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Abstract5

This paper analyses extrapolation and inference using tax experiments in dynamic economies when shock
processes are latent regime-shifting Markov chains. Belief revisions result in severe parameter drift: Response
signs and magnitudes vary widely over time despite ideal exogeneity. Even with linear causal effects, shock
responses are non-linear, preventing direct extrapolation. Analytical formulae are derived for extrapolating
responses or inferring causal parameters. Extrapolation and inference hinges upon shock histories and
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The major contributions of twentieth century econometrics to knowledge were the definition8

of causal parameters when agents are constrained by resources and markets and causes are inter-9

related, the analysis of what is required to recover causal parameters from data (the identification10

problem), and clarification of the role of causal parameters in policy evaluation and in forecasting11

the effects of policies never previously experienced.12

–James Heckman (2000)13

1. Introduction14

Angrist and Pischke (2010) argue that exploitation of quasi-natural experiments amounts to a “credibility15

revolution” in resolving the causal parameter identification problem. They go on to criticize macroeconomists16

for failing to share their revolutionary zeal, arguing that “today’s macro agenda is empirically impoverished...17

The theory-centric macro fortress appears increasingly hard to defend.”18

Notwithstanding the principled objections of Sims (2010), Keane (2010) and Rust (2010), amongst others,19

a fair reading of the state of play is that the model-light empirical methodology recommended by Angrist20

and Pischke (2010) is presently in the ascendancy. This view also appears to have gained ground with some21

macroeconomists. For example, Romer (2016) questions identification strategies in macroeconomics, while22

Narayana Kocherlakota (2018) argues “there has been a revolution in applied microeconometrics in the use23

of atheoretical statistical methods... a similar change could be of value in applied macroeconomics.” Romer24

and Romer (2014) argue, “In microeconomic settings, it is often possible to identify natural experiments25

where it is clear that differences among economic actors are not the result of confounding factors.”26

In part, the appeal of Angrist and Pischke’s recommended methodological tool-kit is the heuristic con-27

nection between “experiments” and “causal effects.” Apparently, many consider it to be a priori obvious28

that quasi-natural experiments recover causal effects if exploited shocks can be shown to be exogenous.29

This accounts for the narrow focus of many econometricians on finding sources of exogenous variation, with30

little attention devoted to mapping coefficients back to causal parameters. This view is the hallmark of31

the influential textbook of Angrist and Pischke (2009), Mostly Harmless Econometrics: An Empiricist’s32

Companion. They write, “The goal of most empirical research is to overcome selection bias, and therefore33

to have something to say about the causal effect of a variable.” They maintain, “A principle that guides34

our discussion is that most of the estimators in common use have a simple interpretation that is not heavily35

model dependent.”36

Undermining such assertions of credibility, Angrist and Pischke (2009, 2010) never formally demonstrate37

the connection between quasi-natural experiments and causal parameters. To the contrary, Hennessy and38

Strebulaev (2019) show that in dynamic economies, responses to exogenous shocks generally fail to recover39

two important causal parameters: theory-implied causal effects (comparative statics) and policy-invariant40

adjustment cost parameters determining causal effect magnitudes. However, responses to specific policy41

variable transitions do forecast responses to identical policy variable transitions in the setting they consider.42

In fact, there is a more obvious observation casting doubt on assertions of inherent credibility of natural43

experiments: If an empirical methodology is credible, those applying the methodology should arrive at44

similar quantitative estimates regarding the magnitude of causal parameters. However, the stock of widely45

conflicting quantitative evidence being accumulated in fields such as labor, development, environmental,46

and public economics suggests the presence of parameter drift, or time-varying econometric estimates of47

quantities that are, by definition, constant over time. For example, contrary to Hennessy and Strebulaev48

(2019), historical shock responses do not even appear to be good forecasters of future shock responses.49

As shown by Lucas (1976), whose focus was on parameters underpinning large-scale macroeconometric50

models, a potential source of parameter drift is a change in the underlying stochastic process–and this is true if51

experiment shock response magnitudes are treated as the causal parameter of interest. Conveniently, progress52

has been made in developing quasi-structural methods for recovering causal parameters in quasi-experimental53

settings featuring dynamic uncertainty and/or changes in underlying stochastic processes, e.g. Heckman and54

Navarro (2007) and Hennessy and Strebulaev (2019). However, reduced-form econometricians often object55

to using these methods since they demand making “strong” distributional assumptions. In turn, reluctance56

to make distributional assumptions reflects the fact that applied econometricians are often uncertain about57

the data generating process for the shocks they exploit. In fact, this type of model uncertainty is often58
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invoked as a defense amongst those recommending reduced-form quasi-experimental methods over structural59

estimation.60

It must be conceded that in many applied settings econometricians and the agents they study are unlikely61

to be certain of the true underlying process generating the (exogenous) shocks being exploited. But what62

implications does this type of model uncertainty have for quasi-experimental inference, and what can be63

done about it? The objective of this paper is to address these questions, and clarify the issues, using a64

transparent analytical framework. To do so, we follow the rational expectations approach of Hansen and65

Sargent (2010) in treating agents and econometricians symmetrically. In particular, we give the reduced-form66

econometrician the argument that there is uncertainty regarding the underlying stochastic process generating67

the exogenous shocks being exploited in the pursuit of causal parameters. But then, imposing the symmetry68

demanded by rational expectations, we assume that the agents being observed by the econometrician also69

do not know the underlying shock generating process. Rather, agents and econometricians know the set of70

potential models and engage in Bayesian updating. Within this context, we derive closed-form expressions71

clarifying the relationship between evidence from natural experiments and causal effect parameters.72

We consider the following economic setting. An econometrician seeks to empirically estimate causal73

effect parameters as implied by a canonical dynamic theory: investment by firms using a linear-quadratic74

technology. To fix ideas, we focus on linear tax rate shocks that reduce the return to investment and analyze75

their causal impact, although our analysis applies to any linear profit shock. Importantly, as shown, the76

linear-quadratic technology gives rise to the classical linear causal effect econometric framework. In the linear77

causal effect framework, changes in the dependent variable (here investment) are linear in changes to the78

independent variable (here tax rates). The causal effect parameter to be estimated by the econometrician can79

be a time-homogeneous comparative static, a policy-invariant technological parameter, or a shock response80

forecast.81

The econometrician exploits tax rate shocks that are “ideal” in the Angrist-Pischke sense that endogeneity82

and selection are not a concern. In particular, the tax rate is governed by an independent N -state continuous-83

time Markov chain with regime shifting. All agents, including the econometrician, face model uncertainty.84

We consider a very general form of model uncertainty: agents may be uncertain about tax shock arrival85

probabilities and/or the probability distribution governing tax rate transitions.1 Formally, we consider86

that the instantaneous Markov transition matrix can assume one of J potential values, with instantaneous87

switches across matrices possible. Firms are embedded in a general equilibrium setting where the marginal88

product of capital is proportional to exogenous aggregate output.89

The most important negative findings are as follows. First, uncertainty about the underlying stochastic90

process severely complicates the mapping between observed shock responses and causal parameters. For ex-91

ample, correct interpretation hinges upon correctly stipulating the set of potential data generating processes,92

correctly stipulating the probability weights placed on the alternative processes before the shock, and cor-93

rectly stipulating how beliefs will change after a given shock. This contradicts Angrist and Pischke’s (2009)94

bold assertion that natural experiments have a “simple interpretation” and also serves as a counterweight to95

the conventional wisdom that model uncertainty somehow tilts the balance in favor of reduced-form infer-96

ence. Natural experiments only have a simple interpretation if one takes them at face value. Once one uses97

a parable economy to mimic such experiments, as we do, it becomes apparent that making valid inferences98

requires making assumptions about functional forms and data generating processes, just as structural work99

requires. Moreover, model uncertainty, specifically uncertainty about underlying data generating processes,100

confounds inference in natural experiments in much the same manner as structural work. The only distinc-101

tion is that structural work puts these issues into the open while quasi-experimental work maintains they102

are not an issue, until objections are raised, at which point it is argued that the assumptions are implicit103

yet somehow absent from the textbooks.104

Second, if the underlying stochastic process is latent, causal parameter drift will be commonplace in105

shock-based inference. Simply put, there is no a priori reason to expect econometricians estimating shock106

responses at different points in time to produce similar estimates, even if the shocks are identical. Phrased107

differently, with learning, past shock responses are poor unconditional forecasters of future shock responses.108

1An early version of this paper considered only two possible shock intensities. We thank the editors and referee for suggesting
this extension.
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Intuitively, endogenous time-variation in beliefs gives rise to time-variation in shock responses. Importantly,109

this is so even if we assume the true data generating process is known to be constant, so that the Lucas110

critique does not apply.111

Third, it is shown that shock responses do not necessarily recover the correct sign of the theory-implied112

causal effect. That is, the problem of causal parameter drift is not confined to magnitudes but extends113

also to signs. Intuitively, without context, a tax rate cut appears to be good news. However, the specific114

tax cut may not be viewed as good news by Bayesian agents. After all, they might have expected a larger115

cut. Or the specific tax cut may cause them to expect less generous tax cuts in the future. As a practical116

matter, such results call into doubt the interpretation and utilization of elasticity estimates shaping policy.117

For example, Slemrod (1992) writes, “Fortunately (for the progress of our knowledge, not for policy), since118

1978 the taxation of capital gains has been changed several times, providing much new evidence on the tax119

responsiveness of realizations.” What Slemrod fails to account for is the fact that the information content120

of shocks varies systematically with waiting times, with more evidence often being worse evidence.121

Fourth, an important mechanism made clear within our framework is that shock responses hinge not122

only on the beliefs held by agents just prior to the shock arriving, but depend also on the belief revision123

that a given natural policy experiment brings about. As we show, this belief revision effect can radically124

change both the sign and magnitude of shock responses. For example, firms may respond to a tax rate cut125

by cutting their investment if it causes them to place lower weight on relatively favorable data generating126

processes.127

Fifth, although we consider a setting in which causal effects are linear in the size of tax rate changes,128

there is no reason to assume that shock responses are symmetrical or proportional to shock sizes. This calls129

into question the common practice of extrapolating shock responses based upon size. Simply put, even with130

a technology consistent with linear theory-implied causal effects, shock responses are not generally linear.131

