioning and

d.istribution model allows the hybrid nature of PODS to be exploited: sequential code is ron

on an efficient von Neumann processor, and parallel code is distributed such that

communicarion costs are not prohibitively high. This is not to say that ali programs will

run well on PODS, bad code can be written f or any computer system. The aim of this

model is to handle the large majority of code which will be executed on distributed memory

MIMD machines and to flag code which is poorly written.

The key elements of PODS partitioning and d.istribution are:

1 . array partitioning, which uses a simple page grouping scheme to

allow equal load across the PEs;

2. arra y d.istribution, whích follows the partitioning such that each

PE produces only those elements for which it is responsible;

3. loop distribution, which considers data dependencies when

distributing;

4. functional distribution, whích atternpts to off-load functions if

the calling PE is overloaded.

24

25

Chapter 2 is organized as follows: (1) a quick overview of the model; (2) presentation and

discussion of the underlying principies; (3) a detailed discussion of PODS instructions and

processes; (4) a d.iscussion of array partition and distribution; (5) an in-depth examination

of process distribution; (6) a discussion of functional distribution; and finally (7) a

discussion of deadlock handling.

2 .1. Overview

In order to exploit a program's parallelism, the program must be partitioned, an activity that

has been the subject of rnuch research. Because optima! partitioning is NP-cornplete, these

partitioning techniques strive for near-optirnality, usually through the use of heuristics or

programmer supplied directives. PODS perforrns partitioning autornatically using the

decornposition implied by the program structure. Programs are broken into code-blocks

by the ID Nouveau compiler and replicated on each PE, making al1 processors hornoge­

neous with respect to code. The key problern with partitioning and distribution in PODS is

that of determining where to send tokens that activate SPs. Since the PEs are

homogeneous, an instance of a specific SP can be executed anywhere simply by routing the

initial activating tokens to a specific PE. Because each PE is aware only of its own state,

this routing decision is binary: should an SP execute locally or rernotely? PODS decides

which SPs will be distributed and which will run locally at compile time. At run-tirne

PODS decides where the distributed SPs will be executed. The exact rnethods for this

distribution are explained in this chapter.

Simply put, the PODS partitioning and distribution uses data distribution to control

execution distribution. There are two basic conceptual steps to achieve this.

1. Using a simple global algorithm, partition the data and allocate

each partition to a PE.

2. Execute the program such that the owner of a particular array

element will write that element

26

By using a simple global algorithm for array partitioning, each PE can easily calculate

where a particular array element is located during execution. This additional checking costs

29% more cycles for each array read or write, but allows arrays to be accessed in parallel

with little orno comrnunication and without context switching.

In order to realize the above, the following tasks are perfonned.:

1. Arrays are cut-up into pages of fixed síze X, where X is

determined by the hardware architecture.

2. Arrays are grouped in to superpages which are assígned to PEs

sequentially.

3. Execution follows the array partitioning and distribution if it is

executing loop code which has no Loop-Carried Dependencies

(LCDs).

4. For code with LCDs, the execution will stay on the current PE

unless a function call is made.

5. When a function call is made the execution may move to another

PE depending upon the length to the current PE's task list.

There are three primary mechanisms for achieving data parallelism. These mechanisms are:

1 . The ALLOCA TE Operator: used to distribute data (data

parallelism).

2. The DIST-L Operator: used to spawn processes on ali PEs.

3. The RANGE-FIL TER Operator: used to restrict loop indices

ranges for different PEs.

The basic approach to distribute code for data parallelism is to:

1 . distribute the arrays

2. decide which level of the nested loop to distribute

3. this level gets the RANGE_FJL 1ER while its parent gets the

DIST-L operators.

The mechanism for functional parallelism:

1. The APPL Y Operator: used to spawn function calls on a single

remate PE (functional parallelism).

In this way the work load is partitioned at compile time and distributed using an efficient

run-time algorithm without the programmer's explicit instructions.

2. 2. Underlying Principies

There are two basic principies which apply to any parallel system. They are:

1. The Equal Distribution Principie

2. The Centralization Principie

These two are supplemented by three PODS specific principies. These principies show

ways in which the two basic principies can be reconciled somewhat The PODS specific

principies are:

27

28

1 . The Grouping Principie

2. The Virtual Sources Principie

3 . The Collector Writes Principie

By using each of these principies, PODS is able to provide efficient execution of scientific

programs on MIMD machines. Each principie is explained below.

2. 2. l. Basic Principies

For any assignment to be accomplished, the RHS calculations must be performed and the

writing of the element must occur. Consider the simple assignment below:

A[i] = sqrt(B[i+l] + C[i]) * exp(D[m+i])

FIGURE 2.1. SIMPLE ARRAY ASSIGNMENT.

In this statement B[i+l], C[i], and D[m+i] are data sources which need to be collected

together so that the calculations can be performed. Once they are performed the assignment

can occur. The diagram below illustrates these how these three agents interact Note that

each data source, the data collector, and the data storage could be on different PEs.

29

Data Sources Data Collector Data Storage

FIGURE 2.2. EQUAL DISTRIBUTION PRINCIPLE.

In order for the data sources to respond to multiple data collectors simulta.neously they

should be spread over ali the available PEs. Since the access pattems are not know a

priori, each PE should get an equal number of data sources. This is the Equal Distribution

Principle. More concisely,

Definition: EquaJ Distribution Principie

In order to allow ma.Ximum parallel access, data sources, data collectors,

and data storage should be distributed equally among the available PEs.

This principie is implemented in PODS by partitioning each array and distributing the

pieces equally among the PEs.

The Centralization Principle concems the cost of communication and the overloading of the

interconnect network. Once the agents are widely distributed a problem occurs. The

communication costs become extremely high. In order to reduce the effects of

communication delays, ali of the items (data sources, data collectors, and data storage)

should be kept together (i.e. centralized). This is the Centralization Principie which states:

Definition: Centralization Principie

In order to reduce cornmunication costs and network overloading, data

sources, data collectors, and data storage should be centralized on one PE.

30

These two principles are obviously in conflict. The PODS specific principles below show

how the balance can be tilted in favor of distribution.

2. 2. 2. PODS Specific Principies

Groupin~ Principie

In order to reduce the effects of cornrnunication delays without completely centralizing, the

data sources should be grouped together until sorne size, x, is reached. The diagram below

shows how the number of cornrnunication lines is reduced by grouping.

• • •
• • ·c===F~~-+--........ • • •
• • •

Grouped Data Sources Data Collector Data Storage

FIGURE 2.3. GROUPING PRINCIPLE.

This is the Grouping Principie which states the following.

31

Definition: Grouping Principie

In arder to reduce communicati.on over the network. data sources should be

grouped together unti.1 sorne reasonable size is reached.

This principle fights against the Equal Distribution Principie, a balance between them must

be maintained. In PODS this is achieved by grouping the arrays into pages of a fixed size

which is only dependent on the hardware architecture.

Virtual Sources Principie

One aspect of single assignment is that data sources never need to be updated. This can be

exploited by moving copies of the data sources into the collector for easy access. Locality

of reference implies that the grouped data sources should be moved in toto when one of the

data sourccs is needed. Thc diagram below shows how the amount of communication can

be reduced by caching the data source in the collector without any cache coherency

problems; the dashed lines are truly one way .

• • --• • • --
• • • --

.---• • •
Groupecl Data Sources

Data Collector
Data Storage with Virtural Sources

FIGURE 2.4. VIRTUAL SOURCES PRINCIPLE.

This is the Virtual Sources Principie which states the following.

Deflnition~ Virtual Sources Principie

Since each data source will never need to be updated, a copy should be

moved into the data collector when any one of the grouped data sources is

needed. The Virtual Sources Principle states that a single assignment

system should cache data sources in its local memory to form a virtual

source to reduce cornmunication.

This principle allows remete reads to be reduced in PODS, and is implemented by remete

access caching.

Collector Writes prjnciple

32

In a single assignment system there will be only one write to a particular array element

The thick black arrow in the diagrams above represents this write. Since there is only one

collector and one write, these two should be on the same PE. The diagram below shows

this.

• • • •• •1------ltl
• • •
• • •

Grouped Data Sources

>--<

Data Collector
with Vinural Sources

and Storage

FIGURE 2.5. COLLECTOR WRITES PRINCIPLE.

33

The producer of an array element is the PE which collects the RHS calcularions needed for

the formation of a LHS value. This PE, the collector, becomes the writer by executing the

WRITE_ARRA Y instruction which assigns that array element a value. Since the

single-assignment principle is in force; there will be one writer. This is the Collector

Writes Principle which states the following.

Definítion: Collector Writes Principie

The Collector Writes Principle states that the system should map an array

element such that the PE which holds that array element in its local memory

(the owner) shall be the collector of the RHS data sources, and shall also be

the writer of that array element

This principle, in collaboration with the other principles, forces the execution to follow the

data distribution. In PODS this is called Data Distributed Execution.

2. 3. PODS Instructions and Processes

The basic concept of a dataflow operator has n.ot changed, only the implementation of that

concept. In PODS dataflow operators are implemented using PODS instructions. The

basic dataflow concept (shown below) allows the dataflow graph to execute cleanly;

without leaving tokens unconswned.

input token
(data, tag)

OPERATOR

output token
(data, tag)

output token
(data, tag)

FIGURE 2.6. BASIC DATAFLOW OPERATOR.

34

The standard dataflow implementation of this concept performs the following steps when a

token arri.ves:

1 . consume input tokens

2. compute new data value

3. compute new tag

4. fonn new output tokens

5. send output tokens to destination operators

For PODS this implementation needs to be modified to contain the concept of an SP's state.

An SP's state is basically a PODS activity name, which is discussed next in Section 2.3.1.

2. 3 .1. Activity Names

An activity name is the colored tag which identifies a token's complete context What is

presented below is a logical implementation, a physical implementation would use unique

frame IDs. Logically, activity na.mes consist of two parts: (1) the static part which is

known at compile time; and (2) the dynamic pan which is built as the token moves from

context to context. Figure 2.7 below shows the make-up of an activity name.

Activity Name

~amicPart Static Part
context I rteration ~ l mstructlon l j)_Ort

FIGURE 2.7. ACTIVITY NAME COMPONENTS.

The static part is know by the compiler from the dataflow graph once the SPs are built

35

The dynamic pan is based upon the incoming token's activity name and is only affected by

the context rnanipulating functions: D and D_INVERSE, L and L_INVERSE, A and

A_INVERSE. The activity name is also known as the tag. The individual subparts are listed

below, along with their function.

• context: holds the pointer to past activity names, affected by L

and L_INVERSE, A and A_lNVERSE. The context holds a token's

tag in a linked list This list represents a11 of the execution

scopes through which a given token has passed. This

inf ormation is necessary for PODS to know how to move a

token from one execution scope (i.e. SP) to another.

• iteration: holds the current iteration number, affected by D and

D_lNVERSE.

• sp: holds the SP number, based on partirioned dataflow graph.

• instruction: holds the instruction number within this SP.

"

2.3.2.

port : holds the port number within this instruction, usually O or

l.

PODS Instruction Format

36

There are three types of PODS instructions. These types indicate how the instruction was

derived from the output of the ID Nouveau compiler. The fust type is formed from a

simple mapping from TTDA instructions and PODS instructions. These are the basic

instructions such as ADD, and ARRA Y _READ. The second type actually disappears when

the output is translated. These are the IDENT instructions which are used for

synchronization. These are not needed because the sequential nature of SPs synchronizes

instructions automatically. The third type is composed of new instructions which are added

or modified to accomplish the distribution. These are the SWITCH, FORKJUMP, D and

D_INVERSE, L and L_INVERSE (in both dist and local forms), A and A_INVERSE, and

Al.LOCA TE. Each of these will be explained as they are encountered in this chapter.

PODS instructions have the following fields (see Figure 2.10 for an example):

l. Op Code - operation to be performed.

2. Number Arguments - the number of arguments this operation

needs before it is ready to fire.

3. Operand List - slots for values of operands. Initially sorne of

the operands are constants which are set at compile time. Each

constant is represented by the pair (value, port). Other operand

ports are flagged with a special "sticky bit" (STKY) which means

that once a token is received on that port, it is then held there

and does not need to be replenished for the instruction to fue.

4. Local Destination List - output value destinations which are

withln th.is SP. Each destination is represented by the pair

[instruction number, port].

5. Route ID - ID of mute to be used when output tokens are to be

sent to other SPs. This is not a list because the routing

information is stored in the Routing U nit and not in the

Execution Unit A route ID is simply a shon-hand for: [SP ID,

instruction number, port] [SP ID, instruction number, pon] [SP

ID, instruction number, port] ... , see Chapter 3 for complete

details.

6. Comments - variable names from the source ccxl.e, shown in

brackets, " { } ".

Values can be sent using any of the following paths:

1. U sing the local destination list This is the way almost ali of the

operators communicate. Only L and A operators can send tokens

to other SPs.

2. U sing the route list This is performed in one of three ways

depending on the type of L or A operator. Only L or A operators

have routes.

(1) the DIST-L operator sends tokens to SPs on every PE.

(2) the LOCAL-L operator sends the token to a different SP

on the same PE.

37

(3) the A operator sencis th.e token to a different SP on some

PE. Which PE is decided by a hash function.

2. 3. 3. PODS Dataflow Operator Implementation

In PODS, an SP contains code anda state. The code represents the operations to be

pe1formed and the state holds the status of these operations.

CODE STATE

context
iteration number
SPID
program counter

FIGURE 2.8. SP COMPONENTS.

38

When a token arrives at a PODS operator the state of the SP is used to decide the steps to

execute this operator. All of the original ID operators which are not special operators are

called basic PODS operators. All of the special operators are discussed individually after a

discussion of the basic PODS operator implementation.

The basic PODS operator implementation performs the following steps when a token

arrives:

1. Consume input tokens.

2. Compute new data value.

3. Compute new tag.

4. If the context and SP ID are the same, then no tokens are

formed, only data is stored into destination instruction and port.

If either of these has changed, then form new output tokens and

route them using the routes specified for this operator.

5. Increment the program counter.

39

This implementation is the same as the basic dataflow version in Steps 1 - 3. Step 4

however now checks the SP state to see how to deal with the output data, whether to store

it locally within this SP orto forma token and route it to another SP. Notice that Step 4

does not check the iteration nwnber of the tag. This is because the iteration number can

only be changed by a D operator, and D operators do not change SP. Step 5 has been

added to increment the program counter. There are a couple of operators (the D and

FORKJUMP operators) which set the program counter to a value rather than just

incrementing it Ali other operators follow these steps exactly. What follows is a

description of the new PODS instructions, and why these implement the same semantics as

the original ID operators.

In order to show that the semantics of the original ID operators have not changed each

operation type will be addressed. It is quite simple to understand the way in which PODS

implements the semanti.cs of ID. The original ID had the following fields in its tag: context

e, procedure p, statement number s, and iteration i. As explained above in the section on

activity names, PODS uses a context e, a SP ID sp, an instructi.on number si, andan

iterati.on i. PODS uses the context and iterati.on exactly the same, it is only the procedure

and statement number which differ.

40

Basically the procedure cuts the dataflow program into subsets, and the statement number

identifies the operator within the subset. PODS uses the same approach but just cuts the

collection into smaller subsets. In Figure 2.9 below, the set of ali operators is cut into

procedures Proc 1 - Proc4 (in bold lines), while the SPs are just subsets sp 1 - sp8. In this

way the combination of the two field holds exactly the same information, i.e. the "address"

of a particular operator. Also note that since each procedure cut is also an SP cut, then

when a procedure change is made an SP change is also malee.

SETof ALL
OPERATORS

Proc3

Proc2

Proc4

FIGURE 2.9. ID VS PODS STATEMENT "ADDRESSING".

Arithmetic and Lo~cal Q_perators

The vast majority of ID operators fit into this the class of arithmetic and logical operators.

In the original ID these operators only changed the statement number and the value of the

token. This can be expressed by:

ID Arithmetic & Logical
e f ~ f e, p, s, i, v -> e, p, s , i. v

In PODS exactly the same value calculation is performed, and the instruction number is

changed. Expressing this in a similar format to the above:

PODS Arithmetic & Logical e, sp, si, i, v -> e, sp, si', i, v'

41

Notice that the "address" (sp, si} for the output token specifics the receiving operator just

as is done in ID with (p, s').

The switch operator falls into this class and is cliscussed along with a new instruction

(forkjump) below.

SWITCH and FORK.JUMP

The SWITCH and RJRKJUMP work in conjunction to form a branch type of operation. The

PODS SWITCH is much like the original ID SWITCH with the following exception: once

tokens are passed along, the program counter is modified by a true or false relative offset

The original ID SWITCH peñormed the following:

ID SWITCH e, p, s, i, v ->e, p, s', i, v

PODS performs the following which is exactly the same except the addressing clifferences,

which are equivalent

PODSSWITCH e, sp, si, i, v -> e, sp, si', i, v

In order to execute a PODS SWITCH Steps 4 and 5 of the basic implementation need to be

replaced. The new Steps 4 and 5 are:

4. If the predicate is true, then store output values into true

destination instructions. If the preclicate is false, then store the

output values into the false destination instructions.

5 . If the predicate is true, then increment the program counter by

the true relative jump. If the predicate is false, then increment

the program counter by the false relative jump.

42

Once the input tokens are present the SWITCH tires, send.ing tokens to either the true or

false branch and jumping to the next instruction to execute. The PODS instructions below

were taken from Matrix Multiply. As described previously, the fields have the following

meanings: (1) instruction number, (2) op code; (3) number of arguments; (4) operand slots;

(5) destinations; and (6) a comrnent. For SWITCH the number of arguments is always five,

port O is the pred.icate, port 1 is the value, port 2 is the true relative offset, port 3 is the false

relative off set, and port 4 is the number of true destinations. The destinations are ordered

such that the false destinations are last. The FORKJUMP always takes two arguments: one

is the value to be passed (port 0), the other is the relative offset (port 1).

10 SWITOi 5
18 FORK..JtM? 2

(1.00,2) (11.00,3) (2.00,4) -> [18,0) [19,0) [21,0) {I}
(-17 .00, 0) -> [1,0) [2,1)

FIGURE 2.10. PODS SWITCH AND FORKJUMP INSTRUCTION EXAMPLES.

To form a simple branch the SWITCH and FORKJUMP are used together as shown in Figure

2.11 below. The true relative jump of the SWITCH is set to 1, the false relative jump is set

such that the program counter will jump .to the first false instruction on a false predicate.

The FORKJUMP is used to skip the false instructions, its relative jump is set to go to the

beginning of the unbranched instructions.

Switch

~ First T lnstruction ·~

Second T lnstruction
Third T lnstruction ...

Forkjump ~

First F lnstruction :"': F Second F lnstruction
Third F lnstruction ...
Last F lnstruction

Beginning of Unbranched lnstructions --
FIGURE 2.11. PODS BRANCH.

D and D INVERSE

The D and D_INVERSE operators work in conjuncti.on with the SWITCH to execute loops.

The PODS o and D_INVERSE operators differ slightly from the original ID operators

because of the relati.ve jump capability and because the activity names are different in

PODS.

The o operator tak:es a token and perfomlS two operations: (1) it increments the iterati.on

number of the token's tag in the outer-most context, and (2) it perfomlS a relati.ve jump.

U sually this relative jump is negati.ve, and sends the program counter to an earlier

instructi.on. The semantics of the ID D and D_INVERSE are:

IDD e, p, s, i, v ->e, p, s', i+l, v

ID D_INVERSE e, p, s, i, v -> e, p, s', O, v

43

44

For PODS the implementation performs something very similar. As for arithmetic and

logical operators, the new "address" of the output token will be (sp, si') rather than the ID

(p, s'). Otherwise PODS does exactly the same as ID.

PODSD e, sp, si, i, v ->e, sp, si', i+l, v

PODS D_INVERSE e, sp, si, i, v ->e, sp, si', O, v

In order to execute a PODS D instruction Steps 4 and 5 of the basic implementation need to

be replaced. The new Steps 4 and 5 are:

4. Increment the iteration number, i, and store output values into

destination instruction and port.

5. Increment the program counter by the relative jump.

The D_INVERSE operator implementation is very similar to the D operator's. In merely

resets the iteration number to zero rather incrementing it. Specifically, the Step 4 of the

basic implementation should read:

4. Set the iteration number, i, to O and store output values into

destination instruction and port.

In order to produce a loop, the SWITCH takes the iteration variable and passes it into the

loop body on a true predicare. Inside the loop body the iteration variable is modified

(usually just incremented by one), and the D operator is placed at the end, see the code

fragment from Matrix Multiply below. The D operator feeds both the predicate and the

switch so Lhat t.he loop test can be performed. In the example below the relative offset of

the D operator is -11, which will cause the program counter to be set to 9 (20-11 =9) after

the D operator is executed. The loop body is from instruction 11 to instruction 19. The

45

D_INVERSE will reset the iteration number once the loop has exited. The loop will be exited

from the SWITCH on a false predicate. Note that the SWITCH at instruction number 10 has

a false relative offset of 11 and the last destinati.ons offset is to instruction 21 (21 = 10 +

11).

9 IE 2 (STKY, 1) -> (10,0]
10 SWI'!Oi 5 (1.00,2) (11.00,3) (2.00, 4) -> [18,0] (19, 0] [21, 0]
11 DIST IDPERATOR 1 (STKY,0) -> (12)

12 DIST I.OPERATOR 1 (STKY, 0) -> (14)
13 DIST IDPERATOR 1 (STKY,0) -> (15)
14 DIST IDPERATOR 1 (STKY,0) -> (10)
15 DIST I.OPERATOR 1 (STKY, 0) -> (11)

16 DIST IDPERATOR 1 (STKY,0) -> (13)
17 DIST IDPERATOR 1 (STKY,0) -> (16)
18 DIST IDPERATOR 1 -> (1)
19 PLUS 2 (1.00, 1) -> (20, O] {NEXT-I}
20 D 2 (-11.00,1) -> (9, 0] (10, l] {I}
21 DINV 1 ->

FIGURE2.12. PODS CODEFRAGMENTFORALooP.

