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ABSTRACT
Traditionally, the vehicle has been the extension of the manual am-
bulatory system, docile to the drivers’ commands. Recent advances
in communications, controls and embedded systems have changed
this model, paving the way to the Intelligent Vehicle Grid. The car is
now a formidable sensor platform, absorbing information from the
environment, from other cars (and from the driver) and feeding it to
other cars and infrastructure to assist in safe navigation, pollution
control and traffic management. The next step in this evolution is
just around the corner: the Internet of Autonomous Vehicles. Like
other important instantiations of the Internet of Things (e.g., the
smart building, etc), the Internet of Vehicles will not only upload
data to the Internet with V2I. It will also use V2V communications,
storage, intelligence, and learning capabilities to anticipate the cus-
tomers’ intentions and learn from other peers. V2I and V2V are
essential to the autonomous vehicle, but carry the risk of attacks.
This paper will address the privacy attacks to which vehicles are
exposed when they upload private data to Internet Servers. It will
also outline efficient methods to preserve privacy.

1 INTRODUCTION
The urban fleet of vehicles is evolving from a collection of sensor
platforms that provide information to drivers and upload filtered
sensor data (e.g., GPS location, road conditions, etc.) to Internet
Servers; to a network of autonomous vehicles that exchange their
sensor inputs among each other in order to optimize several dif-
ferent utility functions. One such function, and probably the most
important for autonomous vehicles, is prompt delivery of the pas-
sengers to destination with maximum safety and comfort and mini-
mum impact on the environment. We are witnessing today in the
vehicle fleet the same evolution that occurred ten years ago in the
sensor domain from Sensor Web (i.e., sensors are accessible from
the Internet to get their data) to Internet of Things (the computers
with embedded sensors are networked with each other and make
intelligent use of the sensors). In the intelligent home, the IOT
formed by the myriad of sensors and actuators that cover the house
internally and externally, can manage all the utilities in the most
economical way, with maximum comfort to residents and virtu-
ally no human intervention. Similarly, in the modern energy grid,
the IOT consisting of all components large and small can manage
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power loads in a safe and efficient manner, with the operators now
playing the role of observers. In the vehicular grid, the Internet of
Vehicles (IOV) is more complex than the smart home and smart
energy grid IOTs. In fact there are many different “Things" in the
IOV. Namely:

(1) External sensors (GPS, cameras, lidars etc)
(2) Internal automotive sensors and actuators (brakes, steering

wheel, accelerator, etc)
(3) Internal cockpit sensors (driver’s state of health, alertness,

tone of voice, health sensors like the Ford heart monitor seat,
etc)

(4) TheDriver’smessages (tweets, Facebook, other crowd-sourced
info, etc) are also measurable sensor outputs that character-
ize the state of the system and of the driver.

(5) Vehicle’s beacons, alarms report on the Vehicle state; say,
position, key internal parameters, possible dangers, etc.

This complex picture (of sensors and stakeholders) tells us that
IOVs are different from other IOTs. What sets them apart from
other IOTs are the following properties/characteristics:

(1) Mobility:
(a) IoVs Must manage mobility and wireless bottleneck
(b) They must guarantee motion privacy

(2) Safety critical Applications
(a) This implies low latency requirements

(3) V2V:
(a) V2V is critical for safety, low latency apps (eg, platoons)

(4) Attacks:
(a) Security and DDoS attacks (from hackers and form mali-

cious agents) are made possible by V2V.
In the vehicular network, like in all the other IOTs, when the

human control is removed, the autonomous vehicles must efficiently
cooperate to maintain smooth traffic flow in roads and highways.
Visionaries predict that the self-driving vehicles will behave much
better than human drivers, handling more traffic with lower delays,
less pollution and better driver and passenger comfort. However,
the complexity of the distributed control of hundreds of thousands
of cars cannot be taken lightly. If a natural catastrophe suddenly
happens, say an earthquake, the vehicles must be able to coordinate
the evacuation of critical areas in a rapid and orderly manner. This
requires the ability to efficiently communicate with each other and
also to discover where the needed resources are (e.g., ambulances,
police vehicles, information about escape routes, images about
damage that must be avoided, etc.). Moreover, the communications
must be secure, to prevent malicious attacks that in the case of
autonomous vehicles could be literally deadly since there is no
standby control and split second chance of intervention by the
driver (who meantime may be surfing the web).