Intuitively, there is no a priori reason to assume that belief revisions are symmetrical or proportional, and132

belief revisions are fundamental in the decomposition of shock responses.133

Finally, we extend the model to allow for aggregate uncertainty. Specifically, we follow Veronesi (2000)134

in assuming the instantaneous drift rate of aggregate output follows a latent regime shifting process. As135

shown, such macroeconomic uncertainty further complicates the mapping between shock responses and causal136

effects. In particular, the correct interpretation of natural experiments hinges upon correctly specifying137

beliefs about the underlying data generating processes driving both microeconomic and macroeconomic138

shocks. In this sense, applied microeconometricians must confront many of the same issues confronting139

macroeconometricians, even if the tool-kits differ.140

The constructive contribution of the paper is to illustrate how to account for learning and dynamic141

model uncertainty in shock-based inference, so that the problem of causal parameter drift can be addressed142

operationally. We first provide analytical expressions for mapping observed shock responses to causal effect143

parameters, specifically, comparative statics, policy-invariant technological parameters, or shock response144

forecasts. Essentially, the econometrician must impose upon herself the “communism of models” of Sargent145

(2005) with empirically observed shock responses being adjusted using the same real-time information set,146

and beliefs, as the agents being studied. With consistent belief adjustments, shock responses measured at147

different points can be rendered comparable and/or converted back to comparative statics. Further, unbiased148

estimates of deep technological parameters can be extracted from shock responses.149

As a second constructive result, we derive an auxiliary identifying assumption, beyond random assign-150

ment, that is necessary and sufficient for shock responses to directly recover theory-implied causal effects151

(comparative statics) in economies where agents and econometricians learn over time: For all potential data152

generating processes the tax rate is a martingale. Intuitively, Hennessy and Strebulaev (2019) show that in153

economies where profitability is driven by a known Markov chain, martingale profitability is sufficient for154

shadow values to behave as if shocks are completely unanticipated and permanent, so that shock responses155

directly recover comparative statics. In this paper, we show an analogous result obtains even if agents do not156

know the data generating process. However, in contrast to Hennessy and Strebulaev (2019), we show that157

stochastic monotonicity of all potential data generating processes is insufficient to ensure shock responses158

correctly recover the sign of theory-implied causal effects.159

The present paper shares with Gomes (2001) and Moyen (2004) the idea of using a canonical neoclassical160

model to shed light on empirical evidence. Their analysis is numerical and they do not analyze natural161

experiments or learning. The linear-quadratic stock accumulation model used in the paper follows Abel and162
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Eberly (1994) and Abel and Eberly (1997), but incorporates learning. Jovanovic (1982) analyzes the effect163

of learning on firm dynamics. Learning has featured in subsequent analysis of investment decisions by Alti164

(2003), Decamps and Mariotti (2004), and Bouvard (2014).165

Our framework can be seen as straddling two strands of the macro-finance literature on learning. One166

strand, exemplified by Bianchi and Melosi (2016), seeks to incorporate learning dynamics within rich Markov-167

switching DSGE settings in a computationally tractable way amenable to estimation, as in Bianchi and Melosi168

(2019). Another strand of the literature, exemplified by Veronesi (2000), considers simpler environments169

admitting analytical solutions. Although we allow for a richer learning environment than Veronesi, we still170

pursue and obtain analytical solutions. This objective arises from our view that it is unlikely to expect171

reduced-form empiricists to embrace numerical/structural methods. Moreover, analytical solutions lay bare172

the key mechanisms to audiences prone to labeling numerical solutions as a “ black box.” Of course, none173

of the learning papers discussed analyzes implications for empirical work exploiting natural experiments. In174

contrast, Hennessy and Strebulaev (2019) do analyze natural experiments, but they do not allow for the175

possibility of model uncertainty.176

The present paper shares with Keane and Wolpin (2002) the notion that one must account for dynamics177

and randomness in order to correctly infer causal effects. However, there are numerous important differences.178

First, they analyze a granular dynamic model of contraceptive use and welfare participation. We offer a more179

general/abstract analysis of the effect of dynamics and uncertainty on shadow values, the key determinant180

of optimal accumulation of stock variables. Second, they offer numerical solutions featuring polynomial181

approximations while we present closed-form solutions amenable to direct analysis and back-of-the-envelope182

adjustments. Finally, and most importantly, we consider the problem of causal inference in economies in183

which agents do not know the underlying stochastic process.184

The remainder of the paper is organized as follows. Section 2 describes the baseline economic setting.185

Section 3 presents characterization of optimal investment and shock responses under microeconomic uncer-186

tainty. Section 4 illustrates the potential quantitative significance of parameter drift in natural experiments187

using the realized time-series of historical changes in effective corporate income tax rates. Section 5 extends188

the baseline model to incorporate macroeconomic uncertainty. Section 6 concludes.189

2. Baseline Economic Setting190

We consider a general equilibrium (GE) setting that is sufficiently tractable analytically to admit closed-191

form solutions, even as we consider general forms of microeconomic and macroeconomic uncertainty. This192

section describes the baseline economic setting. In this baseline setting, the stochastic process for aggregate193

output is common knowledge, with uncertainty being confined to the nature of tax rate shocks that are194

“microeconomic” in the sense of leaving aggregate output unchanged.195

2.1. Technology196

Time is continuous and the horizon is infinite. Uncertainty is modeled by a complete probability space197

(Ω,F ,P). The only resource is divisible land. The total amount of land is K, where K is an arbitrarily large198

constant. The land is uniformly covered with Lucas trees. Each unit of land provides an instantaneous flow199

of the perishable consumption good (fruit) Xtdt. The output process X is a geometric Brownian motion200

which evolves under the physical measure P as follows:201

dXt = µXtdt+ σdWP (1)

X0 > 0.

Each parcel of land is owned by either the government or corporations. Regardless of who owns a parcel202

of land, its respective fruit can be harvested at zero cost. The corporate sector consists of a measure-203

one continuum of identical non-cooperative firms. Aggregate corporate land at time t is Kt and aggregate204

corporate revenue is KtXtdt. The government stands ready to buy and sell Itdt units of land in exchange205

for a land fee (It + γI2t )dt. The government levies a tax at rate Tt ∈ [0, 1) on corporate revenue, implying206

corporate tax proceeds TtKtXtdt. The government redistributes in lump sum fashion corporate taxes, land207

fees, and fruit harvested on government land. By construction, the posited technology fixes aggregate output208

at KXtdt.209
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The economy has a representative agent with power-function utility. In order for markets to clear, the210

representative agent must find it optimal to consume aggregate output. As is well-known, the risk-free rate211

(r) and risk-premium (θ) in such an economy are constants, and any asset can be priced by discounting at212

rate r expected cash flow under the risk-neutral measure Q.2 The dynamics of the output process under the213

risk-neutral measure are given by214

dXt = (µ− σθ)Xtdt+ σdWQ. (2)

A corporation’s instantaneous investment (It)t≥0 must be right-continuous and progressively measurable215

with respect the augmented filtration generated by X and T. To maintain consistency with the investment216

literature, which generally analyzes investment in depreciating capital goods, assume that at each instant217

the government seizes from each corporation a fraction δ of its land holdings. The implied law of motion for218

corporate sector land is219

dKt = (It − δKt)dt. (3)

The tax rate can take one of N ≥ 2 values. In tax state S the tax rate is TS . Of course, the tax220

rate/state are common knowledge. The tax rate T evolves a continuous-time Markov chain. At any instant,221

the Markov chain can driven by one of J ≥ 2 transition matrices, with matrices indexed by i or j below. The222

true instantaneous Markov matrix is not observed by any agent. Supposing we are in tax state S, then if223

j were in fact the true instantaneous Markov matrix, then over the next infinitesimal time interval dt there224

is probability λjSdt that a new tax rate state S′ will be chosen according to the distribution function ρjSS′ .225

Notice, the law of motion for the tax rate varies with the true underlying Markov matrix and the current226

tax state.227

Given true initial Markov matrix j, over the next infinitesimal time interval dt there is probability φjdt228

of a transition to a new matrix according to the probability the distribution function πji. Notice this setup229

allows for uncertainty regarding shock probabilities and/or shock distribution functions, and allows for both230

constant and regime shifting data generating processes.231

By construction we rule out endogeneity/selection bias by assuming T and X are independent stochastic232

processes. For brevity, we summarize this important assumption as:233

T ⊥ X. (4)

Of course, applied microeconometricians devote great attention to addressing concerns arising from endo-234

geneity. Our objective is to strip away this concern in order to show that establishing independence of shocks235

is a far cry from establishing identification of causal effects.236

2.2. The Econometrician237

We suppose now that there is a “real-world” applied microeconometrician who performs shock-based238

causal inference within this economy. To begin, we must formally define the objects this econometrician239

would like to infer.240

The traditional definition of a causal effect is a comparative static. Heckman (2000) writes, “Com-241

parative statics exercises formalize Marshall’s notion of a ceteris paribus change which is what economists242

mean by a causal effect.” Athey, Milgrom and Roberts (1998) write, “ most of the testable implications of243

economic theory are comparative static predictions.” Analytical comparative statics generally contemplate244

infinitesimal changes in causal variables. Numerical comparative statics contemplate discrete changes in245

causal variables. Problematically, Angrist and Pischke (2009) never formally define the theoretical objects246

natural experiments recover. Nevertheless, their textbook implies that natural experiments recover objects247

most similar to numerical comparative statics. They write, “ A causal relationship is useful for making248

predictions about the consequences of changing circumstances or policies; it tells us what would happen in249

alternative (or ‘counterfactual’) worlds.” Of course, quantitative theorists make counterfactual predictions250

by simulating parable economies under alternative assumptions regarding causal parameters.251

In our parable economy, the theory-implied causal effect (CE) is the comparative static of investment with252

respect to T. With the tax rate treated as a parameter permanently fixed at T, rather than as a stochastic253

2See Goldstein, Ju and Leland (2001) for example.
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process, the shadow value of a unit of land is254

Qt =
(1− T )Xt

r + δ − µ+ σθ
. (5)

The optimal instantaneous control policy in such a constant tax rate economy, call it I∗∗t , entails investing255

up to the point that the shadow value of land is just equal to marginal costs:256

Qt = 1 + 2γI∗∗t ⇒ I∗∗t =

(
1

2γ

)[(
1− T

r + δ − µ+ σθ

)
Xt − 1

]
. (6)

From the preceding two equations we obtain the following theory-implied causal effects, respectively, for257

infinitesimal changes and discrete changes in the corporate tax rate from TS to TS′ :258

CE ≡ ∂I∗∗

∂T
= −

(
1

2γ

)(
1

r + δ − µ+ σθ

)
Xt (7)

CESS′ ≡ I∗∗S′ − I∗∗S =

(
1

2γ

)(
1

r + δ − µ+ σθ

)
Xt × (TS − TS′) .