L and L INVERSE

In order to perform code distributi.on the original ID L operators need to be changed from

their original implementation. In PODS L and L_INVERSE are used to route tokens between

SPs. There are also two versions of each operator: a DISTRIBUTE version and a LOCAL

version.

In the original ID L operators were for entering and exiting loops. This is still true;

however, in PODS entering and exiti.ng loops means entering and exiting an SP. In the

original ID the procedure p of a tag does not change as the token passed though the L and

L_INVERSE, however a new and unique context e is created. The new context is the

concatenation of the old context, statement number, and itera.don. This is shown below:

IDL e, p, s, i, v -> (clsli), p, s', O, v

46

ID L_INVERSE (clsli), p, s', i', v ->e, p, s, i, v

In PODS the implementation is as follows:

PODSL e, sp, si, i, v -> (clspli), sp', si', O, v

PODS L_INVERSE (clspli), sp', si', i, v ->e, sp, si, i, v

This implementation also generates a new, unique context c. This stored context is then

used in the L_INVERSE for returning to the previous context The only real d.ifference is

that the change in SP must be recorded in the tag. Referring back to Figure 2.9, L

operators move the scope from one SP to another within the same procedure (e.g. from spl

to sp2). Since the output token no longer has the same context, it wil1 be sent to the

Routing Unit to be routed to the receiving SP.

L and L_INVERSE operators perform routing by referencing a particular route list. The

figure below shows two L type operators from Matrix Multiply. The LOCAL_LOPERATOR

is using route list 7 with the LOCAL_LINV operator is using mute list 9. A route list is a list

of destination addresses, each consisting of an SP, an instruction, and a port. This

information is static and known at compile time. By duplicating this route table in every

PE, each Routing Unit can find a particular instance of an SP.

11

2 o I.CX:'AL !DPERM'OR

-- 12 I.CX:'AL LnN

1
1

-> (7)
-> (9)

FIGURE 2.13. EXAMPLE L ÜPERATORS.

The LOCAL and DISTRIBU'IE versions of each operator tell the Routing Unit to (1) send the

token only to its own PE, or (2) to distribute copies of this token to ali PEs. Tokens are

distributed when the receiving SP is distributed This way ali of the PEs are given the

1

47

needed tokens to start their pan of a loop. The decision whether to distribute or not is

decided in the PODS Partitioner and the LOCAL or DISTRIBUTE version of the L operator is

used. This is the way parallel processes get spawned, as discussed later in Section 2.5,

Distributing Processes.

A and A INYERSE

The A and A_INVERSE operators (also known as APPL Y and INV _APPL Y) are the

mechanism PODS uses for procedure calls. In this logical implementation the APPL Y

operator collects the argument tokens until all are present, as compared to sending the

tokens off as soon as they are ready. This may be changed in the future to support eager

function evaluation.

The A and A_INVERSE implementations are equivalent. but somewhat different than the

original ID versions. In ID A and A_INVERSE peñonn:

IDA c, p, s, i, v -> (clplstli), p', s', O, v

ID A_INVERSE (clplstli), p', s', i', v -> c, p, st, i, v

where (p, st) is the address of the instruction to retum to. In PODS the A produces two

tokens rather than one.

PODSA c, sp, si, i, v -> (clspli), sp', si', O, v and (clspli), sp', ai', O, st

where (sp', ai') is the address of the a_inverse instruction and (sp, st) is the address of the

instruction to retum to. In this way the A_INVERSE can use the retum address to build the

appropriate tag as follows:

PODS A_INVERSE (clspli), sp', ai', O, v and

(clspli), sp', ai', O, st -> e, sp, st, i, v

This is a simple and efficient method for calling procedures and is somewhat akin to the

fastcall apply used by Iannucci, [Ian88]. The instructi.ons below were taken from

48

SIMPLE, and forma function call to and retum from the procedure TLU. APPLY operaton;.

tak:e a variable number of arguments. One far the return instruction (port 0), one for the

number of parameters to pass (port 1), and then one for each parameter (pons 2 to n+ 1).

The INV _APPLY tak:es two arguments: one for the return value (pon 0), and one far the

instruction number to return to (pon 1).

frcm o::NDU:TICN-3 .p:xis
9 APPLY 6 (10.00,0) (4.00,1) (STKY,2) (3.00,5) -> (121) (TLU)
frcm Till. p:xis
18 INV APPLY 2 -> (121)

FIGURE 2.14. EXAMPLE APPLY AND INV _APPLY ÜPERATORS.

2. 4. Array Partitioning and Distribution

In scientific code a number of large arrays are used It is critica! that access to these arrays

be efficient. This is the idea vector processors are based upon [H&B84]. In PODS,

modified I-structures form the basis for array operations. I-structures are data structures

which can be resized as necessary and enforce the single assignment principle with

presence bits [ANP87a, ANP89]. PODS also uses presence bits, but arrays are of a fixed

size which is determined at allocation time.

The single assignment principle guarantees that only one instruction will ever write to an

array element; it is the producer of that data. PODS exploits this fact by attempting to map

each array element onto the same PE as its producer instruction, this is how PODS uses the

Collector Writes Principie. However, it is not always possible, nor efficient for the

collector to be the owner, as is explained below. By locality ofreference, the statements

which read an array element will be "close" to the writer. Thus having the writer and

owner the same will allow most array reads to be local rather tllan remate. Having local

arra y reads is important, since once the array element is written there can be read many

more times. Making these array reads efficient is central to PODS.

49

In arder to make the array reads efficient, the array caching scheme detailed in Chapter 3 is

used. This simple scheme produces excellent results [BNR89b] as long as the array is

accessed in the same direction as it is partitioned. For two dimensional arrays this means

that arrays accessed in a row-major manner should be partitioned row-major. Generalizing

to multiple dimensions, this rneans that first-major (last-major) code should be used to

access first-major (last-rnajor) arrays.

One approach to ensure that the direction is correct is to analyze each array's accesses and

estimate which direction would be more efficient Analyzing the one filling algorithm

(there usually will be only one dueto the single-assignment principie) could be done, but

the reads matter more because there are many more of them. Analyzing the reads would

require that the entire execution trace of the program be known at compile time, which is

not possible. To see sorne of the difficulties, considera matrix-multiply function which

takes arrays A and B as arguments. In ID Nouveau the code would be:

Def mm A B = { (11,ul), (12,u2) = 2D bounds A;
e = i _ ma tri x ((11 , u 1) , (12 , u 2)) ; -
In
{ Far i <- 11 To ul Do

{ For j <- 12 to u2 Do
s = O;

} ;

C[i, j] =
{ For k <- 11 To ul Do

}

Next s = s + A[i,k] * B[k,j];
Finally s

} ;
Finally C

}

FIGURE 2.15. MATRIX MULTIPLY ID NOUVEAU SOURCE CODE.

50

By examining this code it is easily seen that array A should be row-major and array B

should be column-major based on the reads. However, an array is partitioned at allocation

time and stays that way for its entire lifetime. So if the Matrix Multiply function was called

with MM X Y, array X should be row-major and array Y should be column-major, and if

called with MM Y X then the reverse is true. However, the binding between A (B) and X

(Y) is dynamic and hence PODS cannot take advantage of it This late binding also

prevents the proper direction for each array to be used every time.

A better approach is to pick a direction and use it, letting the programmer know which

direction is appropriate. This is the approach used by many popular languages toda y. For

example, 'C' is row-major and FORTRAN is column-major. PODS uses row-major

partitioning.

In order to better understand this partitioning, consider the following example. A two

dimensional array which is 8 x 256 is to be partitioned and distributed over 20 PEs. Por

the iPSC/2 and the simulations herein, the best page siz.e is 32 elements or approximately 2

kilobytes. Previous studies have shown that this is nota critica! para.meter [BNR89b].

FolloVlling the simple array partitioning algorithm. each array is divided into pages of 32

elements in row-rnajor fashion.

Once the array is cut into pages (linearly, in row-major), the pages are grouped together

sequentially to form superpages; one superpage per PE, see Figure 2.16 below. The

algorithm for achieving this is as follows:

1. calculare the number of pages,

#pgs = floor(number of elements / page size)

2. calculate the number of pages per PE,

#ppp = floor(#pgs / number of PEs)

3. each PE gets #ppp pages

4. the extra elements left over from step 1 are assigned to the last

PE

5 . the extra pages from step 2 are assigned, one to each PE,

starting with the second to last PE and continuing to the first PE

51

Often a superpage will wrap around the logical array limits. This only needs to be handled

properly when the array is accessed. It is also the case that somerimes a few PEs will end

up with one more page in its superpage than the others. Both of these situations are

handled by the boundary table. The handling of these cases will be explained in detail in

Chapter 3, PODS Logical Implementation. For the example PE #O through PE #15 have 3

pages, while PE #16 through PE #19 will have 4 pages.

pages are
grouped
to form

superpages

,,,.

sornetirnes superpages
will wrap around logical

array limits ~
PEO PE 1 PE 2

PE2 ..,__PE 3 PE4
y

7

PE 19

Two dimensional array (8 x 256 with 20 PEs)

..... ~

... v -

each page =
32 elements

sorne PEs will
end up with 1

more page

FIGURE 2.16. PODS PARTITIONING OF A 2-D ARRAY.

One key concept of this approach is that it is known globally and requires limited

infonnation to use. It is the ALLOCA1E instruction which performs this data distribution.

Each ALLOCA 1E works with a FORKJUMP and performs the following:

1. The AILOCA1E requests an array ID from the local Array

Manager (see Chapter 3).

2. The SP continues executing until the ALLOCA1Es companion

FORKJUMP (placed directly after the AILOCA1E). The SP will

either block, until the Array Manager respond.s with an array ID

or wil1 continue executing if the value has already returned.

3. When the Array Manger receives the allocate request, it wil1

allocate the necessary space, build the array header, build the

boundary table, send the array ID to the requesting SP, and then

send a remote allocation request onto all of the other PEs with

52

the arra y ID attached. In this way all of the PEs ha ve the same

ID for the same array. The PE which executes the AL.LOCA TE is

called the host PE, this PE number is also sent as part of the

request.

4. The remete PEs will receive the remote allocate request and build

the header and tables, and allocate the appropriate space.

For a two dimensional array PODS stores the following array header information in each

PE:

Field Name
beginning_oTf set
ending_ off set
number_of_dimensions
siz.e_diml
siz.e_dim2
ELEMENT_SPACE
beginning rangel diml
ending rañgel_diml
beginníng_rangel_ dim2
ending rangel dim2
beginníng_rangel_diml

ending_ rangel _ diml

beginning_rangel_dim2

ending_rangel_dim2

NULL

Descri _p_tion
stan oTiliis PEs responsibility
end of responsibility
2
size of first dirnension
size of second dimension
space allocated for this array on this PE
start of first range interval in dim 1
end of first range interval in dim 1
start of first range interval in dim 2
start of tirst range interval in dim 2
start of second range interval in dim
1
start of second range interval in dim
1
start of second range interval in dim
2
start of second range intervaJ in dim
2

TABLE 2.1. PODS ARRA Y HEADER INFORMA TION.

53

The beginning_offset and ending_ offset are the staning and stopping points of this PEs

area-of-responsibility expressed in the row-major linearized version of the array. The

number _ of _ dimensions, size _ diml, and size _ dim2 fields hold the number of dirnensions

and sizes of each for this array. The ELE.rvffiNT_SPACE is where the actuiU data is stored,

54

excluding the cache. The beginning_rangeX_dimY and ending_rangeX_dimY fields hold

the starting and stopping points far each range inte:rval of this array. Superpages can wrap

around an array climension, like PE #2 in Figure 2.16 above, this causes multiple range

intervals in the boundary table. The bolded fields malee up the boundary table for this array

on a given PE. Boundary Tables will be discussed. in detail in the section on range filters.

The header is similar for other climension arrays. For example, for a iliree dimensional

arra y the number _ of_ dimensions would be 3, there would be an extra climension size field,

size _ dim.3, and there would be an additional beginning_range and encling_range for each

segment Notice that the header size is fixed. at allocation time and will not grow.

Continuing with the two dimensional array example in Figure 2.16, the header for PE #2

would be:

Field Name
beginning_offset
ending_offset
number_ of_dimensions
siz.e_climl
siz.e_dim2
ELEMENT_SPACE
beginning_range l_diml
ending_rangel_climl
beginning_range l_dim2
ending_rangel_dim2
beginning_range l_diml
ending_rangel_climl
beginning_range l_dim2
ending_range l_dim2
NULL

varue
1-g-2
287
2
8
256
space allocated for this array on this PE
o
o
192
255
o
o
o
31

TABLE 2.2. 2-D ARRA Y EXAMPLE HEADER.

To perform a two dimensional read the off set into the array must be calculated. first. Then

the beginning and encling off sets must be checked. If the offset is not within the bounds

then the read is remote and a message must be sent to the owning PE. If the read is local,

the presence bit must be checked. If it is not present then the read must be enqueued, as in

55

1-structures. If the value is present then the memory location is read. The pseudo-code for

performing the read is:

offset = size dim2 * i + j
if (offset < beginning offset) goto REMOTE READ
if (offset ~ ending offset) gato REMOTE READ
if (element not present) gota ENQUEUE READ
value = array[offset] -

FIGURE 2.17. 2-D ARRA Y READ PSEUDO-CODE.

Continuing with the above example, assume the expression below is being executed on PE

#2.

result = A[0,10] + A[l,10];

Assuming both elements have already been written, the first array read, A[O,l], would

perform the following read calculations.

offset = size dim2 * i + j
= 256 * o + 10
= 10

if (offset < beginning offset) goto REMOTE READ
10 < 192 -
goto REMOTE READ

FIGURE 2.18. EXAMPLE 2-D ARRAY REMOTE READ.

The REMOTE_READ sends a message to the owning PE (PE #1), who will respond with

A[0,10]. PE #2 will continue on and encounter the second array read, A[l,10]. Note that

PE #2 did not block this SP when the read was determined to be remate. Only when the

insttuction which consumes the result is reached will the SP block. By that time A[0,10]

may have been received. The second array read calculations would be:

56

offset = size dim2 * i + j
256 * 1 + 10
266

if (offset < beginning offset) gato REMOTE_READ
266 < 192-

if (offset ~ ending offset) goto REMOTE READ
266 :2: 287 -

if (element not present) goto ENQUEUE_READ
present

value = array[offset]
A[266]

FIGURE 2.19. EXAMPLE 2-D ARRAY LOCAL READ.

The value of array A@ offset 266 would be stored in the consuming instruction. When

the consuming instruction was reached the SP would block if A[O, 10] hand not yet arrived,

and PE #2 would stan executing the next SP from the task ready list.

Array caching complicates this somewhat, but, it is independent of the PODS partitioning

and distribution. In Chapter 3 array caching is examined. On a typical RISC processor

(MIPS R3000) the caching version would take 22 cycles while a regular two dimensional

read would take 17 cycles. This 29% additional overhead is well worth it

Note that it is not necessary to distribute ali arrays. In the future more analysis may·show

that certain arrays should be kept local and other distributed, this is an area of current

research.

2. 5. Distributing Processes

Distributing code (i.e., processes) is the key issue in parallel processing. In PODS this is

accomplished by following an execution distribution principie which tries to map the

calculation of an array element to its owner as much as possible (i.e., Collector Writes

Principie). The PODS implementation of the Collector Writes Principie is called Data

Distributed Execution (DDE).

57

2. S. l. DataªDistributed Execution Principie

The central concept in PODS code distribution is to follow the data distribution as much as

possible. Placing the execution of an operation on the same PE as the location of its data

will reduce communication costs and context switches. A system performs DDE when it

rnoves execution to the PE where the data resides.

Consider an n-dimensional index space, where the dirnensions are ordered by the levels of

nesting. Say this multiple nested loop has index levels i¡, i1, ... , in. and that there is an

array write at the inner-most leve! (A[i1, i2, .. ., in.]= x). The goal is to distribute the

computations evenly across the PEs using DDE. This is achieved by picking one of the

levels of the nest, say ia, and cutting up the index space along ia into number_of_PE

ranges. The levels previous to ia are executed on one PE, while levels after ia are executed

on every PE. Since the array write needs the value of every index, ali of the previous

indices (ii. ii, ... , ia-1) must be broadcast to every PE, and, every following index (ia+l•

ia+i, ... , in) must be generated locally- it is the ia level which is used to partition the

iteration space. However, the data distribution is still followed.

To better visualize this considera 2-d.imensional iteration space with indices i andj. Figure

2.20 (a) shows the data partitioning of an array where the superpage assigned to each PE

does not reach the end of the array dimension. Figure 2.20 (d) shows the data partitioning

of a larger array, where the superpage is larger than the dimension. When the superpage

just happens to match the array dimension size the partitioning acts just like it were smaller

than the array dimension. Figures 2.20 (b), (e), (e) and (f) show the iteration space

partitioning when i or j are used for ia.

Data
Partitioning

(a)

(d)

pe 1 al pe 2 f!

Distributing
in i

(b)

(e)

Distributing
inj

(c)

(t)

j

pe3 o pe4 a pes m

FIGURE 2.20. PARTITIONING A 2D ITERATION SPACE.

In order to ensure single assignrnent, the iteration space cannot exactly follow the data

partitioning in every case. When any level other than the last level is used to partiti.on on,

the remaining levels cannot be partitioned and rnust be assigned based upon the upper

58

levels. Figure 2.20 (b) and (e) show on which PE the calculations will be performed if the

iterations were partitioned along i. This assignrnent is achieved by sirnply assigning

iteration space areas based upon the first elernent in each row. This causes sorne interesting

situations. In case (b) PE #3 has no iterations to run. While in case (e) PE #1 has two full

rows to calculate. Notice that there can be sorne rernote writes, e.g. PE #1 writes to sorne

of PE #2's elernents.

When that last leve! is used to partition on the mapping is exact. This is because ali i¡, i2,

... , in are available and each PE can cornpletely decide which iterati.ons to perform.

59

To generalize this to rnultiple dirnensions consider the figure below. In general, the data

partitioning, case (a) below, will not exactly match any dirnension size. When a level is

picked to distribute, all levels below it will use this level's partitioning. Case (b) shows the

planes of iteration space responsibility when the i-th level is used. Case (e) shows the

iteration spaces if the j-th level were used to distribute the iterations. If the k-th level were

used the iteration space partitioning would exactly match the data partitioning, case (a).

~i

PE #1
PE#2
PE#4

~i

J ...

PE #2

~i
j ...

l]PE#l

O PE #2 (clear)

[) PE#3

fijPE#4

] ...

FIGURE 2.21. PARTITIONING A 3D ITERATION SPACE.

This would seem to indicare that the lower the level the better the partitioning. However,

the upper levels must communicate their values ali the way down to the inner-most level.

This causes ex.cessive communication. While distributing at the outer-most level can cause

60

miss matches, this can be overcome vía array caching. Seeing that the sooner the iterations

are distributed the fewer the number of broadcasts necessary, PODS always distributes as

soon as possible.

These give rise to the distribution scheme below.

1 . Given an array A:

partition and distribute as described in Section 2.4, Array

Partitioning and Distribution, above.

2. Given a loop L:

if L does not contain an arra y write, then do not distribute

else distribute the outer-most level of the nest possible.

3 . Once the level has been chosen, use the first element in that level

to determine the iteration space partitioning.

The reason a certain level of nesting cannot be distributed is dependent on the loop-carried

dependencies at that level. This is explained in detail in LCD Effects Section below.

DDE can be greatly increased by array caching. In PODS, once a page is read into .local

memory from a remote PE it is held in a software cache which is replaced using a Least­

Recently-U sed algorithm. Array caching is explained in detail in Chapter 3.

DDE of for-loops is achieved in PODS by generating only those loop variables which mak:e

the arra y accesses local. This is performed by range filters. The operat:ion of range filters

is explained in detail in the next section.

61

2. 5. 2. Range Filters

In this section, the concept of range filters is explained in detail, and explains how each PE

restricts loop execution to its own portien of an array.

Objective and Usa~e

The objective of the range filter construct is to control which iterations of a d.istributed loop

are to be executed by a given PE. The d.iagram below shows a simplified dataflow of the

simple array filling loop in the upper right hand comer. Contrast this with the d.iagram in

Figure 2.23; the same loop after the range filter has been inserted. In PODS the loop nest

level in which the range filter is inserted is defined to be the distributed loop.

A dataflow d.iagram with a 2-d.imensional range filter is shown in Figure 2.23. The items

added to Figure 2.22 are bolded. The range filter replaces the pred.icate and needs the array

A and the outer index i from the i-loop to determine whatj's a given PE is responsible for.

The range filter takes these and the current indexj, and produces the next index for which

this PE is responsible. Also notice that the L operators in the i-loop are now DIST-L

operators.

1 so 1 10 A = m.atrix(50, 10);
for i = 1 to 50

for j = 1 to
10 A{i,j] = f(i,j);

,.
1 i ILOOP sP¡

r-······························· .. ·········;·~¿·;~--~·~·¡

A

~•--••••••••••••••••••••••••••••••ouo .. 000 .. 0 .. 000 .. noo .. o .. ooouo o,ooooooooooooooo•••••••••••••••*'•''''"'''''''''''''''''''''''''"''''''''''"'°"'°"'"'''''"''"''''uooooo •••••••••••••••••:

62

retUrD. to
ou.ter scope

FIGURE 2.22. SIMPLE 2-D ARRAY FILL.

1 50 1 10

-----------------·
b o 1.1.Il.dMv :
table mio :

A = m.atrú<(50, 10);
Cor i = 1 to 50

Cor j = 1 to
10 A(i,j] = f(i,j);

:·· .. ···l ¡ ' i !LOOP SP!

: :
• 1 ,··;. •ooooooooooooooooooooo•oooooos.oooo•ooooooo•••••••••TOoOoOOHa<ooooooo•o•oUoouo oooooooooooooHooooooooooooooooo-::

A

:

. .

.. J ... ,

63

tltur:n to
ov.ter :>cope

FIGURE 2.23. 2-D ARRAY FILL WITH RANGE FILTER.

64

Boundazy Table

Boundary tables are generated at allocation time and referenced by the range filter to

detennine the boundaries of its area-of-responsibility. In PODS, grouped ranges are used

because they generate fewer superpage boundaries than interleaved ranges in general.