All of these functions, from efficient communications to dis-
tributed processing over various entities, will be provided by an
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emerging compute, communications and storage platform specif-
ically designed for vehicles—the Vehicular Cloud. The Vehicular
Cloud is justified by several observed trends:

(1) Vehicles are becoming powerful sensor platforms
(a) GPS, video cameras, pollution, radars, acoustic, etc

(2) Spectrum is becoming scarce => Internet upload of all the
sensor outputs expensive and besides infeasible

(3) More data is cooperatively processed by vehicles rather than
uploaded to Internet:

(a) road alarms (pedestrian crossing, electr. brake lights), pla-
toon coordination signals, intersection announcement, etc

(4) Distributed Surveillance (video, mechanical, chemical sen-
sors)

(a) Must be locally supported, deployed
(5) Protection from DDoS attacks, must be done locally, via the

Vehicular Cloud
To support the above functions, the mobile Vehicle Cloud pro-

vides several basic services, from routing to content search, through
standard, open interfaces that are shared by all auto manufacturers.

2 EMERGING APPLICATIONS
A number of applications have emerged in recent years, leveraging
V2I and V2V
• Safe Navigation
• Crash prevention; platoon stability; shockwaves
• Content Download/Upload
• News, entertainment, location relevant info download; ICN
• Video upload (eg remote drive, Pic-on-wheels, accident scene,
etc)
• Sensor Data gathering
• Forensics; driver behavior; traffic crowdsource; ICN
• Privacy preserving data analysis
• Intelligent Transport
• Efficient routing to mitigate congestion/pollution
• Vehicle Autonomy
• Autonomous, self driving vehicles, etc

We will focus on the intelligent transport application, because it
is an application that leverages both V2V and V2I communications.
For this application, we will highlight the security and privacy risks
caused by vehicular communications.

2.1 Intelligent navigation - from Dash Express
to WAZE

Dash Express revolutionized the navigator business in 2008 by
exploiting Time and Speed crowdsensed by its customers []. Namely,
cars periodically submit Time and Speed reports. Using customers
reports, an uptodate map of road delays is computed and accurate
navigation instructions are dispatched to cars. Current Navigators
are mostly based on the same crowdsourcing model. For example
WAZE (by Google) is driven by customer reports supplied to the
Server in the Cloud. It is accessed via V2I (DSRC, WIFI or LTE).

The Centralized, Cloud based Navigator Server has access to
many other services in the Cloud (eg, historic traffic data, road
repair schedules, driver habits, metereology data, pollution data,
e-vehicle recharge station locations, etc). These data sources enable

the support of many advanced features like: optimization of routes;
Minimization of pollution (eco routing); Traffic flow balancing;
Arrival time control on preferred routes; Combined traffic and
congestion control; increase patrolling to discourage bad driving
behavior. However, centralized traffic management alone cannot
react promptly to local traffic perturbations (WAZE has a reaction
time of 10-15min). For example, a doubled parked truck in the
next block; a recent traffic accident; a sudden queue of traffic on the
preplanned route forces the driver towait up to 15min beforeWAZE
discover the traffic blocking and find an alternate path. Namely,
for scalability reasons, the Internet based Navigator Server cannot
micro-manage traffic

This is where distributed traffic management can come to help!
In fact, it was shown that the distributed approach is a good comple-
ment to centralized supervision, Leontiadis et. al. [10]. In the refer-
enced paper the distributed, totally crowdsourced scheme “CATE:
Comp Assisted Travel Environment" is introduced. In a nutshell,
the vehicles crowd source traffic information and build traffic load
data base:

(1) estimate traffic from own travel time;
(2) share it with neighboring vehicles (with V2V in an ad hoc

manner)
(3) dynamically recompute the best route to destination

Interestingly, both Centralized and Distributed navigation sys-
tems lead to security issues. In the past we have investigated the
vulnerability of the distributed V2V scheme to BOTNET attacks
launched by compromised cars [ xyz]. The compromised cars man-
age to propagate false information, via V2V and lure honest cars in
a major traffic bottleneck in a couple of minutes [8]! The Central-
ized Navigator protects from BOTNETs, but exposes customers to
Privacy attacks, as described below.

2.2 Security Problem: Privacy violations in V2I
communications

The Centralized Navigators also have security problems and can
lead to Communication Privacy Violations. In fact, with central-
ized navigators, Cars upload their position, velocity and intended
destination to the Navigator. For example:

• WAZE delivers vehicle position and traffic conditions to
GOOGLE traffic
• UBER vehicles upload passenger and vehicle status to UBER
Server
• LTE providers can trilaterate and localize the vehicles as
they connect to the Internet

The collected data can be used by the Navigation servers to
track users and discover their driving habits, favorite hot spots,
etc. Naturally, Service Providers like GOOGLE, UBER and Cellular
Companies are committed to protect customer privacy. However,
privacy guarantees have been often broken in the past (intention-
ally or by mistake). In theWaze Privacy Attack, Waze allows remote
customers to view current traffic in an arbitrary window. Bymoving
the window, the attacker tracks the victim. In the Waze DDoS At-
tack, the malicious customer impersonates multiple WAZE vehicles
in a small area, simulating traffic bottleneck [12].



In the remainder of this paper, we focus on the Privacy violation
issue, a problem common to all applications that upload mobile
data from IOT or IOV to Servers in the Cloud. We formally define
the problem, introduce an efficient, scalable solution, Haystack, and
evaluate it on a real distribution of driver habit responses collected
by Triple AAA and stored in the publicly accessible Safety Culture
Index [1]

3 RELATEDWORK
Differential privacy [3–6] has been proposed as a mechanism to
privately share data such that anything that can be learned if a
particular data owner is included in the database can also be learned
if the particular data owner is not included in the database. To
achieve this privacy guarantee, differential privacy mandates that
only a sublinear number of queries have access to the database and
that noise proportional to the global sensitivity of the counting
query is added (independent of the number of data owners).

The randomized response based policies [7, 9, 11, 13] satisfies
the differential privacy mechanism as well as stronger mechanisms
such as zero-knowledge privacy. However, the accuracy of the
randomized response mechanism quickly degrades unless the coin
toss values are configured to large values (e.g., greater than 80%).

4 HAYSTACK PRIVACY
We now introduce the Haystack Privacy mechanism. Our goal is for
scalable privacywhereby asmore individuals participate the privacy
guarantee becomes stronger while simultaneously we would like
to maintain constant error in the worst case. We motivate the need
for scalable privacy with the following example.

Suppose we issue a counting query whereby we are interested
in how many human drivers aggressively accelerate and tailgate
another vehicle. Say the query is only targeted at those aggressive
drivers and 95 out of 100 queried drivers tailgate over vehicles.
Clearly if an adversary knows that a particular driver participated
in the study there no privacy as any adversary is able to guess with
a greater than 90% success rate.

Is there a way to address this privacy breach? One possible solu-
tion is to query a larger population, say an entire city regardless
of prior knowledge of their driver behavior. This would allow us
to collect results from a more diverse population. Say we queried
1 million drivers while only 95 of the drivers are aggressive and
tailgate. Now to perform a privacy breach an adversary must de-
termine which 95 drivers of the total population are the aggressive
drivers.