Notice, the posited linear-quadratic technology gives rise to the classical linear causal effects econometric259

model. In particular, the theory-implied causal effect is proportional to the size of the change in the causal260

variable T.261

In many cases researchers are interested in directly estimating policy-invariant structural parameters.262

For example, Summers (1981) attempts to infer the investment cost parameter γ based upon regressions of263

investment rates on Tobin’s Q. In this paper, we consider that the econometrician wants to instead exploit re-264

sponses to “clean” tax rate shocks in order to infer γ. Alternatively, we consider that the econometrician may265

want to predict future shock responses based upon an observed shock response. That is, the econometrician266

may want to extrapolate past shock responses into future shock responses.267

3. Microeconomic Model268

This section presents an analytical characterization of optimal investment and shock responses under269

“microeconomic uncertainty,” which is uncertainty that does not relate to aggregate output.270

3.1. Preliminaries: No Uncertainty271

To motivate the solution with uncertainty, it is useful to consider first firm behavior absent uncertainty.272

In particular, consider an investment program indexed by j, with j representing a known data generating273

process. The Hamilton-Jacobi-Bellman (HJB) equation is:274

rV j(K,X, S) = max
I

V jk (I − δK) + V jx (µ− σθ)X +
1

2
σ2X2V jxx (8)

+λjS
∑
S′ 6=S

ρjSS′ [V
j(K,X, S′)− V j(K,X, S)] + (1− TS)KX − I − γI2.

The HJB equation is an equilibrium condition demanding that the risk-neutral expecting holding return on275

the firm’s stock is just equal to the risk-free rate. As shown above, the holding return consists of capital276

gains due to infinitesimal changes in the diffusion processes, plus discrete capital gains due to changes in the277

tax rate, plus dividends.278

As shown by Abel and Eberly (1997), with benefits that are linear in the stock and adjustment costs279

that are independent of the stock, the value function takes the separable form:280

V j(K,X, S) = KQj(X,S) +Gj(X,S). (9)

In fact, separability of the value function between assets in place and growth options will continue to hold281

even as we incorporate learning. As we show, separability is verified as HJB equation decouples into two282
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PDEs, with only one of the PDEs involving K, with K entering as a scalar in fact. This K-scaled PDE pins283

down Q. In fact, this same argument is employed by Abel and Eberly (1997).284

Isolating those terms in the HJB equation involving the investment policy I, the optimal instantaneous285

investment solves:286

max
I

Qj(X,S)I − I − γI2 (10)

⇒ I∗S =
Qj(X,S)− 1

2γ
; S = 1, ..., N

⇒ I∗SQ(X,B, S)− I∗S − γI∗2S =
[Qj(X,S)− 1]2

4γ

Since the HJB equation must hold point-wise, the terms scaled by K must equate. It follows that the shadow287

value of capital must satisfy:288

(r+ δ+λjS)Qj(X,S) = (µ−σθ)XQjx(X,S) +
1

2
σ2X2Qjxx(X,S) +λjS

∑
S′ 6=S

ρjSS′Q
j(X,S′) + (1−TS)X. (11)

We conjecture the shadow value is linear in X and thus write:

Qj(X,S) = XΨj
S

where Ψj is an N dimensional vector of constants to be determined. Substituting the preceding expression289

into the shadow value equation we obtain the following condition:290

(r + δ − µ+ σθ + λjS)Ψj
S = λjS

∑
S′ 6=S

ρjSS′Ψ
j
S′ + (1− TS). (12)

From the preceding equation it follows that the vector of shadow value constants Ψj solves a linear system.291

We thus have the following proposition.292

Proposition 1. If there is no model uncertainty and the tax rate evolves according to a known continuous-293

time Markov chain j, then the tax-state-contingent shadow value of capital is294

Q̃(X) = XΨ̃j

where the N state-contingent shadow value constants {Ψ̃j
S} solve the following system of linear equations295

1− T1 = (r + δ − µ+ σθ + λj1)Ψ̃j
1 − λ

j
1

∑
S′ 6=1

ρj1S′Ψ̃
j
S′ .

...

1− TN = (r + δ − µ+ σθ + λjN )Ψ̃j
N − λ

j
N

∑
S′ 6=N

ρjNS′Ψ̃
j
S′ .

Hennessy and Strebulaev (2019) derive a similar expression for shadow values under a known stochastic296

process albeit in a simpler partial equilibrium setting without the geometric Brownian motion X capturing297

aggregate risk. Before closing this subsection, we anticipate that in certain cases, shadow values under model298

uncertainty will represent belief weighted averages of the preceding shadow values absent uncertainty. As299

in the proposition, tildes will be used to represent shadow values and shadow value constants absent model300

uncertainty.301

3.2. Shadow Values under Uncertainty302

Suppose now that agents do not know the tax generating process. To begin, let B denote a vector303

of dimension J representing agents’ probability assessments regarding the current instantaneous Markov304
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matrix. Consider first an instant dt over which no tax rate change occurs. Applying Bayes’ law we have:305

Bj + dBj =
Bj(1− φjdt)(1− λjSdt) +

∑
i6=j Biφiπijdt(1− λiSdt)

1−
∑
iBiλ

i
Sdt

(13)

⇒ dBj =

[
Bj

(∑
iBiλ

i
S − λ

j
S

)
+
∑
i 6=j Biφiπij −Bjφj

]
dt

1− dt
∑
iBiλ

i
S

.

The intuition for the preceding equation is as follows. First, if there were no possibility of a switch in the306

underlying Markov matrix, then Bj would increase in response to no tax rate change if λjS were to fall below307

the expected value of λS given beliefs the preceding instant. This effect is captured by the first term in the308

numerator of the second equation. The last two terms in the numerator capture changes in beliefs due to309

expected transitions into and out of Markov matrix j. As another special case of this law of motion, note310

that if there were no possibility of switches across Markov matrices, and if the shock arrival rate were equal311

across all j, then beliefs would be constant over time intervals with no tax rate change.312

Consider next the evolution of beliefs in the event of a transition from tax state S to state S′. Applying313

Bayes’ rule and dropping terms smaller than infinitesimal dt, we find that after a tax rate change beliefs will314

generally exhibit a discrete jump to3315

B̃j(B) = Bj ×
λjSρ

j
SS′∑

iBiλ
i
Sρ

i
SS′

. (14)

The preceding equation shows that after a tax rate change, the probability weight placed on Markov matrix316

j will increase if it features a higher instantaneous probability of a jump from S to S′ relative to the expected317

probability of such a jump given beliefs the preceding instant. Of course, this is a central point of our paper:318

the arrival of an experiment itself can be responsible for large revisions of beliefs. And, as shown below, such319

belief revisions can severely cloud causal inference, and even bring about sign reversals.320

In the interest of brevity we present here key steps in the characterization of investment and shadow321

values. All intermediate steps can be found in the Online Appendix. The HJB equation is:322

rV (K,X,B, S)dt (15)

= max
I

[
Vk(I − δK)dt+ Vx(µ− σθ)Xdt+

1

2
σ2X2Vxxdt

][
1− dt

∑
i

Biλ
i
S

]

+
∑
j

Vbj


[
Bj

(∑
iBiλ

i
S − λ

j
S

)
+
∑
i 6=j Biφiπij −Bjφj

]
dt

1− dt
∑
iBiλ

i
S

(1− dt
∑
i

Biλ
i
S

)

+dt
∑
S′ 6=S

∑
i

Biλ
i
Sρ

i
SS′

[
V [K,X, B̃(B), S′]− V (K,X,B, S)

]
+
[
(1− TS)KX − I − γI2

]
dt

The HJB equation states that the risk-neutral expected holding return is equal to the risk-free rate. The323

second and third lines capture capital gains due to the underlying diffusions in the event of no tax rate324

change. The final line captures dividends plus capital gains due to tax rate changes. Rearranging terms in325

3Transitions across Markov matrices drop out, being of order dt2.
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the HJB equation one obtains326 (
r +

∑
i

Biλ
i
S

)
V (K,X,B, S) (16)

= max
I

Vk(I − δK) + Vx(µ− σθ)X +
1

2
σ2X2Vxx

+
∑
j

Vbj

Bj (∑
i

Biλ
i
S − λ

j
S

)
+
∑
i 6=j

Biφiπij −Bjφj


+
∑
S′ 6=S

∑
i

Biλ
i
Sρ

i
SS′V [K,X, B̃(B), S′] + (1− TS)KX − I − γI2

As discussed above, with benefits that are linear in the stock and adjustment costs that are independent327

of the stock, the value function is separable:328

V (K,X,B, S) = KQ(X,B,S) +G(X,B, S). (17)

Isolating those terms in the HJB equation involving the investment policy I, the optimal instantaneous329

investment solves:330

max
I

Q(X,B, S)I − I − γI2 (18)

⇒ I∗S =
Q(X,B, S)− 1

2γ
; S = 1, ..., N

⇒ I∗SQ(X,B, S)− I∗S − γI∗2S =
[Q(X,B, S)− 1]2

4γ
.

Since the HJB equation must hold pointwise, the terms scaled by K must equate. Using this fact we obtain331

an equilibrium condition for the shadow value of capital332 (
r + δ +

∑
i

Biλ
i
S

)
Q(X,B,S) (19)

= (µ− σθ)XQx(X,B,S) +
1

2
σ2X2Qxx(X,B,S)

+
∑
j

Bj (∑
i

Biλ
i
S − λ

j
S

)
+
∑
i 6=j

Biφiπij −Bjφj

Qbj (X,B,S)

+
∑
S′ 6=S

∑
i

Biλ
i
Sρ

i
SS′Q(X, B̃(B),S′) + (1− TS)X.

The preceding equation states that the expected holding return on capital is equal to the opportunity cost.333

The holding return consists of dividends plus capital gains associated with the underlying diffusions, along334

with gains due to tax rate changes.335

Since the marginal product of capital is linear in X, we conjecture the shadow value must also be linear336

in X:337

Q(X,B, S) = XΨS(B). (20)
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Substituting this into the shadow value equation we find that X drops out:338 (
r + δ − µ+ σθ +

∑
i

Biλ
i
S

)
ΨS(B) (21)

=
∑
j

Bj (∑
i

Biλ
i
S − λ

j
S

)
+
∑
i 6=j

Biφiπij −Bjφj

 ∂

∂Bj
ΨS(B)

+
∑
S′ 6=S

∑
i

Biλ
i
Sρ

i
SS′ΨS′

(
B̃(B)

)
+ 1− TS .