In the table below, an array header for PE #1 with a 8 x 4 array (page size of 6) is shown.

The values beginning_rangeX_diml and beginning_rangeX_dim2 are the beginning values

for a given range interval in each of the two dimensions; similarly for ending_rangeX _ diml

and ending_rangeX_dim2. A range interval is the area-of-responsibility for a given PE

andina given dimension; there is one range interval for each entry in a boundary table.

For example, range interval 1 runs from 1 to 1 in the i direction, and from 1 to 4 in the j

d.irection.

F1eld Name
beginning_off set
ending_offset
number_of_dimensions
size_d.iml
size_dim2
ELEMENT_SPACE
beginning rangel diml
ending rañgel_diml
beginníng rangel dim2
ending rañgel dim2
beginníng rangel diml
ending rañgel diml
beginníng rangel dim2
ending_ rañgel _ dim2
NULL

Valúe
1
6
2
8
4
space allocated for this array on this PE
1
1
1
4
2
2
1
2

TABLE 2.3. EXAMPLE BOUNDARY TABLE FOR A GIVEN PE.

The boundary table fields are bolded. For different numbers of PEs (four in this example)

different distributions are produced. The page size comes into play because pages are used

in caching and remote accesses. In this example the page siz.e of 6 splits the array into a

non-rectangular arca for PE #l.

65

Master ArraY

In Figures 2.22 and 2.23 above only one array is being written into inside the loop.

However there can be more than one. In PODS, only one array, the master array, controls

the partitioning for that loop. Currently the first array written into is chosen as the master

array. Later on a more intelligent algorithm could be used, but this approach has produced

acceptable results.

Al~orithm

The algorithm for the range filter is fairly straight forward. It is important to note,

however, that the general algorithm is parameterized. The general algorithm functions by

repeatedly extracting range intervals from the array boundary table. While within the

range, the filter passes indices for elements within that range. The filter also keeps the loop

ali ve by sending a continue token to the loop switch until ali ranges have been exhausted.

In the figure below, mis just sorne variable used to count the intervals; i andj are the loops

indices, and continue is the signa! to the loop body telling it whether to continue or not

There are three new PODS instructions required to implement a RANGE_FIL 1ER:

INTERV AL_COUNT (retrieve the number of range intervals for this arra y); and B_RANGE

/E_RANGE (retrieve the beginning and ending values for the specified range interval).

These new instructions simply read entries from the array header (generated at allocation

time). With RANGE_FIL1ER, each PE has the same ccxle; only the local boundary tables are

different.

1 m = interval count of master array
2 if m < O then exit
3 if (Ci*i+ki) is not in interval m then decrement m and

gato 2
4 set j to the minimum of the loop end and (end of the

interval-kj)/Cj

66

5 if (Cj*j+kj) is not in the interval or the first element
of this dirnension is not owned then decrement rn and gato
2

6 if J is within the loop bounds then set continue to TRUE
and send j and continue into the loop body
else decrernent rn and gato 2

7 if continue is TRUE do the loop body else gato 10
8 true part of loop body
9 if new j is within loop bounds set continue to TRUE,

send j-and continue into the loop body, and gato 5
else set continue to FALSE, send j and continue into the
loop body, and gato 7 (with j set to new j)

10 false part of loop body -

FIGURE 2.24. ALGORITiiM FOR SECOND LEVEL, DESCENDING RANGE FILTER FOR
A(C1*I+K1,C¡*J+K¡].

The algorithm shown in Figure 2.24 is for a descending loop with a stepsize of 1 writing

into array A(c¡*i+k¡,cj'"j+kj]. Array A is the master array in this case. Step #7 above is the

SWITCH which between the true and false parts of the loop body.

For different levels of distribution (distribute the first level of nested loop vs. other levels)

or directions (ascending vs. descending), different range filters are used, see Appendix A:

Range Filter Algorithms. The selection of the algorithm is done at compile time, so no

more run-time overhead is used than necessary.

In the case where the distribution is done a level above the lowest level, the RANGE_FIL TER

checks only the first element in a range interval to see if that element belongs to it. This

prevents other PEs with range intervals in the same index (e.g., PEs #1 & #2 for i = 2

below) from both trying to execute a particular iteration. The figure below shows the

partitioning for a 8 x 4 array, page size of 6 (same as the boundary table example above).

1

2

3

4
5

6

7

8

1

j

2 3 4

PE 1

j PE 2

PE3

PE4

ARRAY A

FIGURE 2.25. NON-RECTANGULAR ARRAY PARTITIONING EXAMPLE.

If the RANGE_FILTER were at the i level, then each PE would be responsible for distinct

rows of i, i.e. PE #1 has rows 1and2, PE #2 has only row 3, PE #3 has rows 4, 5, and

6, and finally PE #4 has rows 6 and 7.

. 2.5.3. LCD Effects

LCDs have a major affect on the policies for code distribution. This section discusses

those effects.

If a for-loop performs a reduction it will have LCDs. If the for-loop fills an array it may

have loop-carried dependencies. These LCDs prevent iterations from running in parallel.

In PODS these LCD for-loops are executed in place justas they would on a sequential

processor. This is the case where PODS degenerates into a sequential machine for the

sequential code. The reason for this is the extreme cost of communication on distributed

memory machines.

67

68

For distributed memory MIMD machines the ratio of the cornmunication time to execution

time can be as great as 400, as in the iPSC/2 [iPSC89]. This means that the LCD distance,

D, times the number of overlapping instructions, N, rnust be at least 400. i.e.

D * N :=:: cornmunication time / execution time.

A distance 4 LCD means that iteration i must wait fer iteration i-4. In order to see this

better, considera loop body with 100 overlapping instructions. If D is less than 4 then it

is better to execute the fer-loop on one PE rather than distribute the loop. If it were to be

distributed, the fer-loop iterations would be grouped and assigned to PEs vía DDE. For

example, iterations 1 through 4 to PE #1, 5 through 8 to PE #2, etc. For-loops with larger

LCD distances or larger instruction overlap may be able to perform better when distributed,

this is a current topic of research.

In order to see how communication delay and overlapping execution interact, consider the

Figure 2.26. In the first cast (Non-Distributed) the loop is executed on one PE, causing no

communication delay. The second case (Distributed with Fast Communication) performs

the best Its completion time (indicated by the dark horizontal lines) is the earliest of the

three. Notice how the amount overlapping instructions must be comparable to the delay

time fer any benet"it to occur. The third and final case (Distributed with Slow

Cornmunication) shows what would happen if loops with LCDs were distributed when

communication is costly, e.g. the iPSC/2.

Distributed with
Fast Communication

PE #1 PE #2PE #3PE #4 PE # 1 PE #2 PE #3 PE #4 PE # 1 PE #2 PE #3 PE #4

g sequential
execution

• overlapping E;;,'] communication
exectuion dela y

_.network
message

FIGURE 2.26. EFFECTS OF COMMUNICATION SPEED ON ÜVERLAPPING 11ERA TIONS.

69

Considering the abstra.ct case shown in Figure 2.20, given LCDs in all i¡ through ik, PODS

distributes ik+l· To understand why this is better, cohsider the three different shapes of

arrays: rectangular, long and narrow, and short and wide. When the array is rectangular,

like in Figure 2.20 (e) and (t), PEj and PEj+l can pipeline. This overlapping execution will

increase as the work at each element increases. lf there is very little work at each element

then it is run sequentially. Note that this usually only occurs when ik+l is the innermost

level of the nested loop. When the array is long and narrow, the same rules apply except

even more work is needed at each element for distribution to show a gain. Finally, if the

array is short and wide, like Figure 2.20 (b) and (c), multiple wavefronts occur thus

providing sorne parallelism.

So, for the scope of this discussion, the communication costs of distributed memory

architectures is too high for for-loops with LCDs to be distributed. The communication

cost overwhelms any efficiency gains from the overlapping iterations. Thus PODS does

not distribute loops with LCDs. One outcome from this is that all distributed loops are

array filling loops.

70

Based on the above, PODS needs a compiler which will reduce the number of LCDs so that

the loops can be distributed. Scalar expansion is one optimization which does this. Any

state-of-the-art vectorizing cornpiler will have (see Padua and Wolfe [P&W86]) scalar

expansion. Since the ID Nouveau cornpiler is not intended for a rnachine which is aided by

scalar expansion (GITA), it does not scalar expand. PODS, on the other hand, is aided by

scalar expansion and would have this and other optimizations (e.g., loop interchange, and

loop fission).

PODS also needs a LCD Detector, which will detect when LCDs occur. The LCD Detector

performs two rnajor phases. The first phase finds the loop bodies and the second traces

these looking for array writes (I-structure STOREs) which use values from the same array

(I-structure FETCHs). The first phase performs the following steps:

1. Find all D operators.

2. Search backward frorn each D until the same D or another D is

found. Do not search beyond the SWITCH operator.

3. If found D is the same, then the path search forms the loop

variable path, else it forms the loop body path.

The loop bod.ies are now traced using the following:

1. Find ali I-structure STORE operators.

2. Trace up the data dependency ares frorn each to find ali

I-structure FETCH operators which feed this I-structure

STO RE.

3 . Trace up the data dependency ares from each index input to find

the source the index value.

4. If any I-structure FETCH uses the same array as the I-structure

STORE and their index input paths d.iffer from each other, then

there is a LCD.

2. 5. 4. Remote Array Accesses

71

Remate l\ITilY accesses will occur dueto the d.istribution of arra y data. No new reads nor

writes are added to the original ID program. Remate reads and writes are d.iscussed in this

section. Array caching affects remate reads, but this is not part of the model and therefore

d.iscussed in Chapter 3, PODS Logical Architecture. Also in Chapter 3 is a d.iscussion of

the Array Manager which actualiy performs these operations.

Remete Reads

As a simple example of remote array reading, considera multiprocessor with 4 PEs. Using

a page size of 32 elements, and 3 arrays A, B, and C, each of size 100. PE O, 1, and 2 will

each contain a single page of each arra y. PE 3 will contain a partial page (4 elements) of

each array. Consider the following loop:

For i <- 1 To 100 Do
{

A[i] 8(101-i] + C(i]

FIGURE 2.27. REMOTE READ CODE EXAMPLE.

All four processors begin executing simultaneously-PE O fills A(l..32), PE 1 fills

72

A(33 .. 64), PE 2 fills A(65 .. 96), and PE 3 fills A(97 .. 100). Note that for most of the loop,

each processor must access elements of array B that lie on a different processor than the

executing processor. Each one of these remote accesses entails a transfer of data from the

producing PE to the consuming PE, an operation that is relatively expensive on al1 current

distributed memory multiprocessors. It will never be possible to remove the need for

remote accesses from distributed computations, so PODS must instead use a technique for

diminishing their effect on the overa.ll computation time. The technique PODS uses is

called remate access caching.

Remote access caching takes advantage of the fact that in PODS, no array element may be

written to multiple times. As a result of this,PEs can cache data that has been recently

accessed without considering cache coherency problems. In the partitioning scheme

defined above, each PE contains sorne number of pages of each array. To accomplish

remote access caching, PODS defines a remote access as the retrieval and local storing of

the entire page containing the remote da~m. That is, when a particular element is fetched

from a remote PE, the entire page containing that element is sent back to the requesting PE

when the requested element becomes available. Due to locality of reference in many

algorithms, it is likely that the same PE will need another element from that page in the near

future, so if the cache is checked first a remote access will often be avoided. Of course, if

the next requested element was not available at the time the page was cached, then another

remote access, transferring the same page, will be required. Note that the term "cache"

used here does not refer to a specialized hardware device, used to reduce access time to

rnain memory. Rather, it is a "software cache" used to reduce access time to remote

memory rncxiules.

Remote Writes

73

In the previous discussion, it was mentioned that occasionally the program structure makes

remote writes unavoidable. A remote write is an array write where the data collector is on a

different PE than data storage. When this occurs a message rnust be sent to the remote PE

with the value, the array ID, and the indices. As an example of why this might happen,

examine the following code segment:

Far i <- 1 To 100 Do
{

A[i] = B[i]
C [i+lO] = B [i+SJ * 2

FIGURE 2.28. REMOTE WRITE CODE EXAMPLE.

To see why the PODS data parti.tioning methcxi causes remote writes in this case, consider

that a write to C may occur at a location not owned by the PE executing the loop. For

example, suppose i is 25. PE #O is responsible for writing A(25), however PE #1 is

responsible f or writing C(35). Without loop fission, it is necessary either for PE #O to

remotely write to C(35) or for PE #1 to remotely write to A(25). This is nota single

assignment violation, but it is inefficient. In this case loop fission could sol ve the problem,

however, in general, there is no simple solution. To avoid using different mapping

functions for A and C, PODS allows remote writes instead.

Remote writes are also necessary f or another reason. In ideal circumstances ali data is

written to locally, but program structure can sometimes cause remote array writes. Note

74

that it is not always possible to determine, at compile time, which elernent is being updated

by an assignment statement Consider the loop below:

For k <- 1 To n Do
{

A[f(k)] == B[g(k)]

FIGURE 2.29. lMPOSSIBLE COLLECTOR WRITES.

The functions/and g rnak:e it impossible to determine which elernent a given k will be

assigning ar compile time. In this case each PE rnust calculate/(k) for ali /¿s to determine

if that element of A is inside its area-of-responsibility. It should also be noted that arrays

are single assignrnent and that thef(k) must be well behaved (one-to-one) over the range of

k, otherwise a single assignment run-time error will occur.

2. 5. 5. For-Loop Distribution Algoritbm

Now that DDE has been introduced, the effects of LCDs have been discussed, and the

rnechanisms for distribution have been explained, the actual for-loop distribution algorithrn

can be presented.

There are three primary rnechanisms for achieving distribution. The data distribution

mechanisrn (ALLOCA1E operator) has already been discussed. For PODS to distribute SPs

they need to be spawned on multiple PEs. It is the DIST-L operator which performs this.

When PODS determines that a certain level of a nested loop is to be distributed, its parent

SP gets DIST-L operators, and it gets the third primary rnechanism: the RANGE_Fil.. TER.

At compile time the program is analyzed to determine which for-loops will be distributed.

Those for-loops which are distributed will be augmented with RANGE_Fil..TER code. The

task of the RANGE_FIL TER is to produce only those loop variables which make the arra y

·accesses local. At load time, each PE will be given a copy of the enrire program (ali PEs

are homogeneous). At run-rime tokens are sene to different PEs to start execution of a

particular for-loop SP.

75

Since arrays are partitioned row-major the code will be row-major as well. If it is not

row-rnajor it will run, but inefficiencies will occur. In order to efficiently execute a

row-major nested loop the outer-most level of the nest should be distributed. This reduces

communication cost and context switching, and allows the array caching to operate

efficiently. Given these observations and the previous principles, the algorithm for-loop

distribution determination is as presented below.

Algorithm: Loop Distribution

1. Starting with the outer-most cede-block, repeat the following

until ali sets of nested loops are marked (depth-first traversa!) as

either distributed or local .

a. Consider the next inner code-block. If this code-block does

not have an LCDs, then mark it and all descendent SPs will be

local.

b. If this inner SPs has a LCD, then goto step 2.

c. If this is the inner most SPs , then consider the next

unmarked SPs (depth-first) and goto step 2.

2. In each marked SP a range fil ter replaces the predicare.

3. In the parent of each marked SP the L operators are changed into

DIST_L operators.

76

The outer-most SPs of an entire program cannot be d.istributed. This is because every

program must start somewhere; i.e., there is a single first instruction in every program. If

it is desirable, due to LCDs, to d.istribute this outer-most SP, then a dummy SP is set up to

drive the original SP.

2.5.6. Examples

LCD Examples

In a two leve! nested loop there are four basic cases which involve LCDs: (1) no LCDs in

either i nor j; (2) LCD in i; (3) LCD in}; and (4) LCDs in both. PODS handles each of

these cases efficiently.

In the following examples the same array and filling loop will be used, however the filling

function (FUNC) will be changed to add or subtract LCDs as necessary. Considera simple

nested loop which fills an 8 x 4 array A.

For i <- 1 To 8 Do
For j <- 1 To 4 Do
{

A[i,j] = FUNC(x)

FIGURE 2.30. SIMPLE ARRA Y FILLING EXAMPLE CODE.

For the above code there would be two SPs, one for the i loop and one for the j loop.

Since there are no LCDs, either level can be d.istributed. Assume the array is partitioned as

shown in Figure 2.31 below, and assume that the communication delay is a short five time

units, and that a context switch is one time unit

1

2

3

4
5

6

7

8

1

j

2 3 4

PE 1

j PE2

PE 3

PE4

ARRAY A

FIGURE 2.31. SIMPLE ROW-MAJOR ARRAY PARTITIONING.

Case 1: No LCDs

77

FUNC has no LCDs, e.g. A[ij] = B[ij]. If i were distributed the execution would be as

shown in Table 2.4. The pai.rs of numbers in the table show when A[i,j] is being written;

this only occurs in thej SP. The operations in italics are for the i SP. This assume PE 1

starts out generating the i's needed and then broadcasts them to all of the PEs (including

itself). When a PE gets an i value it starts the j SP. There are times when there is nothing

in this PEs area-of-responsibility; thus the for i=x : 0. The initial be comes from the

parent SP which contains the DIST_L operators, this is how ali of the initial parameters get

broadcast Note that i is not broadcast in this case.

78

time PE 1 PEZ PE 3 PE4
o 1mt1al be
1 context sw commdelay commdelay commdelay
2 geni=l commdelay commdelay commdelay
3 gen i=2 commdelay commdelay commdelay
4 context sw geni=3 gen i=4 gen i=7
5 1, 1 context sw gen i=5 gen i=8
6 1, 2 3, 1 gen i=6 context sw
7 1, 3 3, 2 context sw 7, 1
8 1, 4 3, 3 4, 1 7, 2
9 context sw 3, 4 4,2 7, 3
10 2, 1 4, 3 7, 4
11 2, 2 4, 4 context sw
12 2, 3 context sw 8, l
13 2, 4 5, 1 8, 2
14 5, 2 8, 3
15 5, 3 8, 4
16 5, 4
17 context sw
18 6, l
19 6, 2
20 6, 3
21 6,4

TABLE 2.4. EFFECTS OF ÜlITER LOOP DISTRIBUTION WITH NO LCDS.

Notice that PE #1 will tak:e over elements 2,3 and 2,4 as the iteration space partitioning

extends the area-of-responsibility based upon the first element. The communication delays

will overlap with the operations and context switches so that the multiple i-loop

communication delays do not delay the execution multiple times. Now if j were distributed

the execution would be as follows in Table 2.5. The parent sp does not have DIST_L

operators like above, it has regular L operators (which do not broadcast). Here the i's are

broadcast from the i SP (in italics).

79

time PE 1 PE 2 PE:J PE4
o parent sp
1 context sw
2 gen i=l
3 gen i=2 commdelay commdelay commdelay
4 geni=3 commdelay commdelay commdelay
5 gen i=4 cornmde1: commde1: commde1:
6 gen i=5 for i=l: for i=l: for i=l:
7 gen i=6 context sw context sw context sw
8 gen i=7 2,3 for i=2: 0 for i=2: 0
9 gen i=8 2,4 context sw context sw
10 1, 1 context sw for i=3: 0 for i=3: 0
11 1, 2 3, 1 context sw context sw
12 1, 3 3, 2 4, 1 fori=4: 0
13 1, 4 3, 3 4,2 context sw
14 context sw 3, 4 4, 3 fori=5: 0
15 2, 1 context sw 4,4 context sw
16 2, 2 for i=4: 0 context sw for i=6: 0
17 context sw context sw 5, 1 context sw
18 for i=3: 0 for i=5: 0 5, 2 7, 1
19 context sw context sw 5, 3 7, 2
20 for i=4: 0 for i=6: 0 5, 4 7, 3
21 context sw context sw context sw 7,4
22 for i=5: 0 for i=7: 0 6, 1 context sw
23 context sw context sw 6, 2 8, 1
24 for i=6: 0 for i=8: 0 6, 3 8, 2
25 context sw context sw 6,4 8, 3
26 for i=7: 0 context sw 8,4
27 context sw for i=7: 0
28 for i=8: 0 context sw
29 for i=8: 0

TABLE 2.5. EFFECTS OF lNNER LOOP DISTRIBUTION WIIB NO LCDS.

Note that every PE is doing something, thus distributing additional levels of the nest would

do nothing to speed up execution. In this case the j loop distribution must wait for each j to

be generated. After the initial communication delays each PEs will start checking the i

values they receive. If i is in the range (as determined by the RANGE_FILTER) thenj values

will be generated, if not, the SP completes. This exarnple graphically shows that outer

level distribution is better than inner level (execution time of 21 vs. 29), as described in

Section 2.6.1 above.

80

Case 2: LCD in i

FUNC uses i in such a way that there is a LCD, e.g. A[i,j] = A[i-1, j]. In this case PODS

would not allow i to be d.istributed, and the RANGE_FU. TER would go in the jth level (i.e.

be distributed). As in Case 1 when j was distributed, the iterations must wait for i to be

generated. Since the LCD is in i the loop would execute as shown in Table 2.6 (execution

time of 45). Note that Table 2.6 obeys the LCD restriction on i. The block' sin Table 2.6

mean that the necessary array elernents have not yet been written.

81

time PE 1 PE 2 PEj PE4
ro parent sp
1 context sw
2 geni=l
3 geni=2 commdelay commdelay commdelay
4 geni=3 commdelay commdelay commdelay
5 geni=4 commdelt?' commdelt?' commdelt?'
6 geni=5 for i=l: for i=l: for i=l:
7 gen i=6 context sw context sw context sw
8 gen i=7 block fori=2: 0 for i=2: 0
9 geni=8 block context sw context sw
10 1, 1 block for i=3: 0 for i=3: 0
11 1, 2 block context sw context sw
12 1, 3 block . block for i=4: 0
13 1, 4 commdelay block context sw
14 context sw commdelay block fori=5: 0
15 2, 1 commdelay block context sw
16 2,2 2,3 block fori=6: 0
17 context sw 2,4 block context sw
18 for i=4: 0 context sw block block
19 context sw 3, 1 block block
20 fori=5: 0 3, 2 commdelay block
21 context sw 3, 3 commdelay block
22 for i=6: 0 3, 4 commdelay block
23 context sw context sw 4, 1 block
24 fori=7: 0 fori=4: 0 4,2 block
25 context sw context sw 4, 3 block
26 fori=8: 0 fori=5: 0 4,4 block
27 context sw context sw block
28 fori=6: 0 5, 1 block
29 context sw 5,2 block
30 fori=7: 0 5, 3 block
31 context sw 5,4 block
32 for i=8: 0 context sw block
33 6, 1 block
34 6, 2 commdelay
35 6, 3 commdelay
36 6, 4 commdelay
37 context sw 7, 1
38 fori=7: 0 7,2
39 context sw 7, 3
40 fori=8: 0 7,4
41 context sw
42 8, 1
43 8, 2
44 8, 3
45 8,4

TABLE 2.6. EFFECTS OF INNER LOOP 0IS1RIBUTION WITH LCDS.