We can go further. The population can be diversified while we
simultaneously learn more information. For example, we could
query for tailgaters, excessive lane changing, speeding, and normal
behavior. Querying additional attributes accomplishes two key
properties. First, we are able to increase the participating population.
Second, we are able to learn additional features such as counts of
those that speed and do excessive lane changing.

However, there is a concern. Data owners that do not truthfully
respond “Yes" they are a tailgater add privacy protection at the
cost of distorting the underlying distribution. In our example, the
distribution changes from 95% of the population to less than 0.01%

of the population. The question then becomes can we preserve any
notion of accuracy?

Performing sampling over the “distorted" distribution with a
large population of say one million will incur a large sampling
error that will dominate the estimation. Instead, we run a multi-
round protocol and fix certain coin tosses across rounds in order to
eliminate the error due to sampling. This way, wemaintain constant
error.

We now describe our Haystack Privacy Mechanism in detail.

4.1 Haystack Privacy Mechanism

Illustration. To illustrate and demonstrate the mechanism, we
employ the following example. Suppose we are interested in the
distribution of the degree of speeding behavior. Aggressive driving
is a factor for more than one-half of all traffic fatalities and speeding
is a factor in one-third of all fatal crashes [2]. Recent studies have
shown that more than half of all drivers surveyed admitted to
speeding more than 15% of the posted speed limit in the past 30
days [2].

Suppose a data owner was speeding. First, the data owner should
discretize the amount they were speeding by. Suppose we discretize
the speeds below and exceeding the posted speed limit as follows.
Below the speed limit are as follows “ − 15 ∼ −11” is group 1,
“ − 10 ∼ −6” is group 2, “ − 5 ∼ −0” is group 3. Exceeding the speed
limit is “1 ∼ 5” is group 4,“6 ∼ 10” is group 5, “11 ∼ 15” is group 6
etc.

Say the data owner was speeding by 10 mph. Then the data
owner discretizes their speed integer 5 value (group 5).

In the first round, the data owner tosses a multi-sided die. One
side samples whether the data owner should respond truthfully for
their location ID. The remaining sides selects a group ID for the
data owner to respond. Say the number of speeding groups is G.
We will use a total of G + 1 groups as we will see below.

Suppose in the first round the data owner is sampled and se-
lected. The data owner should respond “Yes" to group 0 (used as a
calibration step). The remaining data owners also toss a multi-sided
die and respond with the group number corresponding to the die
number. A privatized sum is computed by aggregating the “Yes"
counts in each group.

In the second round the sampled data owner should respond
truthfully for their given group ID. The remaining data owners stay
with their first round responses. A privatized sum is computed by
aggregating the “Yes" counts in each group.

Finally, population size estimation is carried out for each group
ID by subtracting the privatized sum in round two from round one
and dividing by the sampling parameter.

The following three privacy observations are made. First, a ma-
jority of the population provides privacy noise by randomly re-
sponding either “Yes" or “No" regardless of their truthful response.
Second, plausible deniability is provided as each data owner prob-
abilistically responds opposite of their truthful response. Finally,
every data owner acts as a potential candidate for the truthful pop-
ulation. Our assumption is that every data owner is active in both
rounds and only the aggregate counts are released.
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Figure 1: (Excessive Speeding) 3,896 re-
spondents.
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Figure 2: (Excessive Speeding) 100,000 re-
spondents (3,896 respondents and 96,104
add chaff).
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Figure 3: (Excessive Speeding) 1,000,000
respondents (3,896 respondents and
996,104 add chaff).
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Figure 4: (Texting and Driving) 3,896 re-
spondents.
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Figure 5: (Texting and Driving) 100,000
respondents (3,896 respondents and
96,104 add chaff).
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Figure 6: (Texting and Driving) 1,000,000
respondents (3,896 respondents and
996,104 add chaff).

Haystack Privacy Mechanism. We now formally describe the
Haystack Privacy mechanism.