Next, we conjecture that for each of the N states there exists a vector of shadow value constants of dimension339

J solving340

ΨS(B) =

J∑
j=1

BjΨ
j
S . (22)

That is, each Ψj
S allows one to capture the shadow value from the perspective of a hypothetical agent who341

knows the current instantaneous Markov matrix is j. Under the stated conjecture, pricing is then done taking342

a belief-weighted average of the j-specific shadow values. Under the maintained conjecture, the shadow value343

equation (21) can be written as344

J∑
j=1

Bj

 (r + δ − µ+ σθ + λjS + φj)Ψ
j
S

−λjS
∑
S′ 6=S ρ

j
SS′Ψ

j
S′ − (1− TS)

−φj
(∑

i 6=j πjiΨ
i
S

)
 = 0. (23)

Since the preceding equation must hold if one sequentially sets each Bj = 1, we demand that for each345

j = 1, ..., J and each state S = 1, ..., N the bracketed term in the preceding equation must be 0. We then346

have the following proposition.347

Proposition 2. If tax rate changes are driven by a latent regime shifting Markov chain, the shadow value348

of capital is349

Q(X,B, S) = X

J∑
j=1

BjΨ
j
S ,

where the J ×N shadow value constants {Ψj
S} solve the following system of linear equations350

1− T1 = (r + δ − µ+ σθ + λ11 + φ1)Ψ1
1 − λ11

∑
S′ 6=1

ρ11S′Ψ1
S′ − φ1

∑
i 6=1

π1iΨ
i
1


...

1− TN = (r + δ − µ+ σθ + λ1N + φ1)Ψ1
N − λ1N

∑
S′ 6=N

ρ1NS′Ψ1
S′ − φ1

∑
i6=1

π1iΨ
i
N


...

1− T1 = (r + δ − µ+ σθ + λJ1 + φJ)ΨJ
1 − λJ1

∑
S′ 6=1

ρJ1S′ΨJ
S′ − φJ

∑
i6=J

πJiΨ
i
1


...

1− TN = (r + δ − µ+ σθ + λJN + φJ)ΨJ
N − λJN

∑
S′ 6=N

ρJNS′ΨJ
S′ − φJ

∑
i 6=J

πJiΨ
i
N

 .

It is instructive to compare the determination of shadow values without microeconomic uncertainty351

(Proposition 1) with the determination of shadow values with microeconomic uncertainty (Proposition 2).352
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In particular, note that in the special case of Proposition 2 where the underlying Markov matrix is constant353

over time, with no possibility of regime shifts (φ = 0), the shadow value of capital is determined by taking354

the shadow values under known constant data generating processes from Proposition 1 and then applying355

the belief weights to them. That is:356

φ = 0⇒ Q(X,B, S) =

J∑
j=1

BjQ̃
j(X,S) = X

J∑
j=1

BjΨ̃
j
S . (24)

With regime shifts, the shadow value constants have a slightly different interpretation. In this case,357

rather than Ψj
S capturing the shadow value when j is known to be the Markov matrix into perpetuity, now358

Ψj
S captures the shadow value from the perspective of a hypothetical agent who knows that at the present359

instant the stochastic Markov matrix is in regime j.360

3.3. Drawing Inferences from Shock Responses361

With analytical expressions for shadow values in-hand (Proposition 2), recovering shock responses from362

causal effects is a simple calculation. To see this, note that the ratio of causal effect to shock response can363

be written as364

CESS′

SRSS′
=

(
1
2γ

)(
1

r+δ−µ+σθ

)
Xt × (TS − TS′)(

1
2γ

)(
Q(Xt, B̃(B), S′)−Q(Xt,B, S)

) . (25)

Using Proposition 2 to calculate the denominator in the preceding equation, we obtain a formula for recov-365

ering the causal effect implied by a given shock response as shown in the following proposition.366

Proposition 3. The causal effect implied by an observed shock response is367

CESS′ = SRSS′ × (TS − TS′)/(r + δ − µ+ σθ)∑J
j=1Bj

[(
λj
Sρ

j

SS′∑
i Biλi

Sρ
i
SS′

)
Ψj
S′ −Ψj

S

] . (26)

where the shadow value constants {Ψj
S} are determined per Proposition 2.368

A sharper understanding of the determinants of shock responses under model uncertainty is obtained by369

decomposing them as follows:370

SRSS′ =
X

2γ

[
ΨS′(B̃)−ΨS(B)

]
(27)

=
X

2γ

[
(ΨS′(B)−ΨS(B)) +

(
ΨS′(B̃)−ΨS′(B)

)]
=

X

2γ

 J∑
j=1

(
Bj(Ψ

j
S′ −Ψj

S) +
(
B̃j −Bj

)
Ψj
S′

)
=

X

2γ

 J∑
j=1

(
Bj(Ψ

j
S′ −Ψj

S) +Bj

((
λjSρ

j
SS′∑

iBiλ
i
Sρ

i
SS′

)
− 1

)
Ψj
S′

) .
The first term in the preceding equation illustrates that shock responses hinge upon the vector of beliefs371

held the instant before the tax change arrives. The second term illustrates that shock responses also hinge372

upon the nature of the belief revision that a specific natural experiment brings about.373

It might be hoped that shock response estimates will at least have the same sign as the theory-implied374

causal effect. However, it is easy to illustrate cases analytically where shock responses have the wrong sign.375

For example, suppose there is no regime shifting (φ = 0). Suppose also that the current tax state S has376

the property that for all potential data generating processes, all potential transition-to states (states S′ such377

that ρjSS′ > 0) are absorbing.378
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With a known Markov matrix and absorbing transition-to states S′, we have the following equilibrium379

condition pinning down shadow values380

(r + δ − µ+ σθ + λjS)Qj(X,S) = λjS
∑
S′ 6=S

ρjSS′

(
(1− TS′)X

r + δ − µ+ σθ

)
+ (1− TS)X. (28)

From the preceding equation and equation (24) it follows that in the present example381

Q(X,B, S) =
(1− TS)X

(r + δ − µ+ σθ)
+

J∑
j=1

Bj
λjS

[
TS −

∑
S′ 6=S ρ

j
SS′TS′

]
X

(r + δ − µ+ σθ + λjS)(r + δ − µ+ σθ)
. (29)

Thus, with permanent shocks we have382

SRSS̃ =
1

2γ

[
(1− TS̃)X

(r + δ − µ+ σθ)
−Q(X,B, S)

]
(30)

= CESS̃ ×


1−

J∑
j=1

Bj



Conditional Expected Change︷ ︸︸ ︷∑
S′ 6=S

ρjSS′TS′ − TS

TS̃ − TS︸ ︷︷ ︸
Realized Change


(

λjS
r + δ − µ+ σθ + λjS

)

.

The preceding equation implies it is entirely possible that shock responses will not even correctly recover383

the sign of causal effects. In particular, it is apparent that if agents place sufficiently high probability weights384

on underlying stochastic processes with a high expected changes (in absolute value), then a relatively small385

realized change of the same sign will be associated with a shock response opposite in sign to the causal effect.386

For example, if the waiting time for a corporate tax cut has been long, like President Trump’s corporate rate387

cut, agents might expect a very large tax cut. If only a small rate cut had been delivered, the investment388

response might well have been negative.389

The assumption of permanent shocks is not necessary to generate sign reversals. To see this, consider390

an economy in which the tax rate has always been high. But suppose that agents think it is possible for391

tax rates to be cut. In particular, suppose agents know the true latent Markov matrix is fixed (φ = 0)392

and is one of two types. Markov matrix 1 features a binary tax rate switching between high and medium.393

Markov matrix 2 features a binary tax rate switching between high and low. For simplicity, assume the394

shock probability is λdt across all states and across both potential Markov matrices.395

Suppose now that the tax rate is cut from high to medium, and consider the shock response. To begin,396

note that after such a rate change, Bayesian agents will place probability weight 1 on Markov matrix 1. Note397

also from Proposition 1 it follows that under binary tax rates and a known data generating process (1 or 2),398

the shadow value constants are399 [
Ψ̃1
H

Ψ̃1
M

]
=

[
1−TH

r+δ−µ+σθ + λ(TH−TM )
(r+δ−µ+σθ)(r+δ−µ+σθ+2λ)

1−TM

r+δ−µ+σθ + λ(TM−TH)
(r+δ−µ+σθ)(r+δ−µ+σθ+2λ)

]
(31)[

Ψ̃2
H

Ψ̃2
L

]
=

[
1−TH

r+δ−µ+σθ + λ(TH−TL)
(r+δ−µ+σθ)(r+δ−µ+σθ+2λ)

1−TL

r+δ−µ+σθ + λ(TL−TH)
(r+δ−µ+σθ)(r+δ−µ+σθ+2λ)

]

Now let B denote the probability weight placed on Markov matrix 1 prior to the tax rate cut. The shock400
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response here will be401

SRHM =
1

2γ

[
Q1(X,TM )− (BQ1(X,TH) + (1−B)Q2(X,TH))

]
(32)

=
X

2γ

[
Ψ̃1
M − (BΨ̃1

H + (1−B)Ψ̃2
H

]
=

X

2γ

[
(TH − TM )(r + δ − µ+ σθ + λ)− λ[TH −BTM − (1−B)TL]

(r + δ − µ+ σθ)(r + δ − µ+ σθ + 2λ)

]
.

From the preceding equation it follows402

Belief Revision︷ ︸︸ ︷
1−B >

(
r + δ − µ+ σθ

λ

)(
TH − TM
TM − TL

)
⇒ sgn(SRHM ) < 0. (33)

That is, the investment response to the tax rate cut will be negative if it brings about a sufficiently negative403

belief revision. The more general point here is that shock response signs and magnitudes critically depend404

upon the nature of the belief revision that the tax rate change brings about. In turn, the nature of the belief405

revision depends upon the specific stochastic environment facing agents.406

Hennessy and Strebulaev (2019) analyze natural experiments in dynamic settings with a known shock407

generating process. They present a simple condition for establishing equivalence between the sign of shock408

responses and causal effects: stochastic monotonicity of the marginal product of capital. If the marginal409

product of capital is stochastically monotone, then if the marginal product in state S is higher than the410

marginal product in state S′, then at all future dates, the process with initial state S is first-order stochastic411

dominant to the process with initial state S′. That is, with a known data generating process, stochastic412

monotonicity ensures that good news today is good news about the future. However, note that in the413

preceding example, the two potential Markov matrices satisfied stochastic monotonicity respectively, but it414

was still possible for shock responses to have signs opposite to causal effects. We thus have the following415

proposition.416

Proposition 4. Stochastic monotonicity of all J potential tax shock generating processes is insufficient to417

ensure an observed shock response will correctly identify the sign of the theory-implied causal effect.418

Hennessy and Strebulaev (2019) also present a necessary and sufficient condition for shock responses419

to recover both the sign and magnitude of theory-implied causal effects in a setting with a known data420

generating process: martingale marginal product. Despite the previous proposition’s negative result, it turns421

out that an analogous martingale condition is necessary and sufficient for all potential shock responses to be422

equal to their respective theory-implied causal effects even in a setting with model uncertainty. To see this,423

note that if all shock responses are to recover their corresponding causal effect, it must be the case that for424

all possible states the shadow value of capital must be equivalent to that under permanent tax rates. But425

from equation (19) if follows that426 ∑
S′ 6=S

ρjSS′TS′ = TS ∀ j and ∀ S ⇔ Q(X,B, S) =
(1− TS)X

r + δ − µ+ σθ
∀ (X,B, S).