82

Cornparing this to Table 2.7 below, the execution time is shorter with inner loop

distribution than with no distribution (sequentially). As the work per element grows or the

array dlmensions increase, this advantage will grow.

Case 3: LCD in j

FUNC uses j in such a way that there is a LCD, e.g. A[i,j] = A[i, j-1]. In this case PODS

would distribute i, and the RANGE_FIL TER would go in the ith level . As in Case 1 when i

was clistributed, the iterations will ran in parallel right away. And since the LCD is inj the

loop would execute exactly like the first part of Case 1 (execution time of 21). Note that

Table 2.4 obeys the LCD restriction on j.

Case 4: LCD in i and j

In this case FUNC would be something like A[ij] = A[i-1, j-1]. Since there are LCDs in

each level, PODS would not distribute this loop at ali and the execution would be as shown

below in Table 2.7 (total execution time of 49). The load balance in this case is also very

poor.

time PE 1 PE 2 PEJ PE4
~ parent sp
1 context sw
2 geni=l
3 gen i=2
4 geni=3
5 gen i=4
6 gen i=5
7 gen i=6
8 gen i=7
9 gen i=8
10 context sw
11 1, 1
12 1, 2
13 1, 3
14 1, 4
15 context sw
16 2, 1
17 2, 2
18 2, 3
19 2,4
20 context sw

43 7,3
44 7,4
45 context sw
46 8, 1
47 8, 2
48 8, 3
49 8, 4

TABLE 2. 7. EFFECTS OF NO DISTRIBUTION DUE TO LCDS.

It is interesting to note that Cases 2 and 3 are still executed in parallel by PODS even with

the LCDs. In general Case 2 could generate multiple diagonal wavefronts, while Case 1

would execute with a horizontal sweep. The diagrams below illustrate the different

execution pattems. The numbers in each cell are the time each cell would be filled. By

tracing lines through equal times the wavefront can be seen.

83

V~ HHIHH
Two Símultaneous

Diagonal Wavefronts
One Horizontal Sweep

FIGURE 2.32. LCD EXECUTION W A VEFRONTS.

Matrix Multiply

84

To better understand the distribution algorithm reconsider the Matrix. Multiply code shown

previously in Figure 2.15. There are three code-blocks in this function which turn into

SPs: one for i-loop (MM-O); one for j-loop (MM-1); and one for k-loop (MM-2). This

function has no LCDs in the i or j loops, only in the k-loop. Using the loop distribution

determination algorithm above, the outer-most code-block (the i-loop) cannot be distributed

without setting upa dummy parent. The next innercode-block (thej-loop) has no LCD

and will thus be distributed. All descendent code-blocks (only the k-loop) wil1 be local.

The files below are the exact inputs that were used to run Matrix Multiply on the PODS

Simulator.

85

M+-0
t opcode ·~ arg5

(value, port) dest [i, p] rc.ute (r) {e}

o ppa.pr o -> (12,0] {B}
1 ppa.pr o -> (13,0] (7, 0] (2,0] (5, 0]

(4, 0] (3, O] {A}

2 UPPER l3CX.lND 2 (0.00,1) -> (6,2] (9, 1] (11,0]
3 ~ l3CX.lND 2 (l. 00, 1) -> (6, 3] (14,0]
4 UPPER l3CX.lND 2 (1.00,1) -> (6, 4] (15,0]
5 ~ l3CX.lND 2 (0.00, 1) -> (6, 1] (16,0]
6 ALI.CCA1'E 5 (2.00,0) -> (8, O]
7 ~ l3CX.lND 2 (0.00,1) -> (9,0] (10, 1]
8 FOOKJtM> 2 (1.00,1) -> (17,0]
9 LE 2 (STKY,l) -> (10,0]

10 SWI'!Oi 5 (1.00,2) (11.00,3) (2.00,4) -> (18,0] (19, 0] (21, 0] (I}
11 DIST I.OPERA'.l'OR 1 (STKY,0) -> (12)
12 DIST I.OPERA'.l'OR 1 (STKY,0) -> (14)
13 DIST I.OPERA'.l'OR 1 (STKY,0) -> (15)
14 DIST I.OPERA'.l'OR 1 (STKY,0) -> (10)
15 DIST I.OPERA'.l'OR 1 (STKY,0) -> (11)
16 DIST I.OPERA'.l'OR 1 (STKY,0) -> (13)
17 DIST I.OPERA'.l'OR 1 (STKY, 0) -> (16)
18 DIST I.OPERA'.l'OR 1 -> (1)
19 PWS 2 (l. 00, 1) -> (20, 0] {NEXT-I}
20 D 2 (-11.00,1) -> (9,0] (10,1] (I}
21 DnN 1 ->

In SP MM-O the PROMPT instructions acquire the A and B matrices used in the Matrix

Multiply. The UPPER_BOUND and LOWER_BOUND instructions access the array

headers to setup the loop boundaries. ALLOCATE then remotely distributes the C array

and feeds a FORKJUMP operator. This FORKJUMP is necessary for the array manager

to have a place to return the array identifier itjust allocated. The LE, SWITCH, PLUS, D,

and DINV are the standard dataflow operators. The new PODS operator is the

DIST _LOPERA TOR, which performs the standard L operator dataflow operations, but

also sends its tokens to ali PEs. This is how i gets distributed.

In SP MM-1 below, there is the local equivalent of the DIST_LOPERA TOR, the

LOCAL_LOPERATOR, which sends its tokens only to itself. LOCAL_LOPERATORs are

only used when the operations have already been distributed, and more distribution would

just create network overhead without additional parallelism. MM-1 also has a range filter

inserted into it, from instruction O to 18 and 29 to 30.

86

t-M-1
opcod! #args args (value, p:irt) de.st. [i, p] route (r) {e)

o INTERVAL CXXlNT 1 (STKY,0) -> [l, l]
1 LT 2 (0.00,0) (STKY,l) -> [2,0J
2 SWITCH 5 (0.00, 1) (1.00,2) (29.00, 3) (3. 00, 4) -> [3, OJ [5, 0] [8, l]

[31,0]
3 B AAN3E 3 (STKY, 1) (0.00,2) -> [4, 1)
4 GE 2 (STKY,0) -> [7, OJ
5 E RAN3E 3 (STKY,l) (0.00,2) -> [6, O]
6 GE 2 (STKY,l) -> [7, l]
7 AND 2 -> [8, OJ
8 SWITCH 5 (1.00,2) (9.00,3) (3.00, 4) -> (9, O] [10,0J [16, l] [17,0]
9 E RAN3E 3 (STKY, 1) (1.00,2) -> [11,l]

10 B RAN3E 3 (STKY,l) (1.00,2) -> [11, O] (12,l]
11 LE 2 (STKY,l) -> (12, 0) [16, O]
12 SWITCH 5 (1.00,2) (4.00,3) (3.00, 4) -> [13, l] [15, O] [19, l]
13 LE 2 (STKY,0) -> [14,0)
14 SWITCH 5 (STKY,l) (1.00,2) (-3.00,3) (0.00,4)-> (11,0J [12,1)
15 LE 2 (STKY,l) -> (16,0J (19, OJ
16 SWITCH 5 (STKY,0) (S'l'KY, 1) (3.00,2) (l. 00, 3) (0.00,4)-> [17,0]
17 PllJS 2 (1.00,1) -> [18,0J
18 FORKJlM? 2 (-17.00,1) -> [l, O] [2, 1)
19 SWITCH 5 (1.00,2) (12 .00,3) (3.00, 4) -> [20,0) (26,0) (27, 3) (31, O]

{J)

20 ux::AL LOPERATOR 1 -> (7)

21 ux::AL LOPERATOR 1 (STKY,0) -> (2)
22 ux::AL LOPERATOR 1 (STKY, 0) -> (3)
23 ux::AL LOPERATOR 1 (STKY, 0) -> (4)
24 ux::AL LOPERATOR 1 (STKY,0) -> (5)
25 ux::AL LOPERATOR 1 (STKY, 0) -> (6)
26 PllJS 2 (1.00,1) -> (28, O] {NEXT-J}
27 WRITE ARRAY 4 (STKY,l) (S'l'KY,2) ->
28 D 2 (1.00,1) -> [11, O] [12, 1] [29, 1) {J}

29 GE 2 (STKY, 0) -> (30,0J
30 SWITCH 5 (0.00,1) (-11.00, 2) (-19.00, 3)-> (19,0J
31 DINV 1 ->

SP MM-2 is a simple local loop which performs a reduction-like operation. MM-2's LCD

causes it to be run on one PE and not distributed. The LOCAL_LINV operator routes the

sum (S) back to its parent SP which is on the same PE since it is a local operation. This

route uses route list 9 which is programmed into every Routing Unit.

M-1-2

* opcode

O IE
1 SWITOi

{TRIWER}

2 SWITCl:I
3 READ ~
4 PWS
5 READ ~
6 MJLT
7 PWS
8 D
9 D

10 DINV
11 DINV
12 r..o::AL LINV

87

fa.rg:3 a.rg:3 (value, port) dest [i, p] route (r) (e)

2 (STKY, 1) -> [2,0) [1, O]
5 (1.00,2) (1.00,3) (3.00,4) -> [3,2] [5, l] [4, O] [10, O]

5 (0.00,1) (1.00,2) (8.00,3) (1.00,4)-:> [7,0] [11, OJ {S}
3 (STKY,0) (STKY,l) -> [6,0J
2 (1.00,1) -> [8, OJ {NEXT-K)
3 (STKY, 0) (STKY',2) -> [6, l]
2 -> [7, l]
2 -> [9, OJ {NEXT-S}
2 (l. 00, 1) -> [O, O] [l, l] {K}
2 (-9.00,1) -> (2, l] {S}
1 ->
1 -> [12, OJ
1 -> (9)

The routing file below is the "program" that the Routing Unít follows for sendíng tokens to

different SPs. Notice that route list 9, used by MM-2, sends the sum to MM-1, instruction

27, port O. Checking MM-1 we see that instruction 27 is the WRITE_ARRA Y instruction

which is filling array C.

DISPLAYDG ROOITS
t dest.ination.s [sp, in.st, port]

1 -> [l, 25, OJ (1, 27, 2] [l, 4, O] (1, 6, l]
2 -> [2, O, O] (2, 1, l]
3 -> [2, o, l]
4 -> [2, 5, O]
5 -> [2, 3, O]
6 -> [2, 3, l]
7 -> (2, 5, 2]
9 -> [l, 27, OJ

10 -> [l, 13, O] [l, 14, l]
11 -> [l, 15, l] [l, 29, OJ
12 -> [l, 22, O]
13 -> [l, 21, 0)
14 -> (1, 23, O]
15 -> [l, 24, O]
16 -> [l, 27, l] (1, O, OJ (1, 3, l] (1, 5, l] (1, 9, l] (1, 10, l]

Figure 2.33 illustrates the distribution of the three Matrix Multiply SPs across four PEs.

The cwved lines represent broadcasts, the straight lines represent execution time, and the

bold lines correspond to the comments on the right-hand side of the figure. For this

example assume the Matrix Multiply starts out on PE #2. There SP O begins execution,

and enoounters the "ALLOCATE C' instruction. This instruction initiates a broadcast

message to the other PEs. U pon receipt of this message, each PE allocates its portien of

the array. Next, SP O generares and broadcasts the first value for i. Note that SP O does

not have a range generator, thus it will generare al/ i-indices.

PE #1 PE #2 PE #3 PE #4

SP O

r•ll¡ateC~

~ =0 ~
SP l (1 SP 1

SPI 1 ¡,¡

j=O

SP 2

le-loop

SP 1

j =l

1

:-.1 o
J =

SP 21
k-loop

SP 11
j =1

1

SP 1

SP l

e is distributed

• i = O is broadcast,
starts j loops
• only PE #3 has resp­
onsibility when i is O
•PE #3 begins j loop
• all other SPs stop

le-loop for (0,0) runs
locally and reports
sum back to SP l

FIGURE 2.33. EXAMPLE EXECUTION TRACE FOR MATRIX MULTIPL Y ON 4 PES.

88

Each remote PE that receives an activating token (value 0) instantiates SP l. SP 1 does

have a range filter, so it will process only those indices for which the current PE is

responsible. Thus a number of PEs quickly execute essentially empty SPs because they

have no elements for which they are responsible when i is O. In this case, PE 3 is the only

PE with operations to perform when i is O. PE #3 executes SP #1, which spawns the

89

k-loop locally (the fact that the loop is local was detennined at compile time). The k-loop is

a simple loop that generares a vector dot product and returns the result to its parent SP. The

j-loop may now conti.nue with the j values for which it is responsible when i is O.

In parallel with the execution of the first iteration of the i-loop, the original SP O continues

generating and broadcasting successive values for i. This will cause new ready SPs to

queue up in remete PEs. As other SPs block waiting for tokens, these new SPs will be

selected for execution by the scheduler.

Once the k-loop starts, it will access remote pages from different PEs as necessary. This is

where the existence of the remote access cache becomes important - a large number of

reads will access the local array cache rather than causing a remote read.

Thus the SPs are efficiently distributed across the PEs. The distribution of Matrix Multiply

across the set of PEs is efficient and uses little overhead.

2. 6. Functional Distribution

In PODS, functional distribution is not a primary concem. The APPLY operator is used to

spawn function calls on a single remote PE, and the INVERSE_APPL Y is used to report any

answers. Both of these operators are similar to the original ID operators, as described

previously.

PODS distributes functions at run time. Since all communication into and out of a function

go through the calling SP, this decision does not have to be broadcast to the other SPs.

Functional distribution occurs in two steps: the first step is to determine whether to

distribute the function or not, and the second is to determine where to send it to if it is to be

distributed.

90

Currently ali functi.on calls in PODS are distributed. In the furure the loading of the PE and

the size of the function may be used to determine whether functions should be local or

distributed.

Once it has been detennined that a function will be distributed. where it will be sent to must

be decided. In order to randomly distribute the work load the simple hash function below

is used to generate the ID of the target PE.

Target PE ID= (iteration + SP ID+ Calling PE ID) mod (number PEs)

This will place different iterations on different PEs; necessary for calls inside of loops. By

using the calling PE's ID the same functions called from different PEs will not all end up

on the same PEs. Finally, the SP number adds to the randomness, particularly at the

beginning of a program.

This approach provides a fairly random distribution, which in turn tends to generare a

balanced work load. Given more information, a more complex and possibly better

distribution function may be used, but the simple approach achieves acceptable results

without wasting interconnect bandwidth in order to maintain global state information.

2. 7. Deadlock Handling

Once SPs are formed they are checked for deadlock. Deadlock can occur when dynamic

ares are present in such a way the actual instruction execution order depends on the indices

u sed.

Iannucci [Ian88] handles deadlock in such a way that the execution of very small SPs must

be efficient This is not possible on currently available distributed memory MIMD

machines. PODS instead produces a partitioning then checks it for deadlock. If it is

deadlock-free then it will run efficiently. If it has deadlocks then the programmer is given

91

the choice to either change the offend.ing code. or have the partitioner split the SP to remove

the deadlocks.

PODS uses a cornbination of deadlock avoidance and detection. In PODS, unnecessary

deadlocks occur only when an arra y read is placed befare its array write. In order to

understand simple deadlock, consider the SP fragment below. The READ will request an

I-structure read and the value would be sent to the '+ l '. But since the WRITE has not yet

occurred (if A[i] already has a value then a single-assignment violation will occur), the '+

1' will block and will never unblock - causing deadlock.

O regO <- read(A, i)
1 regO <- regO + 1

8 regO <- sorreva.lue
9 write(regO, A, i)

In order to avoid this PODS places array writes befare any reads of the same array. This is

only lirnited by the static data dependencies. If A[i] = A[i+ l] + 1 (a LCD), then the array

read of A[i+l] will be befare the array write into A[i]. This is nota problem. In the

exarnple above, PODS would avoid the deadlock by ordering the instructions as follows.

O regO <- sorreva.lue
1 write(regO, A, i)
2 regO <- read(A, i)
3 regO <- regO + 1

However, this will not always work. If another array.write to the same array occurs in the

same SP then deadlock can occur. Once this has been detected. PODS splits the SP just

after the array write to avoid the possible deadlock. This will avoid the deadlock because

array writes do not have an output dependency are. Thus, putting instructions after an

arra y write adds an irnplicit dependency are out of the array write. Splitting just after the

array write will remove this added are, thus returning the dataflow graph to its original,

deadlock-free state.

92

Consider the example below. This is the example Iannucci used to describe MDS. What

follows is how PODS would handle it

a= vector(0,2);
a[OJ = O;
a[l] = a[i] + 1;
a[2J = a[j] - 2;

in a [1 J - a [2 l ;

FIGURE 2.34. ID NOUVEAU DEADLOCK CODE EXAMPLE.

The unchecked PODS SP would look something like:

SP O
O write (0, A, 0)
1 regO <- read(A, i)
2 regO <- regO + 1
3 write (regO, A, 1)
4 regO <- read (A, j)
5 regO <- regO - 2
6 write(regO, A, 2)
7 regO <- read(A, 1)
8 regl <- read(A, 2)
9 retum (regO - regl)

This can cause an. unnecessary deadlock if i = 2 an.d j = O. In the code above (with i = 2

and j = 0), instruction #2 blocks awaiting the read from instruction #l. This deadlock is

unnecessary because a different ordering would not deadlock. By moving the bolded

instructions #4 - #6 above to instructions #1 - #3 below, i = 2 andj =O would not cause a

deadlock. to form another ordering. However, the code below would block on i =O and j

= 1, where the code above would not. Both of these orderings cause unnecessary

deadlocks because they can. be removed; a necessary deadlock would occur if i = 1 or j = 2

(see Figure 2.34 above).

SP O
O write(O, A, 0)
1 reqO <- read (A, j)
2 reqO <- regO - 2
3 write(regO, A, 2)
4 regO <- read(A, i)
5 regO <- regO + 1
6 write(regO, A, 1)
7 regO <- read(A, 1)
8 regl <- read(A, 2)
9 return(regO - regl)

PODS would recognize that there are three array writes to the same array in the same SP.

Therefore, the SP must be split after every write. This will form the following SPs.

SP O
O write(O, A, 0)

SP 1
O regO <- read(A, i)
1 regO <- regO + 1
2 write(regO, A, 1)

SP 2
O regO <- read(A, j)
1 regO <- regO - 2
2 write(regO, A, 2)

SP 3
O regO <- read (A, 1)
1 regl <- read(A, 2)
2 return(regO - regl)

93

This will remove the dynamic ares caused by placing instructions after an array write; array

writes do not have output dependency ares. These unnecessary dependency ares are what

cause the deadloc.k. These types of situations are possible but unlikely. In none of the

Livermore Loops, nor Matrix Multiply, nor in any"of SIMPLE does code like this occur.

Iannucci has designed a completely safe system, however it cannot run efficiently without

special purpose hardware. PODS has been designed for the most lik:ely cases (scientific

code), but can still operator on the abnormal cases (though notas efficiently as regular

code). A detection method more complex than the simple array write test is currently being

94

investigated. It is based upon the LCD algorithm. This would allow PODS to create even

larger SPs.

CHAPTER3

PODS Logical lmplementation

This chapter d.iscusses the logical implementati.on of a Process-Oriented Dataflow System.

The logical irnplementation describes the functional units and their tasks in PODS. The

remete arra.y caching scheme is also presented. Once these are covered the logical

architecture is examined. Finally, the supporting software suite is presented.

3. l. System Overview

The driving force behind the PODS logical implementation design was the desire to support

the programmer with automatic, but efficient, parallelization of his code. To achieve this

the logical implementation had to execute the partitioned ccxle with ~ little global

information as possible. Global information is the root cause of many computational

bottlenecks. And since PODS is to be used on MIMD machines with relatively slow

communications; communications over the network have to be kept to a mínimum.

With the above goals in mind, the logical PE design was constrained to contain a

conventi.onal von Neumann CPU at its core. The suppon units would provide additional

power to perf orm specialized tasks. It is envisioned that these unit would be placed on a

single circuit board to forma complete PE. Over time the support units changed in number

and functionality until the complete set below was finalized.

• Executi.on Unit - main unit, performs ali ALU functions, a

standard microprocessor (e.g., Intel 80386).

• Matching Store - suppon unit, handles matching of incoming

tokens.

95

.. Routing Unit - support unit, processes rnessages between PEs,

similar to the Direct-Connect Model in the iPSC/'2.

Array Manager- support unit, handles array manipulation

requests and remete caching.

Memory Manager - support unit, manages SP memory and

loads SPs.

96

In order to produce partitioned code, a system ~oftware suite was built The suite consists

of the ID World Compiler, the PODS Translator, the PODS Partitioner, and the PODS

Simulator. The ID World Compiler was graciously supplied by MIT [Nik87b] and the

other three programs were designed and built here at UC, Irvine. A parallel programmer

would write in ID Nouveau, compile the program. run it through the translator, and then

the partitioner to produce PODS cede. In the future a PODS compiler is envisioned that

would replace the first three programs, and would be tailored for a specific MIMD

architecture, like the iPSC/2.

The PODS instruction set is designed along the lines outlined in Bic's original paper

[Bic87]. It was designed to perform the required tasks (interna! and externa! token

passing) as efficiently as possible. Though it was not tailored to a specific von Neumann

CPU, the tasks required are not beyond the standard von Neumann CPU.