(Round One) LetG represent all outputs for which the data owner
does not truthfully respond “Yes". Let G ′ be the special output for
which the data owner truthfully responds “Yes".

In the first round the sampled and selected data owner responds
to ∅ (corresponding to group 0). The remaining data owners re-
spond according to toss of the multi-sided die.

Round OneYes =



∅ with probability πs

G,G ′ with probability πG
(1)

That is, all sampled and selected data owners respond to∅while
the remaining data owners randomly respond.

(Round Two) In the second round the sampled and selected data
owner now responds with their truthful response. The remaining
data owners stay with their round one response.

Round Two =




∅ with probability 0
G′ with probability πs

G,G ′ with probability πG

(2)

That is, all the sampled and selected data owners respond truth-
fully allowing us to now perform the estimation.

(Expected Values) LetG1 be a given group value in the first round.
For a given value of G and G ′ let Yespop refer to the truthful “Yes"
fraction of the population and Nopop refer to the truthful “No"

fraction of the population. The entire population is represented by
TOTAL. The first round of expected values are as follows.

E[G1] = πG × TOTAL (3)

That is, for each value both populations randomly contribute.
The second round the expected values now include the sampled

population.

E[G2] = πG × TOTAL + πs × Yespop (4)

That is, everyone randomly contributes. The sampled and se-
lected percentage truthfully respond.

(Estimator) To solve for the YES population we subtract the first
round from the second round and repeat for each output value as
follows:

YES =
Private SumG,2 − Private SumG,1

πs
(5)

The sampled and selected population, by not participating in
round one, allows us to baseline the privacy noise and perform
estimation for the sampled truthful population.

5 EVALUATION
We evaluate theHaystack Privacymechanism over a distributions of
inputs from real drivers obtained from Triple AAA Safety Culture
Index [1]. We assign virtual identities to each respondent. The
population is a random sample of 3,896 U.S. residents of driving
age.



Figures 1, 2, 3 shows the results from the first experiment, namely,
the distribution of drivers that have excessive speeding greater
than 10mph over the posted speed limit in the past 30 days. We
increase the number of drivers not participating in the particular
study and who do not exhibit excessive speed. We show the scaling
effects. Upper bounds are shown with a 95% confidence interval.
The coin toss probabilities are fixed as follows. Haystack Privacy 1
πs = 0.45 and Haystack Privacy 2 πs = 0.25. Randomized Response
f lip1 = 0.8 and f lip2 = 0.2.

Figures 4, 5, 6 shows the results from the second experiment,
namely the distribution of drivers that have written and sent texts
while driving within the past 30 days. Like in experiment 1, we
increase the number of drivers not participating in the particular
study and who do not write/send text and show the scaling effects.
Upper bounds are shown with a 95% confidence interval. The coin
toss probabilities are fixed as follows. Haystack Privacy 1 πs = 0.45
and Haystack Privacy 2 πs = 0.25. Randomized Response f lip1 =
0.8 and f lip2 = 0.2.

We compare Haystack Privacy to the conventional Randomized
Response based on two biased coins’ tossing. The Haystack Pri-
vacy mechanism maintains constant error while the Randomized
Response accrues error as the population scales. It should also
be noted that as the underlying distribution to estimate tends to
smaller values, the Randomized Response has difficulties in per-
forming accurate estimation. This has implications for large and
diverse datasets whereby we are interested in estimating and un-
derstanding non-frequently occurring phenomena (e.g., hard to
explain traffic accidents and environmental factors).

6 CONCLUSION
In this paper we have demonstrated that data can be privately col-
lected into a common open data vehicular database to be shared
amongstmultiple collaborators.We introduce the concept of Haystack
Privacy, which scales well by increasing the privacy strength as
more data owners participate yet maintaining accuracy. Haystack
Privacy easily outperforms Randomized Response. We believe this
is a new direction in open data vehicular research.
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