Thus, we have the following proposition.427

Proposition 5. The necessary and sufficient condition for all potential shock responses to be equal to their428

respective theory-implied causal effect is that the tax rate be a martingale under all J potential tax shock429

generating process.430

It is worth stressing that the preceding proposition requires that under all potential data generating431

processes, the tax rate is a martingale. Of course, this will be a demanding condition to satisfy in practice.432

Nevertheless, this strong condition is necessary to ensure that regardless of current beliefs or the evolution433

of those beliefs, the tax rate remains a martingale.434
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Having analyzed the mapping between shock responses and causal effects, we next turn attention to435

the second potential objective of the econometrician, recovering the investment cost parameter γ from an436

observed shock response. We know437

SRSS′ =
X

2γ

[
ΨS′(B̃)−ΨS(B)

]
(34)

⇒ γ =
X

2× SRSS′

 J∑
j=1

Bj

[(
λjSρ

j
SS′∑

iBiλ
i
Sρ

i
SS′

)
Ψj
S′ −Ψj

S

] .
The preceding equation illustrates that, as was the case with the attempt to recover causal effects from438

shock responses, correctly recovering deep structural parameters from observed shock responses requires an439

explicit treatment of the stochastic environment confronting agents–including a specification of the set of440

possible data generating processes they entertain as possibilities.441

A common approach in the public finance literature is to assume agents are completely myopic, in the442

sense of positing that each tax rate change is viewed as completely unanticipated and permanent. With this443

approach to imputing shadow values, one would draw an inference γ̂ as follows444

SRSS′ =
X

2γ̂

[
1− TS′

r + δ − µ+ σθ
− 1− TS
r + δ − µ+ σθ

]
(35)

⇒ γ̂ =
X

2× SRSS′

[
TS − TS′

r + δ − µ+ σθ

]
= γ × CESS′

SRSS′
.

The final equality above shows that with the MIT shock assumption, the bias in structural parameter445

inference is in direct proportion to the bias between shock responses and causal effects.446

Consider finally the issue of forecasting the response to a future tax rate change from, say, TS′′ to TS′′′447

based upon an observed historical shock response to a tax rate change from TS to TS′ . Letting BF and XF
448

denote the beliefs and aggregate output forecasted at the date of the future tax rate change, it follows from449

our parameter inference formula (34) that450

SRS′′S′′′ =
XF

2γ

J∑
j=1

BFj

[(
λjS′′ρ

j
S′′S′′′∑

iBiλ
i
S′′ρiS′′S′′′

)
Ψj
S′′′ −Ψj

S′′

]
(36)

= SRSS′ ×
XF

∑J
j=1B

F
j

((
λj

S′′ρ
j

S′′S′′′∑
i Biλi

S′′ρ
i
S′′S′′′

)
Ψj
S′′′ −Ψj

S′′

)
X
∑J
j=1Bj

((
λj
Sρ

j

SS′∑
i Biλi

Sρ
i
SS′

)
Ψj
S′ −Ψj

S

) .

Essentially, the preceding formula tells us that correctly extrapolating from a past shock response requires451

scaling it by the ratio of prospective to historical change in the shadow value of capital. Clearly, as illustrated,452

extrapolating from past shock responses, even clean shocks, is far from simple. For example, any such forecast453

is predicated upon making reliable forecasts of future beliefs. But those future beliefs depend upon the precise454

details of future natural experiments.455

4. Numerical Examples456

A natural question at this stage is how large is the problem of parameter drift in natural experiments?457

The objective of this section is to provide calibrated examples based upon historical changes in effective458

corporate income tax rates.459

Consider an econometrician interested in estimating the sign and magnitude of the causal effect of taxes460

on corporate investment. For the sake of the numerical illustration, assume Tt is the observed history of461

effective tax rates on corporate investment over the period from 1954-2005, as computed by Gravelle (1994)462
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and the Congressional Research Service (2006).4463

For the numerical exercises, we discretize the Gravelle/CRS time-series into S = 3 tax rate states using464

the unsupervised machine learning k-means clustering algorithm. Essentially, the k-means algorithm sorts465

observations into k clusters so as to minimize the Euclidean distance between observed data points and their466

assigned cluster’s centroid. The respective cluster centroids are equal to the within-cluster mean. Applying467

the k-means algorithm to the Gravelle/CRS tax rate series results in centroid tax rates of 42%, 50% and468

58%. With the observed tax rates sorted into their respective clusters, we compute the average transition469

probability and the average conditional transition probabilities, and then use these as our estimated shock470

probability and conditional transition probabilities. The resulting time series of tax rate changes between471

of 42%, 50% and 58% is then used as an input for all of our numerical exercises. The estimated annual tax472

rate migration matrix is equal to473 0.6929 0.3071 0.0000
0.1229 0.6929 0.1843
0.0000 0.3071 0.6929

 , (37)

where the tax rates are increasing from left to right and from top to bottom.474

As shown, we estimate a 30.71% annual probability of a jump in the effective tax rate. This is reflective475

of the larger number of corporate tax reforms after World War II as well as the fact that changes in inflation476

led to large changes in effective corporate income tax rates over the sample time period. Two other points are477

worthy of note in tax rate migration matrix (37). First, there is a slight asymmetry at the 50% tax rate state,478

with a somewhat higher probability (60%) of a tax rate increase than a tax rate decrease (40%). Second,479

note that the only positive probability transitions are to nearest neighbor states, and that all transitions are480

of equal size with ∆T = 0.08.481

To complete the model parameterization, we suppose the econometrician inhabits an economy with482

r = 2.5% and δ = 7.25%. These are the same parameter values as used in the numerical examples in483

Hennessy and Strebulaev (2019). In turn, the real interest rate assumption follows Hennessy and Whited484

(2005) while the assumed depreciation rate reflects an average of 0 for non-decaying stock variables and the485

14.5% depreciation rate assumed by Hennessy and Whited. Alternative γ values would simply change levels486

of shock responses, whereas our focus below is entirely on relative magnitudes. Finally, following Veronesi487

(2000) we set the annual instantaneous growth rate of the aggregate output, µ, to 3.3%, the volatility of the488

aggregate output, σ, to 18%, and the parameter θ to 0.08. Given these parameter values, the theory-implied489

causal effect for all the shocks considered is ∆T/(r + δ − µ+ θσ) = 1.0139. Finally, we limit the number of490

data generating regimes to two, J = 2, and set the switching intensity between them, φ, to 0.1 (10 years) in491

all of our calibration exercises.492

We start by considering an economy where nature alternates between two tax rate switching probabilities,493

ρ1SS′ and ρ2SS′ , equal to494

ρ1SS′ =

 0 1 0
0.4 0 0.6
0 1 0

 and ρ2SS′ =

 0 1 0
0.8 0 0.2
0 1 0

 , (38)

with the tax states ordered as S = {42%, 50%, 58%}. Note these probability assumptions are consistent with495

the estimated tax rate migration matrix (37). The tax shock arrival rate λ is set to 0.3071 and is independent496

of the tax rate state, S, and data generating regime, j.497

[Figure 1 about here]498

Figure 1 and Table 1 summarize results of this numerical exercise. Both are based upon the assumption499

that agents enter the economy with initial belief B1 = 25%. In Figure 1, Panel A shows the evolution of500

beliefs (blue line), B1 = Prob(ρjSS′ = ρ1SS′), and the history of effective tax rates (red line), Tt. Panel B501

shows Tobin’s Q, Q(Xt, B1, S), scaled by the aggregate output, Xt. Scaling Q by Xt allows us to focus on502

changes in Q caused solely by changes in tax rates and beliefs. Table 1 quantifies responses of the Q-to-X503

ratio to changes in tax rates.504

4This is a simplification because we do not break the total effective tax rate into its constituent parts.
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In this simulation exercise changes in the Q-to-X ratio are caused by tax rate changes and by changes505

in beliefs about the data generating regime, B1. Agents update their beliefs according to relation (14) only506

upon observing a tax rate change. In addition, it follows from (38), that only changes from the interim value507

of 50% to either extreme tax rate value are informative about the data generating process. This is because508

all probabilities of switching from the extreme tax rate values (42% or 58%) to the interim value of 50% are509

equal to one under both data generating processes. Indeed, the blue line in Panel A of Figure 1 remains flat510

in 1962, 1968, 1970, 1976, and 1981, when the tax rate switches to 50%. Since ρ121 = 0.4 < ρ221 = 0.8, B1511

should discretely jump down upon observing a tax rate reduction from 50% to 42%, and it should jump up512

upon observing a tax rate hike from 50% to 58%, since ρ123 = 0.6 > ρ223 = 0.2. Indeed, the blue line in Panel513

A of Figure 1 jumps down in 1964 and 1982 when the tax rate switches to 42%. Conversely, the blue line514

jumps up in 1969, 1974, and 1978, when the tax rate switches to 58%. It is also worth mentioning that the515

Q-to-X ratio jumps discretely since both the tax rates and beliefs jump discretely.516

[Table 1 about here]517

Table 1 reports changes in the Q-to-X ratio and the corresponding tax rates. The first point worthy518

of note is that these changes are roughly one-quarter of the theory-implied causal effect equal to 1.0139, a519

severe downward bias. The second notable point is that while the magnitudes of the responses are different,520

these differences are relatively small with the maximum difference being 35%. This is mainly due to beliefs521

not being updated in the absence of tax shocks, a feature of the current data generating process that we522

alter in our second simulation exercise.523

We next consider an economy where nature alternates between two shock arrival intensities λ1 = 0.0071524

and λ2 = 0.6071, both assumed to be independent of the tax rate state, S. This parametrization keeps the525

average shock arrival intensity equal to 0.3071. The conditional tax rate switching probabilities are given by526

ρ1SS′ from the first exercise and are set to be the same in both data generating regimes.527

Figure 2 and Table 2 summarize results of this numerical exercise. Just like in the previous simulation528

exercise, both are based upon the assumption that agents enter the economy with initial belief about the data529

generating regime, B1 = Prob(λ = λ1), equal to 25%. In Figure 2, Panel A shows the evolution of beliefs530

(blue line), B1, and the history of effective tax rates (red line), Tt. Panel B shows Tobin’s Q, Q(Xt, B1, S),531

scaled by the aggregate output, Xt.532

[Figure 2 about here]533

The first point worthy of note in Figure 2 is that the responses to shocks are all sensitive to waiting time.534