U nderlaying ali of the instructions is the remote array caching scheme. This is a software

caching scheme designed to exploit the locality of reference in most programs. This is

critica! for slow communication MIMD systems.

97

3. 2. Logical PE Architecture

The logical implementation describes the functional units and their tasks necessary in PODS

[Roy90]. The design was constrained to contain a conventional von Neumann CPU at its

core. The support units would provide additional power to perform specialized tasks. It is

envisioned that these unit would be placed on a single circuit board to form a complete PE.

This logical implementation is currently being modified to run directly on an iPSC/2. The

way in which the tasks are performed is changing, but the tasks are still the same.

MATCHING STORE
contex t.sp. •. port.i teration
contex t. sp. •. port.i ter ati on
contex t.sp. •. port.iteration

SCP 8
SCP 1
SCP 4
SCP 7
SCP 9

SCP 4 (c.sp.*.p.l)

SCP 9 (c.sp. * .p.0)

SCP 4 (c.sp.*.p.2)

values,
dynamic

addresses

output token

offset 1
offset 2

requests,
values

ARRA Y MANAGER

queued
.............................. .-..........., memory
--.~~~~--requests

l 1 1 1 fjc~el 1 1 1 1

1

remote values,
remote requests

local reads

FIGURE 3.1. LOGICAL UNITS OF APODS PE.

98

Figure 3.1 shows how the functional units within a PE interact When an input token

arrives it is run through the Matching Store. When the required tokens are present the

Memory Manager will load the SP from the Program Memory into Execution Memory.

Once in Execution Memory the Execution Unit will begin operating on itas it percolates to

the top of the ready list The key is to keep the Execution Unit operating as muchas

possible and to keep the number of context switches to a rninimum. In order to suppon

this the Execution Unit calls upon the Array Manager and the Routing Unit to handle

specialized tasks.

Each of the tasks of the functional units is explained below.

3. 2 .1. Execution Unit

99

The Execution Unit is a simple von Neumann machine which automatically blocks the

executing process when a necessary operand is not available. This unit is the most heavily

used and is the most complex. PODS is designed such that this unit can be a standard

off-the-shelf microprocessor, e.g. Intel 80368. This will allow PODS to make use of

advancements in rnicroprocessor technology, e.g. Intel i860.

The Execution Unit uses the state transitions described in Chapter l. In order to execute

one PODS instruction the following tasks need to be performed:

1. check if all operands are available - if not block

2. perform basic instruction to produce value

3. pass value intemally to needy instructions

4. if necessary, send message to Routing U nit with route list and

value.

5. increment or set program counter as directed by instruction

These steps can easily be performed by an off-the-shelf microprocessor, and many

optimizati.ons can be perfonned. For example, many instructions will never block since all

of their operands are generated locally with the SP. Most instructions do not have routes

attached, only interna! off sets for value passing. V alue passing is performed by using

registers. Sec Bic's [Bic90] for a detailed discussion of the Execution Unit's functions.

3.2.2. Routing Unit

100

The Routing Unit is loosely based upon the Direct-Connect Module in the iPSC/2.

However, it must perform a number of tasks other than just making the connection. Ali of

these tasks in vol ve the use of the Routing Table.

The Routing Table is built at compile time and holds the static information necded to send a

token from one SP to another. The figure below shows the structure of a Routing Table

(note that is not limited to only 3 entries as shown). The Routing Table is only dependent

upon the program, and is built by the PODS Translator.

unique route ID 1 (sp inst port) (sp inst port) (sp inst port)

unique route ID 2 (sp inst port) (sp inst port) NULL

unique route ID 3 (sp inst port) NULL NULL

unique route ID 4 (sp inst port) (sp inst port) (sp inst port)

FIGURE 3.2. ROUTING TABLE.

Each PE has a copy of the Routing Table. It is of a fixed size because it only holds static

information, the dynamic information will be in the token's tag. To senda route the

Execution Unit simply semis a local message to the Routing Unit. This message contains

the route ID, the token's value, the token's tag, and whether this is to be a distributed or

local or hash route. This is shown below in Figure 3.3.

message from EU
contains route ID, value, tag
d.istribute/local/hashed flag

Routing Table
route ID ---------
~u1 i::::o~~~::l-~~~

local route:
send new token to the

Matching U nit of this PE

distributed route:
send new token to

all PEs

value

FonnNew
Token

Routing U nit

hashed route:
send new token to

selected PE

FIGURE 3.3. ROUTING UNIT BLOCK DIAGRAM.

101

If the route is local the destination PE is this one, and the network need not be accessed. In

the future, the Execution Unit may take on this local responsibility, but that would put more

burden on the Execution U nit

If the route is a hashed route, then the Rouci.ng Unit must take the token's context, combine

it with the destination (sp inst port) from the Rouci.ng Table, and run it through the hash

function to determine where this particular SP is located. It is possible that this SP will be

on this PE, but the Routing Unit is the only unit which can determine that

102

If tt ·~ c::>ute is to be d.istributed, then each PE is sent a message with the token in it This is

how an SP is distributed. Its parent SP calls the Routing Unit with a token and calls for it

to be distributed. This will cause every PE to receive a copy of the token, and every PE

will start up the appropriate SP. These distributed SPs have range filters which limit the

indices which are actually generated.

Asan example, considera token with the following: value = 1, context = (2,3), iteration

number = 4, and route ID = 5. If this token were to be d.istributed, and route ID 5

contained (1, O, 0) (1, 1, 1), then every PE would get two messages. The first message

would be destined for context (2,3), iteration number 4, SP 1, instruction O, pon O and

have the value l. The second would be for context (2,3), iteration number 4, SP 1,

instruction 1, pon 1 and have the value l.

In an actually implementati.on these messages would be batched together to reduce

communication costs.

3. 2 . 3. Array Manager

The Array Manager handles ali array accesses, except local array reads. The Executi.on

Unit will issue a request to the Array Manager toread. write, or allocate an array. This will

not cause a context switch, the Execution Unit will keep on processing until a needed value

is not available. This causes a shadow to occur between the time the value is requested and

the time it is needed. In the future this shadow can be exploited to execution as many

instructions as possible before reaching the needy instruction.

When a request for an array read is received, the Array Manager determines whether the

element is:

1. cached and present - return value

103

2. local or cached, and not presem - enqueue request

3. rernote - send rernote request to routing unit

If the element was local and present then the Execution unit would have read it d.irectly. To

enqueue a request a flag is set in the memory location of the cell to indicare that there are

requests which will need to be serviced when the cell is written. This is much like

Arvind's I-structures, [ANP87a, ANP89].

When a remate read is needed, the Routing Unit will send the request to the appropriate PE

(based upon the global partitioning). If the value is present then the entire page is retumed.

This page is then cached in the PE's software cache for that array. In this way the remote

caching scherne is implemented, and further reads by this SP will most likely ha ve sorne

locality-of-reference. The single assignment restriction prevents writes from needing to be

replicated across the network and this allows a simple caching mechanism to operated

without cache coherency problems.

When an array write is requested, the Array Manager perfonns a similar set of tests, but the

cache is never directly written. The cache will be updated when the page is brought over

from the remote PE. When the value is actualiy written into the cell the queued read

requests are dequeued and the value is send to the ali of the requesting SPs, be they local or

remo te.

To allocate an array, every PE needs to know that space should be reserved. To do this the

Array Manager on the PE where the ALLOCATE operator is fired, called the host PE, will

assign the array a unique ID. This ID is then sent to ali of the other PEs so that they will

reserve the requested space and use the same ID. This ID is then retumed to the requesting

SP so that it will be used as a reference the array from any PE.

3. 2. 4. Memory Manager

The Mernory Manager is quite simple. It has only one task, to load SPs from program

memory to execution memory. In an actual implementation, this would simply be a SP

frame manager with no copying of instructions, and would probably be part of the

Matching U nit.

104

SP's are loaded as soon as ali of the tokens for the first instruction are present in the

Matching Unit. There is no reason to load the SP earlier, since the SP cannot start

executing until then. There is also no reason to load it any later, as the second instruction

may be fed by the first.

3. 2. 5. Matching Unit

The task of the Matching U nit is to receive tokens and determine which SP they are

destined for. Logically two tokens match if their dynarnic parts and SP numbers match.

This will uniquely identify a specific SP. In an actual implementation this is implemented

as a hash table lookup based upon the SP ID, and the frame pointer. This hash table can be

handled by a small, quick, rnicroprocessor like the AMD 29000.

3 . 3. Remote Array Caching

This remote array caching scheme was presented previously in [BNR89b]. Por that paper

the Livermore Loops benchmark programs were run anda cache size equal to 5% of the

arra y siz.e was found to be sufficient. This scheme has not changed significantly since that

time.

Single assignment is essential to this remote array caching scheme, and a little explanation

is in order. Single assignment principies allow the implementation of a simple automatic

synchronization mechanism. Each memory cell has two states-undefined or defined. If a

105

cell is undefined, ü may also have a queue of read requests associated with it. Hardware

enforces the write-before-read requirement. Sorne examples of architectures that ha ve this

type of write-once/read-rnany rnernory access mechanism include HEP [Srni85, Srni81]

and I-structure memory in dataflow [A&C86, ANP87a, ANP89].

Prior to execution, an array is either undefined or filled with initialization data (if specified

in the program). Each PE may write only into undefined array cells. Race cond.itions a.re

avoided by this single assignment policy. There will never be a race cond.ition for writes to

memory cell, since only one PE may write to any panicular cell and writing more than once

results in a run-time error.

Thus the single assignment rule autornatically enforces synchronization in a disttibuted

manner, no explicit synchronization mechanisms are necessary-a majar issue in other

programming paradigms.

In PODS remote writes are kept to a rninimum by the panitioning described in Chapter 2.

However, remete reads and still occur quite often, since any instruction may read any data

item. If data is mapped onto the reading PE, the access is local, otherwise it is remete; the

PE must request the value from the responsible PE by sending a message. Remete reads

are synchronized just like local reads-if the data item is not available, the request is

queued, and if the data item is available, the page containing that ítem is sent back. During

this remete read the requesting PE can perf orm other useful work. The requesting PE may

resume executing this SP when the page arrives. This is where the benefits of array

caching come in, and array caching is greatly simplified because of the single assignment

principle.

Since the central idea in single assignment programming is to permit only one write to any

element, by requiring single assignment we can guarantee that a page fetched from a remete

PE and cached locally will not need any further updates during the lifetime of the arra y,

106

ignoring far now the possibility of partially filled pages. Given this, each PE may safely

cache a remotely fetched page in a local data cache, preventing future accesses of the same

remate page. The cache used will be of fixed size anda least-recently-used (LRU)

replacement strategy is employed.

Without single assignment, partitioning data among PEs is possible, but it would require

excessive communication overhead to allow any instruction to write to any location of an

array. In addit:i.on, array caching would be nearly useless as each write performed would

require the upd.ate of ali remete caches containing the modified page. The rnachine could

broadcast or multicast these updates to avoid the inefficiencies of individual messages, but

the broadcasts would still strain th;~ network facilities. Not only that, but without single

assignment the caches would be inconsistent for the duration of the page modification

broadcast (cache coherency problem). If no cache approach is taken, no page modification

broadcasts will be necessary, and there will be no inconsistency problems. But, the use of

caching leads to considerable decreases in total remete accesses peif ormed.

It has been shown [BNR89b] that a software cache size of 5% of the array size is sufficient

to reduce the number of remote re ad significantly. Tests with scientific code ha ve shown

that the percentage of remote reads can be reduce to less than 10% of the total number of

reads in most cases. Figure 3.4 below shows the effects of d.ifferent size caches on

percentage of remote reads for a number of the Livermore Loops scientific benchmark

programs [LLL83]. Notice that nearly ali of the kemels d.rop below 10% when caching is

used. The only exception is Matrix Multiply; this is because it reads one entire column of

one matrix and one entire row of the other in order to write one element. PODS uses a 5%

array cache.

Percent

100.00% -
X

90.00%

80.00%

70.00%

60.00%

·•· Hydro Fragment (1)

0- Rrn Sum (11)

· •· Rm Differencc (12)

~ 1-D Particle in a Cell (14)

···Casual Fortran (15)

"Ó' 2-D Explicit Hydro. Frag. (18)

R=ote 50.00%
Re.1ds X DiSCTete Ordinates Transport (20)

40.00% X Matrix*Matrix Product (21)

30.00% - Planclti.an Distributiori (22)

20.00% -Tri-Diagonal Elinúma.tion (5; .
l 0.00% t ·•·General Linear ReGurrencc (6)

0.00% a-Á-.:.-.:.-. --~ 0- Equa.r.ion of State Fragment (7)

O 5 l O 50 100 .. ·A. D.I. Integrarion (8

Cache Size (% of array size) -0- Integrare Predictors - column (9)

FIGURE 3.4. EFFECTS OF CACHE SIZE ON PERCENTAGE OF REMOTE READS.

As can be seen in Figure 3.5 below, the percentages of remote accesses are usually less

107

than 5% when a 5% cache size is used, independent of the number of PEs. This caching

can have anywhere from a minimal effect to an extremely large effect Large reductions,

such as 1/20th of the original remote reads, have been observed. Scientific code

demonstrates significant reductions (see [BNR89b]).

60.~

50.00'I.

~·-·
40.00'I.

20.~

10.~

·-·--·--·----· o.oo'*> a--a 11 il-==-'
4 8 16 32 64

Number of PEs

·•· Hydro Fngment (!)

O F"tnt Sum (11)

• • F"tnt Difference (12)

O 1.0 Port.icle in • eeu (14)

••• Cuual Fortr1n (IS)

6 2·D Expliclt Hydro. Fn1. (18)

)(Dilcme Onlinatm Tranoport (20)

X Marrix•Matrix Product (21)

- Plancklan Dillnbution (22)

-Tri-Diagonal Elimimation (S

·•· o.n.nJ Unes Reainence (6)

O Equation of Stmm Frqmem (T)

• • A.Dl. Inr.eantion (1

.O lmelJ'llC Predielan - column C9:

108

FIGURE 3.5. REMOTE READS FOR THE LIVERMORE LOOPS USING REMOTE CACHING.

Ata high-level this approach is similar to that taken by Callahan and Kennedy in [C&K88].

They describe a number of the software oriented issues involved in distributing arrays

across distributed memories. Unlike this approach, they allow a completely general

distribution function for allocating array elements. This is very powerful, but forces the

programmer to explicitly program in the decomposition and can lead to expensive run-time

calculations. This differs from the automatic parallelization goal of PODS.

3. 4. Software Support

In order to actually use PODS a number of support programs are necessary. These are

shown in Figure 3.6 below.

.id file

PODS
Partitioner

PODS
Simulator

109

FIGURE 3.6. PODS PROGRAMMING SYSTEM.

3. 4 .1. ID World and GITA Compiler

ID World is a software environment written at MIT [Nik87b] in LISP. As a pan of the

environment there is a GIT A compiler which can prcxiuce dataflow graphs for the GIT A.

The compiler itself [Tra86] makes use of peephole and other optimizations upon the ccxie.

The idea here was to leverage previous work in the field until the needs of PODS were

better understood. In the future a direct PODS compiler is in order.

3. 4. 2. Translator

The PODS Translator takes a set of .graf files which make up a program and converts the

GIT A ccxie in to PODS code. This is usually a one-to-one translation. In order for PODS

to properly execute the dataflow graphs they must be ordered.

SPs, being small segments of sequenti.al code, have to worry about supplying tokens. An

operator should only send tokens to instructions which come later in the SP. Tbe exception

110

to this rule is the D operator, which sends data back to the beginning of a loop. As

Iannucci has pointed out [Ian88] it is not always possible to properly order a dataflow

program so that the instructions are in a set, correct order. This is dueto the dynamic ares

which can occur. In Chapter 2 this is discussed in the context of deadlock avoidance, and

the PODS Partitioner is the program which ensures this.

Specifically the tasks of the PODS Translator are:

1 . Instruction Translation - most GIT A instructions get con verted

directly over to a PODS instruction one-to-one. Sometimes

groups of GIT A instructions make one PODS instruction. This

is a format change only.

2. Removal of U nnecessary Instructions - for GIT A a number of

IDENT instructions are inserted for synchronization purposes;

these are unnecessary in PODS because of the synchronization

imposed by a program counter.

3. Building of Routing Table - for every dependency are which

goes from one .graf file to another, an entry into the Routing

Table is needed

4. Ordering Instructions - by following the dependency ares the

PODS instructions are placed in order such that no instructions

depend upon the input from a later instruction. This handles the

static dependency problem, the dynamic dependency problem is

handled in the PODS Partitioner (deadlock avoidance).

111

3. 4. 3. Partitioner

The PODS Partitioner breaks apart the program into static SPs. It is primarily responsible

for implementing the distribution scheme discussed in Chapter 2.

To break apart the data.flow graph the Partitioner starts with the code-blocks generated by

the GITA compiler. From there deadlock detection is used and the SPs are split as

necessary. Once it has been determined that an SP will be distributed. the Partitioner then

adds the range filters and the DISTRIBUTE versions of the L operators. The .pods files are

produced and the prograrn is now ready to be run or simulated. Figure 3.7 shows the

Partitioner Block Diagram .

. trans files

Deadlock
Detector

. trans files

SP Spliter

.graf files

LCD
Detector

Distribution . .., _____ ...,¡

Algorithm

Distribution
Code Inserter

.pods files

FIGURE 3.7. PODS P ARTITIONER BLOCK DIAGRAM.

112

The Deadlock Detector uses the scheme described in Chapter 2 and informs the SP Spliter

where deadlocks rnay occur. The SP Spliter breaks up the SPs as directed. This deadlock

prevention is not necessary very often; it was not necessary anywhere in SIMPLE nor

Matrix Multiply. The LCD Detector feeds the Distribution Algorithm Unit the loop-canied

dependency status of each code-block. The Distribution Algorithm Unit then executes the

algorithm discussed in Chapter 2. Finally the Distribution Code Inserter places the

appropriate range filters into the code and annotates the L operators with either DISTRIBUTE

or LOCAL.

The LCD Detector is simple because of the dataflow nature of ID Nouveau (see Section

2.5.3, LCD Effects) and the .graf files it generates. The LCD Detector is written in 'C' and

follows the algorithm outlined in Chapter 2. The SP Spliter sirnply break a given SP up

after every write to the problem array; the problem arra y is specified by the LCD Detector.

Specifically the tasks of the PODS Partitioner are:

1 . Deadlock Detection and A voidance - perfonned by the

Deadlock Detector and SP Spliter; uses algorithm discussed in

Section 2.7, Deadlock Handling.

2. LCD Detection - perf ormed by the LCD Detector; uses

algorithm discussed in Section 2.5.3, LCD Effects.

3 . SP Distributi.on Determination - used output from LCD

Detector to apply distribution algorithm discussed in Section

2.5.5, Por-Loop Distribution Algorithm.

4. Distribution Codc Insertion - inserts proper range filter and

DISTRIBUTE or LOCAL versions of L operators; uses approach

outlined in Section 2.5.2, Range Filters.

3. 4. 4. Simulator

The PODS Simulator is the subject of Chapter 4.

113

CHA.P1ER4

PODS Simulations

In this chapter the PODS Simulator and two example programs, Matrix Multiply and

SIMPLE, are examined. The results of multiple test cases are analyzed and discussed.

In the PODS Programming System, the simulator is the last program in the support

software suite. The PODS Simulator was designed and build to test the logical

implementation of PODS. Each PE is simulated down to the instruction leve!, with

different functional units operating in parallel (see Chapter 3 for a description of the

functional units). The PODS Simulator takes in a program and executes it step by step as if

the program were actually running on PODS. In this manner the system can be measured

and monitored as if running real programs.

In order to compare the results of PODS simulations to the outside world, the PODS

Simulator is set-up as if it were executing on Intel 386 microprocessors in a hypercube

configuration. This is not an exact simulation of Intel's iPSC/2, but timing comparisons to

programs on iPSC/2 systems are valid. The major, real-world program described herein is

the SIMPLE benchmark [CH&R] developed by Lawrence Livermore Laboratory. This

code is indicative of the large scale scientific code which is executed on supercomputers

today.

4 .1. Overview

4 .1.1. Simulator Approach

The PODS Simulator is an event-driven simulator which uses SMPL at its core.

MacDougall has written an excellent book [Mac87] which describes SMPL and its proper

114

usage. In the PODS Sirnulator, as in any simulation, certain assumptions are necessary.

These ha ve been kept to a minimum are are based on known or measured statistics.

There is a hardware configurati.on configurati.on file which holds the following hardware

parameters:

• NUMBER_OF _PE - the number of processing element to

simula te

• PAGE_SIZE- the size of an array page (set at 32 array

elements)

• BROADCAST_NET- whether a broadcast type of message is

available or not (set to true)

• CACHE_PERCENT- the size of the software cache for each

array (set at 5%)

The hardware configuration file also holds the following timing parameters:

• NE1WORK_ TIME - the time for a message to propagate over

the network

• SINGLE_ROUIB_ TIME - the time to build a single message

token into a batch inside the Routing Unit

• MS_SETUP _TIME- the time for the Matching Unit to find if a

token has a match

" MM_SETUP _TIME - the time for the Memory Manager to

wake-up when a new SP is to be loaded

115

116

" SINGLE_CONTEXT_SWITCH_ TIME- the time for a fast

context switch

The values for these, and other timing pararneters, is discussed in the next section.

4 .1. 2. Timing Assumptions

In order to estimare the arnount of ti.me a CISC would ta.lee to perform a given operation,

the PODS Simulator is sized to the Intel iPS02's PEs. These are Intel 80386/80387

CPU's at 16 MHz. with Direct-Connect Modules for communication. All timing is done

in µseconds. Each functional unit's timing is described below

Execution Unit

This is the ALU and associated units. Its timing is based upon three calculations: (1) the

time it takes to perform a fast context switch; (2) the time to perform a local array read.; and

(3) the ti.me of each normal operati.on. Time for each normal operation was measured on

the iPSC/2 with the following results:

iPSC/2 Instructi.on
integer add
integer subtraction
bitwise logical
floating point negate
floating point compare
floati.ng point power
floati.ng point abs
floating point square root
floating point multiply
floating point di vision
floating point addition
floatin_g_}2_oint subtraction

Execution time Ú:!:_sec)
-0.30ff
0.300
0.558
0.555
5.803

96.418
12.626
18.929
7.217
10.707
6.753
6.757

TABLE 4.1. MEASURED nMEs OF OPERATIONS ON IPSC/2.