This is because the beliefs B1 are evolving over time. Specifically, agents continuously update their beliefs535

according to (13) in the absence of a tax rate shock. After a tax rate change beliefs exhibit a discrete jump536

according to (14). For instance, the economy starts in 1954 in the highest tax state with a belief of 25%537

that the waiting time until a tax reduction will be very long. As time goes by and no tax shock materializes,538

B1 sharply increases. Beliefs then experience a large downward jump after the first shock arrives in 1962.539

Changing beliefs strongly affect the Q-to-X ratio. This is because staying in a highest tax rate state for a540

long time is “bad news” and, as a result, the Q-to-X ratio falls. Indeed, the Q-to-X ratio declines between541

1954 and 1962. By way of contrast, staying in the lowest tax rate state for a long time is “good news” and542

the Q-to-X ratio should increase if no tax shock occurs. Indeed, Figure 2 shows that in 1982 when the tax543

rate switches to the lowest tax state, S = 42%, B1 starts very low and then increases towards its highest544

value of 85%. The Q-to-X ratio also steadily increases.545

The second point worthy of note in Figure 2 is that if the initial tax rate is at one of the extreme values,546

42% or 58%, then the magnitude of the response to a shock is very sensitive to waiting time. By way of547

contrast, if the initial tax rate is at the interim value of 50%, the shock response magnitude is relatively548

insensitive to waiting time. For instance, the response magnitudes are very similar in 1969 and 1978, while549

the waiting times are one and two years, respectively. To understand the intuition, notice that, conditional550

upon a shock arriving, the tax rate change amounts to 8 percentage points if the initial tax rate is at one of551

the extreme values. By way of contrast, at the intermediate tax rate of 50%, the expected tax rate change,552

conditional upon a shock arriving, is only 1.6 percentage points. Beliefs about the shock arrival rate are less553

important if the expected tax rate change, conditional upon a shock, is small.554

17



[Table 2 about here]555

Table 2 quantifies responses of the Q-to-X ratio to tax rate changes. Strikingly, Table 2 reveals massive556

differences in magnitudes of shock responses, despite the fact that all tax rate changes are of equal magnitude557

and theory-implied causal effects are also of equal magnitude. For example, the minimal shock response558

has a magnitude of 0.1525 while the maximum shock response magnitude is 0.4241. In other words, the559

minimum shock response is only 36% of the maximum shock response. This sharply illustrates one of our560

central points, that historical shock response magnitudes are not generally reliable forecasters of future shock561

response magnitudes. Nor should they be in economies with learning.562

The next point worthy of note in Table 2, related to the first point, is that the magnitude of the response563

to a first shock has the potential to differ greatly from responses to identical shocks in the future. In this564

way, the calibrated natural experiment illustrates that causal parameter drift can be quite large in real-565

world settings. In practice, one could easily envision erroneous dismissals of a first shock response as being566

a misleading “outlier” inconsistent with “consensus estimates.”567

Several other points are worth noting in Table 2. First, recall that the theory-implied causal effect for568

all the shocks considered is 1.0139. However, the magnitude of shock responses never approaches the causal569

effect. It ranges from about 15% of this value in 1970 to 41% of this value in 1962, a severe downward bias.570

Second, if agents would have known the data generating process, responses to identical tax rate transitions571

would be identical. However, with learning it is not the case. For example, the response to a shock in the572

tax rate from 58% to 50% in 1970 is 0.1525, while the response to an identical tax rate transition in 1981 is573

0.2418, a difference of 37%.574

5. Macroeconomic Uncertainty575

This section extends the baseline model by introducing macroeconomic uncertainty. We follow Veronesi576

(2000) in assuming the instantaneous drift rate for aggregate output is not observable. One purpose for this577

extension is to make our framework more realistic and general. However, the primary motivation for this578

extension is to alert those favoring microeconometric methods to the fact that they must still confront many579

of the same issues confronting macroeconometricians, even if the tool-kit appears to differ at first glance.580

It will be apparent that accounting for macroeconomic uncertainty makes the problem of causal pa-581

rameter inference in natural experiments even more challenging. Specifically, the correct interpretation of582

natural experiments hinges upon correctly specifying beliefs about the stochastic processes driving both mi-583

croeconomic and macroeconomic shocks. Relatedly, while the microeconometric literature seeks to recover584

unconditional objects, abstracting from macroeconomic state variables, it is apparent that shock responses585

are functions of both latent and observable macroeconomic state variables.586

5.1. Shadow Values Redux587

Following Veronesi (2000), the instantaneous drift of aggregate output X can take on any one of N ′ ≥ 2588

values, µ1 < µ2 < ... < µN ′ . Drifts are indexed by either n or m below. Over any infinitesimal time interval dt589

with probability pdt a drift will be randomly drawn according to the probability distribution f = (f1, ..., fN ′).590

Let Z be the vector of probability weights agents place on each potential drift and let591

µ(Z) ≡
N ′∑
n=1

Znµn. (39)

From Lemma 1 in Veronesi (2000) it follows macroeconomic beliefs evolve as a diffusion, with:592

dZn = p(fn − Zn)︸ ︷︷ ︸
≡µzn

dt+
Zn[µn − µ(Z)]

σ︸ ︷︷ ︸
≡σzn

dW. (40)

Agents are assumed to have identical isoelastic utility functions593

u(c, t) ≡ e−βt c
1−ν

1− ν
. (41)
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where β is the discount rate and ν is the coefficient of relative risk aversion. The stochastic discount factor594

(SDF) is595

Mt ≡ e−βtX−νt . (42)

As in Cochrane (2001), the risk-free government bond has a constant price of 1 and must therefore pay the596

following risk-free rate597

r(Z) ≡ −E[dM ]

M
= β + νµ(Z)− 1

2
ν(ν + 1)σ2. (43)

We now pin down the shadow value of capital, relegating intermediate calculations to the Online Ap-598

pendix. To begin, the following canonical equilibrium pricing equation must hold for each tax state S:5599

0 = M [(1− TS)KX − I − γI2]dt+ Et{d[MV (K,X,B, S,Z)]}. (44)

The value function takes the separable form600

V (K,X,B, S,Z) = KQ(X,B, S,Z) +G(X,B, S,Z). (45)

This allows us to rewrite the equilibrium pricing condition as:601

0 = M [(1− TS)KX − I − γI2]dt+ Et{d(MKQ)}+ Et{d(MG)}. (46)

Applying Ito’s product rule and dropping terms of order less than dt we have602

0 = M [(1− TS)KX − I − γI2]dt+MQ(I − δK)dt+KEt{d(MQ)}+ Et{d(MG)}. (47)

Isolating those terms in the preceding equation involving the investment control, we find the optimal invest-603

ment policy takes the standard form604

max
I

M [Q− I − γI2]dt⇒ I∗ =
Q(X,B, S,Z)− 1

2γ
. (48)

The equilibrium condition must hold on the state space and hence terms scaled by K must equate to605

zero. Thus, we obtain the following equilibrium condition pinning down the shadow value of capital606

0 = M(1− TS)Xdt− δMQdt+ Et{d(MQ)}. (49)

Applying Ito’s lemma and dividing by M the previous condition can be restated as:607 [
r(Z) + δ +

∑
i

Biλ
i
S

]
Q[X,B, S,Z] (50)

= (1− TS)X + [µ(Z)− νσ2]XQx +
1

2
σ2X2Qxx

+
∑
j

Bj (∑
i

Biλ
i
S − λ

j
S

)
+
∑
i 6=j

Biφiπij −Bjφj

Qbj
+
∑
i

Biλ
i
S

∑
S′ 6=S

ρiSS′Q[X, B̃(B), S′,Z]

+
∑
n

(µzn − νσσzn)Qzn +
∑
n

σσznXQxzn +
1

2

∑
m

∑
n

σzmσznQzmzn .

Notice, this condition is identical to the baseline model’s shadow value condition (19) but with the final line608

added to capture expected capital gains due to the evolution of the macroeconomic belief diffusion processes.609

5See Cochrane (2001) page 30 for the derivation.
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As in the baseline model we conjecture the shadow value is linear in X:610

Q(X,B, S,Z) = XΨS(B,Z). (51)

Substituting in and simplifying we obtain:611 [
r(Z) + δ − µ(Z) + νσ2 +

∑
i

Biλ
i
S

]
ΨS(B,Z) (52)

= (1− TS) +
∑
j

Bj (∑
i

Biλ
i
S − λ

j
S

)
+
∑
i 6=j

Biφiπij −Bjφj

 ∂

∂Bj
ΨS(B,Z)

+
∑
S′ 6=S

∑
i

Biλ
i
Sρ

i
SS′ΨS′ [B̃(B),Z]

+
∑
n

[µzn + σσzn(1− ν)]
∂

∂Zn
ΨS(B,Z) +

1

2

∑
m

∑
n

σzmσzn
∂2

∂Zm∂Zn
ΨS(B,Z)

Next we conjecture that the shadow value represents a weighted average of microeconomic beliefs as612

follows:613

ΨS(B,Z) =

J∑
j=1

BjΨ
j
S(Z). (53)

Comparison of equations (22) and (53) is revealing. In the baseline model, each (j, S) shadow value state614

price Ψj
S is a constant. In contrast, with macroeconomic uncertainty, each (j, S) shadow value state price615

Ψj
S(Z) is a function of beliefs about the latent drift.616

Substituting the conjectured shadow value function (53) into the shadow value equation (52) and rear-617

ranging terms we obtain:618

J∑
j=1

Bj

[ (
r(Z) + δ − µ(Z) + νσ2 + λjS + φj

)
Ψj
S(Z)

−λjS
∑
S′ 6=S ρ

j
SS′Ψ

j
S′(Z)− (1− TS)− φj

∑
i 6=j πjiΨ

i
S(Z)

]
(54)

=

J∑
j=1

Bj
∑
n

[µzn + σσzn(1− ν)]
∂

∂Zn
Ψj
S(Z) +

J∑
j=1

Bj
1

2

∑
m

∑
n

σzmσzn
∂2

∂Zm∂Zn
Ψj
S(Z)

Thus, we demand that for all states S and all potential microeconomic shock generating processes j = 1, ..., J :619 (
r(Z) + δ − µ(Z) + νσ2 + λjS + φj

)
Ψj
S(Z) (55)

= (1− TS) + λjS
∑
S′ 6=S

ρjSS′Ψ
j
S′(Z) + φj

∑
i6=j

πjiΨ
i
S(Z)

+
∑
n

[µzn + σσzn(1− ν)]
∂

∂Zn
Ψj
S(Z) +

1

2

∑
m

∑
n

σzmσzn
∂2

∂Zm∂Zn
Ψj
S(Z).

Finally, we conjecture that each (j, S) shadow value state price Ψj
S(Z) represents a weighted average over620

macroeconomic beliefs as follows:621

Ψj
S(Z) =

N∑
n=1

ZnΨjn
S . (56)

Essentially, XΨjn
S captures shadow value from the perspective of an investor who knows the current instan-622

taneous microeconomic shock process is j and who also knows the current instantaneous drift is µn. Under623

this conjecture we restate our prior condition (55), and now demand that for all states S and all potential624
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microeconomic shock generating processes j = 1, ..., J :625

N∑
n=1

Zn

 [β + δ + 1
2ν(1− ν)σ2 + p+ λjS + φj − (1− ν)µn

]
Ψjn
S

−(1− TS)−
∑
S′ 6=S λ

j
Sρ

j
SS′Ψ

jn
S′ −

(∑
i 6=j φjπji

)
Ψin
S

 = p

N ′∑
m=1

fmΨjm
S . (57)

Since the right side of the preceding equation does not vary with Z, the term inside brackets must be equal626

to right side.627

We then have the following proposition.628

Proposition 6. If tax rate changes and the drift of aggregate output are driven by latent regime shifting629

Markov processes then the shadow value of capital is630

Q(X,B, S,Z) = X

N ′∑
n=1

Zn

 J∑
j=1

BjΨ
jn
S

 .
where the J×N ′×N shadow value constants {Ψjn

S } solve the following system of J×N ′×N linear equations631

1− T1 =
[
Γ− (1− ν)µ1 + λ11 + φ1

]
Ψ11

1 − λ11
∑
S′ 6=1

ρ11S′Ψ11
S′ − φ1

∑
i 6=1

π1iΨ
i1
1 − p

N ′∑
m=1

fmΨ1m
1

...

1− TN =
[
Γ− (1− ν)µ1 + λ1N + φ1

]
Ψ11
N − λ1N

∑
S′ 6=N

ρ1NS′Ψ11
S′ − φ1

∑
i 6=1

π1iΨ
i1
N − p

N ′∑
m=1

fmΨ1m
N

...

1− T1 =
[
Γ− (1− ν)µ1 + λJ1 + φJ

]
ΨJ1

1 − λJ1
∑
S′ 6=1

ρJ1S′ΨJ1
S′ − φJ

∑
i 6=J

πJiΨ
i1
1 − p

N ′∑
m=1

fmΨJm
1

...

1− TN =
[
Γ− (1− ν)µ1 + λJN + φJ

]
ΨJ1
N − λJN

∑
S′ 6=N

ρJNS′ΨJ1
S′ − φJ

∑
i 6=J

πJiΨ
i1
N − p

N ′∑
m=1

fmΨJm
N

...

1− T1 =
[
Γ− (1− ν)µN ′ + λ11 + φ1

]
Ψ1N ′

1 − λ11
∑
S′ 6=1

ρ11S′Ψ1N ′

S′ − φ1
∑
i 6=1

π1iΨ
iN ′

1 − p
N ′∑
m=1

fmΨ1m
1

...

1− TN =
[
Γ− (1− ν)µN ′ + λ1N + φ1

]
Ψ1N ′

N − λ1N
∑
S′ 6=N

ρ1NS′Ψ1N ′

S′ − φ1
∑
i 6=1

π1iΨ
iN ′

N − p
N ′∑
m=1

fmΨ1m
N

...

1− T1 =
[
Γ− (1− ν)µN ′ + λJ1 + φJ

]
ΨJN ′

1 − λJ1
∑
S′ 6=1

ρJ1S′ΨJN ′

S′ − φJ
∑
i6=J

πJiΨ
iN ′

1 − p
N ′∑
m=1

fmΨJm
1

...

1− TN =
[
Γ− (1− ν)µN ′ + λJN + φJ

]
ΨJN ′

N − λJN
∑
S′ 6=N

ρJNS′ΨJN ′

S′ − φJ
∑
i6=J

πJiΨ
iN ′

N − p
N ′∑
m=1

fmΨJm
N

where Γ ≡ β + δ + ν(1− ν)σ2 + p.632

Notice, as the linear system is described in the preceding proposition, we first hold fixed the drift at µ1633

and characterize the equilibrium conditions for each microeconomic process j and for each state S. We then634

let the drift vary up to N ′.635

As a special case of the preceding proposition, suppose there were no possibility of either microeconomic636

or macroeconomic regime shifts, with φ = 0 and p = 0. In this case, the linear equation system becomes637

separable into J × N ′ distinct blocks of N linear equations, with the solution boiling down to taking a638
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belief weighted average of model solutions under known data generating processes for each combination of639

microeconomic processes j and drift parameters µn. Restated in terms of our tilde notation for known data640

generating processes, from the preceding proposition and Proposition 1 it follows641

φ = 0 and p = 0⇒ Q(X,B, S,Z) = X

N ′∑
n=1

Zn

 J∑
j=1

BjΨ̃
jn
S

 . (58)

That is, if there is no regime shifting, one must simply characterize shadow values for each combination of J642

microeconomic processes and N ′ potential drifts, as if the model were known, and then apply belief weights,643

a very simple algorithm. Regime shifting prevents this decomposition, forcing one to invert one relatively644

large matrix rather than a set of smaller matrices.645

5.2. Shock Responses Redux646

With the introduction of macroeconomic uncertainty, the ratio of causal effect to shock response is647

CESS′

SRSS′
=

(
1
2γ

)
Xt × (TS − TS′) /[β + δ − (1− ν)µ∗ + ν(1− ν)σ2](

1
2γ

)(
Q(Xt, B̃(B), S′,Z)−Q(Xt,B, S,Z)

) . (59)

Notice, in the preceding equation we are agnostic about the drift the econometrician would like to assume648

for the purpose of computing the causal effect, and we give it the label µ∗. From the preceding equation it649

follows that the causal effect implied by an observed shock response is650

CESS′ = SRSS′ × (TS − TS′) /[β + δ − (1− ν)µ∗ + ν(1− ν)σ2]∑N ′

n=1 Zn

[∑J
j=1Bj

(
λj
Sρ

j

SS′∑
i Biλi

Sρ
i
SS′

Ψjn
S′ −Ψjn

S

)] . (60)

Comparison of the preceding equation with the analogous equation (26) from the baseline model reveals651

that macroeconomic uncertainty substantially complicates causal inference. Now the econometrician must652

correctly account for beliefs regarding the aggregate output drift in the denominator. It follows that the653

magnitude of the wedge between causal effects and shock responses will vary as macroeconomic beliefs654

vary. Phrased differently, even if one assumed perfect certainty about the underlying process generating655

the microeconomic shocks, the magnitude of observed responses to identical tax rate shocks would vary656

considerably with latent macroeconomic beliefs. Given this fact, it is hard to see how any sort of non-657

contrived consensus could be achieved regarding tax elasticities if that consensus were predicated upon658

exploiting even ideal exogenous tax rate shocks taking place at different points in time.659

The preceding point is best illustrated by way of a numerical simulation. For the purpose of this simulation660

exercise we consider an economy identical to the one used in the second simulation above but populated661

by agents with identical isoelastic utility functions. We set the coefficient of relative risk aversion, ν, to be662

equal to 0.7. In addition to the uncertainty about the tax shock arrival rates, we allow for macroeconomic663

uncertainty. Specifically, following Veronesi (2000) we assume that over time interval dt with probability664

0.5dt a drift µn is randomly drawn from a pair {µ1 = 0.075, µ2 = 0.005} according to the probability665

distribution f = {0.4, 0.6}. The unconditional mean of the drift under the distribution f is equal to 3.3%.666

[Figure 3 about here]667

Figure 3 and Table 3 summarize results of this numerical exercise. We assume that the initial belief about668

the microeconomic data generating regime, B1 = Prob(λ = λ1), is equal to 25%. The initial macroeconomic669

belief is 50%. In Figure 3, Panel A shows the evolution of beliefs (blue line), B1, and the history of670

effective tax rates (red line), Tt. Panel B shows Tobin’s Q, Q(Xt, B1, S) scaled by the aggregate output,671

Xt. It is immediately clear from Figure 3 that macroeconomic uncertainty strongly affects the Q-to-X672

ratio. For example, the Q-to-X ratio exhibits non-monotone behavior during time intervals between tax rate673

shocks. However, microeconomic beliefs are strictly monotone during such time intervals. Therefore, the674

non-monotonicity in the Q-to-X ratio must be driven by time-varying macroeconomic beliefs.675
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The key point illustrated by this exercise is that uncertainty regarding the macroeconomic data generating676

process fundamentally alters the magnitude of shock responses. To see this, compare Tables 2 and 3. Every677

shock response changes. But note, by construction, both tables feature the same microeconomic beliefs678

at all points in time, since both of them exploit the same time-series of historical tax rates. Therefore,679

any differences between the respective shock responses across the two tables must be due to the fact that,680

in Table 3, shock responses are being altered by time-varying macroeconomic beliefs. Phrased differently,681

the failure to account for macroeconomic uncertainty in Table 3 would lead to faulty inference regarding682

causal parameters. That is, correctly interpreting the shock responses in Table 3, e.g. mapping them back683

to theory-implied causal effects would require undoing the confounding effect of both microeconomic and684

macroeconomic uncertainty, a tall order.685

[Table 3 about here]686

Comparison of Tables 2 and 3 also reveals that macroeconomic uncertainty can increase the difference687

between identical shock responses taking place at different points in time. After all, time-varying macroe-688

conomic beliefs can work in the same direction as time-varying microeconomic beliefs to exacerbate shock689

response differences. For example, in Table 2 which considered a setting without macroeconomic uncer-690

tainty, the difference between the 1970 shock response and the identical shock response in 1981 amounted to691

roughly one-third. However, we see from Table 3, with macroeconomic uncertainty, the difference exceeds692

50%. Overall, these simulation results confirm that accounting for macroeconomic uncertainty makes the693

problem of causal parameter inference in natural experiments even more challenging.694

6. Conclusion695

This paper considered the problem of interpretation and extrapolation of evidence coming from sequences696

of seemingly-ideal exogenous policy shocks when the underlying data generating process is not known to697

either agents or the econometricians studying them. As shown, learning gives rise to “ causal parameter698

drift” even with constant a data generating process. In fact, responses to ideally exogenous shocks do not699

even necessarily clear the low barrier of correct signing of causal effects.700

With learning, the correct interpretation of shock responses hinges upon the exact time pattern of realized701

shocks, as well as (generally unstated) parametric assumptions about priors and potential data generating702

processes. Conveniently, closed-form formulae were given for: mapping observed shock responses back to703

theory-implied causal effects; recovering policy-invariant technological parameters; or forecasting future shock704

responses. Finally, martingale profitability across all potential data generating processes was shown to be705

a necessary and sufficient condition for shock responses to directly recover comparative statics. However,706

stochastic monotonicity across all potential data generating processes was shown to be insufficient to ensure707

shock responses correctly recover the correct sign of theory-implied causal effects.708