The time for a local array read is based on the pseudo code in Figure 4.1 below.

offset= size.dim2 * i + j
if (offset < beginning offset) gota REMOTE READ
if (offset ~ ending offset) gato REMOTE READ
if (element not present) gato ENQUEUE READ
value = array[offset] -

FIGURE 4.1. 2-D ARRA Y READ PSEUDO-CODE.

The time for a local array read (assuming the value is present) is: 1 integer multiply + 1

integer add + 3 integer compares+ 1 local read. This works out to be 2.7 µseconds.

117

The time for a fast context switch is based on the 80386 CALL ptrl6:32 instruction. This

is a full 32 bit indirect procedure call. The worst case for this is 21 clock cycles or 1.312

µseconds at 16 Mhz.

ArraY Mauaiw

The Array Manager handles ali array operations except local array reads (which are

performed by the Execution Unit). The Array Manager handles the following tasks in the

indicated times.

• FreeArray: number_arrays * memory_read_time

• ArrayWrite: memory_write_tirne + number_queued_reads *
message_time

• CachedRead: memory _read_time + message_time if not present

• RemoteRead: memory_read_time + enqueued_read_time or

message_time

where

.. ReceivePage: page_size * memory_write_time

• Send.Page: page_size * mernory _read_time + message_time

AllocateArray: 100.0 µseconds + message_time

• memory _read_time is the time for a local read = 0.3 µseconds

• memory _ write_time is the time for a local write = 0.4 µseconds

• message_time is the time for a signa! from one functional unit to

another on the same PE= 1.0 µseconds

• enqueued_read_time is the time to push an early read onto a

stack = 3 * memory_read_time + 5 * mernory_write_time = 2.9

µseconds

Routin& Unit

118

This is basically the Direct-Connect Module with sorne extra operations. This unit is

responsible for taking a token, forming the rnessage, and sending it over the network to the

correct PE and SP. Dunigan [Dun88] has done sorne extensive testing of the iPSC/2 and

found that the communication can effectively be expressed using the following equations:

if (rnessage_length <= 100 bytes) then 390 µsec

if (rnessage_length > 100 bytes) then 697 + 0.4 * rnessage_length µsec

The extra operations calculate the SP and PE to which the token will be sent When the

Routing Unit receives a token to route, a simple table look-up is used to find the destination

SPs. Thls is then used in a hash function to find the destination PE. Since tokens are less

than 100 bytes, and they are batched together in groups of 20, the simulation uses an

estímate of 19.5 µseconds for each token added. to a batch.

Memozy Mana¡¡er

119

The Memory Manger sirnply grabs execution rnemory frames from free memory. This is a

list manager, one list for free SP frames and one for used SP frames. To perform its

operations the Memory Manger need only add or delete from a linked list This is a

constant time operation which talces approximately 3 memory references or 0.9 µseconds.

Matchin~ Store

The Matching Store must search the hash table for the appropriate SP. This is a simple

hash search which takes 15 µseconds.

Network

The Network is sirnply the physical propagation time. The Routing Unit handles all of the

transrnission setup. The iPSC/'2 has a theoretical 100 Mbyte per second bandwidth.

Assurning each message is approxirnately 100 bytes, the time for l hop is 1 µsecond. The

network time is set to 2.5 µseconds, simulating an average of 2.5 hops. The Network can

only handle so many messages at a ti.me, this is estimated to be half the number of PEs.

4. 2. Measures of Effectiveness (MOEs)

The motivation behind the following Measures of Effectiveness (MOEs) is to gauge how

well PODS will perform on a real system with real-world problems, and how does this

compare to what is available today.

FunctionaJ Unit Balance - how well balanced are the functional units which make up

the PE? This is measured by SMPL as the fraction of the time which a given facility is

busy, i.e. the utilization. Since PODS PEs contain parallel functional units, the balance

between the units is important. If one of the support units, e.g. the Routing Unit, were

very heavily loaded then the Execution Unit may be waiting for it This would point to

possible improvements in the logical architecture design.

120

Execution Unit Utilization - what percent of the time are the Execution Units

operating? Do sorne PEs sit id.le awaiting the outcome of other PEs? Ideally utilization

should be 100% for each PE, this is never actually possible. This is measured by SMPL as

the accumulated busy time of the each execution unit, divided by the total run time.

Execution Unit Load Balance - how equally distributed is the work load? Ideally

each PE will put in the same amount of work. This shows if there are any "hot-spots"

where sorne PEs are doing ali the work while others are idle.

Parallelization Overhead - how many of the instructions executed are "work"

instructions and how many are due to parallelization. This shows how much additional

overhead there is in the parallel version of the program. In the PODS Simulator the

dynamic work instructions as well as the total dynamic instructions are counted. Work

instructions are those which must be executed no matter how many PEs are used. i.e. Ali

instructions except the range filter instructions.

Efficiency Comparison - how efficient is the parallel version on one PE when

compared to a real sequential version (usually 'C' or FORTRAN). Usually the parallel

version will be less efficient because of the additiónal tasks which must be perfonned for

multiple PEs even though there is only one operating. Also, commercial systems have

additional optimizations which research systems do not. If this comparison shows that the

parallel system is within 100% of the sequential version on one PE, then the parallel system

is not grossly inefficient, and the scalability results can be considered to have a valid base

time. Far Matrix Multiply and SIMPLE, 'C' versions were compiled using the Intel

supplied compiler and timed on the iPSC/2 host.

121

Scalability - how much do problems speed-up as the number of PEs is increased?

Ideally linear speed-up is possible. However, overhead and program dependencies prevent

this from being achieved. This can be seen by plotting the number of PEs vs the speed-up,

where speed-up is defined to be the time of a single PE run divided by the time of the

multiple PE run. This is the most important measure of effectiveness of a parallel

processing system.

4. 3. Example Programs

The results presented here are for two diff erent programs. Thc first program is for matrix

multiplication and is discussed in detail in Chapter 2. Thc second program is SIMPLE, a

benchmark program written by Crowley et. al. [CH&R] at Lawrence Livermore

Laboratory. This benchmark was designed to a test computer systems performance on the

type of large scientific programs which the laboratory runs. It is used here to show how

well PODS executes large scientific programs. For more detall on SIMPLE see [P&R90].

4. 3 . 1. Matrix Multiply

A detailed discussion of the Matrix Multiply example is contained in Chapter 2. However,

a brief discussion here is also in arder.

Discussion

Consider the implementation of Matrix Multiply in ID Nouvcau shown in Figure 4.2. Thc

ccxle follows the basic scquential Matrix Multiply algorithm below, vcry closcly.

C[i, j] = f A[i, k] * B[k, j]
k = 1

The use of Next s in line #9 creates a LCD while perfonning a reduction operation. The

array write into e in line #7 controls the part:itioning, i.e., array e is the master array.

%%% Matrix Multiply
1 Def mm A B = { (11, ul), (12, u2) = 2D bounds A;
2 e= i_matrix ((11,ul), (12,u2));
3 In
4 { For i <- 11 To ul Do
5 { For j <- 12 to u2 Do
6 s = O;
7 C[i,j] =
8 { For k <- 11 To ul Do
9 Next s = s + A[i,k] * B[k,j];

10 Finally s
11 }
12 };
13 Finally C
14 }
15 } ;

FIGURE 4.2. MATRIX MUL TIPL Y ID NOUVEAU SOURCE CODE.

122

This function contains a number of items worth noting: (1) there are three different SPs

(one far each far-loop nest level); (2) a new array, C, must be dynamically allocated and

distributed efficiently; (3) there is a loop-carried dependency in the innermost loop (the sum

variable, s); (4) the two input arrays, A and B, have different access patterns; and (5) the

sizes of the input arra.ys are not known at compile time. These attributes malee the Matrix

Multiply algorithm an interesting test case.

Results

Functional Unit Balance. Figure 4.3 below shows the average utilization far the

different functional units when the 16 x 16 case is run. Notice that ali of the support units

are not being heavily utiliz.ed. Thus the Execution Unit is not being slowed by the support

units. This shows that the support units are truly operating in a support function and are

not performing extensive operations. This bodes well for HyperPODS, where ali PE

functions will be perfonned by one CPU.

100.00%

90.00%

u 80.00%
T •Eu
I 70.00%

L 60.00% OMS
I
z 50.00% •Ru
A
T 40.00% .AM
I 30.00% IDMM o

N 20.00%

10.00%

0.00%

1 2 4 8 16 32

N umber of PEs

FIGURE 4.3. UTil..IZATION FOR EACH FlJNCTIONAL UNIT (16 X 16 :MM:).

The Execution U nit has the highest utilization until the parallelism drops below that

necessacy to keep all of the PEs active. The important case above is the 8 PE situation.

This is where the problem size meets the available PEs. In this case the Execution Unit

utiliz.ation is more than double that of the most loaded suppon unit (78% vs 35% for the

Matching Store).

123

Execution Unit Utilization. Since the Execution Unit is the major unit doing the work

done by a PE, as shown above, its utilizati.on is critica!. For Matrix Multiply the Execution

U nit utiliz.ation increases as the problem size increases. This is true in general and is due to

124

the increase in the parallelism in larger problems. As Figure 4.4 shows below, PODS is

only able to spread the available parallelism so far, and as more PEs are made available

PODS is unable to fully utilize ali of them.

100.00%

90.00%

u 80.00%
T
I 70.00%

L 60.00% •10x10
I
z 50.00% D 16 X 16
A
T 40.00% • 32 X 32

I
o 30.00%

N 20.00%

10.00%

0.00%

1 2 4 8 16 32

Number of PEs

FIGURE 4.4. AVERAGE EXECUTION UNIT UTILIZATION FOR MATRIX MULTIPLY.

This inability to work all of the Execution Units fully will show up in the scalability of the

program. When the average utilization nears 80% this is usually the end of the speed-up.

For a the 10 x 10 case this occurs at 4 PEs, for 16 x 16 at 8 PEs, and for 32 x 32 at 16

PEs. The scalability results below bear this out This 80% number is only indicative of

Matrix Multiply-like problems. SIMPLE, being much more complex does not exhibit this

problem.

125

Execution Unit Load Balance. Load balance is more of an issue when Execution Unit

utilization is less than 80%. For utilizations greater than 80%, most of the PEs must be

worlcing about the same or the utiliza.don would be lower. For this reason it is more

interesting to consider the load balance for the medium sired problem, 16 x 16 arrays, than

the large problem.

Figure 4.5 shows each Execution Unit's utilization for the 16 x 16 case on 8 PEs. Contrast

this to Figure 4.6 where most of the work is being perlormed on only half of the PEs.

This is where the iteration level parallelism is completely used up. This is what causes the

flat speed-up curve at from 8 PEs on up to 32 PEs for the 16 x 16 Matrix Multiply (see

Figure 4.7 below).

80.00%

70.00%
u
T 60.00%
I
L
I 50.00%

z
A 40.00%
T
I

30.00% o
N

20.00%

10.00%

o 1 2 3 4 5 6 7

PE Number

FIGURE 4.5. UTil..IZATION FOR EACH EXECUTION UNIT (16 X 16 MM ON 8 PES).

u
T
I
L
I
z
A
T
I
o
N

80.00%

70.00%

60.00%

50.00%

40.00%

30.00%

20.00%

10.00%

0.00%

o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

PE Number

FIGURE 4.6. UTILIZATIO~ ')R EACH EXECUTION UNIT (16 X 16 MM ON 16 PES).

126

Parallelization Overhead. For Matrix Multiply the amount of overhead due to

parallelization decreases as the problem size increases. The table below shows dynamic

instruction counts for clifferent problem sizes. Ali of these counts are for the 32 PE system

(worst case).

Problem Size

1 X 10
16 X 16
32 X 32

Work Instructions Total Instructions

10,851
43,083
336,011

1 ' 7
50,460

362,028

Percent
Overhead

TABLE 4.2. PERCENT ÜVERHEAD lNSTRUCTIONS FOR MATRIX MULTIPLY.

This indicares that, for Matrix Multiply-like algorithrns, the amount of parallelization

overhead in PODS is acceptable at large input sizes. This is one reason that speed-up

increases (see scalability below) as the problem siz.e increases.

127

Efficiency Comparison. A16 x 16 Matrix Multiply, ~tten in 'C' and compiled for a

single iPSC/2 PE, takes 0.1 seconds to execute. The PODS Simulator estimates that the

program would run in 0.190 seconds. This is within 100% of the commercial 'C' version,

and shows that PODS is not grossly inefficient, even on one PE.

It is also interesting to compare the number of dynamic work instructions the two systems

execute. The standard C compiler on the iPSC/2 produces code which executes 51,893

instructions, while PODS executes 43,083. This ratio of about 1.2: 1 holds true for ali of

the Matrix Multiply cases. This means that PODS executes about the same number of the

same size instructions as a commercial system. The reason PODS is slower on one PE, is

because of the multiple PE tasks it is performing.

Scalability. Figure 4.7 shows the speed-up of different size Matrix Multiply runs. For

comparison the speed-up predicted for Iannucci's hybrid system is plotted [Ian88].

128

35.0

30.0

s 25.0 -Linear
p

E 20.0
• lOxlO

E
D

.O- 16x 16

15.0
+ 32x32

u
p 10.0 -<>- lOxlO - Iannucci

5.0

o.o
o 4 8 12 16 20 24 28 32

N umber of PEs

FIGURE 4.7. SPEED-UP OF MA 1RIX MUL TIPL Y.

Iannucci's machine is finer grain and is able to exploit more of the parallelism in the small

10 x 10 problem. PODS does not reach this type of performance until the 32 x 32 problem

is run. Since Iannucci's machine requires a new CPU design and system architecture, it is

impossible to know how well it compares to a commercial system. Leaving open the

question of absolute run times and true scalability. It will be interesting to see how cost

effective the system will be once it is built

4.3.2. SIMPLE

Simulating the execution of of ali of SIMPLE on the PODS Simulator is not possible dueto

memory limitarions. So SIMPLE was broken up into its.component routines. The major

routines were run through the translator then through the partitioner, and finally simulated

129

on the PODS Simulator. These majar routines are: VELOCITY_POSITTON,

HYDRODYNAMICS, and CONDUCTION. Ali of the other procedures are eíther run only once

(e.g. GENERATOR) orare called by one of the above. This breaking up of SIMPLE is

appropriate because the routines feed each other in a sequential fashion. There rnay be

sorne parallelism which is not being exploited., but it is minimal.

The most important routine is CONDUCTION, both VELOCITY_POSITTON, and

HYDRODYNAMICS are rnuch easier to parallelize. VELOCITY _POSITTON has no LCDs, no

function calls, and runs in parallel very well. HYDRODYNAMICS has only 5 SPs

(CONDUCTION has 15 SP) and is basically one big nested loop; it is not nearly as cornplex

as CONDUCTION. CONDUCTION is the most difficult to parallelize because of: (1) the sweep

phases where every element is recalculated twice, based upon its neighbors; (2) the

complexity of 15 SP plus multiple function calls; and (3) the large number of LCDs with

both incrementing and decrementing for-loops. These LCD's prevent iteration level

parallelism from be gin distributed efficiently. For these reasons CONDUCTION is examined

in detail the discussion section, while the final results for all of SilVlPLE added together is

presented below in the results section.

Discussion

The original ID code for SilVlPLE was written at MIT based upon the Lawrence Livermore

version. This original ID code was then updated to ID Nouveau. CONDUCTION is a

complex routine with multiple function calls and code blocks.

The sweep operations in CONDUCTION cause LCD to occur in the inner-most nest of the

loops. Figure 4.8 shows one of the sweep blocks (there are two nearly identical sweeps)

inside of CONDUCTION. Notice that the local arrays a and b are allocated at the outer level

(lines #3 and #4), filled in the next inner nest (lines #11 - #13), and then used to fill the

theta _bar arrays (lines # 16 and # 17). Both of these last two loops ha ve LCDs. In lines

130

#12 and #13 b[l-1] is used to produce b[l], generating a LCD with distance l. In lines #16

and #17 theta_bar[k.1+1] is used to produce theta_bar[k,l]. This generates a LCD with

distance 1 because the for-loop is decrementing (see downto in line #15).

% Alternating direction sweeps
% z sweep

1 theta bar = i_matrix ((kmn+l, kmx) , (lmn+l, lmx+l)) ;

2 {far k <- kmn+l to kmx do
3 a= i array (lmn,lmx);
4 b = i=array (lmn,lmx);

% a[lmn],b[lmn] are ~ot used because cbb[*,lmn]=O
5 a [lmn] = .J ;
6 b[lmn] = 0.0;

7
8
9

10
11
12
13

14

15
16
17
18

19

{far 1 <- lmn+l to lmx do

} ;

y= sigma[k,l]+cbb[k-1,1]
+cbb[k-1,1-1]*(1-a[l-l]);

a[l] = cbb[k-1,1)/y;
b[l] = (sigma[k,l]*theta hat[k,l]

+cbb[k-l,l-l]*b[l-1))/y

%%% back substitution
theta_bar[k,lmx+l] = O;

% theta[k,lmx+l] is not used because a[lmx]=O

{ for 1 <- lmx downto lmn+l do
theta bar[k,l] = a[l]*theta bar[k,l+l]

- + b[l] -
} ;

} ;

FIGURE 4.8. SWEEP FOR-LOOPS IN CONDUCTION CODE.

These sweep operations can severely limit parallelism in sorne systems. In PODS the outer

nest of the for-loop (either k or l) is distributed across the available PEs. Once this is done

then no future distribution is necessary.

131

In another part of CONDUCTION there is a nested for-loop with LCDs at all levels: lines #30

- #32 for the outer level, and lines #20 and #21 for the inner level. This for-loop is shown

in Figure 4.9. This for-loop would be modified by a scalar expanding compiler.

1 delta theta max, internal eps =
2 -{ - -
3 delta_theta = O; internal_eps = O;
4 in
5 {for k <- kmn+l to kmx do
6 y, col internal eps =
7 {- -

8 delta_theta_col = O; col_internal_eps=O;
9 in

10 {for 1 <- lmn+l to lmx do
11 i = table look up
12 theta-table theta transp[l,k]
13 indexl[k, l] 3; -
14 j = index2[k,l];
15 last indexl[k,l] = i;
16 eps k 1 = polynomial theta transp[l,k]
17 - - rho[k,l] i j T Coefficients;
18 p[k,l] = polynomial theta transp[l,k]
19 rho[k,l] i j-P Coefficients;
20 next col internal eps = -
21 col Tnternal eps + mass [k, 1) *eps k l;
22 eps[k,l] = eps k-1; --
23 y= abs(theta hat[k,l] -
24 theta transp[l,k])/theta transp[l,k];
25 next delta theta col = -
2 6 if y > delta theta col
27 then y else delta theta col
28 finally delta theta col, col internal eps}
29 } ; - - - -

30 next delta theta = if y > delta theta then y
31 - else delta theta;
32 next internal eps = internal eps + col internal eps
33 finally delta_theta, internal_eps } - -

34 } ;

FIGURE 4.9. ORIGINAL CONDUCTION CODE WITH MULTIPLE LCDS.

The above code was replaced with the following in Figure 4.10. The lines in bold below

were added or modified (lines #1, #2, #28, #29, and #31 - #42).

1
2

3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27

28
29
30 } ;

%%% changed by jmar
vect cie = i array (kmn, kmx) ;
vect_y = i_array (kmn, kmx);

{for k <- kmn+l to kmx do
y, col internal_eps =
{

delta theta col O; col_internal_eps=O;
in

{for 1 <- lmn+l to lmx do
i = table look up

theta-table theta_~ransp[l,k]
indexl[k,l] 3; ~

j = index2[k,l];
last indexl[k,l] = i;
eps k 1 = polynomial theta transp[l,k]

- - rho[k,l] i j T Coefficients;
p[k,l] = polynomial theta transp[l,k]

rho[k,l] i j-P Coefficients;
next col internal eps = col-internal eps

- -+ mass[k,l]*eps k I;
eps[k,l] = eps k l; - -
y= abs(theta hat[k,l] -

theta transp[l,k])/theta transp[l,k];
next delta theta col = -

if y >-delta-theta col
then y else delta theta col

finally delta_theta_col, col_Internal_eps}
} i

vect y[k] = y;
vect_cie[k] = col_internal_eps;

%%% added by jmar
31 delta theta max, internal_eps =
32 { - -
33 delta theta = O; internal_eps = O;
34 in
35 {for k <- kmn+l to kmx do
36 next delta theta = if vect y [k] >delta theta
37 then vect_y [k] -
38 else delta theta;
39 next internal_eps = internal eps +
40 - vect cie[k];
41 finally delta_theta, internal_eps} -
42 } ;

FIGURE 4.10. SCALAR EXPANDED CONDUCTION CODE FRAGMENT.

133

This se.alar expansion does not change the output in any way and is a standard compiler

optimization.

Another interesting point is that three different subroutines are called: POL YNOMIAL,

TABLE_LOOK_UP, and BOUNDARY_HEAT_FLOW. With POLYNOMIAL and

TABLE_LOOK_UP being called rnany ti.mes inside the inner for-loop. These function calls

are spun off onto other processors to allow more parallelism to be exploited.

Once the scalar expansion is done, all of the for-loops, except the one add.ed by the

expansion (lines #31 - #42), are distributed at the first level of the nest. This allows

CONDUCTION iterati.ons to be spread across all available PEs, thus producing excellent

speed-up.

The 22 SPs which PODS forms for CONDUCTION are shown in Table 4.3 below along

with sorne statisti.cs for each SP.