One final objective of this paper was to formalize concepts and mechanisms that, at present, are either709

ignored by applied microeconometricians or treated only heuristically. Hopefully, developing a formal frame-710

work for the analysis of dynamic natural experiments will clarify points of methodological disagreement711

between competing camps and facilitate progress through cross-fertilization. Clearly, in many important712

settings, specifically dynamic settings, the identification challenge mentioned by Heckman (2010) is far from713

being a settled issue.714

23



References715

Abel, A., Eberly, J., 1994. A Unified model of investment under uncertainty. American Economic Review716

84, 100-128.717

Abel, A., Eberly, J., 1997. An exact solution for the investment and value of a firm facing uncertainty,718

adjustment costs, and irreversibility. Journal of Economic Dynamics and Control 21, 831-852.719

Alti, A., 2003. How sensitive is investment to cash flow when financing is frictionless? Journal of Finance720

58, 707-722.721

Angrist, J.D., Pischke, J.S., 2009. Mostly harmless econometrics: An empiricist’s companion. Princeton722

University Press, Princeton.723

Angrist, J.D., Pischke, J.S., 2010. The credibility revolution in economics: How better research design is724

taking the con out of econometrics. Journal of Economic Perspectives 24, 3-30.725

Athey, S., Milgrom, P., Roberts, J., 1998. Robust comparative statics. Working paper, Stanford University.726

Bianchi, F., Melosi, L., 2016. Modeling the evolution of expectations and uncertainty in general equilibrium,727

International Economic Review 57, 717-756.728

Bianchi, F., Melosi, L., 2019. Constrained discretion and central bank transparency. Review of Economics729

and Statistics 100, 187-202.730

Bouvard, M., 2014. Real option financing under asymmetric information. Review of Financial Studies 27,731

180-210.732

Chetty, R., 2012. Bounds on elasticities with optimization frictions: A synthesis of micro and macro733

evidence on labor supply. Econometrica 80, 969-1018.734

Cochrane, J., 2001. Asset pricing. Princeton University Press, Princeton.735

Congressional Research Service, 2006. Historical effective tax rates on capital income. CRS Report 1408.736

Cummins, J.G., Hassett, K.A., Hubbard, R.G., 1994. A reconsideration of investment behavior using tax737

reforms as natural experiments. Brookings Papers on Economic Activity 2, 1-74.738

Decamps, J., Mariotti, T., 2004. Investment timing and learning externalities. Journal of Economic Theory739

118, 80-102.740

Goldstein, R., Ju, N., Leland, H., 2001. An EBIT-based model of dynamic capital structure. Journal of741

Business 74, 483-512.742

Gomes, J., 2001. Financing investment. American Economic Review 91, 1263-1285.743

Gravelle, J., 1994. The economic effects of taxing capital income. MIT Press, Boston.744

Hansen, L., Sargent, T., 2010. Wanting robustness in macroeconomics. Handbook on Monetary Economics745

3, 1097-1157.746

Heckman, J.J., 2000. Causal parameters and policy analysis in economics: A twentieth century retrospec-747

tive. Quarterly Journal of Economics 115, 45-97.748

Heckman, J.J., Navarro, S., 2007. Dynamic discrete choice and dynamic treatment effects. Journal of749

Econometrics 136, 341-396.750

Hennessy, C.A., Whited, T.M., 2004. Debt dynamics. Journal of Finance 60, 1129-1165.751

Hennessy, C.A., Strebulaev, I., 2019. Beyond random assignment: Credible inference and extrapolation in752

dynamic economies. Journal of Finance, Forthcoming.753

24



Jovanovic, B., 1982. Selection and the evolution of industry. Econometrica 50, 649-670.754

Keane, M.P., 2010. Structural vs. atheoretic approaches to econometrics. Journal of Econometrics 156,755

3-20.756

Keane, M.P., Wolpin, K.I., 2002. Estimating welfare effects consistent with forward-looking behavior.757

Journal of Human Resources 37, 570-599.758

Kocherlakota, N., 2018. Practical policy evaluation. NBER Paper 24643.759

Lucas, R.E., Jr., 1976. Econometric policy evaluation: A critique. In: Brunner, K., Meltzer, A. (Eds.),760

The Phillips curve and labor markets. North-Holland, Amsterdam.761

Moyen, N., 2005. Investment-cash flow sensitivities: Constrained vs unconstrained firms. Journal of Finance762

59, 2061-2092.763

Romer, P., 2016. The trouble with macroeconomics. Available at https://ccl.yale.edu/sites/default/764

files/files/The%20Trouble%20with%20Macroeconomics.pdf.765

Romer, C., Romer, D., 2014. The NBER Monetary Economics Program. NBER Reporter.766

Rust, J., 2010. Comments on Structural vs. atheoretic approaches to econometrics. Journal of Econometrics767

156, 21-24.768

Sims, C., 2010. But economics is not an experimental science. Journal of Economic Perspectives 24, 59-68.769

Slemrod, J., 1992. Do taxes matter? Lessons from the 1980’s. American Economic Review 82, 250-256.770

Summers, L., 1981. Taxation and corporate investment: A q-theory approach. Brookings Papers on771

Economic Activity 1, 67-132.772

Veronesi, P., 2000. How does information quality affect stock returns? Journal of Finance 55, 807-837.773

25

https://ccl.yale.edu/sites/default/files/files/The%20Trouble%20with%20Macroeconomics.pdf
https://ccl.yale.edu/sites/default/files/files/The%20Trouble%20with%20Macroeconomics.pdf
https://ccl.yale.edu/sites/default/files/files/The%20Trouble%20with%20Macroeconomics.pdf


Panel A: Tax rates and beliefs
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Figure 1 – Simulated Responses to Tax Rate Shocks: Different Switching Probabilities
The figure shows simulated tax shock responses for the case of two different tax rate switching probabilities, ρ1,2

SS′ . Caption

of Table 1 provides further details of the simulation. Panel A shows the evolution of beliefs (blue line), B1 = Prob(ρj
SS′ =

ρ1
SS′ ), and tax rates (red line). Panel B depicts Tobin’s Q scaled by the aggregate output, Xt.
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Figure 2 – Simulated Responses to Tax Rate Shocks: Different Shock Arrival Intensities
The figure shows simulated tax shock responses for the case of two different shock arrival intensities, λ1,2, and the same
tax rate switching probabilities, ρ1

SS′ = ρ2
SS′ . Caption of Table 2 provides further details of the simulation. Panel A

shows the evolution of beliefs (blue line), B1(t) = Prob(λ = λ1), and tax rates (red line). Panel B depicts Tobin’s Q
scaled by the aggregate output, Xt.
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Panel A: Tax rates and beliefs
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Figure 3 – Simulated Responses to Tax Rate Shocks With Macroeconomic Uncertainty
This figure reports simulated responses to tax rates shock with macroeconomic uncertainty about the instantaneous drift
of the aggregate output and microeconomic uncertainty about the tax shock arrival rate. Caption of Table 3 provides
further details of the simulation. Panel A shows the evolution of beliefs (blue line), B1(t) = Prob(λ = λ1), and tax rates
(red line). Panel B depicts Tobin’s Q scaled by the aggregate output, Xt.

28



Table 1 – Simulated Responses to Tax Rate Shocks: Different Switching Probabilities
This table reports simulated tax shock responses for the case of two different conditional tax rate switching probabilities,
ρ1
SS′ and ρ2

SS′ , specified in (38). The historical U.S. 1954-2005 data is used for tax rate shocks with rates alternating
between 42%, 50%, and 58%. The tax shock arrival intensity, λ, is set to 0.3071. We report the year of the tax rate shock,
change in the Tobin’s Q, Qt, scaled by the aggregate shock, Xt, and the corresponding tax rate.

(1) (2)

Year ∆
(

Qt
Xt

)
Tax Rate

1962 0.2399 0.50
1964 0.1814 0.42
1968 -0.1685 0.50
1969 -0.2579 0.58
1970 0.2351 0.50
1974 -0.2519 0.58
1976 0.2199 0.50
1978 -0.2336 0.58
1981 0.2075 0.50
1982 0.2149 0.42
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Table 2 – Simulated Responses to Tax Rate Shocks: Different Shock Arrival Intensities
This table reports simulated tax shock responses for the case of two shock arrival intensities, λ1 = 0.0071 and λ2 = 0.6071.
The historical U.S. 1954-2005 data is used for tax rate shocks with the tax rate alternating between 42%, 50%, and 58%.
The conditional tax rate switching probabilities, ρSS′ , with the tax states ordered as S = {42%, 50%, 58%}, are the same
across two data generating regimes and are equal to ρ1

SS′ specified in (38). We report the year of the tax rate shock,
change in the Tobin’s Q, Qt, scaled by the aggregate shock, Xt, and the corresponding tax rate.

(1) (2)

Year ∆
(

Qt
Xt

)
Tax Rate

1962 0.4241 0.50
1964 0.1769 0.42
1968 -0.3765 0.50
1969 -0.1530 0.58
1970 0.1525 0.50
1974 -0.1743 0.58
1976 0.1916 0.50
1978 -0.1568 0.58
1981 0.2418 0.50
1982 0.1833 0.42
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Table 3 – Simulated Responses to Tax Rate Shocks With Macroeconomic Uncertainty
This table reports simulated responses to tax rates shock with macroeconomic uncertainty about the instantaneous drift
of the aggregate output and microeconomic uncertainty about the tax shock arrival rate. The historical U.S. 1954-2005
data is used for tax rate shocks with the tax rate alternating between 42%, 50%, and 58%. The arrival intensities of the
tax shocks and conditional transition probabilities for tax rates are the same as reported in the caption of Table 2. Over
time interval dt with probability 0.5dt a drift µn is randomly drawn from a pair {µ1 = 0.075, µ2 = 0.005} according to the
probability distribution f = {0.4, 0.6}. The initial marcoeconomic belief is 50%. The coefficient of relative risk aversion,
ν, is set to 0.7. We report the year of the tax rate shock, change in the Tobin’s Q, Qt, scaled by the aggregate shock, Xt,
and the corresponding tax rate.

(1) (2)

Year ∆
(

Qt
Xt

)
Tax Rate

1962 0.2608 0.50
1964 0.1056 0.42
1968 -0.2372 0.50
1969 -0.0916 0.58
1970 0.0884 0.50
1974 -0.1228 0.58
1976 0.1121 0.50
1978 -0.1123 0.58
1981 0.1826 0.50
1982 0.1132 0.42
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