CONDUCTION-1. pods
CONDUCTION-1-0.pods
CONDUCTION-1-1.pods
CONDUCTION-2.pods
CONDUCTION-2-0.pods
CONDUCTION-2-1.pods
CONDUCTION-3.pods
CONDUCTION-4.pods
CONDUCTION-4-0. pods
CONDUCTION-5.pods
CONDUCTION-5-0.pods
CONDUCTION-6.pods
CONDUCTION-6-0.pods
BHF.pods
BHF-0.pods
BHF-1.pods
TLU.pods
TLU-1.pods
TLU-0.pods
POLY. ods

39
12
26
40
12
26
29
37
38
31
27
28
27
22
20
20
19
9
10
40

Dístriburion omments

Main SP, drives others
LCD prevents distribution,
added by scalar expansion
Distributed For-Loop SP
Local For-Loop SP
Local For-Loop SP
Distributed For-Loop SP
Local For-Loop SP
Local For-Loop SP
Distributed For-Loop SP
Pistri.buted For-Loop SP
1.bcal For-Loop SP
Distributed For-Loop SP
LocatFor-Loop SP
Distributed For-Loop SP
Local For-Loop SP
Main SP of Procedure
Small SP, local to BHF
Small SP, local to BHF
Main SP of Procedure
Small SP, local to TLU
Small SP, local to TLU
Procedure SP

TABLE 4.3. SP STATISTICS FOR CONDUCTION.

Results

These results are for a1l of the Sll\1PLE routines added together. This is valid because each

of the routines feeds the next one. If there is sorne iteration level parallelism available

between routines, then the results will be better than shown here. This was necessary due

to the performance limitations of the PODS simulator.

Functional Unit Balance. Smaller problem sizes stress the distribution of work

between functional units more than larger ones. This is because larger problems have more

available parallelism andan unbalance PE rnay not show a drop in utilization. The worst

case, 16 x 16, utilization is shown in Figure 4.11.

135

70.00%

60.00%
u
T

50.00% •Eu
I
L OMS
I 40.00%
z 111 RU
A 30.00%
T 11 AM:
I

20.00% !!] MM o
N

10.00%

0.00%

1 2 4 8 16 32

N umber of PEs

FIGURE 4.11. UTILIZATION FOR EACH FUNCTIONAL UNIT (16 X 16 SIMPLE).

The support units once again act in a support role, never reaching any significant utilization

unit the available parallelism has been used up, at around 8 PEs. Even at 32 PEs the

support units do not have any bottlenecks, the only change is that the Execution Units

utilization has d.ropped to a level comparable to the support units.

Execution Unit Utili:zation. For a 64 x 64 SIMPLE the utilization starts out at

approximately 70% for 1 PE and goes down to 50% for 32 PEs (see Figure 4.12). Once

again on small problems (16 x 16) the Execution Unit utilization is much lower than on

large problems (64 x 64).

136

70.00%

60.00%
u
T

50.00%
I

L • 16 X 16
I 40.00%
z 0 32 X 32
A 30.00%
T • 64x64
I
o 20.00%

N
10.00%

0.00%

1 2 4 8 16 32

N umber of PEs

FIGURE 4.12. EXECUTION UNIT UTILIZA TION FOR SIMPLE.

It is interesting that SIMPLE continues to speed-up even with Execution Units which are

50% id.le (see Figure 4.16 below). This differs from the Matri.x Multiply example above,

which stopped speeding-up when utilization drops below 80%. This is dueto the

complexity difference between SIMPLE and Matrix Multiply.

Execution Unit Load Balance. SIMPLE, being rnuch more complex than Matrix

Multiply, spread its load much better. Even in the worst case (16 x 16 on 32 PEs), where

little speed-up is begin gained, every PE contributes to the final solution (see Figure 4.13).

50.00%

45.00%

u 40.00%
T
I 35.00%

L 30.00%
I
z 25.00%
A
T 20.00%

I 15.00% o
N 10.00%

5.00%

0.00%

.,..

-
""

-
+

+

-
-
+

-

o
,-,-,-,-,-,-, 11 1 ,,,,,-,

-, '
2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

PE Number

FIGURE 4.13. EXECUTION UNIT UTILIZATION (16 X 16 SIMPLE ON 32 PES).

When a rnediurn sized problern is run the load balance is better, see Figure 4.14.

137

50.00%

45.00%

u 40.00%
T
1 35.00%

L 30.00%
1
z 25.00%
A
T 20.00%

I 15.00%
o
N 10.00%

5.00%

0.00%

..,.

+

-
+ '

+

-
-
+

+

--1 • , , 'T 'T ""T , 'T 'T 'T

o 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

PE Number

FIGURE 4.14. EXEClITION UNIT UTILIZATION (32 X 32 SIMPLE ON 32 PES).

Finally, when a large problem is run the load balance is quite flat on 32 PEs. This is a

much more realistic size problem far scientific programs.

138

60.00%

u 50.00%

T
I 40.00%
L
I
z 30.00%
A
T
I 20.00%

o
N

10.00%

0.00%

"T

-
-1

-

-1

-

1 1 1 1 1 1 1 T T

o 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

PE Number

FIGURE 4.15. EXECUTION UNIT UTILIZATION (64 X 64 SIMPLE ON 32 PES).

Parallelization Overhead. The table below shows dynamic instruction counts for

different problem sizes. All of these counts are for the 32 PE system (worst case).

Wor Instructions o Instructions Percent
Overhead

4 ,71 5 ' 1 .54%
215,546 . 240,288 10.30%
907,711 993,322 8.62%

TABLE 4.4. PERCENT OVERHEAD INSTRUCTIONS FOR SIMPLE.

139

The percentage of overhead in SIMPLE is smaller than for Matrix Multiply. This is dueto

the size of the for-loop bodies being larger in SIMPLE (see CONDUCTION code above).

Keeping the parallelization overhead low is central to efficient parallel processing.

140

Effidency Comparison. For a 32 x 32 input CONDUCTION takes 0.9 seconds on a

single iPSC/2 PE. This was measured by compiling the standard 'C' version of SIMPLE,

then nmning one iteration of the main loop, and subtracting the setup time (mainly the

GENERATE routines). CONDUCTION is used here rather than the total SIMPLE because of

the function calls and other operations between the major routines which do not appear in

the total. This would cause the single iPSC/2 PE time to be inflated compared to the PODS

time. However, the PODS Sirnulator still estimates that the program would run in 1.72

seconds. This is once again within 100% of the comrnercial version, and shows that

PODS is not grossly inefficient This has been found to be true on all of the test cases.

Scalability. This is the true test of a parallel system - how well does it speed-up for

real-world type problems. Figure 4.16 shows the speed-up of different size SIMPLE runs.

For comparison the speed-up Pingali and Rogers obtained for a 64 x 64 run is also plotted.

[P&R90]

141

35.0

30.0

s 25.0 -Linear
p
E 20.0

• 16 X 16

E
D

.Q. 32 X 32

15.0
+64 X 64

u
p 10.0 -<> 64 X 64 - P&R

5.0

O.O
o 4 8 12 16 20 24 28 32

N urnber of PEs

FIGURE 4.16. SPEED-UP OF SIMPLE.

For the srnall 16 x 16 case, PODS tops out ata speed-up of 8.1. Eventually the

parallelization overhead would cause this srnall problem to even run slower as the number

of PEs increased There is not yet a way for PODS to determine when a problem is so

srnall that it should not be spread across ali of the available PEs. PODS either runs the SP

in place or distributes it across ali PEs.

For the 32 x 32 case, speed-up tops out at 12.4. This order-of-magnitude speed-up is quite

acceptable and is comparable to the speed-up obtained by Pingali & Rogers on the 64 x 64

case.

The 64 x 64 problem size is much more likely for scientific coding and is thus a better

gauge for the success of PODS in parallelizing scientific code. For the 64 x 64 case, PODS

142

is able to spread the work efficiently across all of the PEs, achieving a speed-up of 18.9 on

32 PEs. It is unlikely that a greater speed-up would occur on 64 PEs since the average

Execution Unit utilization is 44%. And based upan the 16 x 16 case, once the Execution

Unit utilization drops below 40% little speed-up is possible for SIMPLE. This speed-up is

better than Pingali & Rogers' 64 x 64.

The reason PODS performs better is due to the remate caching in PODS. Pingali & Rogers

send the data values to the PE where they are needed. This causes a large number of

individual messages to be sent, thus their extreme interest in batching messages. In PODS

the individual messages are also batched, however array data is passed a page at a time.

The remete caching allows PEs to access arra y elements as if they were local. Using this

locality of reference, PODS is able toread over 187,000 data elements from caches in the

CONDUCTION routine alone. This concept is heavily supported by the single assignment

nature of ID Nouveau [Roy90]. Single assignment allows PODS to ignore cache

coherency problems and to efficiently partition the arrays.

4.4. Summary

This chapter discussed the PODS Simulator and sorne results of interesting benchmark

problems. The simulation is event-driven and is based on SMPL. The timing assumptions

were based on the iPSC/2 computer system. The simulator is like an emulator in that it

actually executes the code at the instruction level. Each different type of instruction takes

different amount of simulated time. Thus a reasonable estimated of the actual run-time was

achieved.

Different measures of effectiveness were used to evaluate PODS on the classic Matrix

Multi.ply problem and on the more complex SIMPLE hydrodynamics problem. In all cases

the parallelization overhead was low and the support units did not slow down the Execution

Unit It is important to note that the single PE time for PODS was not grossly inefficient

l .+3

when compared to commercial 'C' systems when run on the same size CPU. This gives

the speed-up computations a solid base execution time from which to wark.

Por Matrix Multiply (a small problem) the Execution Unit utilization was high (80% and

greater) until the available iteration level parallelism was used up. When this occurred the

load balance was d.riven way down. Half the PEs were being utilized at 80% and half at

less than 3%. This unequal load balance caused the speed-up to end abruptly. As the

problem size was increase this unequal load balance was staved off until greater and greater

numbers of PEs were made available. This points to a future enhancement-PODS needs

to know how many PEs to distribute a problem across. Currently PODS decides to

distribute ar not to distribute, there is no algorithm for gauging when a problem is so small

that all of the available PEs should not be used.

Far comparison purposed the 10 x 10 Matrix Multiply speed-up pred.icted for Iannucci's

Hybrid Architecture is included Iannucci is able to achieve impressive speed-up on small

problems because of the finer grain. PODS is designed to exploit iteration level

parallelism, and there is not that much available on the 10 x 10 Matrix Multiply. Iannucci's

system requires new hardware components while PODS is designed far off-the-shelf

components. It will be interesting to see how cost effective it is once it is built

The more complex SIMPLE hydrodynamics program showed how well PODS performs

on scientific programs. Being much more complex, SIMPLE contains much of the

iteration level parallelism PODS is designed to exploit. The Execution Unit utilization was

notas high for SIMPLE as it was for Matrix Multiply. This is to be expected, the simple,

regular nature of Matrix Multiply is rnuch easier to distribute evenly. However, with

SIMPLE there is not the abrupt load imbalance that Matrix Multiply encounters. The

complexity in SIMPLE allows speed-ups to continue raising even though the Execution

Unit utilization is only 50%.

144

Pingali and Rogers ha ve rnn the ID version of SIMPLE on an iPSC/2. Their results were

quite good. but PODS is able to achieve an even greater speed-up. This is due to the

individual message passing which they use. Pingali and Rogers' static scheduling allows

one PE to know when another PE needs the value just calculated. They then send this

value to the needy PE. Recognizíng early on that this would cause numerous messages,

they batched messages together in order to reduce communication costs. In PODS,

individual messages are also batched, however, array references are handled differently.

The remate caching of array values allows the locality of reference to be exploited. This

can be a majar source of speed-up, on the larger SIMPLE runs over 187 ,000 cached arra y

reads occur out of the 210,000 total reads. This, in conjunction with the efficient

distribution of work, allows PODS to achieve even greater speed-ups.

CHAPTER5

Conclusions

This chapter presents the related research projects at other universities and sorne of the

advantages and disadvantages of single assignment, followed by a summary of the

conclusions found in this research. The areas for future research are discussed as well.

5. l. Related Work

Ali of these research project recognize the need to integrate the Dataflow and von Neumann

rnodels of cornputation. Different cornpiler technology and hardware are used with various

levels of success.

5. l. l. Iannucci's Hybrid Architecture

The Dataflow / von Neurnann Hybrid Architecture proposed by Iannucci [Ian88] differs

frorn PODS in that it requires a new CPU specifically designed for the architecture, where

PODS uses off-the-shelf components. A compiler is used to partition the program into

scheduiing quantums [Ian88]. Scheduling quantums are collections of dataflow

instructions subject to sequential execution. The Method of Dependency Sets is used to

generate these scheduling quanturns without deadlock.

Like PODS this approach executes only one thread ata time, while blocking others which

are awaiting values. Given that the scheduling quanturns are usually less than five

instructions long, the need for a fast context switch is high. In PODS the average SP is

over 25 instructions long. Iannucci's rnodel predicts that 23,569 instructions would be

executed for a 10 x 10 Matrix Multiply [Ian88]. For the same program PODS only

executes 15,072 instructions; thus each PODS instruction does 1.5 times the work.

Together these reduce the need for a fast context switch significantly.

145

146

Iannucci's abiliry to exploit a fair amount of parallelism from a 10 x 10 Matrix Multiply

(nearly 20 times speed-up) is impressive. It will be interesting to see how cost effective the

new architecture with the its new CPU will be.

S .1. 2. Gao's Hybrid Machine

At McGill University Guang Gao has been working on a hybrid machine which basically

adds control-flow to dataflow [Gao90]. This is achieved with a signal graph which is

similar to the PODS routing table. However, Gao does not use the concept of sequential

threads. Instead his granularity is a single instruction. He makes use of the pipelinned

architectures available for von Neumann execution, but the next instruction is not

necessarily stored right after the present one. A signal graph indicates which instruction

will be loaded next This had advantages and disadvantages.

The flexibility of this approach is very high. Depending upon the signa! graph the system

will function as a dataflow machine or as a von Neumann machine. This can change back

and forth from instruction to instruction. The amount of overhead this incurs is unknown.

There is also the problem of a completely new hardware architecture, which may make this

approach intractable from a cost standpoint

Another difference from PODS is the use of SISAL [MSS85] rather than ID Nouveau.

SISAL has a number of good concepts, however, any parallel architecture will have a

difficult time supporting the dynamic arrays, the update operator, and the recursive function

calling required. These force the memory manager to be highly efficient at allocating and

deallocating space. Additionally, the overall machine performance depends on a careful

layout of these dynamic arrays to reduce memory contenti.on, a difficult problem at best

147

5. 1. 3. Alf aifa

The Alfalfa system [G&H89] is mainly concemed with different dynamic scheduling

techniques and does not address the problem of distributing large data structures, such as

arrays. They achieve sorne impressive results for problems involving little to no data

communication, however, for Matrix Multiply, they see poor speed-up results. They claim

that this is due to the slow message passing time of the iPSC, but PODS shows that a data

cache combined with simple scheduling can overcome the long latencies associated with

accessing rernote data

5 .1. 4. Decoupled Multilevel Dataflow Model

The Decoupled Multilevel Dataflow Model at USC [E&G90] is a macrcKiataflow project

aimed at the exploitation of vinual space, multilevel memory hierarchies, and RISC design

principles. The variable resolution (different size macro operators) allows programs to be

rnatched with the system. With vector and larger operators the standard von Neumann

optimizations can be used.

This system uses SISAL as Gao <loes and will have sorne of the same difficulties. The

problem is compounded by the need for vector extensions to SISAL so that the

programmer can tell the system what to vectorize. This places the additional burden of

specifying parallelism on the programmer.

The amount of overhead the system incurs, and the cost effectiveness of building a new

CPU have yet to be determined. It is possible that this variable resolution will be very

effective at matching a programs inherent parallelism to the processor's capabilities.

148

S .1. S. Dynamic Structured Dataflow

The Dynamic Structured Dataflow project [Got90] at the Israel Academy of Sciences

Foundation for Basic Research is working on an execution model with arbitrarily fine

granularity. This approach is similar to the original PODS concept of SCSs, but here the

scheduling and resource allocation is done dynamically, where the original PODS attempted

to detennine the best groupings at compile time. The current PODS uses iterati.on level

parallelism rather than ses threads.

In Dynamic Structured Dataflow, the need for a fast context switch is very high, anda fair

amount of effort has been put into the Parallel Work Conveyor [G&K80] which satisfies

this requirement. Currently the project is wo.rking on an architectural specification and

simulator. It will be interesting to see how large of a granularity the system produces and

how well thc Parallel Work Conveyor operates. These will be very important to efficient

execution.

S. l. 6. Pingali and Rogers' Compiler

At Cornell Pingali and Rogers have been working on a compiler [P&R90, R&P88,

R&P89] which will take ID Nouveau and compile it into 'C' for execution on an Intel

iPSC/2. Their language (ID Nouveau) and architecture (iPSC/2) are the same as the current

PODS, however from there on the approaches differ significantly.

In PODS there is an underlying execution model which is very different from that used in

standard von Neumann processors. Pingali and Rogers have stayed with the standard von

Neumann model. This places PODS closer to true dataflow, and, as such, is better able to

exploit irregular parallelism.

149

Pingali and Rogers exploit the locality of data reference in large programs, however they do

not ha ve anything analogous to the remete array caching in PODS. It is conceivable that

this could be added to their compiler. It is unclear how this would affect their speed-up.

One of the most critica! elements of their work is the batching of messages. In their

system a PE knows when and where to sent a data value to another PE. This would create

a large number of messages if it were not for the batching which is used. In would be

interesting to incorporate sorne of their ideas into PODS.

Their performance on an iPSC/2 running SIMPLE is quite good. This seems to be due to

the clear and concise nature of a compiler which takes ID Nouveau and produces 'C' code

for a parallel machine. This approach has stimulated the desire to build such a compiler for

PODS.

S. 2. Advantages and Disadvantages of Single Assignment

The proper use of single assignment is central to PODS. The main advantage of single

assignment is its ability to implicitly expose parallelism With single assignment only the

definitional data dependencies restrict parallelism. There are no extra dependencies based

upon storage location naming. This is critica! for parallel program synchronization,

otherwise innocuous timing bugs can occur.

Exposing this much parallelism can cause resource overloading. The reality of physical

machines requires that the parallelisrn be throttled by the operating system. This throttling

can take significant overhead. This disadvantage is minimized in PODS by the large

granularity of the SPs.

An oft criticized feature of implicit parallelism is the inability of a prograrnmer to override

the synchronizarion when he knows a better way. This lack of control is unsettling to

150

man y parallel programmers. This is because the current state of parallel programrning an

requires the programmer to take control or take his chances. See [Kar87] for a look at

parallel prograrnming today.

Another danger is too rnuch copying of intermediate arra y elements. If an update or replace

arra y operator is available, grossly inefficient programs can be written. Aids for detecting

this type of inefficiency are needed.

In an architecrural sense single assignment has sorne problems. The fact that memory is

finite rneans that memory locations will have to be written over. i.e. a variable's definition

(its one and only assignment) will not exist forever. This presents the problem of knowing

when a variable is no longer needed by any of the processors.

The final factor is the ease (or difficulty) to program in a single assignment language. See

[ANP87a] for a convincing argumentas to the ease of single assignment programming.

The combination of single assignment, areas-of-responsibility, and caching leads to low

communicat:i.on overhead and well-balanced loads when applied to the majority of the

Livermore Loops [BNR89b, LLL83], Matrix Mult:i.ply, and SIMPLE [CH&R]. Single

assignment permits the exploitation of large numbers of PEs automat:i.cally.

Synchronization problems are solved through the adopt:i.on of the single assignment policy.

By segmenting array writes using the area-of-responsibility concept, all PEs perform

roughly the same number of remete accesses. These two concepts allow caching to be

implemented without extensive communication, and caching is central to reducing remete

array accesses.

5. 3. Summary

This dissertation has discussed the Process-Oriented Dataflow System and its suitability for

running scientific programs on distributed-memory MThID machines. The partitioning and

distribution algorithms, along with their underlying principies, have been examined and

discussed. The logical implementation which was used in the simulations has been

presented along with the suppon software suite. The remote array cachlng scheme used

has been described. The event-driven simulation was explained and the results of

experiments with Matrix Multiply and SIMPLE were examined

1s1

It has been found that PODS can achieve speed-ups of nearly 20 times on large versions of

SIMPLE. This surpasses the speed-up of other approaches on similar architectures. This

speed-up is sufficient to warrant recoding of large scientific programs from FORTRAN or

C to ID Nouveau; usually a 10 times speed-up is considered large enough. When large

scientific programs are written, they are usually written by scientists, not computer

programmers. ID Nouveau will be easier for scientists to use because of its declarative

nature. Combine this with the automatic parallelization in PODS and this approach is much

more productive for parallel scientific prograrnming.

The basic PODS mcxiel of execution with its ability to "degenerate" to a von Neumann

machine as necessary, has the following advantages:

• the number of tokens through matching store and across the

routing network in general is reduced due to the use of SPs.

• instruction fetch/execution is as efficient as in a typical von

Neumann architecture, especially when loops run in-place.

• programmers may ignore such parameters as the number of

available PEs- the automatic partitioning allows a higher level

of abstraction.

• SPs are long and execute an average of 70 instructions before a

context switch - reducing context switches greatly increase the

efficiency and scalability of the system.

The mechanism for distributing arrays in PODS not only allows for larger arrays than

normally available in such machines, but it also takes advantage of locality of reference.

The remete array caching scheme future enhances the locality.

Both SIMPLE and Matrix Multiply have been used as performance measures. Matrix

Multiply is a good measure lx(cause it has severa! interesting properties:

• there are multiple code-blocks

• a new array must be dynamically allocated and distributed

• there is a loop-cani.ed dependency in the innermost loop

• the two input arrays, A and B, have different access patterns

• the sizes of the input arrays are not known at compile time

152

Matrix multiply also forms the basis for many irnportant scientific algorithms such as: LU

decomposition, convolution, and the Fast-Fourier Transform. SIMPLE is a good measure

because of its size (nearly 1000 FORTRAN instructions) and complexity (numerous SPs

and function calls with many dynamic array). SIMPLE was also designed as a benchmark

program by one of the largest users of supercomputers, Lawrence Livermore Laboratory.

In summary, PODS allows MIMD machines to exploit vector and data parallelism

efficiently, while still providing the flexibility of distributed-memory MIMD machines.

153

5. 4. Future Research

This is the first step in the development of a new approach to parallel processing. To

further understand the advantages and disadvantages of this approach, a variety of issues

need to be examined:

• Reduction operators are not fully exploited. How can vector to

scalar operations be implemented? Current ideas include a

mechanism to allow collection of subrange results.

• How well can scientific programmer use ID Nouveau and

PODS?

• How well does PODS execute non-scientific code?

• Should the programmer be able to specify any panitioning

parameters?

• How well does PODS run on real hardware?

To investigate these issues two major projects are in the works: the first is HyperPODS, an

implementation of PODS on an Intel iPSC/2; the second is a PODS compiler which would

take ID Nouveau and compile it directly for a particular implementation of PDS (e.g.,

HyperPODS).

5. 4 .1. HyperPODS

HyperPODS is currently being build using the logical implementation described herein. So

far the logical implementation has served well, but changes wil1 undoubtedly be necessary.

The issues below will have to be addressed:

• Register Allocation - the passing of tokens intemal to an SP

will be done through registers.

Presence Bits - these are not supported in the hardware, but are

necessary for I-structures.

" Blocking of an SP - this will have to be done at certain

instructions and not others. The efficiency of this is important to

context switch times.

• Matching Store - this support unit is the most utilized. It must

be efficient.

• Routing Unit - the batching of messages will ha ve to be done

in the CPU and the interaction with the Direct-Connect Module

is critical to the scalability of the system.

• Array Manager - the enqueuing and dequeuing of reads will

require dynamic memory allocation.

• Resource Limitations - PODS may ha ve to be throttled down to

prevent deadlock. The exact implementation of this is unclear.

These are just a few of the research issues which the PODS team will be addressing in

HyperPODS.

5. 4. 2. PODS Compiler

154

The development of HyperPODS and the success of Pingali and Rogers has lead to

renewed interest in a PODS Compiler. The GITA Compiler currently in use is written in

LISP and takes up a large amount of memory when executing. More importantly there are

optimizations which PODS can use which are not in the GITA Compiler (e.g., scalar

expansion). The PODS Compiler would replace the GIT A Compiler and the PODS

Translator. The PODS Partitioner could be incorporated, but this is not necessary.

155

Once HyperPODS and a PODS Compiler for it are finished, the complete PODS system

can be sent to beta-test si tes at facilities which have an iPSC/2 and are interested in getting

more scientific programs to be parallel. This will be the true test of the PODS concept.

[A&085]

[A&K87]

[A&C86]

[A&E88]

[AGP78]

[A&N87]

CHAPTER6

References

S. Allan, R. Oldehoeft. HEP SISAL: Parallel Functional Programming. In

Para/le/ MIMD Computation: the HEP Supercomputer and Its Applications.

J. S. Kowalik, Eds. (MIT Press, Cambridge, MA, 1985), pp. 123-150.

R. Allen, K. Kennedy. Automatic Translation of FORTRAN Programs to

Vector Form. ACM Trans. Prog. Lang. and Sys. V9, n4 (1987), pp. 491-

542.

Arvind, D. E. Culler. Dataflow Architectures. Annual Reviews in

Computer Science VI, (1986), pp. 225-253.

Arvind, K. Ekanadham. Future Scientific Programming on Parallel

Machines. J. Para/le/ Dist. Comp. V5, n5 (1988), pp. 460-493.

Arvind, K. P. Gostelow, W. Plouffe. An Asynchronous Programming

Language and Computing Machine. Technical Report 114a (December

1978), Department of Information and Computer Science, University of

California, Irvine.

Arvind, R. S. Nikhil. Executing a Program on the MIT Tagged-Token

Dataflow Architecture. MIT T echnical Repon Computation Structures

Group Memo 271(March1987), Laboratory for Computer Science, MIT.

156

[ANP87a]

[ANP87b]

[ANP89]

[Bab84]

[Bic87]

[Bic90]

[BNR89a]

157

Arvind, R. S. Nikhil, K. K. Pingali. 1-Structures: Data Structures for

Parallel Computing. MIT Technical Repon Compuration Srrucrures Group

Memo 269 (February 1987), Laboratory for Computer Science, MIT.

Arvind, R. S. Nikhil, K. K. Pingali. ID Nouveau Reference Manual Part

11: Operational Semantics. MIT Technical Repon (April 1987), Laboratory

for Computer Science, MIT.

Arvind, R. S. Nikhil, K. K. Pingali. 1-Structures: Data Structures for

Parallel Computing. ACM TOPLAS VI 1, n4 (1989), pp. 598-632.

R. G. Babb. Parallel Processing with Large-Grain Data Aow Techniques.

IEEE Computer (July 1984), pp. 55-61.

L. Bic. A Process-Oriented Model for Efficient Execution of Dataflow

Programs. Proc. 7th Int'/ Conf on Distributed Computing Systems

(1987), pp. 744-758.

L. Bic. A Process-Oriented Model for Efficient Execution of Dataflow

Programs. Journa/ of Dist. and Para/le/ Computing VMarch, (1990), pp.

15-38.

L. Bic, M. D. Nagel, J. M. A. Roy. Automatic Data/Program Partitioning

Using the Single Assignment Principie. Technical Repon #89-09 (January

1989), University of California, Irvine.

[BNR89b]

[BNR90a]

158

L. Bic, M. D. Nagel, J. M. A. Roy. Automatic Data/Program Partitioning

Using the Single Assignment Principie. Supercomputing '89 (1989), pp.

551-556.

L. Bic, M. D. Nagel, J. M. A. Roy. Executing Matrix Multiply on a

Process Oriented Dataflow Machine. Technical Report 90-08 (April 1990),

Department of ICS, University of California, lrvine.

[BNR90b] L. Bic, M. D. Nagel, J. M. A. Roy. On Array Partitioning in PODS. In

Advanced Tapies in Data-Flow Computing. J. L. Gaudiot, L. Bic, Eds.

(Prentice Hall, Englewood Cliffs, New Jersey, 1990), pp. 305-325.

[B&E87]

[Bur88]

[C&K88]

[CH&R]

[DFI...89]

R. Buehrer, K. Ekanadham. Incorporating Data Flow Ideas into von

Neumann Processors for Parallel Execution. IEEE Trans. Comp. VC-36,

nl2 (1987), pp. 1515-1521.

D. Bums. Loop-Based Concurrency Identified as Best at Exploiting

Parallelism. Computer Technology Review (Winter 1988), pp. 19-23.

D. Callahan, K. Kennedy. Compiling Programs for Distributed-Memory

Multiprocessors. Jour. of Supercomputing V2, (1988), pp. 151-169.

W. P. Crowley, C. P. Henderson, T. E. Rudy. The SIMPLE Code.

UCID 17715 (February 1978), Lawrence Livermore Laboratory.

D. DeForest, A. Faustini, R. Lee. Hyperflow. The Third Conference on

Hypercube Concurrent Computers and Applications (1989), pp. 482-488.

[Den75]

[Dun88]

[E&G90]

[Gao90]

[G&H89]

[G&K80]

159

J. B. Dennis. First Version of a Dataflow Procedure Language. Machine

Tech. Memorandum 61 Cambridge, MA. M.I.T.

T. H. Dunigan. Performance of a Second Generati.on Hypercube.

Technical Repon ORNUTM-10881(November1988), Oak Ridge National

Laboratory.

P. Evripidou, J. L. Gaudiot. The USC Decoupled Multilevel Data-Flow

Execution Model. In Advanced Topics in Dara-Flow Computing. J. L.

Gaudiot, L. Bic, Eds. (Prentice Hall, Englewood Cliffs, New Jersey,

1990), pp. pp. 347-380.

G. R. Gao. A Flexible Architecture Model for Hybrid Data-Flow and

Control-Flow Evaluation. In Advanced Topics in Data-Flow Computing.

J. L. Gaudiot, L. Bic, Eds. (Prentice Hall, Englewood Cliffs, New Jersey,

1990), pp. 327-346.

B. Goldberg, P. Hudak. Implementing Functional Programs on a

Hypercube Multi.processor. The Third Conference on Hypercube

Concurrent Compurers and Applications (1989), pp. 489-504.

A. Gottlieb, C. P. Kruskal. A Data Moti.en Algorithm. Technical Repon

Ultracompurer Note 7 (January 1980), Courant Institute of Mathematical

Sciences.

[Got90]

[H&B84]

[Ian88]

[IEEE89]

[Ins91]

[iPSC89]

[K&T88]

[Kap86]

[Kar87]

l. Gottlieb. Work Distribution in the DSDF Architecture. In Advanced

Tapies in Data-Flow Computing. J. L. Gaudiot, L. Bic, Eds. (Prentice

Hall, Englewood Cliffs, New Jersey, 1990), pp. 381-409.

160

K. Hwang, F. A. Briggs. Computer Architecture and Parallel Processing,

McGraw-Hill, New York, New York, 1984.

R. A. Iannucci. A Dataflow/von Neumann Hybrid Architecture.

Dissertation (1988), MIT.

IEEE. The Computer Spectrum: A perspective on the Evolution of

Computing. IEEE Computer (November 1989), pp. 57-68.

IEEE. Intel's Newest Supercomputer. In The ln.stitute, Eds., 1991, pp. 6.

IPSC User's Guide, Intel, Portland, Oregon, 1989.

M. Kallstrom, S. S. Thakkar. Programming Three Parallel Computers.

IEEE Software (January 1988), pp. 11-22.

I. Kaplan. A Large-Grain Dataflow Architecture. Worb-hop on Future

Direction.s in Computer Archirecture and Software (1986), pp. 131-138.

A. H. Karp. Programming for Parallelism. IEEE Computer (May 1987),

pp. 43-57.

[K&B88]

[LLL83]

[Lan65]

[L&G86]

[Mac87]

[MSS85]

[Nik87a]

[Nik87b]

A. H. Karp, R. G. B. II. A Comparison of 12 Parallel Fortran Dialects.

IEEE Software (September 1988), pp. 52-67.

L. L. N. Laboratory. FORTRAN KERNELS: .MFLOPS, V221DEC!86

m/328 (Regents of the University of California, Livermore, CA., 1983).

P. J. Land.in. A Correspondence Between ALGOL 60 and Church's

Lambda-Notation: Part I. Comm. ACM V8, n2 (1965), pp. 89-101.

J. W. Liu, A. Grimshaw. A Distributed System Architecture Based on

Macro Dataflow Model. Workshop on Future Directions in Computer

Architecture and Software (1986), pp. 155-162.

161

M. H. MacDougall. Simulating Computer Systems: Techniques and Tools,

MIT Press, Cambridge, MA, 1987.

J. R. McGraw, et al. SISAL, Streams and Iteration in a Single Assignment

Language. Language Reference Manual, Ver.1.2 M-146 (1985),

Lawerence Livermore National Laboratory.

R. S. Nikhil. ID Nouveau Reference Manual Part I: Syntax. MIT

Technical Report (April 1987), Laboratory for Computer Science, MIT.

R. S. Nikhil. ID World Reference Manual (for Lisp Machines). MIT

Technical Report (April 1987), Laboratory for Computer Science, MIT.

[Nik88]

[N&A89]

[P&W86]

[P&B90]

[Pap88]

[P&R90]

[R&P88]

162

R. S. Nikhil. ID Reference Manual - Version 88.1. MITTechnica/ Report

Computation Structures Group Memo 284 (August 1988), Laboratory for

Computer Science, MIT.

R. S. Ni.khil, Arvind. Can Dataflow Subsume von Neumann Computing?

16th lnt'l Computer Architecture Conference (1989), pp. 262-272.

D. A. Padua, M. J. Wolfe. Advanced Compiler Optimizations for

Supercomputers. Comm. of ACM V29, nl2 (1986), pp. 1184-1201.

C. M. Pancake, D. Bergmark. Do Parallel Languages Respond to the

Needs of Scientific Programmers? IEEE Computer (December 1990), pp.

13 - 23.

G. M. Papadopoulos. Implementation of a General-Purpose Dataflow

Multiprocessor. Technica/ Report TR-432 (August 1988), MIT Laboratory

for Computer Science.

K. Pingali, A. Rogers. Compiler Parallelization of SIMPLE for a

Distributed Memory Machine. TR 90-1084 (January 1990), Department of

Computer Science, Comell University.

A. Rogers, K. Pingali. Process Decomposition Through Locality of

Reference. Technical Report TR 88-935 (August 1988), Department of

Computer Science, Comell University.

[R&P89]

[Roy90]

[S&H87]

[Smi85]

[Smi81]

[Tra86]

[U&Z89]

A. Rogers, K. Pingali. Cornpiling Prograrns far Distributed Mernory

Architectures. 4th Hypercuhe Concurrent Computers & Applications

Conference (1989), pp. 529-542.

163

J. M. A. Roy, M. D. Nagel, L. Bic. Partitioning Declarative Programs into

Communicating Processes. Supercomputing '90 (1990), pp. 846-855.

B. Shirazi, A. R. Hurson. A Large/Fine Grain Parallel Dataflow Model and

its Performance Evaluation. 1987 National Computer Conference (1987),

pp. 119-126.

B. Srnith. The Architecture of HEP. In Paralle/ MIMD Computation: the

HEP Supercomputer and Its Applications. J. S. Kowalik, Ed.s. (MIT

Press, Cambridge, MA, 1985), pp. 41-58.

B. J. Srnith. Architecture and Applications of the HEP Multiprocessor

Computer System. Society of Photo-Optica/ lnstrumentation Engineers

V298 Real-Time Signa/ Processing IV, (1981), pp. 241-248.

K. R. Traub. A Compiler for the MIT Tagged-Token Dataflow

Architecture. MIT Technical Report !fEED (August 1986), Laboratory for

Computer Science, MIT.

T. Ungerer, E. Zehendner. A parallel Programming Language Directed

Towards Top-Down Software Development lnternational Conference on

Paralle/Processing (1989), pp. 122-125.

[Veg88]

[W&A85]

[Z&U87]

164

S. R. Vegdahl. Architectures That Support Functional Programrning

Languages. In Computer Architecture: Concepts and Systems. V.M.

Milutinovic, Eds. (North-Holland, New York, NY, 1988), pp. 405-453.

W. W. Wadge, E. A. Ashcroft. Lucid, the Dataflow Programming

Language, Academic Press, London, 1985.

E. Zehendner, T. Ungerer. The ASTOR Architecture. 7th International

Conference on Discributed Computing Systems (1987), pp. 424-430.

Appendix A: Range Filter Algorithms

This appendix presents the different range filter algorithms used in PODS. There are three

base algorithms and three parameterizations used to generate a specific range filter.

When a level of a nest (say ia) is clistributed, the range filter needs to consider al! of the

indices above it, i 1 to ia-1. This produces three different base algorithms in the current

PODS. The first base algorithms is the most common, and uses only the first level index,

see Figure A.1 below. This range filter is the most common because PODS will clistribute

the outermost level whenever possible.

1 rn = O
2 if rn > interval count of master array then exit
3 set i to the rnaxirnurn of the beginning of the interval

and the loop beginning
4 if i is not in the interval or the first elernent of this

dirnension is not owned then incrernent rn and gota 2
5 if i is within the loop bounds then set continue to TRUE

and send i and continue into the loop body
else incrernent rn and goto 2

6 if continue is TRUE do the loop body else goto 9
7 true part of loop body
8 if new i is within loop bounds set continue to TRUE,

send i-and continue into the loop body, and goto 4
else set continue to FALSE, send i and continue int.o the
loop body, and goto 6 (with i set to new i)

9 false part of loop body -

FIGURE A. l. BASE RANGE FIL TER ALGORITHM FOR ÜU1ERMOST LEVEL
DISTRIBUTION.

The general algorithm functions by repeatedly extracting ranges from the array boundary

table. While within the range, the filter passes indices for elements within that range. The

filter also keeps the loop alive by sending a continue token to the loop switch until all

ranges ha ve been exhausted. In the figure above, mis just sorne variable used to count the

165

166

intervals; i is the loop index, and continue is the signal to the loop body telling it whether

to continue or not.

The next base algorithm is for loops which are d.istributed at the second outermost level. In

this case the range filter must consider two indices, i andj. Figure A.2 below shows this

algorithm Notice that it is only slightly d.ifferent the first case; line #3 is added andj rather

than i is checked in lines #4 - #10.

1 m = O
2 if m > interval count of master array then exit
3 if i is not in interval m then increment m and gato 2
4 set j to the maximum of the beginning of the interval

and the loop beginning
5 if j is not in the interval or the first element of this

dimension is not owned then increment m and gato 2
6 if j is within the loop bounds then set continue to TRUE

and send j and continue into the loop body
else increment m and gato 2

7 if continue is TRUE do the loop body else goto 10
8 true part of loop body
9 if new j is within loop bounds set continue to TRUE,

send j-and continue into the loop body, and goto 5
else set continue to FALSE, send j and continue into the
loop body, and goto 7 (with j set to new j)

10 false part of loop body -

FIGURE A.2. BASE RANGE FIL TER ALGORITHM FOR SECOND OUTERMOST LEVEL
DISTRIBUTION.

The final case handles the situation when the third level of a nest is distributed. Once again

this is a simple extension of the first case: adding additional lines to check the additional

levels (lines #3 and #4) and checking k rather than i. This algorithm can easily be extended

to handle further levels once PODS handles arrays with more than three dimensions.

1 m = O
2 if m > interval count of master array then exit
3 if i is not in interval m then increment m and gato 2
4 if j is not in interval m then increment rn and gota 2
5 set k to the maximum of the beginning of the interval

and the loop beginning

167

6 if k is not in the interval or the first elernent of this
dimension is not owned then incrernent m and gato 2

7 if k is within the loop bounds then set continue to TRUE
and send k and continue into the loop body
else increment rn and gato 2

8 if continue is TRUE do the loop body else gato 11
9 true part of loop body
10 if new k is within loop bounds set continue to TRUE,

send k-and continue into the loop body, and gato 6
else set continue to FALSE, send k and continue into the
loop body, and gato 8 (with k set to new_k)

11 false part of loop body

FIGURE A.3. BASE RANGE FlLTER ALGoR.ITHMFOR THIRD 0U1ERMOST LEVEL
DISTRlBlmON.

Once the base algorithm is selected the three parameterizations are applied. These are:

1. Loop direction parameterization, 1 to n vs. n downto l.

2. Indices parameterization, A[i, j] vs. A[c¡*i+k¡, Cj*j+kj].

3 . S tepsize parameterization, step by 1 vs. step by C.

These parameterizati.ons are independent of each other. The first, loop directi.on

parameterizati.on is quite simple. Lines # 1, #2, and #3 need to be replaced as shown in

bold in Figure A.4 below. In this way the intervals are accessed in descending order.

Note that the interval counter mis decremented rather than incremented

1 m = interval count of master arra.y
2 if m < O then ex:it
3 set i to the minimum of the and of the interval

and tha loop end

168

4 if i is not in the interval ar the first element of this
dimension is not owned then decrement m and gota 2

5 if i is within the loop bounds then set continue to TRUE
and send i and continue into the loop body
else decrement m and gato 2

6 if continue is TRUE do the loop body else gato 9
7 true part of loop body
8 if new i is within loop bounds set continue to TRUE,

send i-and continue into the loop body, and gota 4
else set continue to FALSE, send i and continue into the
loop body, and gato 6 (with i set to new i)

9 false part of loop body -

FIGURE A.4. RANGE FIL TER ALGORITHM FOR SlEPSIZE -1.

The second parameterization is for complex indices like A[c¡*i+k¡, Cj*j+kj]. The range

filter for this situati.on needs different index check conditions. Figure A.5 shows the

algorithm for a second level distribution (alongJ) writi.ng into A[c¡*i+k¡, Cj*j+kj].

169

1 m = O
2 if rn > interval count of master array then exit
3 if (c1*i+ki) is not in interva.l m then increment

m a.nd goto 2
4 set j to the ma.ximum of the loop beqinninq and

(beqinninq of the interva.l-kj) / Cj
5 if (Cj * j +kj) is not in the inte:rval or tbe first

element of this dimension is not owned then
increment m a.nd qoto 2

6 if j is within the loop bounds then set continue to TRUE
and send j and continue into the loop body
else incrernent m and goto 2

7 if continue is TRUE do the loop body else goto 10
8 true part of loop body
9 if new j is within loop bounds set continue to TRUE,

send j-and continue into the loop body, and gato 5
else set continue to FALSE, send j and continue into the
loop body, and gota 7 (with j set to new j)

10 false part of loop body -

FIGURE A.5. SECOND LEVEL DISTRIBUTION RANGE FlLTER FOR A[C1*I+Kr,C1*J+K1].

The lines in bold (lines #3 - #5) ha ve different check conditions than those in Figure A.2;

this is the only change.

The third parameterization is also quite simple. This handles the case where the stepsize is

not 1 nor -1, but sorne constant c. Note that this stepsize is important only on the level of

the nest which is distributed. Figure A.6 shows the algorithm for a third level distribution

with stepsize c. Note that line #5, in bold, is the only modification.

11

3 1970 00832 7717 170

·¡1 m = O
2 if m > interval count of master array then exit
3 if i is not in interval m then increment m and gato 2
4 if j is not in interval m then increment m and gato 2
5 set k to the (first multiple of C + sta.rt o-t:

loop) > start of interva.l m
6 if k is not in the interval or the first element of this

dimension is not owned then increment m and gato 2
7 if k is within the loop bounds then set continue to TRUE

and send k and continue into the loop body
else increment m and gato 2

8 if continue is TRUE do the loop body else gota 11
9 true part of loop body
10 if new k is within loop bounds set continue to TRUE,

send k-and continue into the loop body, and gota 6
else set continue to FALSE, send k and continue into the
loop body, and gato 8 (with k set to new k)

11 false part of loop body -

FIGURE A.6. RANGE FIL TER FOR THIRD LEVEL DIS'IRIBUTION WITH STEPSIZE C.

Asan example consider the loop range: for k = 2 to 30 stepsize 3. Valid values of k are: 2,

5, 8, 11, 14, 17, 20, 23, 26, and 29. If an interval m, for a given PE, ran from 6 to 16

inclusive, then k would start out at 8, and stop at 14.

The three basic algorithms plus the three parameterizations allow PODS to insert the proper

range filter at compile time.

